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Abstract

We prove that the only compact, origin-symmetric, strictly convex ancient solutions of the planar p centro-affine normal flows 
are contracting origin-centered ellipses.
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1. Introduction

The setting of this paper is the two-dimensional Euclidean space, R2. A compact convex subset of R2 with non-
empty interior is called a convex body. The set of smooth, strictly convex bodies in R2 is denoted by K. Write K0 for 
the set of smooth, strictly convex bodies whose interiors contain the origin of the plane.

Let K be a smooth, strictly convex body R2 and let XK : ∂K → R
2 be a smooth embedding of ∂K , the boundary 

of K . Write S1 for the unit circle and write ν : ∂K → S
1 for the Gauss map of ∂K . That is, at each point x ∈ ∂K , 

ν(x) is the unit outwards normal at x. The support function of K ∈ K0 as a function on the unit circle is defined by 
s(z) := 〈X(ν−1(z)), z〉, for each z ∈ S

1. We denote the curvature of ∂K by κ which as a function on ∂K is related to 
the support function by

1

κ(ν−1(z))
:= r(z) = ∂2

∂θ2
s(z) + s(z).

Here and afterwards, we identify z = (cos θ, sin θ) with θ . The function r is called the radius of curvature. The affine 
support function of K is defined by σ : ∂K → R and σ(x) := s(ν(x))r1/3(ν(x)). The affine support function is 
invariant under the group of special linear transformations, SL(2), and it plays a basic role in our argument.
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Let K ∈ K0. A family of convex bodies {Kt }t ⊂ K0 given by the smooth map X : ∂K × [0, T ) → R
2 is said to 

be a solution to the p centro-affine normal flow, in short p-flow, with the initial data XK , if the following evolution 
equation is satisfied:

∂tX(x, t) = −
(

κ(x, t)

〈X(x, t), ν(x, t)〉3

) p
p+2 − 1

3

κ
1
3 (x, t)ν(x, t), X(·,0) = XK, (1.1)

for a fixed 1 < p < ∞. In this equation, 0 < T < ∞ is the maximal time that the solution exists, and ν(x, t) is 
the unit normal to the curve X(∂K, t) = ∂Kt at X(x, t). This family of flows for p > 1 was defined by Stancu 
[12]. The case p = 1 is the well-known affine normal flow whose asymptotic behavior was investigated by Sapiro 
and Tannenbaum [11], and by Andrews in a more general setting [2,4]: Any convex solution to the affine normal 
flow, after appropriate rescaling converges to an ellipse in the C∞ norm. For p > 1, similar result was obtained with 
smooth, origin-symmetric, strictly convex initial data by the author and Stancu [7,8]. Moreover, ancient solutions of 
the affine normal flow have been also classified: the only compact, convex ancient solutions of the affine normal flow 
are contracting ellipsoids. This result in Rn, for n ≥ 3, was proved by Loftin and Tsui [9] and in dimension two by 
S. Chen [5], and also by the author with a different method. We recall that a solution of flow is called an ancient 
solution if it exists on (−∞, T ). Here we classify compact, origin-symmetric, strictly convex ancient solutions of the 
planar p centro-affine normal flows:

Theorem. The only compact, origin-symmetric, strictly convex ancient solutions of the p-flows are contracting origin-
centered ellipses.

Throughout this paper, we consider origin-symmetric solutions.

2. Harnack estimate

In this section, we follow [1] to obtain the Harnack estimates for p-flows.

Proposition. Under the flow (1.1) we have ∂t (s
1− 3p

p+2 r
− p

p+2 t
p

2p+2 ) ≥ 0.

Proof. For simplicity we set α = − p
p+2 . To prove the proposition, using the parabolic maximum principle we prove 

that the quantity defined by

R := tP − α

α − 1
s1+3αrα (2.1)

remains negative as long as the flow exists. Here P is defined as follows

P := ∂t

(−s1+3αrα
)
.

Lemma 2.1. (See [7].)

• ∂t s = −s1+3αrα ,
• ∂t r = −[(s1+3αrα)θθ + s1+3αrα].

