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Abstract

Poincaré’s invariance principle for Hamiltonian flows implies Kelvin’s principle for solution to Incompressible Euler equation. 
Constantin–Iyer Circulation Theorem offers a stochastic analog of Kelvin’s principle for Navier–Stokes equation. Weakly symplec-
tic diffusions are defined to produce stochastically symplectic flows in a systematic way. With the aid of symplectic diffusions, we 
produce a family of martigales associated with solutions to Navier–Stokes equation that in turn can be used to prove Constantin–
Iyer Circulation Theorem. We also review some basic facts in symplectic and contact geometry and their applications to Euler 
equation.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The question of global regularity for the incompressible fluid equations is a major and challenging open problem in 
PDE theory. In the case of an inviscid fluid, the fluid evolution is modeled by the Euler equation and has a geometric 
interpretation on account of Kelvin Circulation Theorem or Cauchy Vorticity Formula. In the language of differential 
geometry, the differential 2-form associated with the vorticity of the fluid remains the same in a coordinate system 
that is carried along the fluid. This means that those geometric properties of the vorticity that are preserved under a 
change of coordinates, are preserved with time. When this differential form is nondegenerate, namely symplectic in 
even dimensions and contact in odd dimensions, we may appeal to Symplectic/Contact geometry as a guideline for 
exploring those geometric properties that may provide us with useful information about the vorticity.

The Incompressible Navier–Stokes equation is the corresponding PDE for a viscous fluid. In Lagrangian coordi-
nates a viscous fluid is described by a stochastic differential equation. This description allowed Constantin and Iyer 
[3] to discover a stochastic Kelvin Theorem for fluid circulation that in essence gives a more geometric insight into the 
dynamics of the viscous fluid. Once the initial vorticity, regarded as a differential 2-form, is evolved by the underlying 
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stochastic flow, we have a random path of geometrically equivalent differential forms. Averaging out the randomness 
yields a time-dependent family of differential forms that satisfy the vorticity equation associated with Navier–Stokes 
equation. Again under a nondegeneracy assumption of the initial velocity, we may try to understand the effect of 
averaging of those geometric properties that are preserved under the aforementioned stochastic flow.

The primary goal of this article is to explore the connection between Symplectic/Contact Geometry, Stochastic 
Calculus and Fluid Mechanics. To focus on the main ideas and avoid various nontrivial technical issues, we will be 
considering only classical solutions of the incompressible fluid equations in the present paper. Nonclassical solutions 
will be addressed in a subsequent paper [15].

Hamiltonian systems appear in conservative problems of mechanics governing the motion of particles in fluid. Such 
a mechanical system is modeled by a Hamiltonian function H(x, t) where x = (q, p) ∈ R

d × R
d , q = (q1, . . . , qd), 

p = (p1, . . . , pd) denote the positions and the momenta of particles. The Hamiltonian equations of motion are

q̇ = Hp(q,p, t), ṗ = −Hq(q,p, t) (1.1)

which is of the form

ẋ = J∇xH(x, t), J =
[

0 Id

−Id 0

]
(1.2)

where Id denotes the d × d identity matrix. It was known to Poincaré that if φt is the flow of the ODE (1.2) and γ is 
a closed curve, then

d

dt

∫
φt (γ )

λ̄ = 0, (1.3)

where λ̄ := p · dq . We may use Stokes’ theorem to rewrite (1.3) as

d

dt

∫
φt (Γ )

dλ̄ = 0 (1.4)

for every two-dimensional surface Γ . In words, the 2-form

ω̄ :=
d∑

i=1

dpi ∧ dqi,

is invariant under the Hamiltonian flow φt . Equivalently,

φ∗
t ω̄ = ω̄. (1.5)

A Hamiltonian system (1.2) simplifies if we can find a function u(q, t) such that p(t) = u(q(t), t). If such a 
function u exists, then q(t) solves

dq

dt
= Hp

(
q,u(q, t), t

)
. (1.6)

The equation for the time evolution of p gives us an equation for the evolution of the velocity function u; since

ṗ = (Du)q̇ + ut = (Du)Hp(q,u, t) + ut ,

ṗ = −Hq(q,u, t),

the function u(q, t) must solve,

ut + (Du)Hp(q,u, t) + Hq(q,u, t) = 0. (1.7)

For example, if H(q, p, t) = 1
2 |p|2 + P(q, t), then (1.7) becomes

ut + (Du)u + ∇P(q, t) = 0, (1.8)
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and Eq. (1.6) simplifies to

dq

dt
= u(q, t). (1.9)

(Here and below we write Du and ∇P for the q-derivatives of the vector field u and the scalar-valued function 
P respectively.) Eq. (1.8), coupled with the incompressibility requirement ∇ · u = 0 is the Euler equation of fluid 
mechanics. If the flow of (1.9) is denoted by Qt , then φt (q, u(q, 0)) = (Qt (q), u(Qt (q), t)). Now (1.3) means that 
for any closed q-curve η,

d

dt

∫
Qt (η)

u(q, t) · dq = d

dt

∫
η

(DQt)
∗u ◦ Qt(q, t) · dq = 0, (1.10)

or equivalently

d
(
Q∗

t αt

) = dα0, (1.11)

where αt = u(q, t) · dq . This is the celebrated Kelvin’s Circulation Theorem. In summary Poincaré’s invariance prin-
ciple (1.3) implies Kelvin’s principle for Euler equation. (Note that the incompressibility condition ∇ · u = 0 is not 
needed for (1.10).)

