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Abstract

In this note we show that weak solutions to the wave map problem in the energy-supercritical dimension 3 are not unique. On
the one hand, we find weak solutions using the penalization method introduced by Shatah [12] and show that they satisfy a local
energy inequality. On the other hand we build on a special harmonic map to construct a weak solution to the wave map problem,
which violates this energy inequality.

Finally we establish a local weak-strong uniqueness argument in the spirit of Struwe [15] which we employ to show that one
may even have a failure of uniqueness for a Cauchy problem with a stationary solution. We thus obtain a result analogous to the
one of Coron [2] for the case of the heat flow of harmonic maps.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The subject under consideration in this article is the following “wave map” problem. For a map ϕ :R1+d → (M,g)

on Minkowski space R
1+d to a Riemannian manifold (M,g) we seek to find the critical points of the Lagrangian

L(ϕ) := 1

2

∫
R1+d

〈
∂αϕ, ∂αϕ

〉
g
dx dt, (1)

where we raise indices using the Minkowski metric η = diag{−1,1, . . . ,1} and repeated indices are to be summed
over. The corresponding Euler–Lagrange equations yield the Cauchy problem

Dα∂αϕ = 0, ϕ(0) = ϕ0, ∂tϕ(0) = ϕ1, (2)

for given (ϕ0, ϕ1) in appropriate function spaces and Dα the induced covariant derivative on the pull-back tangent
bundle ϕ−1T M .
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For initial data (ϕ0, ϕ1) ∈ Ḣ s × Ḣ s−1 the scaling invariant Sobolev space has differentiability exponent s = d
2 .

The well-posedness theory in the subcritical and critical cases (s � d
2 ) has undergone much development, which is

too extensive to be summarized exhaustively here. For the case of M a sphere, a first important step beyond techniques
based on Strichartz estimates was the work of Klainerman, Machedon and Selberg [9,10], where local (in time)
well-posedness for regularities s > d

2 was proved using the Wave-Sobolev (or Xs,b) spaces. Subsequently Tao [16]
established global well-posedness for regularities s � d

2 in dimensions d � 2. Finally, in [17] Tataru showed the
global well-posedness for these regularities for a wide range of target geometries (in particular for all smooth compact
manifolds) using adapted function spaces. These results rely on modern methods from harmonic analysis. In contrast,
for dimensions d � 4 Shatah and Struwe [13] found a way of establishing global well-posedness using gauge theory.

In the supercritical setting s < d
2 , heuristically one expects ill-posedness and is thus led to the study of weak

solutions in the energy class Ḣ 1 ×L2. An advantage of these is their relatively easy constructability using penalization
methods – see Shatah [12] for the case of spheres and Freire [5] for that of compact homogeneous spaces.

In a similar vein, for equivariant geometries the wave map equation reduces to a partial differential equation in
1 + 1 dimensions, so that the associated elliptic problem is an ordinary differential equation and one can explicitly
construct self-similar solutions that develop singularities in finite time (see Shatah [12] for first such examples). It is
then not difficult to show that uniqueness of solutions may fail. More recently there have been important numerical
investigations by Bizoń et al. [1] into blow-up in finite time and singularity formation for large initial data. Moreover,
Donninger [4] established a result on the stability of self-similar blow-up.

A detailed characterization of self-similar solutions using Besov spaces was given by Germain in [6] and [7]. In
particular, these works support the intuition that stationary weak solutions (i.e. weak harmonic maps) should be unique
amongst wave maps satisfying an energy inequality, provided they minimize the Dirichlet energy. As we shall see later
(in Section 2), the present article builds on this train of thought.

Furthermore, ill-posedness has been studied more comprehensively by D’Ancona and Georgiev in [3], where inter
alia a non-uniqueness result with data of supercritical (but arbitrarily close to critical) regularity in dimension d = 2
is given.

On the other hand, in dimensions d � 4 Masmoudi and Planchon [11] used gauge theory to prove unconditional

uniqueness1 of solutions in the natural class Ḣ
d
2 × Ḣ

d
2 −1.

1.1. Plan of the article

In the present article we study weak solutions of the Cauchy problem (2) in dimension d = 3 and M = S
2 with the

induced metric from the embedding2 S2 ↪→R3. This is the supercritical case for the energy norm Ḣ 1: (2) is subcritical
in dimension d = 1, critical in dimension d = 2 and supercritical for d � 3.

Our main results are Theorems 2.9 and 4.1, which assert the non-uniqueness of weak solutions by exhibiting
different weak solutions to the same Cauchy problem.

More precisely, after the necessary groundwork on energy equalities in Section 2.1 we recall Shatah’s method for
constructing weak solutions by penalization (see Section 2.2, or [12]). This method makes use of energy conservation,
and the solutions obtained thereby satisfy local (and global) energy inequalities. In Section 2.3 we contrast this by
giving the construction of a weak wave map which does not satisfy such a local energy inequality (based on an
example of a harmonic map which fails to minimize the Dirichlet energy, given by Hélein in [8]). We thus establish
the claimed non-uniqueness of weak solutions, Theorem 2.9.

