Centro-affine normal flows on curves: Harnack estimates and ancient solutions

Mohammad N. Ivaki
Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstr. 8-10, 1040 Wien, Austria

Received 23 February 2014; accepted 9 July 2014
Available online 24 July 2014

Abstract

We prove that the only compact, origin-symmetric, strictly convex ancient solutions of the planar p centro-affine normal flows are contracting origin-centered ellipses.

© 2014 Elsevier Masson SAS. All rights reserved.
$M S C$: primary $53 \mathrm{C} 44,53 \mathrm{~A} 04,52 \mathrm{~A} 10$; secondary 53A15
Keywords: Centro-affine normal flow; Affine differential geometry; Affine support function; Ancient solutions

1. Introduction

The setting of this paper is the two-dimensional Euclidean space, \mathbb{R}^{2}. A compact convex subset of \mathbb{R}^{2} with nonempty interior is called a convex body. The set of smooth, strictly convex bodies in \mathbb{R}^{2} is denoted by \mathcal{K}. Write \mathcal{K}_{0} for the set of smooth, strictly convex bodies whose interiors contain the origin of the plane.

Let K be a smooth, strictly convex body \mathbb{R}^{2} and let $X_{K}: \partial K \rightarrow \mathbb{R}^{2}$ be a smooth embedding of ∂K, the boundary of K. Write \mathbb{S}^{1} for the unit circle and write $v: \partial K \rightarrow \mathbb{S}^{1}$ for the Gauss map of ∂K. That is, at each point $x \in \partial K$, $\nu(x)$ is the unit outwards normal at x. The support function of $K \in \mathcal{K}_{0}$ as a function on the unit circle is defined by $s(z):=\left\langle X\left(\nu^{-1}(z)\right), z\right\rangle$, for each $z \in \mathbb{S}^{1}$. We denote the curvature of ∂K by κ which as a function on ∂K is related to the support function by

$$
\frac{1}{\kappa\left(v^{-1}(z)\right)}:=\mathfrak{r}(z)=\frac{\partial^{2}}{\partial \theta^{2}} s(z)+s(z) .
$$

Here and afterwards, we identify $z=(\cos \theta, \sin \theta)$ with θ. The function \mathfrak{r} is called the radius of curvature. The affine support function of K is defined by $\sigma: \partial K \rightarrow \mathbb{R}$ and $\sigma(x):=s(\nu(x)) \mathfrak{r}^{1 / 3}(\nu(x))$. The affine support function is invariant under the group of special linear transformations, $S L(2)$, and it plays a basic role in our argument.

[^0]Let $K \in \mathcal{K}_{0}$. A family of convex bodies $\left\{K_{t}\right\}_{t} \subset \mathcal{K}_{0}$ given by the smooth map $X: \partial K \times[0, T) \rightarrow \mathbb{R}^{2}$ is said to be a solution to the p centro-affine normal flow, in short p-flow, with the initial data X_{K}, if the following evolution equation is satisfied:

$$
\begin{equation*}
\partial_{t} X(x, t)=-\left(\frac{\kappa(x, t)}{\langle X(x, t), v(x, t)\rangle^{3}}\right)^{\frac{p}{p+2}-\frac{1}{3}} \kappa^{\frac{1}{3}}(x, t) \nu(x, t), \quad X(\cdot, 0)=X_{K}, \tag{1.1}
\end{equation*}
$$

for a fixed $1<p<\infty$. In this equation, $0<T<\infty$ is the maximal time that the solution exists, and $v(x, t)$ is the unit normal to the curve $X(\partial K, t)=\partial K_{t}$ at $X(x, t)$. This family of flows for $p>1$ was defined by Stancu [12]. The case $p=1$ is the well-known affine normal flow whose asymptotic behavior was investigated by Sapiro and Tannenbaum [11], and by Andrews in a more general setting [2,4]: Any convex solution to the affine normal flow, after appropriate rescaling converges to an ellipse in the \mathcal{C}^{∞} norm. For $p>1$, similar result was obtained with smooth, origin-symmetric, strictly convex initial data by the author and Stancu [7,8]. Moreover, ancient solutions of the affine normal flow have been also classified: the only compact, convex ancient solutions of the affine normal flow are contracting ellipsoids. This result in \mathbb{R}^{n}, for $n \geq 3$, was proved by Loftin and Tsui [9] and in dimension two by S. Chen [5], and also by the author with a different method. We recall that a solution of flow is called an ancient solution if it exists on $(-\infty, T)$. Here we classify compact, origin-symmetric, strictly convex ancient solutions of the planar p centro-affine normal flows:

Theorem. The only compact, origin-symmetric, strictly convex ancient solutions of the p-flows are contracting origincentered ellipses.

Throughout this paper, we consider origin-symmetric solutions.

2. Harnack estimate

In this section, we follow [1] to obtain the Harnack estimates for p-flows.
Proposition. Under the flow (1.1) we have $\partial_{t}\left(s^{1-\frac{3 p}{p+2}} \mathbf{r}^{-\frac{p}{p+2}} t^{\frac{p}{2 p+2}}\right) \geq 0$.
Proof. For simplicity we set $\alpha=-\frac{p}{p+2}$. To prove the proposition, using the parabolic maximum principle we prove that the quantity defined by

$$
\begin{equation*}
\mathcal{R}:=t \mathcal{P}-\frac{\alpha}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha} \tag{2.1}
\end{equation*}
$$

remains negative as long as the flow exists. Here \mathcal{P} is defined as follows

$$
\mathcal{P}:=\partial_{t}\left(-s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)
$$

Lemma 2.1. (See [7].)