Using the evolution equations of s and r we find

P = (1 + 3α)s1+6αr2α + αs1+3αrα−1[(s1+3αrα
)
θθ

+ s1+3αrα
]

:= (1 + 3α)s1+6αr2α + αs1+3αrα−1Q. (2.2)



M.N. Ivaki / Ann. I. H. Poincaré – AN 32 (2015) 1189–1197 1191
Lemma 2.2. We have the following evolution equation for P as long as the flow exists:

∂tP = −αs1+3αrα−1[Pθθ +P] +
[
(3α + 1)(3α + 2) − (α − 1)(3α + 1)2

α

]
s1+9αr3α

+
[
−3(3α + 1) + 2(α − 1)(3α + 1)

α

]
s3αrαP − α − 1

α

P2

s1+3αrα
.

Proof. We repeatedly use the evolution equation of s and r given in Lemma 2.1.

∂tP
= −(1 + 3α)(1 + 6α)s1+9αr3α − 2α(1 + 3α)s1+6αr2α−1[(s1+3αrα

)
θθ

+ s1+3αrα
]

− α(1 + 3α)s1+6αr2α−1[(s1+3αrα
)
θθ

+ s1+3αrα
]

− α(α − 1)s1+3αrα−2[(s1+3αrα
)
θθ

+ s1+3αrα
]2 − αs1+3αrα−1[Pθθ +P]

= −(1 + 3α)(1 + 6α)s1+9αr3α − 3α(1 + 3α)s1+6αr2α−1Q
− α(α − 1)s1+3αrα−2Q2 − αs1+3αrα−1[Pθθ +P].

By the definition of Q, (2.2), we have

Q2 = P2

α2s2+6αr2α−2
− 2(3α + 1)

α2

Pr2

s
+ (3α + 1)2

α2
s6αr2α+2

and

Q= P − (1 + 3α)s1+6αr2α

αs1+3αrα−1
.

Substituting these expressions into the evolution equation of P we find that

∂tP = −αs1+3αrα−1[Pθθ +P] +
[
(3α + 1)(3α + 2) − (α − 1)(3α + 1)2

α

]
s1+9αr3α

− 3(3α + 1)s3αrαP − α − 1

α

P2

s1+3αrα
+ 2(α − 1)(3α + 1)

α
s3αrαP .

This completes the proof of Lemma 2.2. �
We now proceed to find the evolution equation of R which is defined by (2.1). First notice that

−αs1+3αrα−1Rθθ = −tαs1+3αrα−1Pθθ + α2

α − 1
s1+3αrα−1(s1+3αrα

)
θθ

.

Therefore, by Lemma 2.2 and identity (2.2) we get

∂tR

= −tαs1+3αrα−1[Pθθ +P] + t

[
(3α + 1)(3α + 2) − (α − 1)(3α + 1)2

α

]
s1+9αr3α

+ t

[
−3(3α + 1) + 2(α − 1)(3α + 1)

α

]
s3αrαP − t

α − 1

α

P2

s1+3αrα
+P + α

α − 1
P

− αs1+3αrα−1Rθθ + tαs1+3αrα−1Pθθ − α2

α − 1
s1+3αrα−1(s1+3αrα

)
θθ

+ α2

α − 1
s1+3αrα−1(s1+3αrα

) − α2

α − 1
s1+3αrα−1(s1+3αrα

)

+ α(3α + 1)
s1+3αrα−1(s1+6αr2α

) − α(3α + 1)
s1+3αrα−1(s1+6αr2α

)

α − 1 α − 1
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= −αs1+3αrα−1Rθθ + t

[
(3α + 1)(3α + 2) − (α − 1)(3α + 1)2

α

]
s1+9αr3α

+ t

[
−3(3α + 1) + 2(α − 1)(3α + 1)

α

]
s3αrαP − t

α − 1

α

P2

s1+3αrα
+P

+ α

α − 1
P − α

α − 1
P − tαs1+3αrα−1P + α2

α − 1
s2+6αr2α−1 + α(3α + 1)

α − 1
s2+9αr3α−1

= −αs1+3αrα−1Rθθ + t

[
(3α + 1)(3α + 2) − (α − 1)(3α + 1)2

α

]
s1+9αr3α

+ t

[
−3(3α + 1) + 2(α − 1)(3α + 1)

α

]
s3αrαP − t

α − 1

α

P2

s1+3αrα
+P

− tαs1+3αrα−1P + α2

α − 1
s2+6αr2α−1 + α(3α + 1)

α − 1
s2+9αr3α−1.