In Section 3 we prove a weak-strong uniqueness result in analogy to the one of Struwe [15]. This is interesting in
its own right, but we employ it here to show that uniqueness of weak solutions can fail even in a scenario that allows
for stationary solutions. This is our final result, Theorem 4.1, providing an analogy to the one of Coron [2] for the heat
flow of harmonic maps.

It is worth noting that our strategy of proof applies in more general situations: On the one hand, whenever there is a
weak harmonic map whose stress–energy tensor does not vanish we can construct a weak wave map that violates the
energy inequality – in particular, this is the case if the harmonic map is not energy minimizing. On the other hand, if

1 I.e. uniqueness without further assumptions of boundedness of higher order Lebesgue norms.
2 We adopt this external point of view for the rest of this article, in particular also for the formulation of the equation.
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we can find weak wave maps using penalization they will satisfy the energy inequality, so non-uniqueness is proved.
Depending on the smoothness of the harmonic map and the geometry of the target involved, we might also have a
local weak-strong uniqueness theory, in which case we can prove a result analogous to Theorem 4.1.

1.2. Notation

Coordinates in Minkowski space R
1+3 are written (x0, x1, x2, x3) or (t, x1, x2, x3) and we will adhere to the

convention of using Roman letters for indices running from 1 to 3 and Greek letters for those running from 0 to 3.
The natural setting for the energy (in-) equalities we work with is that of truncated (forward or backward) cones:

We denote by

K(τ,p) := {
(s, x) ∈ R×R

3: |x − p| < |s − s0|
}

the light cone through (τ,p) ∈ R
1+3, and write Kb

a (τ,p) := K(τ,p)∩ [a, b]×R
3, a < b, for its truncation, with side

Mb
a (τ,p). Its time slices are disks

D(s, τ,p) := K(τ,p) ∩ {s} ×R
3

of radius |τ − s|, which is implicit in the notation. If we want to make the dependence on a radius r > 0 explicit we
write D(s, τ,p; r) or Dr .

In many cases we will drop parts of the notation which are clear from the context or not relevant for the situation
at hand. An instance of this is the time coordinate of the center of a cone (denoted τ above), which we will frequently
omit and thus write expressions like K(p), D(s,p; r), D(s,p) for (s,p) ∈R

1+3.
When referring to Kb

a (p) we will often speak about a truncated cone with base D(a,p), top D(b,p) and side
Mb

a (p), or a truncated cone based at time a.
Integration in R

1+3 and on hypersurfaces is performed using the standard Lebesgue measure or the induced mea-
sure, respectively.

For a function f :R1+3 → R we shall denote by ∇f = (∂if )1�i�3 its gradient in the space variables, i.e. the
vector of first order partial derivatives in the last 3 variables of R1+3. In contrast, Df = (∂μf )0�μ�3 shall denote the
vector of all first order partial derivatives.

Unless stated otherwise, the function spaces we use are based on time slices of Minkowski space. In the case of
space–time norms we write the condition on the time coordinate first, e.g. Lp(R;X) denotes the space of functions f

on Minkowski space with
∫
R

‖f (t)‖p
X dt < ∞, X being a Banach space of functions on R

3.

2. Weak wave maps to a sphere

We start with a

Definition 2.1. A function u :R1+3 → R
3 is a weak solution of the wave map equation (or weak wave map) from

R
1+3 to S

2 provided

(1) |u(t, x)| = 1 a.e.,
(2) u :R→ Ḣ 1 is weakly continuous in t ,
(3) ∂tu :R→ L2 is weakly continuous in t ,

and

�u + (
∂αu · ∂αu

)
u = 0 (3)

holds in the sense of distributions.
We say that u is a local weak solution (or local weak wave map) if the above requirements only hold on a subset

of the space–time R
1+3.
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Remark 2.2.

(1) If a smooth function u is a weak solution, then (3) can be shown to hold in the classical sense. Hence the concept
of weak solutions generalizes that of classical smooth solutions.

(2) Lorentz transformations preserve weak wave maps: Consider a linear transformation Λ that leaves the Minkowski
metric invariant (a so-called Lorentz transformation), i.e. η(Λ·,Λ·) = η(·,·). For u a (local) weak wave map one
sees immediately that u ◦Λ satisfies (1)–(3) in the above definition. Furthermore, using a change of variables one
checks that u ◦ Λ weakly solves Eq. (3).

Associated to the wave map equation is the Cauchy problem of finding a (weak) solution to the wave map equation
that assumes given initial data:

Definition 2.3. Given (f, g) ∈ Ḣ 1(R3) × L2(R3) with |f | = 1 and f · g = 0 we shall say that u is a (local) solution
to the Cauchy problem⎧⎨⎩�u + (

∂αu · ∂αu
)
u = 0,

u(0) = f,

∂tu(0) = g,

(4)

if u is a (local) weak wave map and the equalities concerning the initial data hold in the sense of Ḣ 1(R3) and L2(R3).