- $\partial_{t} s=-s^{1+3 \alpha} \mathfrak{r}^{\alpha}$,
- $\partial_{t} \mathfrak{r}=-\left[\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)_{\theta \theta}+s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right]$.

Using the evolution equations of s and \mathfrak{r} we find

$$
\begin{align*}
\mathcal{P} & =(1+3 \alpha) s^{1+6 \alpha} \mathfrak{r}^{2 \alpha}+\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left[\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)_{\theta \theta}+s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right] \\
& :=(1+3 \alpha) s^{1+6 \alpha} \mathfrak{r}^{2 \alpha}+\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{Q} . \tag{2.2}
\end{align*}
$$

Lemma 2.2. We have the following evolution equation for \mathcal{P} as long as the flow exists:

$$
\begin{aligned}
\partial_{t} \mathcal{P}= & -\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left[\mathcal{P}_{\theta \theta}+\mathcal{P}\right]+\left[(3 \alpha+1)(3 \alpha+2)-\frac{(\alpha-1)(3 \alpha+1)^{2}}{\alpha}\right] s^{1+9 \alpha} \mathfrak{r}^{3 \alpha} \\
& +\left[-3(3 \alpha+1)+\frac{2(\alpha-1)(3 \alpha+1)}{\alpha}\right] s^{3 \alpha} \mathfrak{r}^{\alpha} \mathcal{P}-\frac{\alpha-1}{\alpha} \frac{\mathcal{P}^{2}}{s^{1+3 \alpha} \mathfrak{r}^{\alpha}}
\end{aligned}
$$

Proof. We repeatedly use the evolution equation of s and \mathfrak{r} given in Lemma 2.1.

$$
\begin{aligned}
& \partial_{t} \mathcal{P} \\
&=-(1+3 \alpha)(1+6 \alpha) s^{1+9 \alpha} \mathfrak{r}^{3 \alpha}-2 \alpha(1+3 \alpha) s^{1+6 \alpha} \mathfrak{r}^{2 \alpha-1}\left[\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)_{\theta \theta}+s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right] \\
&-\alpha(1+3 \alpha) s^{1+6 \alpha} \mathfrak{r}^{2 \alpha-1}\left[\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)_{\theta \theta}+s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right] \\
&-\alpha(\alpha-1) s^{1+3 \alpha} \mathfrak{r}^{\alpha-2}\left[\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)_{\theta \theta}+s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right]^{2}-\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left[\mathcal{P}_{\theta \theta}+\mathcal{P}\right] \\
&=-(1+3 \alpha)(1+6 \alpha) s^{1+9 \alpha} \mathfrak{r}^{3 \alpha}-3 \alpha(1+3 \alpha) s^{1+6 \alpha} \mathfrak{r}^{2 \alpha-1} \mathcal{Q} \\
&-\alpha(\alpha-1) s^{1+3 \alpha} \mathfrak{r}^{\alpha-2} \mathcal{Q}^{2}-\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left[\mathcal{P}_{\theta \theta}+\mathcal{P}\right] .
\end{aligned}
$$

By the definition of $\mathcal{Q},(2.2)$, we have

$$
\mathcal{Q}^{2}=\frac{\mathcal{P}^{2}}{\alpha^{2} s^{2+6 \alpha} \mathfrak{r}^{2 \alpha-2}}-\frac{2(3 \alpha+1)}{\alpha^{2}} \frac{\mathcal{P r}^{2}}{s}+\frac{(3 \alpha+1)^{2}}{\alpha^{2}} s^{6 \alpha} \mathfrak{r}^{2 \alpha+2}
$$

and

$$
\mathcal{Q}=\frac{\mathcal{P}-(1+3 \alpha) s^{1+6 \alpha} \mathfrak{r}^{2 \alpha}}{\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}}
$$

Substituting these expressions into the evolution equation of \mathcal{P} we find that

$$
\begin{aligned}
\partial_{t} \mathcal{P}= & -\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left[\mathcal{P}_{\theta \theta}+\mathcal{P}\right]+\left[(3 \alpha+1)(3 \alpha+2)-\frac{(\alpha-1)(3 \alpha+1)^{2}}{\alpha}\right] s^{1+9 \alpha} \mathfrak{r}^{3 \alpha} \\
& -3(3 \alpha+1) s^{3 \alpha} \mathfrak{r}^{\alpha} \mathcal{P}-\frac{\alpha-1}{\alpha} \frac{\mathcal{P}^{2}}{s^{1+3 \alpha} \mathfrak{r}^{\alpha}}+\frac{2(\alpha-1)(3 \alpha+1)}{\alpha} s^{3 \alpha} \mathfrak{r}^{\alpha} \mathcal{P} .
\end{aligned}
$$

This completes the proof of Lemma 2.2.
We now proceed to find the evolution equation of \mathcal{R} which is defined by (2.1). First notice that

$$
-\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{R}_{\theta \theta}=-t \alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{P}_{\theta \theta}+\frac{\alpha^{2}}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)_{\theta \theta} .
$$