In the last expression, using the definition of R, identity (2.1), we replace tP by R + α
α−1 s1+3αrα . Therefore, at the 

point where the maximum of R is achieved we obtain

∂tR

≤ R
[
−αs1+3αrα−1 − α − 1

α

P
s1+3αrα

+
[

2(α − 1)(3α + 1)

α
− 3(3α + 1)

]
s3αrα

]

+ α

α − 1

[
2(α − 1)(3α + 1)

α
− 3(3α + 1)

]
s2+6αr2α + α(3α + 1)

α − 1
s2+9αr3α−1

+ t

[
(3α + 1)(3α + 2) − (α − 1)(3α + 1)2

α

]
s1+9αr3α

≤ R
[
−αs1+3αrα−1 − α − 1

α

P
s1+3αrα

+
[

2(α − 1)(3α + 1)

α
− 3(3α + 1)

]
s3αrα

]
.

To get the last inequality, we used the fact that the terms on the second and third line are negative for p ≥ 1. 
Hence, by the parabolic maximum principle and the fact that at the time zero we have R ≤ 0, we conclude 
R = tP − α

α−1 s1+3αrα ≤ 0. Negativity of R is equivalent to ∂t ln(s1+3αrα) ≥ α
1−α

1
t

for t > 0. From this we infer 

that ∂t (s
1+3αrαt

α
α−1 ) ≥ 0 for t > 0. �

Proposition 2.3. Ancient solutions of the flow (1.1) satisfy ∂t (s(
1
rs3 )

p
p+2 ) ≥ 0.

Proof. By the Harnack estimate every solution of the flow (1.1) satisfies

∂t

(
s

(
1

rs3

) p
p+2

)
+ p

2t (p + 1)

(
s

(
1

rs3

) p
p+2

)
≥ 0. (2.3)

We let the flow starts from a fixed time t0 < 0. So the inequality (2.3) becomes

∂t

(
s

(
1

rs3

) p
p+2

)
+ p

2(t − t0)(p + 1)

(
s

(
1

rs3

) p
p+2

)
≥ 0.

Now letting t0 goes to −∞ proves the claim. �
Corollary 2.4. Every ancient solution of the flow (1.1) satisfies ∂t (sr

1
3 ) ≤ 0.

Proof. The s(·, t) is decreasing on the time interval (−∞, 0]. The claim now follows from the previous proposi-
tion. �
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3. Affine differential setting

We will recall several definitions from affine differential geometry. Let γ : S1 →R
2 be an embedded strictly convex 

curve with the curve parameter θ . Define g(θ) := [γθ , γθθ ]1/3, where for two vectors u, v in R2, [u, v] denotes the 
determinant of the matrix with rows u and v. The affine arc-length is defined as

s(θ) :=
θ∫

0

g(α)dα.

Furthermore, the affine normal vector n is given by n := γss. In the affine coordinate s, there hold [γs, γss] = 1, 
σ = [γ, γs], and σss + σμ = 1, where μ = [γss, γsss] is the affine curvature.

We can express the area of K ∈ K, denoted by A(K), in terms of affine invariant quantities:

A(K) = 1

2

∫
∂K

σds.

The p-affine perimeter of K ∈ K0 (for p = 1 the assumption K ∈ K0 is not necessary and we may take K ∈ K), 
denoted by Ωp(K), is defined as

Ωp(K) :=
∫

∂K

σ
1− 3p

p+2 ds,

[10]. We call the quantity Ω2+p
p (K)/A2−p(K), the p-affine isoperimetric ratio and mention that it is invariant under 

GL(2). Moreover, for p > 1 the p-affine isoperimetric inequality states that if K has its centroid at the origin, then

Ω
2+p
p (K)

A2−p(K)
≤ 2p+2π2p (3.1)

and equality cases are obtained only for origin-centered ellipses. In the final section, we will use the 2-affine isoperi-
metric inequality.