2.1. The energy

An important feature of classical wave maps is the conservation of energy. In the variational framework such
conservation laws arise naturally by integrating the stress–energy tensor (see Section 2.1.1 below), and can be obtained
in global or local versions.

Definition 2.4. To a sufficiently regular function u :R1+3 → R we associate the energy

E(u)(t) := 1

2

∫
R3

∣∣∂tu(t)
∣∣2 + ∣∣∇u(t)

∣∣2 dx.

We say u has finite energy if E(u)(t) < ∞ for all t .
The energy on a disk D(t,p) ⊂ {t} ×R

3 at time t and centered at p then is defined to be

E
(
u;D(t,p)

) := 1

2

∫
D(t,p)

∣∣∂tu(t)
∣∣2 + ∣∣∇u(t)

∣∣2 dx,

and the flux across the sides Mt
s(p) ⊂ [s, t] ×R

3 of a truncated cone (again centered at p) is given by

Flux
(
u;Mt

s(p)
) := 1

2
√

2

∫
Mt

s (p)

∣∣∣∣∇u − x − p

|x − p|∂tu

∣∣∣∣2 dσ.

We note that for ease of notation we suppress the radii from the notation.

We recall that smooth wave maps satisfy the (global) energy equality

E(u)(s) = E(u)(t) (5)

and the local energy conservation law

E
(
u;D(s,p)

) = E
(
u;D(t,p)

)+ Flux
(
u;Mt

s(p)
)

(6)

for any s < t .
Nota bene: For weak solutions, in general these do not hold. However, for the special weak wave maps constructed

as below by a penalization procedure we will be able to replace them by appropriate inequalities (which in the local
case will hold on almost every cone), once we fix s to be the initial time – see Section 2.2.
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2.1.1. The stress–energy tensor
Taking the variational perspective of wave maps it is natural to consider (see [14, Chapter 2]) the stress–energy

tensor

Tαβ := 1

2
ηαβ

〈
∂γ ϕ, ∂γ ϕ

〉
R3 − 〈∂αϕ, ∂βϕ〉R3

associated to a wave map ϕ of locally finite energy. This tensor incorporates many symmetries of the problem and
can also be used to obtain conserved quantities. In particular, it can be shown that under the assumption of sufficient
regularity, extremizers of the action integral (1) have a divergence-free stress–energy tensor, i.e. one has

∂αTαβ = 0 for 0 � β � 3.

For later purposes we need to understand how these divergences behave under changes of coordinates in Minkowski
space. We thus consider Lorentz transformations Λ :R1+3 → R

1+3. A direct calculation (which we include in Ap-
pendix A, p. 530) then gives:

Lemma 2.5. Let Tαβ be the stress–energy tensor of a function f :R4 → R with finite energy. Then the stress–energy
tensor T̃αβ of f ◦ Λ has divergence

∂αT̃αβ = Λν
β

[
∂σ Tσν

] ◦ Λ.

2.2. Construction of weak solutions by penalization

In [12], Shatah showed how to construct finite energy solutions to the Cauchy problem (4) using a penalization
method. We briefly sketch the steps involved.

Instead of trying to solve (4) directly one considers the perturbed problem⎧⎨⎩�un + n2
(|un|2 − 1

)
un = 0,

un(0) = f,

∂tun(0) = g,

(7)

where |f | = 1 and f · g = 0. This problem is subcritical and we thus get global strong solutions un for all n ∈N with
un ∈ C(R, Ḣ 1

loc), ∂tun ∈ C(R,L2
loc). Moreover, we have the energy equalities∫

R3

1

2

∣∣∂tun(t)
∣∣2 + 1

2

∣∣∇un(t)
∣∣2 + n2F

(
un(t)

)
dx =

∫
R3

1

2
|∇f |2 + 1

2
|g|2 dx, (8)

where F :R3 →R, F(x) := 1
4 (|x|2 −1)2 is non-negative. Since the terms on the left-hand side are bounded uniformly

in n ∈ N and t ∈ R we can extract weakly star convergent subsequences to get a global weak solution (with weakly
continuous first order derivatives) – the term n2F(un) enforcing that |u| = 1: It suffices to notice3 that the wave map
equation (3) is equivalent to ∂α(∂αu ∧ u) = 0. This we obtain by taking the wedge product of (7) with un and passing
to the limit n → ∞, since we can choose a subsequence for which un converges strongly in L2

loc and ∂αun weakly
in L2

loc.

More precisely, one obtains a weak wave map u satisfying the weak-star convergences un
∗
⇀ u in L∞

loc(R, Ḣ 1) and

∂tun
∗
⇀ ∂tu in L∞

loc(R,L2). These in turn imply the following energy inequalities for u:∫
R3

1

2

∣∣∂tu(t)
∣∣2 + 1

2

∣∣∇u(t)
∣∣2 dx � lim inf

n→∞

∫
R3

1

2

∣∣∂tun(t)
∣∣2 + 1

2

∣∣∇un(t)
∣∣2 � ∫

R3

1

2
|∇f |2 + 1

2
|g|2 dx.