Therefore, by Lemma 2.2 and identity (2.2) we get

$$
\begin{aligned}
& \partial_{t} \mathcal{R} \\
&=-t \alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left[\mathcal{P}_{\theta \theta}+\mathcal{P}\right]+t\left[(3 \alpha+1)(3 \alpha+2)-\frac{(\alpha-1)(3 \alpha+1)^{2}}{\alpha}\right] s^{1+9 \alpha} \mathfrak{r}^{3 \alpha} \\
&+t\left[-3(3 \alpha+1)+\frac{2(\alpha-1)(3 \alpha+1)}{\alpha}\right] s^{3 \alpha} \mathfrak{r}^{\alpha} \mathcal{P}-t \frac{\alpha-1}{\alpha} \frac{\mathcal{P}^{2}}{s^{1+3 \alpha} \mathfrak{r}^{\alpha}}+\mathcal{P}+\frac{\alpha}{\alpha-1} \mathcal{P} \\
&-\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{R}_{\theta \theta}+t \alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{P}_{\theta \theta}-\frac{\alpha^{2}}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)_{\theta \theta} \\
&+\frac{\alpha^{2}}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right)-\frac{\alpha^{2}}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right) \\
&+\frac{\alpha(3 \alpha+1)}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left(s^{1+6 \alpha} \mathfrak{r}^{2 \alpha}\right)-\frac{\alpha(3 \alpha+1)}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}\left(s^{1+6 \alpha} \mathfrak{r}^{2 \alpha}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & -\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{R}_{\theta \theta}+t\left[(3 \alpha+1)(3 \alpha+2)-\frac{(\alpha-1)(3 \alpha+1)^{2}}{\alpha}\right] s^{1+9 \alpha} \mathfrak{r}^{3 \alpha} \\
& +t\left[-3(3 \alpha+1)+\frac{2(\alpha-1)(3 \alpha+1)}{\alpha}\right] s^{3 \alpha} \mathfrak{r}^{\alpha} \mathcal{P}-t \frac{\alpha-1}{\alpha} \frac{\mathcal{P}^{2}}{s^{1+3 \alpha} \mathfrak{r}^{\alpha}}+\mathcal{P} \\
& +\frac{\alpha}{\alpha-1} \mathcal{P}-\frac{\alpha}{\alpha-1} \mathcal{P}-t \alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{P}+\frac{\alpha^{2}}{\alpha-1} s^{2+6 \alpha} \mathfrak{r}^{2 \alpha-1}+\frac{\alpha(3 \alpha+1)}{\alpha-1} s^{2+9 \alpha} \mathfrak{r}^{3 \alpha-1} \\
= & -\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{R}_{\theta \theta}+t\left[(3 \alpha+1)(3 \alpha+2)-\frac{(\alpha-1)(3 \alpha+1)^{2}}{\alpha}\right] s^{1+9 \alpha} \mathfrak{r}^{3 \alpha} \\
& +t\left[-3(3 \alpha+1)+\frac{2(\alpha-1)(3 \alpha+1)}{\alpha}\right] s^{3 \alpha} \mathfrak{r}^{\alpha} \mathcal{P}-t \frac{\alpha-1}{\alpha} \frac{\mathcal{P}^{2}}{s^{1+3 \alpha} \mathfrak{r}^{\alpha}}+\mathcal{P} \\
& -t \alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1} \mathcal{P}+\frac{\alpha^{2}}{\alpha-1} s^{2+6 \alpha} \mathfrak{r}^{2 \alpha-1}+\frac{\alpha(3 \alpha+1)}{\alpha-1} s^{2+9 \alpha} \mathfrak{r}^{3 \alpha-1} .
\end{aligned}
$$

In the last expression, using the definition of \mathcal{R}, identity (2.1), we replace $t \mathcal{P}$ by $\mathcal{R}+\frac{\alpha}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha}$. Therefore, at the point where the maximum of \mathcal{R} is achieved we obtain

$$
\begin{aligned}
& \partial_{t} \mathcal{R} \\
& \leq \mathcal{R}\left[-\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}-\frac{\alpha-1}{\alpha} \frac{\mathcal{P}}{s^{1+3 \alpha} \mathfrak{r}^{\alpha}}+\left[\frac{2(\alpha-1)(3 \alpha+1)}{\alpha}-3(3 \alpha+1)\right] s^{3 \alpha} \mathfrak{r}^{\alpha}\right] \\
&+\frac{\alpha}{\alpha-1}\left[\frac{2(\alpha-1)(3 \alpha+1)}{\alpha}-3(3 \alpha+1)\right] s^{2+6 \alpha} \mathfrak{r}^{2 \alpha}+\frac{\alpha(3 \alpha+1)}{\alpha-1} s^{2+9 \alpha} \mathfrak{r}^{3 \alpha-1} \\
&+t\left[(3 \alpha+1)(3 \alpha+2)-\frac{(\alpha-1)(3 \alpha+1)^{2}}{\alpha}\right] s^{1+9 \alpha} \mathfrak{r}^{3 \alpha} \\
& \leq \mathcal{R}\left[-\alpha s^{1+3 \alpha} \mathfrak{r}^{\alpha-1}-\frac{\alpha-1}{\alpha} \frac{\mathcal{P}}{s^{1+3 \alpha} \mathfrak{r}^{\alpha}}+\left[\frac{2(\alpha-1)(3 \alpha+1)}{\alpha}-3(3 \alpha+1)\right] s^{3 \alpha} \mathfrak{r}^{\alpha}\right] .
\end{aligned}
$$