Since the pullback operation α → Q∗α commutes with the exterior differentiation (a straight forward consequence 
of Stokes’ formula), we may rewrite (1.11) as

Q∗
t (dαt ) = dα0, (1.12)

and this is equivalent to Euler equation (Eq. (1.8) with the incompressibility condition ∇ · u = 0). Moreover, when 
d = 3, (1.12) can be written as

ξ t ◦ Qt = (DQt)ξ
0, or ξ t = (

(DQt)ξ
0) ◦ Q−1

t , (1.13)

where ξ t (·) = ∇ × u(·, t). Eq. (1.13) is known as Cauchy vorticity formulation of Euler equation and is equivalent to 
the vorticity equation by differentiating both sides with respect to t :

ξt + (Dξ)u = (Du)ξ. (1.14)

Geometrically speaking, (1.12) says that the forms dαt and dα0 are isomorphic i.e. the former can be obtained 
from the latter by a change of coordinates. To explore the geometry of dαt , we assume that dα0 is nondegenerate 
and this property persists at later times by (1.12). However this nondegeneracy can be realized only when the spacial 
dimension d is even; such nondegenerate (closed) forms are called symplectic forms. When the dimension is odd we 
will require a different nondegeneracy assumption (but this time on the form αt ) that would allow us to explore some 
highly nontrivial geometric properties that are extensively studied in Contact Geometry. To rephrase what we stated 
earlier under nondegeneracy assumption, (1.12) implies that the forms (dαt : t ≥ 0) share the same properties from 
symplectic/contact geometrical point of view. How useful such an observation is, remains to be seen. As a first attempt 
we state some fundamental results in Symplectic Geometry in Section 2 and discuss some of their consequences for 
solutions of Incompressible Euler equation (see Propositions 2.1–2.2 and Remark 2.3).

Constantin and Iyer [3] discovered a circulation invariance principle for Navier–Stokes equation that is formulated 
in terms of a diffusion associated with the velocity field. Given a solution u to the Navier–Stokes equation

ut + (Du)u + ∇P(q, t) = ν�u, ∇ · u = 0, (1.15)

let us write Qt for the (stochastic) flow of the SDE

dq = u(q, t)dt + √
2νdW, (1.16)

with W denoting the standard Brownian motion. If we write A = Q−1 and ξ t = ∇ × u(·, t), and assume that d = 3, 
then Constantin and Iyer’s circulation formula reads as

ξ t = E
(
(DQt)ξ

0) ◦ At, (1.17)

where E denotes the expected value.



4 F. Rezakhanlou / Ann. I. H. Poincaré – AN 33 (2016) 1–22
We are now ready to state one of the main results of this article.

Theorem 1.1. Write αt = u(q, t) · dq with u a classical solution of (1.15) and set Bt = QT −t ◦ Q−1
T for t ∈ [0, T ].

(i) Then the process βt = B∗
t dαT −t , t ∈ [0, T ] is a 2-form-valued martingale. When d = 3, this is equivalent to 

saying that the process

Mt = ((
DB−1

t

)
ξT −t

) ◦ Bt , t ∈ [0, T ],
is a martingale.

(ii) The process

‖βt‖2 − 2ν

t∫
0

d∑
i=1

∥∥B∗
s ζ T −s

i

∥∥2
ds,

is a martingale, where

ζ θ
i =

d∑
j,k=1

uk
qiqj

(·, θ)dqj ∧ dqk,

or equivalently, ζ θ
i (v1, v2) = C(uqi

(·, θ))v1 · v2, with C(w) = Dw − (Dw)∗. (The norm of a 2-form η(v1, v2) =
Cv1 · v2, C∗ = −C, C = [cij ], is defined by ‖η‖2 = ∑

i,j c2
ij .)

(iii) We have the equality

‖dαT ‖2 + 2νE

T∫
0

d∑
i=1

∥∥B∗
s ζ T −s

i

∥∥2
ds = E

∥∥B∗
T dα0

∥∥2
.

Remark 1.1.

(i) In a subsequent paper [15], we will show how Theorem 1.1 can be extended to certain weak solutions. To make 
sense of martingales βt and Mt , we need to make sure that DQt exists weakly and belongs to suitable L� spaces. 
As it turns out, a natural condition to guarantee DQt ∈ L� for all � ∈ [1, ∞) is

T∫
0

[ ∫
Rd

∣∣u(q, t)
∣∣rdx

]r ′/r

dt < ∞,

for some r, r ′ ≥ 1 such that d/r + 2/r ′ < 1.
(ii) Our result takes a simpler form if u is a solution to the backward Navier–Stokes equation. In other words if u is 

a divergence-free vector field such that

ut + (Du)u + ∇P(q, t) + ν�u = 0, t < T ,

then the process (βt = Q∗
t dαt : t ≤ T ) is a martingale. When d = 3, we deduce that Mt = ((DAt)ξ

t ) ◦ Qt

is a martingale. We note that a backward Navier–Stokes equation must be solved for a given final condition 
u(·, T ) = u0(·).

(iii) In some sense, Theorem 1.1(i) is compatible with a conjecture that the circulation is preserved only in some 
statistical sense for a singular solution of Euler equation. We refer to [6] and [7] for some heuristic justification 
of this conjecture. We note that if for a surface Γ , the martingale mν

t = ∫
Γ

βt has a limit m0
t in low ν limit, then 

m0
t remains a martingale. In other words, even if the circulation is not conserved for a singular solution of the 

Euler equation, it is still a martingale and conserved in a suitable averaged sense. We refer to Appendix A.2 for 
more details.
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(iv) As an immediate consequence of Theorem 1.1(iii) we learn

‖dαT ‖2, 2νE

T∫
0

d∑
i=1

∥∥B∗
s ζ T −s

i

∥∥2
ds ≤ E

∥∥A∗
T dα0

∥∥2
, (1.18)

where AT = Q−1
T . In particular, a bound on E‖AT ‖2 would yield a bound on the vorticity at time T provided 

that the initial vorticity is uniformly bounded.
(v) As a preparation for the proof of Theorem 1.1, we define symplectic and semisymplectic diffusions and give 

practical criteria for checking whether or not a diffusion is (semi)symplectic. These criteria appear in Proposi-
tions 3.2–3.4 and Corollary 3.1. �

The organization of the paper is as follows:

• In Section 2 we discuss Weber’s formulation of Euler equation and show how (1.12) implies (1.13). We also 
discuss two fundamental results in Symplectic Geometry that are related to the so-called Clebsch variables.