Hence for any t > 0 we have the global energy inequality

E(u)(0) � E(u)(t).

3 See Proposition 3.3 in [12].
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Remark 2.6. This construction may also be carried out locally: Assume that we are given initial data (f, g) that satisfy
|f | = 1 and f · g = 0 on a disk D(0,p) at the initial time. Then we may solve (7) on a (truncated) cone C with base
D(0,p), obtaining functions un defined on C. These will satisfy the energy equality

En

(
un;D(s,p)

) = En

(
un;D(t,p)

)+ Fluxn

(
un;Mt

s(p)
)
, (9)

where we have added the term n2F(un(t)) to both the flux and energy integrals and denoted the corresponding
quantities with a subscript n:

En

(
un;D(s,p)

) = 1

2

∫
D(s,p)

∣∣∂tun(s)
∣∣2 + ∣∣∇un(s)

∣∣2 + n2F
(
un(s)

)
dx,

Fluxn

(
un;Mt

s(p)
) = 1

2
√

2

∫
Mt

s (p)

∣∣∣∣∇un − x − p

|x − p|∂tun

∣∣∣∣2 + n2F(un)dσ.

In particular, by the positivity of the flux term we have the energy inequalities∫
D(0,p)

1

2
|∇f |2 + 1

2
|g|2 dx = En

(
un;D(0,p)

)
� En

(
un;D(t,p)

)
for all t on the truncated cone. We may hence pass to the limit as above to obtain a weak wave map u on C.

In particular, for data (f, g) which are not globally integrable, in this way we may still construct local solutions to
the Cauchy problem (4). It is important to notice that this construction gives local solutions, but only a rough local
energy inequality which disregards the flux term.

Establishing a local energy inequality requires a bit more care, since the flux term itself does not behave well under
the limiting process. The result is the following

Lemma 2.7 (Energy inequality for weak solutions obtained by penalization). Let u be a weak wave map obtained by
penalization. Then for almost every cone based at the initial time we have

E
(
u;D(0,p)

)
� E

(
u;D(t,p)

)+ Flux
(
u;Mt

0(p)
)
. (10)

Proof. By construction we have a sequence (un) ⊂ C(R, Ḣ 1
loc) with (∂tun) ⊂ C(R,L2

loc) whose limit is u. As noted
above in (9), for these a slight modification of the global energy inequality (8) holds:

En

(
un;D(s,p)

) = En

(
un;D(t,p)

)+ Fluxn

(
un;Mt

s(p)
)
. (11)

To prove the lemma we fix s = 0 and want to pass to the limit as n → ∞. We note that un and u have the same
initial data, so that the left hand sides of (10) and (11) already agree. In addition, the terms n2F(un) are non-negative
and uniformly bounded, so we may drop them at the cost of an inequality to obtain

E
(
u;D(0,p)

)
� E

(
un;D(t,p)

)+ Flux
(
un;Mt

0(p)
)
. (12)

As before the energy term involving L2 norms on time slices poses no problems when passing to the limit, it is the
flux term we have to control. The flux term involves tangential derivatives on the sides of the cone, which a priori we
cannot pass to the limit. To resolve this, the idea is to first “mollify” the energy inequality by integrating over cones
of slightly differing sizes, thereby obtaining a flux-like quantity which behaves well with respect to the limit n → ∞.
Then we may pass to this limit to get back to u and finally “undo” the mollification through a differentiation theorem.

More precisely, let us fix a cone with base D(0,p; r), whose radius we denote by r > 0. Then for a small parameter
ε > 0 we consider the family of energy inequalities (12) for truncated cones with base D(0,p; r + δ), |δ| < ε and
fixed height t . We multiply these by 1/ε · ψ(δ/ε), where ψ : R → [0,1], ∫

R
ψ = 1, is a smooth bump function with

support in [−1,1], and integrate over |δ| < ε. From the flux term this gives
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Fluxε
(
un;Mt

0(p)
) := 1

ε

ε∫
δ=−ε

ψ(δ/ε)

∫
Mt

0(p;r+δ)

∣∣∣∣∇un − x − p

|x − p|∂tun

∣∣∣∣2 dσ dδ.

The key observation is that this term can be viewed as a non-negative quadratic form involving integrals of first order
derivatives of un over time slices, so that by lower semicontinuity we can pass to the limit at the cost of an inequality
to obtain

lim inf
n→∞ Fluxε

(
un;Mt

0(p)
)
� 1

ε

ε∫
δ=−ε

ψ(δ/ε)

∫
Mt

0(p;r+δ)

∣∣∣∣∇u − x − p

|x − p|∂tu

∣∣∣∣2 dσ dδ.