To get the last inequality, we used the fact that the terms on the second and third line are negative for $p \geq 1$. Hence, by the parabolic maximum principle and the fact that at the time zero we have $\mathcal{R} \leq 0$, we conclude $\mathcal{R}=t \mathcal{P}-\frac{\alpha}{\alpha-1} s^{1+3 \alpha} \mathfrak{r}^{\alpha} \leq 0$. Negativity of \mathcal{R} is equivalent to $\partial_{t} \ln \left(s^{1+3 \alpha} \mathfrak{r}^{\alpha}\right) \geq \frac{\alpha}{1-\alpha} \frac{1}{t}$ for $t>0$. From this we infer that $\partial_{t}\left(s^{1+3 \alpha} \mathfrak{r}^{\alpha} t^{\frac{\alpha}{\alpha-1}}\right) \geq 0$ for $t>0$.

Proposition 2.3. Ancient solutions of the flow (1.1) satisfy $\partial_{t}\left(s\left(\frac{1}{r s^{3}}\right)^{\frac{p}{p+2}}\right) \geq 0$.
Proof. By the Harnack estimate every solution of the flow (1.1) satisfies

$$
\begin{equation*}
\partial_{t}\left(s\left(\frac{1}{\mathfrak{r s} s^{3}}\right)^{\frac{p}{p+2}}\right)+\frac{p}{2 t(p+1)}\left(s\left(\frac{1}{\mathfrak{r s}{ }^{3}}\right)^{\frac{p}{p+2}}\right) \geq 0 . \tag{2.3}
\end{equation*}
$$

We let the flow starts from a fixed time $t_{0}<0$. So the inequality (2.3) becomes

$$
\partial_{t}\left(s\left(\frac{1}{\mathfrak{r s} s^{3}}\right)^{\frac{p}{p+2}}\right)+\frac{p}{2\left(t-t_{0}\right)(p+1)}\left(s\left(\frac{1}{\mathfrak{r} s^{3}}\right)^{\frac{p}{p+2}}\right) \geq 0 .
$$

Now letting t_{0} goes to $-\infty$ proves the claim.
Corollary 2.4. Every ancient solution of the flow (1.1) satisfies $\partial_{t}\left(\mathrm{sr}^{\frac{1}{3}}\right) \leq 0$.
Proof. The $s(\cdot, t)$ is decreasing on the time interval $(-\infty, 0]$. The claim now follows from the previous proposition.

3. Affine differential setting

We will recall several definitions from affine differential geometry. Let $\gamma: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ be an embedded strictly convex curve with the curve parameter θ. Define $\mathfrak{g}(\theta):=\left[\gamma_{\theta}, \gamma_{\theta \theta}\right]^{1 / 3}$, where for two vectors u, v in $\mathbb{R}^{2},[u, v]$ denotes the determinant of the matrix with rows u and v. The affine arc-length is defined as

$$
\mathfrak{s}(\theta):=\int_{0}^{\theta} \mathfrak{g}(\alpha) d \alpha .
$$

Furthermore, the affine normal vector \mathfrak{n} is given by $\mathfrak{n}:=\gamma_{\mathfrak{s s} .}$. In the affine coordinate \mathfrak{s}, there hold $\left[\gamma_{\mathfrak{s}}, \gamma_{\mathfrak{s s}}\right]=1$, $\sigma=\left[\gamma, \gamma_{\mathfrak{s}}\right]$, and $\sigma_{\mathfrak{s s}}+\sigma \mu=1$, where $\mu=\left[\gamma_{\mathfrak{s s}}, \gamma_{\mathfrak{s s s}}\right]$ is the affine curvature.

We can express the area of $K \in \mathcal{K}$, denoted by $A(K)$, in terms of affine invariant quantities:

$$
A(K)=\frac{1}{2} \int_{\partial K} \sigma d \mathfrak{s} .
$$

The p-affine perimeter of $K \in \mathcal{K}_{0}$ (for $p=1$ the assumption $K \in \mathcal{K}_{0}$ is not necessary and we may take $K \in \mathcal{K}$), denoted by $\Omega_{p}(K)$, is defined as

$$
\Omega_{p}(K):=\int_{\partial K} \sigma^{1-\frac{3 p}{p+2}} d \mathfrak{s}
$$

[10]. We call the quantity $\Omega_{p}^{2+p}(K) / A^{2-p}(K)$, the p-affine isoperimetric ratio and mention that it is invariant under $G L(2)$. Moreover, for $p>1$ the p-affine isoperimetric inequality states that if K has its centroid at the origin, then

$$
\begin{equation*}
\frac{\Omega_{p}^{2+p}(K)}{A^{2-p}(K)} \leq 2^{p+2} \pi^{2 p} \tag{3.1}
\end{equation*}
$$

and equality cases are obtained only for origin-centered ellipses. In the final section, we will use the 2 -affine isoperimetric inequality.