• In Section 3 we address some geometric questions for stochastic flows of general diffusions and study symplectic
diffusions.

• In Section 4 we use symplectic diffusions to establish Theorem 1.1.
• In Appendix A.1 we discuss contact diffusions.
• In Appendix A.2 we discuss the invariance of the martingale property in a vanishing viscosity limit.

2. The Euler equations

In this section we review some basic facts in differential geometry and their applications to Euler equation. Even 
though most of the discussion of this section is either well-known or part of folklore, a reader may find our discussion 
useful as we use similar ideas to prove Theorem 1.1. We also use this section as an excuse to demonstrate/advertise 
the potential use of symplectic/contact geometric ideas in fluid mechanics.

We start with giving an elementary proof of (1.4): By Cartan’s formula

d

dt
φ∗

t λ̄ = φ∗
t LZH

λ̄ = φ∗
t dK = d(K ◦ φt ), (2.1)

where LZ denotes the Lie derivative with respect to the vector field Z, ZH = J∇xH for H(q, p, t) = |p|2/2 +P(q, t), 
and

K(q,p, t) = p · Hp(q,p, t) − H(q,p, t) = 1

2
|p|2 − P(q, t). (2.2)

If we integrate both sides of (2.1) over an arbitrary (non-closed) curve of the form (η, u(η, t)), or equivalently restrict 
the form λ̄ to the graph of the function u, then we obtain

d

dt

[
(DQt)

∗u ◦ Qt

] = ∇(L ◦ Qt), (2.3)

where L(q, t) = K(q, u(q, t), t) = |u(q, t)|2/2 − P(q, t). Here by A∗ we mean the transpose of the matrix A. Recall 
At = Q−1

t , so that

(DQt)
−1 = DAt ◦ Qt.

As a consequence of (2.3),

u(·, t) = (DAt)
∗u0 ◦ At + ∇(R ◦ At),

for R = ∫ t

0 L ◦ Qsds. As a result,

u(·, t) =P
[
(DAt)

∗u0 ◦ At

]
, (2.4)
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where u0 is the initial data and P denotes the Leray–Hodge projection onto the space of divergence-free vector fields. 
Formula (2.4) is Weber’s formulation and is equivalent to Euler’s equation.

So far we have shown that the Kelvin principle (1.3) is equivalent to the Weber formulation of Euler equation. If 
we use (1.5) instead, we obtain a different equivalent formulation of Euler equation, namely the vorticity equation 
(1.12) or (1.13). Recall

ω̄(v1, v2) = Jv1 · v2.

If we choose v1 and v2 to be tangent to the graph of u, i.e. vi = (wi, Du(q, t)wi) for i = 1, 2, then

ω̄(v1, v2) = C(u)w1 · w2,

where C(u) = Du − (Du)∗. Hence (1.12) really means[
C
(
u(·, t)) ◦ Qt

]
(DQt)w1 · (DQt)w2 = C

(
u(·,0)

)
w1 · w2,

C
(
u(·, t)) = (DAt)

∗[C(
u(·,0)

) ◦ At

]
(DQt). (2.5)

Let us assume now that d = 3 so that, C(u)w = ξ × w, where ξ = ∇ × u denotes the vorticity. Hence

ω̄(v1, v2) = (ξ × w1) · w2 =: [ξ,w1,w2].
We note that the right-hand side is the volume form evaluated at the triple (ξ, w1, w2). Now the invariance (2.5)
becomes[

ξ t ◦ Qt, (DQt)w1, (DQt)w2
] = [

ξ0,w1,w2
]
, (2.6)

where we have written ξ t for ξ(·, t). Since u is divergence-free, the flow Qt is volume preserving. As a result,[
ξ0,w1,w2

] = [
(DQt)ξ

0, (DQt)w1, (DQt)w2
]
.

From this and (2.6) we deduce[
ξ t ◦ Qt, (DQt)w1, (DQt)w2

] = [
(DQt)ξ

0, (DQt)w1, (DQt)w2
]
.

Since w1 and w2 are arbitrary, we conclude that (1.13) is true.

Example 2.1. When d = 3, we may use cylindrical coordinates q1 = r cos θ , q2 = r sin θ , q3 = z to write u = ae(θ) +
cf (θ) + be3, where

e(θ) = (cos θ, sin θ,0), f (θ) = (− sin θ, cos θ,0), e3 = (0,0,1).

A solution is called axisymmetric if a, b, and c are functions of (r, z) only and do not depend on θ . Let us write

η = az − br , η̂ = r−1η, c̄ = rc, ĉ = r−1c.

If we write Q̂t (r, z, θ) for the flow Qt(q) in the cylindrical coordinates, then

Q̂t (r, z, θ) =
(

ψt(r, z), θ +
t∫

0

ĉ
(
ψs(r, z), s

)
ds

)
,

where ψt is the flow of the ODE

ṙ = a(r, z, t), ż = b(r, z, t).