Finally, by the Lebesgue Differentiation Theorem we may let ε → 0 to recover the flux term for u:

lim
ε→0

1

ε

ε∫
δ=−ε

ψ(δ/ε)

∫
Mt

0(p;r+δ)

∣∣∣∣∇u − x − p

|x − p|∂tu

∣∣∣∣2 dσ dδ =
∫

Mt
s (p)

∣∣∣∣∇u − x − p

|x − p|∂tu

∣∣∣∣2 dσ = 2
√

2Flux
(
u;Mt

0(p)
)

for almost every p.
This same procedure leaves the energy terms unchanged, hence the lemma is proved. �

2.3. A special weak wave map

Here we exhibit a special weak wave map, which is smooth everywhere except on one ray. In addition, around this
ray the energy inequality fails, which will be of key importance in the non-uniqueness proof of this article.

We build up this weak wave map by applying a Lorentz transform to a certain weak harmonic map.

2.3.1. The harmonic map
We interpret weak harmonic maps as stationary weak wave maps (according to Definition 2.1) and consider the

following example (see Hélein [8, Example 1.4.19, p. 44]):
Let B3 = {x ∈R3: |x| � 1} be the unit ball in R3 and σ the stereographic projection to the equatorial plane,

σ :S2 \ {
(0,0,−1)

} → R
2,

(
x1, x2, x3) �→ (x1, x2)

1 + x3
.

Then for 0 < λ < ∞
vλ :B3 → S

2, x �→ σ−1
(

λσ

(
x

|x|
))

is a (weak) harmonic map in H 1(B3,S2). Moreover, its stress–energy tensor

Sij := −〈∂ivλ, ∂j vλ〉R3 + 1

2
δij

3∑
k=1

〈∂kvλ, ∂kvλ〉R3

satisfies

∂iSij = Vjδx=0, where V =
( 0

0
s(λ)

)
,

δx=0 denotes the Dirac Delta distribution at x = 0 and

s(λ) =
{

0, λ = 1,

− 8π

(λ2−1)2 (λ4 − 4λ2 log(λ) − 1), λ �= 1.

When taking the point of view of wave maps we will identify vλ with the stationary mapping R
1+3 �

(t, x1, x2, x3) �→ vλ(x
1, x2, x3). The associated stress–energy tensor reads



526 K. Widmayer / Ann. I. H. Poincaré – AN 32 (2015) 519–532
Sαβ := 1

2
ηαβ

〈
∂γ vλ, ∂

γ vλ

〉
R3 − 〈∂αvλ, ∂βvλ〉R3

and agrees with Sij for 1 � i, j � 3, but has the additional components

S00 = −1

2

3∑
k=1

〈∂kvλ, ∂kvλ〉R3, S0i = 0.

Associated with this we have the divergence equations

∂αSα[·] =
⎛⎜⎝

0
0
0

s(λ)

⎞⎟⎠1t × δx=0. (13)

2.3.2. Applying the Lorentz transformation
To get a non-stationary wave map from the above harmonic map we need only apply a Lorentz transform to vλ

(or change coordinates in Minkowski space, to put it differently). Thus we fix 0 < ν < 1, set Θ := (1 − ν2)−1/2 and
consider the Lorentz transform Λ :R1+3 → R

1+3 represented by the matrix

Λ =
⎛⎜⎝

Θ 0 0 −νΘ

0 1 0 0
0 0 1 0

−νΘ 0 0 Θ

⎞⎟⎠ .

The harmonic maps vλ then give non-stationary weak wave maps ϕλ := vλ ◦Λ – see also Remark 2.2(2). Explicitly
we have

ϕλ = vλ

(
Θ
(
t − νx3), x1, x2,Θ

(
x3 − νt

)) = vλ

(
x1, x2,Θ

(
x3 − νt

))
.

These functions are weak solutions to the Cauchy problem⎧⎨⎩
�ϕ + (

∂αϕ · ∂αϕ
)
ϕ = 0,

ϕ(0) = vλ

(
x1, x2,Θx3

)
,

∂tϕ(0) = −Θν(∂x3vλ)
(
x1, x2,Θx3

)
.

(14)

The key property of these ϕλ is the following violation of the energy inequality.

Lemma 2.8. For λ > 1 the weak wave maps ϕλ do not satisfy the local energy inequality (10) on cones intersecting
the set {x3 = νt}.

Proof. Fix λ > 1. We use the transformation rule for the divergence of the stress–energy tensor derived in Lemma 2.5,
applied to ϕλ = vλ ◦ Λ. Writing Tαβ for the stress–energy tensor of ϕλ we combine (13) with the aforementioned
Lemma 2.5 in order to obtain

∂αTα[·] = s(λ)

⎛⎜⎝
−Θν

0
0

Θν

⎞⎟⎠ δx1=x2=0, x3=νt ,

where δx1=x2=0, x3=νt is the Dirac Delta distribution along the line x3 = νt . In particular, the time component reads

∂αTα0 = −Θνs(λ)δx1=x2=0, x3=νt .

Integrating this divergence equation over a truncated cone4 that intersects {x3 = νt} on the base and top gives

E
(
ϕλ;D(s,p)

)− E
(
ϕλ;D(t,p)

)− Flux
(
ϕλ;Mt

s(p)
) = −Θνs(λ)(t − s) > 0,

in violation of (10). �
4 More precisely, one applies a limiting argument using test functions that converge to the characteristic function of the cone.
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2.4. A first non-uniqueness result

We may now combine these observations to conclude that uniqueness of solutions to the Cauchy problem (4) fails.