Let $K \in \mathcal{K}_{0}$. The polar body of K, denoted by K^{*}, is a convex body in \mathcal{K}_{0} defined by

$$
K^{*}=\left\{y \in \mathbb{R}^{2} \mid\langle x, y\rangle \leq 1, \forall x \in K\right\} .
$$

The area of K^{*}, denoted by $A^{*}=A\left(K^{*}\right)$, can be represented in terms of affine invariant quantities:

$$
A^{*}=\frac{1}{2} \int_{\partial K} \frac{1}{\sigma^{2}} d \mathfrak{s}=\frac{1}{2} \int_{\mathbb{S}^{1}} \frac{1}{s^{2}} d \theta
$$

Let $K \in \mathcal{K}_{0}$. We consider a family of convex bodies $\left\{K_{t}\right\}_{t} \subset \mathcal{K}$, given by the smooth embeddings $X: \partial K \times$ $[0, T) \rightarrow \mathbb{R}^{2}$, which are evolving according to (1.1). Then up to a time-dependant diffeomorphism, $\left\{K_{t}\right\}_{t}$ evolves according to

$$
\begin{equation*}
\frac{\partial}{\partial t} X:=\sigma^{1-\frac{3 p}{p+2} \mathfrak{n}, \quad X(\cdot, 0)=X_{K}(\cdot)} \tag{3.2}
\end{equation*}
$$

Therefore, classification of compact, origin-symmetric ancient solutions to (1.1) is equivalent to the classification of compact, origin-symmetric ancient solutions to (3.2). In what follows our reference flow is the evolution equation (3.2).

Notice that as a family of convex bodies evolve according to the evolution equation (3.2), in the Gauss parametrization their support functions and radii of curvature evolve according to Lemma 2.1. Assume Q and \bar{Q} are two smooth functions $Q: \partial K \times[0, T) \rightarrow \mathbb{R}, \bar{Q}: \mathbb{S}^{1} \times[0, T) \rightarrow \mathbb{R}$ that are related by $Q(x, t)=\bar{Q}(v(x, t), t)$. It can be easily verified that

$$
\partial_{t} \bar{Q}=\partial_{t} Q-Q_{\mathfrak{s}}\left(\sigma^{1-\frac{3 p}{p+2}}\right)_{\mathfrak{s}} .
$$

In particular, for ancient solutions of (3.2), in views of Corollary 2.4, $Q=\sigma$ must satisfy $0 \geq \partial_{t} \sigma-\sigma_{\mathfrak{s}}\left(\sigma^{1-\frac{3 p}{p+2}}\right)_{\mathfrak{s}}$. The preceding argument proves the next proposition.

Proposition 3.1. Every ancient solution satisfies $\partial_{t} \sigma \leq-\left(\frac{3 p}{p+2}-1\right) \sigma_{\mathfrak{s}}^{2} \sigma^{-\frac{3 p}{p+2}}$.
The next two lemmas were proved in [7].
Lemma 3.2. (See [7, Lemma 3.1].) The following evolution equations hold:
(1) $\frac{\partial}{\partial t} \sigma=\sigma^{1-\frac{3 p}{p+2}}\left(-\frac{4}{3}+\left(\frac{p}{p+2}+1\right)\left(1-\frac{3 p}{p+2}\right) \frac{\sigma_{\mathfrak{s}}^{2}}{\sigma}+\frac{p}{p+2} \sigma_{\mathfrak{s s}}\right)$,
(2) $\frac{d}{d t} A=-\Omega_{p}$.

Lemma 3.3. (See [7, Section 6].) The following evolution equation for Ω_{l} holds for every $l \geq 2$ and $p \geq 1$:

$$
\begin{equation*}
\frac{d}{d t} \Omega_{l}(t)=\frac{2(l-2)}{l+2} \int_{\gamma_{t}} \sigma^{1-\frac{3 p}{p+2}-\frac{3 l}{l+2}} d \mathfrak{s}+\frac{18 p l}{(l+2)^{2}(p+2)} \int_{\gamma_{t}} \sigma^{-\frac{3 p}{p+2}-\frac{3 l}{l+2}} \sigma_{\mathfrak{s}}^{2} d \mathfrak{s} \tag{3.3}
\end{equation*}
$$

where $\gamma_{t}:=\partial K_{t}$ is the boundary of K_{t}.
Lemma 3.4. (See [12].) The area product, $A(t) A^{*}(t)$, and the p-affine isoperimetric ratio are both non-decreasing along (3.2).

Write respectively $\max _{\gamma_{t}} \sigma$ and $\min _{\gamma_{t}} \sigma$ for σ_{M} and σ_{m}.
Lemma 3.5. There is a constant $0<c<\infty$ such that $\frac{\sigma_{M}}{\sigma_{m}} \leq c$ on $(-\infty, 0]$.
Proof. By Corollary 3.1 and part (1) of Lemma 3.2 we have

$$
\begin{align*}
-\left(\frac{3 p}{p+2}-1\right) \frac{\sigma_{\mathfrak{s}}^{2}}{\sigma^{3}} & \geq \frac{\partial_{t} \sigma}{\sigma^{3-\frac{3 p}{p+2}}} \\
& =-\frac{4}{3 \sigma^{2}}+\left(\frac{p}{p+2}+1\right)\left(1-\frac{3 p}{p+2}\right) \frac{\sigma_{\mathfrak{s}}^{2}}{\sigma^{3}}+\frac{p}{p+2} \frac{\sigma_{\mathfrak{s s}}}{\sigma^{2}} \tag{3.4}
\end{align*}
$$