One can easily check that the divergence free condition ∇ · u = 0 means that (ra)r + (rb)z = 0. This condition is 
equivalent to ψ∗

t γ = γ for the area form γ = rdr ∧ dz, simply because

Lvγ = divγ = d(ra dz − rb dr) = [
(ra)r + (rb)z

]
dr ∧ dz,
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where v = (a, b). We also have

αt = a(·, t)dr + b(·, t)dz + c̄(·, t)dθ =: α̂t + c̄(·, t)dθ.

To understand the meaning of (1.12) in the axisymmetric case, observe

Q∗
t αt = ψ∗

t α̂t + (c̄t ◦ ψt)dθ + (c̄t ◦ ψt)

t∫
0

d(ĉs ◦ ψs)ds,

where we have written c̄t and ĉt for c̄(·, t) and ĉ(·, t) respectively. As a result, the identity d(Q∗
t αt − α0) = 0, is 

equivalent to c̄(ψt (r, z), t) = c̄(r, z, 0), and

d

[
ψ∗

t α̂t + (c̄t ◦ ψt)

t∫
0

d(ĉs ◦ ψs)ds

]
= dα̂0. (2.7)

To simplify (2.7), recall that c̄t ◦ ψt = c0, and

d
(
ψ∗

t α̂t

) = ψ∗
t (dα̂t ) = −ψ∗

t (η̂t γ ) = −(η̂t ◦ ψt)γ,

where η̂t = η̂(·, t) and we have used ψ∗
t γ = γ . On the other hand

d

[
(c̄t ◦ ψt)

t∫
0

d(ĉ ◦ ψs)ds

]
= d

[ t∫
0

c̄0d(ĉ ◦ ψs)ds

]
= d

[ t∫
0

(c̄s ◦ ψs)d(ĉ ◦ ψs)ds

]

=
t∫

0

ψ∗
s d[c̄sdĉs]ds =

t∫
0

ψ∗
s [dc̄s ∧ dĉs]ds =

t∫
0

ψ∗
s

[{c̄s , ĉs}dz ∧ dr
]
ds

= −2

t∫
0

ψ∗
s

[
r−1bbzdz ∧ dr

]
ds = 2

t∫
0

[(
r−2bbz

) ◦ ψsγ
]
ds,

because ψ∗
s γ = γ . Here we are writing {·,·} for the Poisson bracket. From this and (2.7) we deduce that (1.12) is 

equivalent to the equality

η̂t ◦ ψt − 2

t∫
0

(
r−2bbz

) ◦ ψsds = η̂0. �

To apply ideas from Symplectic Geometry to solutions of Euler equation, we need to assume some non-degeneracy 
of the initial data. However such a non-degeneracy is possible only in even dimensions. When the dimension is odd, 
we instead assume the best non-degeneracy that is possible for the initial data. This would take us to the realm of 
contact geometry.

Definition 2.1.

(i) A closed 2-form ω is symplectic if it is non-degenerate. We say that symplectic forms ω1 and ω2 are isomorphic
if there exists a diffeomorphism Ψ such that Ψ ∗ω1 = ω2.

(ii) A 1-form α is contact if lx = {v : dα(x; v, w) = 0 for every w} is a line and for every v ∈ lx , we have that 
α(x; v) �= 0. We say that contact forms α1 and α2 are isomorphic if there exists a diffeomorphism Ψ such that 
Ψ ∗α1 = α2. We say that contact forms α1 and α2 are conformally isomorphic if there exist a diffeomorphism Ψ
and a scaler-valued continuous function f > 0 such that Ψ ∗α1 = f α2.

(iii) A solution u of Euler equation is called symplectic if ω0 = dα0 is symplectic.
(iv) A solution u of Euler equation is contact if there exists a scalar-valued C1 function f0 such that α0 + df0 is 

contact. (Recall αt = u(·, t) · dx.) �
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Remark 2.1.

(i) As it is well-known, the non-degeneracy of a 2-form can only happen when the dimension d is even. Recall 
αt = u(·, t) · dx. If u is a symplectic solution, then ωt = dαt is symplectic for all t because by (1.12), the form ωt

is isomorphic to ω0.
(ii) When u is a contact solution of Euler equation, then α̃t = Q∗

t α0 + dft is contact for all t where ft = f0 ◦ Qt . In 
general α̃t �= αt . However, by Eq. (1.12), we have dαt = dα̃t . Hence there exists a scalar-valued function gt such 
that αt + dgt = α̃t is contact. �

We continue with some general properties of symplectic and contact solutions of Euler equation.
As for symplectic solutions, assume that the dimension d = 2k is even and write

(q1, . . . , qd) = (x1, y1, . . . , xk, yk).

A classical theorem of Darboux asserts that all symplectic forms are isomorphic to the standard form ω̄ = dλ̄ =∑k
i=1 dyi ∧ dxi . A natural question is whether such an isomorphism exists globally.

Definition 2.2. Let u be a symplectic solution of Euler equation. We say that Clebsch variables exist for u in the 
interval [0, T ], if we can find C1 functions

X1, . . . ,Xk,Y1, . . . , Yk : Rd × [0, T ] → R, F :Rd × [0, T ] →R

such that Ψt = (X1, Y1, . . . , Xk, Yk)(·, t) is a diffeomorphism, and

u(x, t) =
(

k∑
i=1

Yi∇Xi

)
(x, t) + ∇F(x, t),

for every t ∈ [0, T ]. Alternatively, we may write αt = Ψ ∗
t λ̄ + dF , which implies that dαt = Ψ ∗

t ω̄. �
Proposition 2.1. Let u be a symplectic solution to Euler equation in the interval [0, T ].