Let K ∈K0. The polar body of K , denoted by K∗, is a convex body in K0 defined by

K∗ = {
y ∈R

2 | 〈x, y〉 ≤ 1, ∀x ∈ K
}
.

The area of K∗, denoted by A∗ = A(K∗), can be represented in terms of affine invariant quantities:

A∗ = 1

2

∫
∂K

1

σ 2
ds= 1

2

∫

S1

1

s2
dθ.

Let K ∈ K0. We consider a family of convex bodies {Kt }t ⊂ K, given by the smooth embeddings X : ∂K ×
[0, T ) → R

2, which are evolving according to (1.1). Then up to a time-dependant diffeomorphism, {Kt}t evolves 
according to

∂

∂t
X := σ

1− 3p
p+2 n, X(·,0) = XK(·). (3.2)

Therefore, classification of compact, origin-symmetric ancient solutions to (1.1) is equivalent to the classification of 
compact, origin-symmetric ancient solutions to (3.2). In what follows our reference flow is the evolution equation 
(3.2).

Notice that as a family of convex bodies evolve according to the evolution equation (3.2), in the Gauss parametriza-
tion their support functions and radii of curvature evolve according to Lemma 2.1. Assume Q and Q̄ are two smooth 
functions Q : ∂K × [0, T ) → R, Q̄ : S1 × [0, T ) → R that are related by Q(x, t) = Q̄(ν(x, t), t). It can be easily 
verified that

∂t Q̄ = ∂tQ − Qs

(
σ

1− 3p
p+2

)
s
.

In particular, for ancient solutions of (3.2), in views of Corollary 2.4, Q = σ must satisfy 0 ≥ ∂tσ − σs(σ
1− 3p

p+2 )s. 
The preceding argument proves the next proposition.
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Proposition 3.1. Every ancient solution satisfies ∂tσ ≤ −(
3p

p+2 − 1)σ 2
sσ

− 3p
p+2 .

The next two lemmas were proved in [7].

Lemma 3.2. (See [7, Lemma 3.1].) The following evolution equations hold:

(1) ∂
∂t

σ = σ
1− 3p

p+2 (− 4
3 + (

p
p+2 + 1)(1 − 3p

p+2 )
σ 2
s

σ
+ p

p+2σss),

(2) d
dt

A = −Ωp .

Lemma 3.3. (See [7, Section 6].) The following evolution equation for Ωl holds for every l ≥ 2 and p ≥ 1:

d

dt
Ωl(t) = 2(l − 2)

l + 2

∫
γt

σ
1− 3p

p+2 − 3l
l+2 ds+ 18pl

(l + 2)2(p + 2)

∫
γt

σ
− 3p

p+2 − 3l
l+2 σ 2

sds, (3.3)

where γt := ∂Kt is the boundary of Kt .

Lemma 3.4. (See [12].) The area product, A(t)A∗(t), and the p-affine isoperimetric ratio are both non-decreasing 
along (3.2).

Write respectively maxγt σ and minγt σ for σM and σm.

Lemma 3.5. There is a constant 0 < c < ∞ such that σM

σm
≤ c on (−∞, 0].

Proof. By Corollary 3.1 and part (1) of Lemma 3.2 we have

−
(

3p

p + 2
− 1

)
σ 2
s

σ 3
≥ ∂tσ

σ
3− 3p

p+2

= − 4

3σ 2
+

(
p

p + 2
+ 1

)(
1 − 3p

p + 2

)
σ 2
s

σ 3
+ p

p + 2

σss

σ 2
. (3.4)