Integrating the inequality (3.4) against $d \mathfrak{s}$ we obtain

$$
\begin{align*}
\frac{4}{3} \int_{\gamma_{t}} \frac{1}{\sigma^{2}} d \mathfrak{s} & \geq \frac{p}{p+2}\left(2-\frac{3 p}{p+2}\right) \int_{\gamma_{t}} \frac{\sigma_{\mathfrak{s}}^{2}}{\sigma^{3}} d \mathfrak{s} \\
& =\frac{p}{p+2}\left(3-\frac{3 p}{p+2}\right) \int_{\gamma_{t}} \frac{(\ln \sigma)_{\mathfrak{s}}^{2}}{\sigma} d \mathfrak{s} \\
& \geq \frac{p}{p+2}\left(3-\frac{3 p}{p+2}\right) \frac{\left(\int_{\gamma_{t}}\left|(\ln \sigma)_{\mathfrak{s}}\right| d \mathfrak{s}\right)^{2}}{\int_{\gamma_{t}} \sigma d \mathfrak{s}} \tag{3.5}
\end{align*}
$$

Set $d_{p}=\frac{p}{p+2}\left(3-\frac{3 p}{p+2}\right)$. Applying the Hölder inequality to the left-hand side and the right-hand side of inequality (3.5) yields

$$
\left(\int_{\gamma_{t}}\left|(\ln \sigma)_{\mathfrak{s}}\right| d \mathfrak{s}\right)^{2} \leq d_{p}^{\prime} A^{*}(t) A(t)
$$

for a new positive constant d_{p}^{\prime}. Here we used the identities $\int_{\gamma_{t}} \frac{1}{\sigma^{2}} d \mathfrak{s}=2 A^{*}(t)$ and $\int_{\gamma_{t}} \sigma d \mathfrak{s}=2 A(t)$. Now by Lemma 3.4 we have $A(t) A^{*}(t) \leq A(0) A^{*}(0)$. This implies that

$$
\left(\ln \frac{\sigma_{M}}{\sigma_{m}}\right)^{2} \leq d_{p}^{\prime \prime}
$$

for a new positive constant $d_{p}^{\prime \prime}$. Therefore, on $(-\infty, 0]$ we find that

$$
\begin{equation*}
\frac{\sigma_{M}}{\sigma_{m}} \leq c \tag{3.6}
\end{equation*}
$$

for some positive constant c.
Let $\left\{K_{t}\right\}_{t}$ be a solution of (3.2). Then the family of convex bodies, $\left\{\tilde{K}_{t}\right\}_{t}$, defined by

$$
\tilde{K}_{t}:=\sqrt{\frac{\pi}{A\left(K_{t}\right)}} K_{t}
$$

is called a normalized solution to the p-flow, equivalently a solution that the area is fixed and is equal to π.
Furnish every quantity associated with the normalized solution with an over-tilde. For example, the support function, curvature, and the affine support function of \tilde{K} are denoted by $\tilde{s}, \tilde{\kappa}$, and $\tilde{\sigma}$, respectively.

Lemma 3.6. There is a constant $0<c<\infty$ such that on the time interval $(-\infty, 0]$ we have

$$
\begin{equation*}
\frac{\tilde{\sigma}_{M}}{\tilde{\sigma}_{m}} \leq c \tag{3.7}
\end{equation*}
$$

Proof. The estimate (3.6) is scaling invariant, so the same estimate holds for the normalized solution.
Lemma 3.7. $\Omega_{2}(t)$ is non-decreasing along the p-flow. Moreover, we have

$$
\frac{d}{d t} \Omega_{2}(t) \geq \frac{9 p}{4(p+2)} \int_{\gamma_{t}} \sigma^{-\frac{3 p}{p+2}-\frac{3}{2}} \sigma_{\mathfrak{s}}^{2} d \mathfrak{s}
$$

Proof. Use the evolution equation (3.3) for $l=2$.
Corollary 3.8. There exists a constant $0<b_{p}<\infty$ such that

$$
\frac{1}{\Omega_{2}^{4}(t)}<b_{p}
$$

on $(-\infty, 0]$.
Proof. Notice that $\Omega_{2}(t)=\left(\int_{\partial \gamma_{t}} \sigma^{-\frac{1}{2}} d \mathfrak{s}\right)$ is a $G L(2)$ invariant quantity. Therefore, we need only to prove the claim after applying appropriate $S L(2)$ transformations to the normalized solution of the flow. By the estimate (3.7) and the facts that $\Omega_{2}\left(\tilde{K}_{t}\right)$ is non-decreasing and $A\left(\tilde{K}_{t}\right)=\pi$ we have

$$
\frac{c^{\frac{3}{2}}}{2} \tilde{\sigma}_{m}^{\frac{3}{2}}(t) \tilde{\Omega}_{2}(0) \geq \frac{1}{2} \tilde{\sigma}_{M}^{\frac{3}{2}}(t) \tilde{\Omega}_{2}(0) \geq \frac{1}{2} \tilde{\sigma}_{M}^{\frac{3}{2}}(t) \tilde{\Omega}_{2}(t) \geq \tilde{A}(t)=\pi .
$$