(i) If Clebsch variables exist for t = 0, then they exist in the interval [0, T ].
(ii) If d = 4 and Clebsch variables exist for t = 0 outside some ball Br = {x : |x| ≤ r}, then they exist globally in the 

interval [0, T ].

Proof. (i) This is an immediate consequence of (1.12): If Ψ ∗
0 ω̄ = ω0 = dα0, then(

Qt ◦ Ψ −1
0

)∗
dαt = Ψ −1∗

0 Q∗
t dαt = Ψ −1∗

0 dα0 = ω̄,

which means that we can choose Ψt = Ψ0 ◦ At for the Clebsch change of variables.
(ii) This is a consequence of a deep theorem of Gromov [9]: When d = 4, a symplectic form is isomorphic to the 

standard form ω̄, if this is the case outside a ball Br . �
Remark 2.2. Part (i) of Proposition 2.1 is well-known and can be found in Section 2 of [4]. We also refer to [14] for 
various historical comments and numerical results on Clebsch variables. For a detailed study of generalized Clebsch 
variables and their connection to Eq. (1.13), see Constantin [2]. �

Observe that Euler equation can be rewritten as

d

dt
αt + iu(dαt ) = −dH, (2.8)

where H(q, t) = P(q, t) + |u(q, t)|2/2 is the Hamiltonian function. For a steady solution, αt is independent of t and 
we simply get

iu(dα) = −dH.
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If u is a symplectic steady solution of Euler equation, then iu(dα) = −dH means that u is a Hamiltonian vector field
with respect to the symplectic form dα. Of course the associated the Hamiltonian function is H . Alternatively, we 
may write

u = −C(u)−1∇H. (2.9)

Proposition 2.2. Let u be a steady symplectic solution to Euler equation, and let c be a regular level set of H(q, t) =
P(q, t) + 1

2 |u(q, t)|2 i.e. ∇H(q) �= 0 whenever H(q) = c. Then the restriction of the form α to the submanifold H = c

is contact. In words, regular level sets of H are contact submanifolds.

Proof. We say a vector field X is Liouville with respect to the form dα if LXdα = dα. By a standard fact in Symplectic 
Geometry (see for example [16] or [10]), the level set H = c is contact if and only if we can find a Liouville vector 
field X that is transversal to Mc = {H = c}. More precisely,

LXdα = dα, X(q) /∈ TqMc,

for every q ∈ Mc. Here TqMc denotes the tangent fiber to Mc at q . The first condition means that diXdα = dα. This is 
satisfied if iXdα = α. This really means that C(u)X = u and as a result, we need to choose X = C(u)−1u. It remains 
to show that X is never tangent to Mc. For this, it suffices to check that X · ∇H �= 0. Indeed, when H = c,

X · ∇H = C(u)−1u · ∇H = −u · C(u)−1∇H = ∣∣C(u)−1∇H
∣∣2 �= 0,

by (2.9) because by assumption ∇H �= 0. We are done. �
Remark 2.3. According to the Weinstein Conjecture, every compact contact manifold carries a period Reeb orbit. This 
conjecture has been established by Viterbo in the Euclidean setting (see for example [16] or [10]) and is applicable 
to the setting of Proposition 2.2. In the language of fluid mechanics, Viterbo’s theorem asserts that every compact 
nondegenerate level set of the energy function associated with a symplectic steady solution carries at least one periodic 
orbit of the fluid. �
Example 2.2. In this example we describe some simple solutions when the dimension is even. We use polar coordi-
nates to write xi = ri cos θi , yi = ri sin θi , and let ei (respectively e′

i ) denote the vector for which the xi-th coordinate 
(respectively yi -th coordinate) is 1 and any other coordinate is 0. Set

ei(θi) = (cos θi)ei + (sin θi)e
′
i , fi(θi) = −(sin θi)ei + (cos θi)e

′
i .

We may write

u =
k∑

i=1

(
aiei(θi) + bifi(θi)

)
.

The form α = u · dx can be written as

α =
k∑

i=1

(
aidri + rib

idθi

) =:
k∑

i=1

(
aidri + Bidθi

)
.

For a simple solution, let us assume that all ais and bis depend on r = (r1, . . . , rk) only. We then have

dα =
∑
i<j

(
ai
rj

− a
j
ri

)
drj ∧ dri +

∑
i,j

r−1
i Bi

rj
drj ∧ (ridθi). (2.10)

Note

∇ =
d∑

ei(θi)
∂

∂ri
+ r−1

i fi(θi)
∂

∂θi

, u · ∇ =
d∑

ai ∂

∂ri
+ r−1

i bi ∂

∂θi

.

i=1 i=1
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From this we learn that if u solves Euler equation, then the vector fields a = (a1, . . . , ak) and b = (b1, . . . , bk) satisfy

at + C(a)a − [
r−1
i

(
bi

)2]
i
+ ∇rK = 0,

bt + (Db)a + [
r−1
i

(
aibi

)]
i
= 0,

k∑
i=1

(
ria

i
)
ri
/ri = 0, (2.11)

for some scalar function K(r) = |a|2/2 + p(r). Alternatively, if we introduce the matrix E(b) = [r−1
i Bi

rj
], the first 

and second equations in (2.11) may be written as

at + C(a)a − E(b)∗b + ∇rH = 0,

bt + E(b)a = 0, (2.12)

where H(r) = |b|2/2 + K(r) = |u|2/2 + p(r). (This can be derived directly from (2.8) and (2.10).) In view of (2.10), 
u is a symplectic solution if and only if the matrix E(b) is invertible. When u is a steady solution, (2.12) simplifies to

C(a)a − E(b)∗b + ∇rH = 0, E(b)a = 0. (2.13)

Moreover, by taking the dot product of both sides of the second (respectively first) equation by b (respectively a), we 
learn

a · ∇rH = 0. (2.14)

Also, the second equation in (2.13) really means

a · ∇rB
i = 0 for i = 1, . . . , k. (2.15)

When d = 4 and u is independent of time, it is straight forward to solve (2.11): From the last equation in (2.11) we 
learn that there exists a function ψ(r1, r2) such that

a1 = ψr2/(r1r2), a2 = −ψr1/(r1r2).