Theorem 2.9. There exist data5 (f, g) ∈ Ḣ 1
loc × L2

loc such that the Cauchy problem⎧⎨⎩�u + (
∂αu · ∂αu

)
u = 0,

u(0) = f,

∂tu(0) = g,

(15)

has more than one local solution.

Proof. We may choose the data (f, g) of Cauchy problem (14) from Section 2.3 and restrict to the disk D(0,0). On
the one hand we have the solutions ϕλ for λ > 1, but on the other we can find a solution on the cone over D(0,0)

using the penalization method, as discussed in Remark 2.6. These differ, since there exist cones on which the former
do not satisfy the local energy inequality (Lemma 2.8), whereas the latter do (Lemma 2.7). �
Remark 2.10. We note that this approach builds on two key ingredients, which one may hope to have in more general
settings: The existence of a weak harmonic map whose stress–energy tensor is not divergence-free, and the construc-
tion of solutions using the penalization method. In particular, the former holds for weak harmonic maps that do not
minimize the Dirichlet energy (see Hélein [8, Chapter 1]) and the latter can be carried out for compact homogeneous
spaces as well (see Freire [5]).

3. Local weak-strong uniqueness

In this section we turn to the question of local uniqueness of weak wave maps. As this article shows, in general this
fails.

At this point, apart from their existence there is not much that can be said about weak wave maps. Their implicit
construction in the previous paragraph does not give much information about their qualitative properties. In particular,
regularity of the initial data will not be passed on to the solution and there may be several different wave maps with
the same initial data. However, as we show in this section, if the initial data are smooth and if there exists a smooth
solution that satisfies these data, then it is unique among all weak solutions which satisfy the local energy inequality
(10).

We draw our inspiration from the weak-strong uniqueness result [15] by Struwe for the setting of global energy
inequalities.

Proposition 3.1 (Weak-strong uniqueness for wave maps). Suppose we are given a smooth, classical wave map u and
a weak wave map v, which satisfies the local energy inequality

E
(
v;D(0,p)

)
� E

(
v;D(t,p)

)+ Flux
(
v;Mt

0(p)
)

(16)

on a cone.6 If u and v have the same initial data on its base, then they agree in the whole cone.

Remark 3.2. For this to hold weaker regularity assumptions suffice: If u and v are weak solutions, the minimal extra
regularity we need for u is

Du ∈ L∞
loc

(
R;L3+ε

loc

)∩ L1
loc

(
R;L∞

loc ∩ Ḣ
3
2 +ε

loc

)
for some ε > 0 (see [15], adapted to three space dimensions). We note that this is just above the regularity given by
the scaling of Du.

5 The restriction to local integrability arises since we start from a harmonic map which is initially only defined on a bounded domain.
6 As we saw in Lemma 2.7, for weak solutions obtained by penalization this holds true for almost every cone.
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Proof. Let us fix a backward light cone in Minkowski space R
1+3 with base DR for some R > 0, at time t = 0. For

0 < T < R we consider its truncation at time T and denote by MT the side of that truncated cone. As usual we omit
to write the center of the base resp. top balls (DR resp. DR−T ) explicitly. �
Notation. We simplify the notation by dropping the domains in the flux and energy expressions, i.e. for the energy at
time t we write

Et(φ) := 1

2

∫
DR−t

∣∣Dφ(t)
∣∣2 dx

and for the flux until time t

Fluxt (φ) := 1

2

∫
Mt

Q(φ,φ)dσ � 0,

where the positive, quadratic flux form Q is the inner product

Q(φ,ψ) := 1√
2
〈∇φ − φt �n,∇ψ − ψt �n〉R3 ,

�n denoting the (space) unit normal to DR−t . With these conventions the local energy inequality reads

E0(φ) �ET (φ) + FluxT (φ).

We will also write the wave maps equation7 as �u = A(u)(Du,Du), where A(φ) = −φ and (Dφ,Dψ) = ∂αφ∂αψ .

Idea. We will prove the proposition by considering the difference w := u − v and showing that the set {0 � t �
R: Et(w) = 0} is non-empty, open and closed in [0,R]. It is non-empty since by assumption u and v agree at the initial
time, hence E0(w) = 0. To show closedness let us suppose (tn)n∈N is a sequence with Etn(w) = 0 and tn → t0, so
that u(tn) ⇀ u(t0) in Ḣ 1 and ∂tu(tn) ⇀ ∂tu(t0) in L2 (see Definition 2.1). Since these norms are convex and strongly
continuous they are weakly lower semicontinuous, which gives closedness: ‖ut0‖Ḣ 1 � lim infn→∞ ‖utn‖Ḣ 1 = 0 and
‖∂tut0‖L2 � lim infn→∞ ‖∂tutn‖L2 = 0.