So we get $\left(\tilde{s} \tilde{\mathbf{r}}^{1 / 3}\right)(t) \geq a>0$ on $(-\infty, 0]$, for an a independent of t. Moreover, as the affine support function is invariant under $S L(2)$ we may further assume, after applying a length minimizing special linear transformation at each time, that $\tilde{s}(t)<a^{\prime}<\infty$, for an a^{\prime} independent of t. Therefore

$$
\begin{equation*}
\frac{\tilde{\Omega}_{1}^{3}(t)}{\tilde{A}(t)}=\frac{\left(\int_{\mathbb{S}^{1}} \tilde{\mathbf{r}}^{2 / 3} d \theta\right)^{3}}{\pi}>a^{\prime \prime}>0 \tag{3.8}
\end{equation*}
$$

for an $a^{\prime \prime}$ independent of t. Now the claim follows from the Hölder inequality:

$$
\left(\int_{\gamma_{t}} \sigma^{-\frac{1}{2}} d \mathfrak{s}\right) \Omega_{1}^{\frac{1}{2}}(t) A^{\frac{1}{2}}(t) \geq \int_{\gamma_{t}} \sigma^{-\frac{1}{2}} d \mathfrak{s} \int_{\gamma_{t}} \sigma^{\frac{1}{2}} d \mathfrak{s} \geq \Omega_{1}^{2}(t)
$$

$$
\tilde{\Omega}_{2}(t)=\Omega_{2}(t) \geq\left(\frac{\Omega_{1}^{3}(t)}{A(t)}\right)^{\frac{1}{2}}=\left(\frac{\tilde{\Omega}_{1}^{3}(t)}{\tilde{A}(t)}\right)^{\frac{1}{2}}
$$

Corollary 3.9. As K_{t} evolve by (3.2), then the following limit holds:

$$
\begin{equation*}
\liminf _{t \rightarrow-\infty}\left(\frac{A(t)}{\Omega_{p}(t) \Omega_{2}^{5}(t)}\right) \int_{\gamma_{t}}\left(\sigma^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\right)_{\mathfrak{s}}^{2} d \mathfrak{s}=0 . \tag{3.9}
\end{equation*}
$$

Proof. Suppose on the contrary that there exists an $\varepsilon>0$ small enough, such that

$$
\left(\frac{A(t)}{\Omega_{p}(t) \Omega_{2}^{5}(t)}\right) \int_{\gamma_{t}}\left(\sigma^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\right)_{\mathfrak{s}}^{2} d \mathfrak{s} \geq \varepsilon \frac{\left(\frac{1}{4}-\frac{3 p}{2(p+2)}\right)^{2}}{\frac{9 p}{p+2}}
$$

on $(-\infty,-N]$ for N large enough. Then $\frac{d}{d t} \frac{1}{\Omega_{2}^{4}(t)} \leq \varepsilon \frac{d}{d t} \ln (A(t))$. So by integrating this last inequality against $d t$ and by Corollary 3.8 we get

$$
\begin{aligned}
0<\frac{1}{\Omega_{2}^{4}(-N)} & \leq \frac{1}{\Omega_{2}^{4}(t)}+\varepsilon \ln (A(-N))-\varepsilon \ln (A(t)) \\
& <b_{p}+\varepsilon \ln (A(-N))-\varepsilon \ln (A(t)) .
\end{aligned}
$$

Letting $t \rightarrow-\infty$ we reach to a contradiction: $\lim _{t \rightarrow-\infty} A(t)=+\infty$, that is, the right-hand side becomes negative for large values of t.

Corollary 3.10. For a sequence of times $\left\{t_{k}\right\}$ as t_{k} converge to $-\infty$ we have

$$
\lim _{t_{k} \rightarrow-\infty} \tilde{\sigma}\left(t_{k}\right)=1
$$

Proof. Notice that the quantity $\left(\frac{A(t)}{\Omega_{p}(t) \Omega_{2}^{5}(t)}\right) \int_{\gamma_{t}}\left(\sigma^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\right)_{\mathfrak{s}}^{2} d \mathfrak{s}$ is scaling invariant and $\frac{\tilde{A}(t)}{\tilde{\Omega}_{p}(t) \tilde{\Omega}_{2}^{5}(t)}$ is bounded from below (by Lemmas 3.4 and 3.7, $\tilde{\Omega}_{p}(t) \leq \tilde{\Omega}_{p}(0)$ and $\tilde{\Omega}_{2}(t) \leq \tilde{\Omega}_{2}(0)$). Thus Corollary 3.9 implies that there exists a sequence of times $\left\{t_{k}\right\}_{k \in \mathbb{N}}$, such that $\lim _{k \rightarrow \infty} t_{k}=-\infty$ and

$$
\lim _{t_{k} \rightarrow-\infty} \int_{\tilde{\gamma_{t}}}\left(\tilde{\sigma}^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\right)_{\tilde{\mathfrak{s}}}^{2} d \tilde{\mathfrak{s}}=0 .
$$