From this, (2.14) and (2.15) we learn that ∇rH , ∇rB
1, ∇rB

2 and ∇ψ are all parallel. So we may write

H = μ(ψ), B1 = μ1(ψ), B2 = μ2(ψ),

for some C1 functions μ, μ1, μ2 : R →R. Finally we go back to the first equation in (2.13) to write

a2(a1
r2

− a2
r1

) − B1
r1

B1

r2
1

− B2
r1

B2

r2
2

+ Hr1 = 0.

Expressing this equation in terms of ψ yields the elliptic PDE

(r1r2)
−1

[(
ψr1

r1r2

)
r1

+
(

ψr2

r1r2

)
r2

]
=

(
μ1μ

′
1

r2
1

+ μ2μ
′
2

r2
2

− μ′
)

(ψ).

This equation may be compared to the Bragg–Hawthorne equation [1] that is solved to obtain axisymmetric steady 
solutions in dimension three. �

We now turn to the odd dimensions. Assume that d = 2k + 1 for k ∈ N. We write (q1, . . . , qn) = (x1, y1, . . . , xk,

yk, z) and when k = 1 we simply write (q1, q2, q3) = (x, y, z). In this case, the standard contact form is λ̄ =∑k
i=1 yidxi + dz. Again, locally all contact forms are isomorphic to λ̄.

Definition 2.3. Let u be a solution of Euler equation. We say that Clebsch variables exist for u in the interval [0, T ], 
if we can find C1 functions

X1, . . . ,Xk,Y1, . . . , Yk : Rd × [0, T ] → R, f,Z :Rd × [0, T ] → R
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such that Ψt = (X1, Y1, . . . , Xk, Yk, Z)(·, t) is a diffeomorphism, f > 0, and

(f u)(x, t) =
(

k∑
i=1

Yi∇Xi

)
(x, t) + ∇Z(x, t),

for every t ∈ [0.T ]. Alternatively, we may write fαt = Ψ ∗
t λ̄. �

As we recalled in the proof of Proposition 2.1(ii), if d = 4 and a symplectic form is isomorphic to the standard form 
at infinity, then the isomorphism can be extended to the whole Rd . This is no longer true when d = 3; in fact there 
is a countable collection of pairwise non-conformally-isomorphic forms λn in R3 such that each λn is conformally 
isomorphic to λ̄ at infinity but not globally. A fundamental result of Eliashberg gives a complete classification of 
contact forms. According to Eliashberg’s Theorem [5], any contact form in R3 is conformally isomorphic to one of 
the following forms

(i) The standard form λ̄.
(ii) The form λ̂ = sin r

r
(xdy − ydx) + cos rdz, where r2 = x2 + y2.

(iii) A countable collection of pairwise non-conformally-isomorphic forms {λn : n ∈ Z}, where each λn is 
conformally-isomorphic to λ̄ outside the ball B1 but not globally in R3.

The above classification is related to the important notion of overtwisted contact forms. In fact λ̂ is globally over-
twisted whereas λns are overtwisted only in a neighborhood of the origin. (We refer to [5] or [8] for the definition of 
overtwisted forms.)

Example 2.3. Let us assume that d = 3, and u is an axisymmetric steady solution to Euler equation. Using the notation 
of Example 2.1, u is a contact solution if and only if

u · ξ = r−1(b(r)c̄′(r) − b′(r)c̄(r)
) �= 0.

For example, if b(r) = 1, c(r) = r , then we get

α = r2dθ + dz = xdy − ydx + dz,

which is isomorphic to λ̄. On the other hand, choosing c(r) = r sin r, b(r) = cos r would yield exactly λ̂. �
Remark 2.4. In view of Eliashberg’s classification in dimension three, Clebsch variables would exist only if we are 
searching for a solution that is conformally isomorphic to λ. However, if we search for a solution that is conformally 
isomorphic to λ̂ for example, then we need to find scalar-valued functions

R,Θ,Z,f :R3 × [0, T ] →R,

such that

f u = R(sinR)∇Θ + (cosR)∇Z. �
3. Symplectic diffusions

In this section we examine the question of symplectic invariance for the flows of diffusions. After a prominent 
work of Itô in 1951, diffusions may be defined as solutions of stochastic differential equations (SDE). To make 
sense of solutions to SDEs, we need to make sense of stochastic integrals and these integrals come in three flavors: 
Itô (or forward), backward and Stratonovich. The main advantage of Stratonovich Integral is that the chain rule 
of ordinary calculus holds. This makes Stratonovich Calculus more attractive when we are interested in geometric 
questions for flows associated with diffusions. However Stratonovich integration does not yield martingale property 
that is very essential for bounding various functionals of a diffusion. Fortunately it is often straightforward to convert 
a Stratonovich Integral to an Itô Integral in the end and take advantage of the martingale property of the latter.
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To study stochastic flows associated with diffusions, let us consider SDE

dx(t) = V0
(
x(t), t

)
dt +

k∑
i=1

Vi

(
x(t), t

) ◦ dWi(t), (3.1)

where (Wi : i = 1, . . . , k) are standard one dimensional Brownian motions on some filtered probability space 
(Ω, {Ft }, P), and V0, . . . , Vk are Cr -vector fields in Rn. Here we are using Stratonovich stochastic differentials for the 
second term on the right-hand of (3.1) and a solution to the SDE (3.1) is a diffusion with the infinitesimal generator