So all that remains to be shown is that the set is open.

Proof of openness. By quadratic expansion and by the energy (in-) equalities for u and v we have

ET (w) = ET (v) − ET (u) +
∫

DR−t

Du · Dw � E0(v) − FluxT (v) − E0(u) + FluxT (u) +
∫

DR−t

Du · Dw

= FluxT (u) − FluxT (v) +
∫

DR−t

Du · Dw,

where the last equality holds since E0(v) = E0(u).
Note that

FluxT (u) − FluxT (v) = 1

2

∫
MT

[
Q(u,u) − Q(v,v)

]
dσ =

∫
MT

Q(u,w)dσ − 1

2

∫
MT

Q(w,w)dσ

=
∫

MT

Q(u,w)dσ − FluxT (w),

hence

7 This is the geometric notation with A being the second fundamental form of S2.
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ET (w) � −FluxT (w) +
∫

MT

Q(u,w)dσ +
∫

DR−t

Du · Dw dx.

We invoke the computation of Lemma 3.3 below to see a cancellation of the second and third terms:

ET (w) � −FluxT (w) +
∫

MT

Q(u,w)dσ +
( T∫

0

∫
DR−t

�u · wt dx dt +
T∫

0

∫
DR−t

�w · ut dx dt −
∫

MT

Q(u,w)dσ

)

= −FluxT (w) +
T∫

0

∫
DR−t

�u · wt dx dt +
T∫

0

∫
DR−t

�w · ut dx dt

�
T∫

0

∫
DR−t

�u · wt dx dt +
T∫

0

∫
DR−t

�w · ut dx dt, (17)

where the last inequality holds since the flux is a positive quantity.
Next we will substitute in this the equations and observe that A(u)ut = 0 by orthogonality, so that

�w · ut = (
A(u)(Du,Du) − A(v)(Dv,Dv)

) · ut = −A(v)(Dv,Dv) · ut .

But now we are in the same position as Struwe in the first equation of p. 1186 of [15], i.e. we have

ET (w) �
T∫

0

∫
DR−t

[
A(u)(Du,Du) · wt − A(v)(Dv,Dv) · ut

]
dx dt,

and can proceed as therein in order to obtain the bound

ET (w) � C(T ) · sup
0<t<T

Et (w),

where C(T ) is continuous with C(T ) → 0 as T → 0. This concludes the proof. �
All that remains to be shown is the computation used in (17) above:

Lemma 3.3.∫
DR−t

Du · Dw =
T∫

0

∫
DR−t

�u · wt + �w · ut dx dt −
∫

MT

Q(u,w)dσ.

For the proof we refer the reader to Appendix B.

4. Non-uniqueness of weak wave maps

With the weak-strong existence theory in hand we can strengthen our previous non-uniqueness result, Theorem 2.9,
to allow for Cauchy data that have stationary solutions:

Theorem 4.1. There exists8 f ∈ Ḣ 1
loc such that the Cauchy problem⎧⎨⎩�u + (

∂αu · ∂αu
)
u = 0,

u(0) = f,

∂tu(0) = 0,

(18)

has a stationary9 and a non-stationary local solution.

8 The restriction to local integrability arises since we start from a harmonic map which is initially only defined on a bounded domain.
9 The proof in fact gives a family of stationary solutions.
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Proof. The proof is a combination of the local weak-strong uniqueness theory and the non-uniqueness result in
Section 2.4.

From the proof of Theorem 2.9 we have local (in a space–time neighborhood of the origin) solutions u and ϕλ

for λ > 1 to the Cauchy problem (15) – the former obtained by penalization, the latter as Lorentz transform of
the harmonic map in Section 2.3. Moreover, ϕλ is smooth outside of the light cone K centered at the origin. By
construction its initial data agree with those of u. Hence by Proposition 3.1 u and ϕλ agree on every truncated cone
with base at the initial time and which does not intersect K . In such a way we can cover all of the exterior of K , so by
repeating this argument we can show u = ϕλ everywhere outside of K .

Now we undo the Lorentz transformation Λ from Section 2.3: This leaves K invariant, so we obtain two different
weak wave maps ϕλ ◦ Λ−1 = vλ and u ◦ Λ−1, which agree outside of K . In particular they agree on the initial time
t = 0, where ∂t (u ◦ Λ−1) = ∂tvλ(0) = 0, thus solving the Cauchy problem (18) with f = vλ. We recall that vλ is
stationary, thus proving the claim. �
Remark 4.2. In a similar spirit as Remark 2.10, the procedure of this proof need not be confined to the special case at
hand. Provided we have a weak-strong uniqueness theory and a sufficiently regular harmonic map whose stress–energy
tensor has non-vanishing divergence, we may employ it in a more general setting to yield a similar result.
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Appendix A. Proof of the stress–energy tensor transformation law

Proof. By assumption Λ :R1+3 →R
1+3 is a Lorentz transform, i.e. we have

∀v,w ∈ R
4: η(Λv,Λw) = η(v,w) ⇔ ηδθΛ

δ
αΛθ

β = ηαβ ⇔ ηδθΛα
δ Λ

β
θ = ηαβ, (A.1)

where upper indices stand for rows and lower indices for columns of Λ and we use the standard convention of denoting
by ηαβ the components of the inverse η−1 of the metric η.