Integrating the inequality (3.4) against ds we obtain

4

3

∫
γt

1

σ 2
ds ≥ p

p + 2

(
2 − 3p

p + 2

)∫
γt

σ 2
s

σ 3
ds

= p

p + 2

(
3 − 3p

p + 2

)∫
γt

(lnσ)2
s

σ
ds

≥ p

p + 2

(
3 − 3p

p + 2

)
(
∫
γt

|(lnσ)s|ds)2∫
γt

σds
. (3.5)

Set dp = p
p+2 (3 − 3p

p+2 ). Applying the Hölder inequality to the left-hand side and the right-hand side of inequality 
(3.5) yields

(∫
γt

∣∣(lnσ)s
∣∣ds

)2

≤ d ′
pA∗(t)A(t),

for a new positive constant d ′
p . Here we used the identities 

∫
γt

1
σ 2 ds = 2A∗(t) and 

∫
γt

σds = 2A(t). Now by 
Lemma 3.4 we have A(t)A∗(t) ≤ A(0)A∗(0). This implies that

(
ln

σM

)2

≤ d ′′
p,
σm
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for a new positive constant d ′′
p. Therefore, on (−∞, 0] we find that

σM

σm

≤ c (3.6)

for some positive constant c. �
Let {Kt }t be a solution of (3.2). Then the family of convex bodies, {K̃t}t , defined by

K̃t :=
√

π

A(Kt)
Kt

is called a normalized solution to the p-flow, equivalently a solution that the area is fixed and is equal to π .
Furnish every quantity associated with the normalized solution with an over-tilde. For example, the support func-

tion, curvature, and the affine support function of K̃ are denoted by s̃, κ̃ , and σ̃ , respectively.

Lemma 3.6. There is a constant 0 < c < ∞ such that on the time interval (−∞, 0] we have

σ̃M

σ̃m

≤ c. (3.7)

Proof. The estimate (3.6) is scaling invariant, so the same estimate holds for the normalized solution. �
Lemma 3.7. Ω2(t) is non-decreasing along the p-flow. Moreover, we have

d

dt
Ω2(t) ≥ 9p

4(p + 2)

∫
γt

σ
− 3p

p+2 − 3
2 σ 2

sds.

Proof. Use the evolution equation (3.3) for l = 2. �
Corollary 3.8. There exists a constant 0 < bp < ∞ such that

1

Ω4
2 (t)

< bp

on (−∞, 0].

Proof. Notice that Ω2(t) = (
∫
∂γt

σ− 1
2 ds) is a GL(2) invariant quantity. Therefore, we need only to prove the claim 

after applying appropriate SL(2) transformations to the normalized solution of the flow. By the estimate (3.7) and the 
facts that Ω2(K̃t ) is non-decreasing and A(K̃t ) = π we have

c
3
2

2
σ̃

3
2
m(t)Ω̃2(0) ≥ 1

2
σ̃

3
2
M(t)Ω̃2(0) ≥ 1

2
σ̃

3
2
M(t)Ω̃2(t) ≥ Ã(t) = π.

So we get (s̃r̃1/3)(t) ≥ a > 0 on (−∞, 0], for an a independent of t . Moreover, as the affine support function is 
invariant under SL(2) we may further assume, after applying a length minimizing special linear transformation at each 
time, that s̃(t) < a′ < ∞, for an a′ independent of t . Therefore

Ω̃3
1 (t)

Ã(t)
= (

∫
S1 r̃

2/3dθ)3

π
> a′′ > 0, (3.8)

for an a′′ independent of t . Now the claim follows from the Hölder inequality:(∫
γt

σ− 1
2 ds

)
Ω

1
2

1 (t)A
1
2 (t) ≥

∫
γt

σ− 1
2 ds

∫
γt

σ
1
2 ds≥ Ω2

1 (t),

so
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Ω̃2(t) = Ω2(t) ≥
(

Ω3
1 (t)

A(t)

) 1
2 =

(
Ω̃3

1 (t)

Ã(t)

) 1
2

. �

Corollary 3.9. As Kt evolve by (3.2), then the following limit holds:

lim inf
t→−∞

(
A(t)

Ωp(t)Ω5
2 (t)

)∫
γt

(
σ

1
4 − 3p

2(p+2)
)2
s
ds= 0. (3.9)