L = V0 · ∇ + 1

2

k∑
i=1

(Vi · ∇)2,

or in short L = V0 + 1
2

∑k
i=1 V 2

i , where we have simply written V for the V -directional derivative operator V · ∇ . We 
assume that the random flow φs,t of (3.1) is well-defined almost surely. More precisely for P-almost all realization 
of ω, we have a flow {φs,t (·, ω) : 0 ≤ s ≤ t} where φs,t (·, ω) : Rn → R

n is a Cr−1 diffeomorphism and φs,t (a, ω) =:
x(t) is a solution of (3.1) subject to the initial condition x(s) = a (see Section 4.2 of Kunita [13] or Theorem 3.4 
of [11]). We also write φt for φ0,t . For example a uniform bound on the Cr -norm of the coefficients V0, . . . , Vk would 
guarantee the existence of such a stochastic flow provided that r ≥ 2. We also remark that we can formally differentiate 
(3.1) with respect to the initial condition and derive a SDE for Λs,t(x) = Λt(x) := Dxφs,t (x):

dΛt(x) = DxV0
(
φs,t (x), t

)
Λt(x)dt +

k∑
i=1

DxVi

(
φs,t (x), t

)
Λt(x) ◦ dWi(t). (3.2)

Given a differential �-form α(x; v1, . . . , v�), we define(
φ∗

s,tα
)
(x;v1, . . . , v�) = α

(
φs,t (x);Λs,t (x)v1, . . . ,Λs,t (x)v�

)
.

Given a vector field V , we write LV for the Lie derivative in the direction V . More precisely, for every differential 
form α,

LV α = (d̂ ◦ iV + iV ◦ d̂)α, (3.3)

where d̂ and iV denote the exterior derivative and V -contraction operator respectively. (To avoid a confusion between 
the stochastic differential and exterior derivative, we are using a hat for the latter.) We are now ready to state a formula 
that is the stochastic analog of Cartan’s formula and it is a rather straight forward consequence of (3.2). We refer to 
Section 4.9 of [13] for a proof.

Proposition 3.1. Set V = (V0, V1, . . . , Vm) and

AV = LV0 + 1

2

k∑
i=1

L2
Vi

.

We also ηt for φ∗
s,t η for any form η. We have

dαt = (LV0α)tdt +
k∑

i=1

(LVi
α)t ◦ dWi(t)

= (AVα)tdt +
k∑

i=1

(LVi
α)tdWi(t). (3.4)

Example 3.1.

(i) If α = f is a 0-form, then AVf = Lf is simply the infinitesimal generator of the underlying diffusion.
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(ii) If α = ρdx1 ∧ · · · ∧ dxn, is a volume form, then

LV α = (∇ · (ρα)
)
dx1 ∧ · · · ∧ dxn, and AVα = (

L∗ρ
)
dx1 ∧ · · · ∧ dxn,

where L∗ is the adjoint of the operator L.
(iii) If α = ρdx1 ∧ · · · ∧ dxn, is a volume form, then αt = φ∗

t α = α if and only if ∇ · (ρVi) = 0 for i = 0, 1, · · · , k. 
For example, if W = (W 1, . . . , Wn) is an n-dimensional standard Brownian motion and

dx = V0(x, t)dt + dW,

then the flow of this diffusion preserves the standard volume form ᾱ = dx1 ∧ · · · ∧ dxn, if and only if ∇ · V0 = 0.
(iv) If α = ρdx1 ∧ · · · ∧ dxn, is a volume form, and L∗ρ = 0, then α, regarded as a measure, is an invariant measure 

for the diffusion (3.1). However, αt = φ∗
t α is a volume-form-valued martingale. �

We now make two definitions:

Definition 3.1. Let α be a symplectic form.

(i) We say that the diffusion (3.1) is α-symplectic if its flow is symplectic with respect to α, almost surely. That is 
φ∗

t α = α, a.s.
(ii) We say that the diffusion (3.1) is α-semisymplectic if αt := φ∗

t α, is a martingale.

Using Proposition 3.1 it is not hard to deduce

Proposition 3.2.

(i) The diffusion (3.1) is α-symplectic if and only if the vector fields V0, V1, . . . , Vk are α-Hamiltonian, i.e. LV0α =
LV1α = · · · = LVk

α = 0.
(ii) The diffusion (3.1) is α-semisymplectic if and only if AVα = 0.

We discuss two systematic ways of producing semisymplectic diffusions.
Recipe (i) Given a symplectic form α, we write XH = Xα

H for the Hamiltonian vector field associated with the 
Hamiltonian function H . Note that by non-degeneracy of α, there exists a unique vector field X = X α(ν) such that 
iXα = ν for every 1-form ν and XH = −X α(d̂H). In the following proposition, we show that given V1, V2, . . . , Vk , we 
can always find a unique V̂0 such that the diffusion associated with V = (XH + V̂0, V1, . . . , Vk) is α-semisymplectic.

Proposition 3.3. The diffusion (3.1) is α-semisymplectic if and only if there exists a Hamiltonian function H , such 
that

V0 = XH − 1

2

k∑
j=1

X α(iVj
d̂iVj

α). (3.5)

Proof. By definition,

AVα = d̂

[
iV0α + 1

2

k∑
j=1

(iVj
d̂iVj

α)

]
.

Hence AVα = 0 means that for some function H ,

iV0α + 1

2

k∑
j=1

(iVj
d̂iVj

α) = −d̂H.