On the other hand, by the Hölder inequality

$$
\frac{\left(\tilde{\sigma}_{M}^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\left(t_{k}\right)-\tilde{\sigma}_{m}^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\left(t_{k}\right)\right)^{2}}{\tilde{\Omega}_{1}\left(t_{k}\right)} \leq \int_{\tilde{\gamma}_{k}}\left(\tilde{\sigma}^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\right)_{\tilde{\mathfrak{s}}}^{2} d \tilde{\mathfrak{s}} .
$$

Moreover, $\tilde{\Omega}_{1}(t)$ is bounded from above: Indeed $\left(\frac{\tilde{\Omega}_{1}^{3}(t)}{\tilde{A}(t)}\right)^{\frac{1}{2}} \leq \tilde{\Omega}_{2}(t) \leq \tilde{\Omega}_{2}(0)$. Therefore, we find that

$$
\lim _{t_{k} \rightarrow-\infty}\left(\tilde{\sigma}_{M}^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\left(t_{k}\right)-\tilde{\sigma}_{m}^{\frac{1}{4}-\frac{3 p}{2(p+2)}}\left(t_{k}\right)\right)^{2}=0 .
$$

Since $\tilde{\sigma}_{m} \leq 1$ and $\tilde{\sigma}_{M} \geq 1$ (see [3, Lemma 10]) the claim follows.

4. Proof of the main theorem

Proof. For each time $t \in(-\infty, T)$, let $T_{t} \in S L(2)$ be a special linear transformation that the maximal ellipse contained in $T_{t} \tilde{K}_{t}$ is a disk. So by John's ellipsoid lemma we have

$$
\frac{1}{\sqrt{2}} \leq s_{T_{t} \tilde{K}_{t}} \leq \sqrt{2}
$$

Then by the Blaschke selection theorem, there is a subsequence of times, denoted again by $\left\{t_{k}\right\}$, such that $\left\{T_{t_{k}} \tilde{K}_{t_{k}}\right\}$ converges in the Hausdorff distance to an origin-symmetric convex body $\tilde{K}_{-\infty}$, as $t_{k} \rightarrow-\infty$. By Corollary 3.10, and by the weak convergence of the Monge-Ampère measures, the support function of $\tilde{K}_{-\infty}$ is the generalized solution of the following Monge-Ampère equation on \mathbb{S}^{1} :

$$
s^{3}\left(s_{\theta \theta}+s\right)=1
$$

Therefore, by Lemma 8.1 of Petty [6], $\tilde{K}_{-\infty}$ is an origin-centered ellipse. This in turn implies that $\lim _{t \rightarrow-\infty} \tilde{\Omega}_{2}\left(t_{k}\right)=$ 2π. On the other hand, by the 2 -affine isoperimetric inequality, (3.1), and by Lemma 3.7, for $t \in(\infty, 0]$ we have

$$
2 \pi \geq \tilde{\Omega}_{2}(t) \geq \lim _{t_{k} \rightarrow-\infty} \tilde{\Omega}_{2}\left(t_{k}\right)=2 \pi
$$

Thus $\frac{d}{d t} \tilde{\Omega}_{2}(t) \equiv 0$ on $(-\infty, 0]$. Hence, in view of Lemma 3.7, K_{t} is an origin-centered ellipse for every time $t \in$ $(-\infty, T)$.

Conflict of interest statement

The author declares that there are no conflicts of interest.

References

[1] B. Andrews, Harnack inequalities for evolving hypersurfaces, Math. Z. 217 (1994) 179-197.
[2] B. Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differ. Geom. 43 (1996) 207-230.
[3] B. Andrews, Affine curve-lengthening flow, J. Reine Angew. Math. 506 (1999) 43-83.
[4] B. Andrews, Motion of hypersurfaces by Gauss curvature, Pac. J. Math. 195 (1) (2000) 1-34.
[5] S. Chen, Classifying convex compact ancient solutions to the affine curve shortening flow, J. Geom. Anal. (2013), http://dx.doi.org/10.1007/ s12220-013-9456-z.
[6] C.M. Petty, Affine isoperimetric problems, in: Discrete Geometry and Convexity, Ann. N.Y. Acad. Sci. 440 (1985) 113-127, http://dx.doi.org/10.1111/j.1749-6632.1985.tb14545.x.
[7] M.N. Ivaki, Centro-affine curvature flows on centrally symmetric convex curves, Trans. Am. Math. Soc. (2014), in press, arXiv:1205.6456v2.
[8] M.N. Ivaki, A. Stancu, Volume preserving centro-affine normal flows, Commun. Anal. Geom. 21 (2013) 671-685.
[9] J. Loftin, M.P. Tsui, Ancient solutions of the affine normal flow, J. Differ. Geom. 78 (2008) 113-162.
[10] E. Lutwak, The Brunn-Minkowski-Fiery theory II: affine and geominimal surface areas, Adv. Math. 118 (1996) $244-294$.
[11] G. Sapiro, A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal. 119 (1994) 79-120.
[12] A. Stancu, Centro-affine invariants for smooth convex bodies, Int. Math. Res. Not. 2012 (10) (2012) 2289-2320.

[^0]: E-mail address: mohammad.ivaki@tuwien.ac.at.
 http://dx.doi.org/10.1016/j.anihpc.2014.07.001
 0294-1449/© 2014 Elsevier Masson SAS. All rights reserved.