The chain rule then reads

∂γ (f ◦ Λ) = Λσ
γ (∂σ f ) ◦ Λ,

so by definition we have

T̃αβ = 1

2
ηαβ∂γ (f ◦ Λ)∂γ (f ◦ Λ) − ∂α(f ◦ Λ)∂β(f ◦ Λ)

=
[

1

2
ηαβηγ δΛθ

δ (∂θf )Λσ
γ (∂σ f ) − Λδ

α(∂δf )Λθ
β(∂θf )

]
◦ Λ

=
[

1

2
ηαβηθσ (∂θf )(∂σ f ) − Λδ

α(∂δf )Λθ
β(∂θf )

]
◦ Λ

=
[

1

2
ηαβ

(
∂σ f

)
(∂σ f ) − Λδ

α(∂δf )Λθ
β(∂θf )

]
◦ Λ,

where we used that ηγ δΛθ
δΛ

σ
γ = ηθσ , since Λ is a Lorentz transform – see (A.1). We compute the divergence sepa-

rately for these two terms:

∂α
[
ηαβ

(
∂σ f

)
(∂σ f ) ◦ Λ

] = ηαβηακ∂κ

[(
∂σ f

)
(∂σ f ) ◦ Λ

] = ∂β

[(
∂σ f

)
(∂σ f ) ◦ Λ

] = Λν
β∂ν

[(
∂σ f

)
(∂σ f )

] ◦ Λ,

and

∂α
[
Λδ

α(∂δf )Λθ
β(∂θf ) ◦ Λ

] = ηακΛσ
κ Λδ

αΛθ
β∂σ

[
(∂δf )(∂θf )

] ◦ Λ = ησδΛθ
β∂σ

[
(∂δf )(∂θf )

] ◦ Λ

= Λθ
β∂δ

[
(∂δf )(∂θf )

] ◦ Λ
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using (A.1) as before. After renaming dummy indices this gives the claim,

∂αT̃αβ = Λν
β

[
1

2
∂ν

[(
∂σ f

)
(∂σ f )

]− ∂δ
[
(∂δf )(∂νf )

]] ◦ Λ = Λν
β

[
∂σ Tσν

] ◦ Λ,

since

∂σ Tσν = ησκ∂κTσν = 1

2
ησκησν∂κ

[(
∂σ f

)
(∂σ f )

]− ησκ∂κ

[
(∂σ f )(∂νf )

]
. �

Appendix B. Proof of Lemma 3.3

Proof. We recall that Dw(0) = 0 and thus

∫
DR−t

Du · Dw dx =
T∫

0

d

dt

∫
DR−t

Du · Dw dx dt.

Now

d

dt

∫
DR−t

Du · Dw dx = −
∫

∂DR−t

Du · Dw dS +
∫

DR−t

d

dt
(Du · Dw)dx

= −
∫

∂DR−t

Du · Dw dS +
∫

DR−t

utt · wt + ∇u · ∇wt dx +
∫

DR−t

ut · wtt + ∇ut · ∇w dx

=: I + II + III (B.1)

The integrals II and III can be treated in an analogous fashion, so we will only explicitly deal with III. To this
end, we approximate the sharp characteristic function of the ball DR−t by smooth cut-offs χ converging to it. For
simplicity we will denote this limiting process10 by ∼. Then we have∫

DR−t

ut · wtt + ∇ut · ∇w dx ∼
∫
R3

(ut · wtt + ∇ut · ∇w)χ dx =
∫

wtt · (utχ) + ∇w · ∇(utχ) − ∇w · ut∇χ dx

=
∫

�w · (utχ) dx −
∫

∇w · ut∇χ dx

∼
∫

DR−t

�w · ut dx +
∫

∂DR−t

∇w · ut �ndS,

where we used that ∇χ dx ∼ −�ndS.
Inserting this (and the version for term II) into (B.1) gives

d

dt

∫
DR−t

Du · Dw dx =
∫

DR−t

�u · wt dx +
∫

DR−t

�w · ut dx −
∫

∂DR−t

Du · Dw − ∇u · wt �n − ∇w · ut �n︸ ︷︷ ︸√
2Q(u,w)

dS

=
∫

DR−t

�u · wt dx +
∫

DR−t

�w · ut dx − √
2

∫
∂DR−t

Q(u,w)dS.

10 Analogous limits are used in [13, pp. 306–307].
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Integrating this from time 0 to T gives the claim:∫
DR−t

Du · Dw =
T∫

0

∫
DR−t

�u · wt + �w · ut dx dt − √
2

T∫
0

∫
∂DR−t

Q(u,w)dS dt

=
T∫

0

∫
DR−t

�u · wt + �w · ut dx dt −
∫

MT

Q(u,w)dσ. �
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