Proof. Suppose on the contrary that there exists an ε > 0 small enough, such that

(
A(t)

Ωp(t)Ω5
2 (t)

)∫
γt

(
σ

1
4 − 3p

2(p+2)
)2
s
ds≥ ε

( 1
4 − 3p

2(p+2)
)2

9p
p+2

on (−∞, −N ] for N large enough. Then d
dt

1
Ω4

2 (t)
≤ ε d

dt
ln(A(t)). So by integrating this last inequality against dt and 

by Corollary 3.8 we get

0 <
1

Ω4
2 (−N)

≤ 1

Ω4
2 (t)

+ ε ln
(
A(−N)

) − ε ln
(
A(t)

)

< bp + ε ln
(
A(−N)

) − ε ln
(
A(t)

)
.

Letting t → −∞ we reach to a contradiction: limt→−∞ A(t) = +∞, that is, the right-hand side becomes negative for 
large values of t . �
Corollary 3.10. For a sequence of times {tk} as tk converge to −∞ we have

lim
tk→−∞ σ̃ (tk) = 1.

Proof. Notice that the quantity ( A(t)

Ωp(t)Ω5
2 (t)

) 
∫
γt

(σ
1
4 − 3p

2(p+2) )2
sds is scaling invariant and Ã(t)

Ω̃p(t)Ω̃5
2 (t)

is bounded from 

below (by Lemmas 3.4 and 3.7, Ω̃p(t) ≤ Ω̃p(0) and Ω̃2(t) ≤ Ω̃2(0)). Thus Corollary 3.9 implies that there exists a 
sequence of times {tk}k∈N, such that limk→∞ tk = −∞ and

lim
tk→−∞

∫
γ̃tk

(
σ̃

1
4 − 3p

2(p+2)
)2
s̃
d s̃= 0.

On the other hand, by the Hölder inequality

(σ̃
1
4 − 3p

2(p+2)

M (tk) − σ̃
1
4 − 3p

2(p+2)
m (tk))

2

Ω̃1(tk)
≤

∫
γ̃tk

(
σ̃

1
4 − 3p

2(p+2)
)2
s̃
d s̃.

Moreover, Ω̃1(t) is bounded from above: Indeed (
Ω̃3

1 (t)

Ã(t)
)

1
2 ≤ Ω̃2(t) ≤ Ω̃2(0). Therefore, we find that

lim
tk→−∞

(
σ̃

1
4 − 3p

2(p+2)

M (tk) − σ̃
1
4 − 3p

2(p+2)
m (tk)

)2 = 0.

Since σ̃m ≤ 1 and σ̃M ≥ 1 (see [3, Lemma 10]) the claim follows. �
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4. Proof of the main theorem

Proof. For each time t ∈ (−∞, T ), let Tt ∈ SL(2) be a special linear transformation that the maximal ellipse contained 
in Tt K̃t is a disk. So by John’s ellipsoid lemma we have

1√
2

≤ s
Tt K̃t

≤ √
2.

Then by the Blaschke selection theorem, there is a subsequence of times, denoted again by {tk}, such that {Ttk K̃tk }
converges in the Hausdorff distance to an origin-symmetric convex body K̃−∞, as tk → −∞. By Corollary 3.10, and 
by the weak convergence of the Monge–Ampère measures, the support function of K̃−∞ is the generalized solution 
of the following Monge–Ampère equation on S1:

s3(sθθ + s) = 1

Therefore, by Lemma 8.1 of Petty [6], K̃−∞ is an origin-centered ellipse. This in turn implies that limt→−∞ Ω̃2(tk) =
2π . On the other hand, by the 2-affine isoperimetric inequality, (3.1), and by Lemma 3.7, for t ∈ (∞, 0] we have

2π ≥ Ω̃2(t) ≥ lim
tk→−∞ Ω̃2(tk) = 2π.

Thus d
dt

Ω̃2(t) ≡ 0 on (−∞, 0]. Hence, in view of Lemma 3.7, Kt is an origin-centered ellipse for every time t ∈
(−∞, T ). �
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