From this we can readily deduce (3.5). �
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Recipe (ii) We now give a useful recipe for constructing ω̄-diffusions where ω̄ is the standard symplectic form and 
n = 2d .

Proposition 3.4. Given a Hamiltonian function H , consider a diffusion x(t) = (q(t), p(t)) that solves

dx(t) = J∇H
(
x(t), t

)
dt +

k∑
i=1

Vi

(
x(t), t

)
dWi(t),

with Vj = [ Aj

Bj

]
, for j = 1, . . . , k, where Aj = (A1

j , . . . , A
d
j ), and Bj = (B1

j , . . . , Bd
j ). Then AVω̄ = 1

2 d̂γ , where 
γ = Z1 · dq + Z2 · dp, with

Zi
1 =

∑
r,j

(
∂Ar

j

∂qi

Br
j − ∂Br

j

∂qi

Ar
j

)
,

Zi
2 =

∑
r,j

(
∂Ar

j

∂pi

Br
j − ∂Br

j

∂pi

Ar
j

)
. (3.6)

Proof. The Stratonovich differential is related to Itô differential by

a ◦ dW = adW + 1

2
[da, dW ].

As a result, the diffusion x(t) satisfies (3.1) for V0 = J∇H − 1
2 V̂0 with V̂0 = [ A0

B0

]
, where

Ai
0 =

∑
r,j

(
∂Ai

j

∂qr

Ar
j + ∂Ai

j

∂pr

Br
j

)
,

Bi
0 =

∑
r,j

(
∂Bi

j

∂qr

Ar
j + ∂Bi

j

∂pr

Br
j

)
. (3.7)

By definition,

AVω̄ = 1

2
d̂γ := 1

2
d̂(η − i

V̂0
ω̄), (3.8)

where

η =
k∑

j=1

iVj
d̂iVj

ω̄.

To calculate γ and η, let us write β(F ) for the 1-form F · dx and observe

iV ω̄ = β(JV ), d̂β(F )(v,w) = C(F )v · w,

where C(F ) = DF − (DF)∗ with DF denoting the matrix of the partial derivatives of F with respect to x. From this 
we deduce

η =
k∑

j=1

β
(
C(JVj )Vj

)
. (3.9)

A straight forward calculation yields

C(JVj ) =
[

X
j

11 X
j

12
X

j

21 X
j

22

]
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where

X
j

11 =
[
∂Bi

j

∂qr

− ∂Br
j

∂qi

]n

i,r=1
, X

j

12 =
[
∂Bi

j

∂pr

+ ∂Ar
j

∂qi

]n

i,r=1
,

X
j

21 =
[
−∂Ai

j

∂qr

− ∂Br
j

∂pi

]n

i,r=1
, X

j

22 =
[
−∂Ai

j

∂pr

+ ∂Ar
j

∂pi

]n

i,r=1
.

From this we deduce

C(JVj )Vj =
[

Y
j

1

Y
j

2

]
,

where

Y
j

1 =
[∑

r

(
∂Bi

j

∂qr

− ∂Br
j

∂qi

)
Ar

j +
∑

r

(
∂Bi

j

∂pr

+ ∂Ar
j

∂qi

)
Br

j

]n

i=1
,

Y
j

2 =
[∑

r

(
∂Ar

j

∂pi

− ∂Ai
j

∂pr

)
Br

j −
∑

r

(
∂Ai

j

∂qr

+ ∂Br
j

∂pi

)
Ar

j

]n

i=1
.

Summing these expressions over j yields

∑
j

C(JVj )Vj =
[

Z1
Z2

]
+

[
B0

−A0

]
=

[
Z1
Z2

]
+ J V̂0,

where Z1 and Z2 are defined by (3.7). These (3.8) and (3.9) complete the proof. �
An immediate consequence of Proposition 3.4 is Corollary 3.1.

Corollary 3.1. Let x(t) = (q(t), p(t)) be a diffusion satisfying

dq = Hp(q,p)dt + √
2νdW,

dp = −Hq(q,p)dt + √
2νΓ (q, t)dW, (3.10)

where Γ is a continuously differentiable d ×d-matrix valued function and W = (W 1, . . . , Wd) is a standard Brownian 
motion in Rd . Then the process x(t) is ω̄-semisymplectic.

Proof. Observe that x(t) satisfies (3.6) for A = √
2νId and B that is independent of p. From this we deduce that 

Z2 = 0 and Z1 = −√
2ν∇q(trΓ ). We are done because γ = −√

2νd̂(trΓ ), and AVω̄ = 1
2 d̂γ = 0. �

4. Martingale circulation

Proof of Theorem 1.1. Step 1. As in Section 1, we write D and ∇ for q-differentiation. For x-differentiation however, 
we write Dx and ∇x instead. Let us write x′(t) = (q ′(t), p′(t)) for a diffusion that satisfies

dq ′(t) = p′(t)dt + √
2νdW̄

dp′(t) = −∇P
(
q ′(t), t

)
dt + √

2νDw
(
q ′(t), t

)
dW̄ , (4.1)

for a time dependent C1 vector field w in Rd and a standard Brownian motion W̄ . The flow of this diffusion is denoted 
by φt . We then apply Corollary 3.1 for H(q, p, t) = 1

2 |p|2 + P(q, t) and Γ = Dw, to assert that the diffusion x′ is 
ω̄-semisymplectic. Let us now assume that w satisfies the backward Navier–Stokes equation

wt + (Dw)w + ∇P + ν�w = 0, ∇ · w = 0, t < T , (4.2)
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subject to a final condition w(·, T ) = u0. We observe that if the process q ′(t) is a diffusion satisfying

dq ′(t) = w
(
q ′(t), t

)
dt + √

2νdW̄ , (4.3)

and p′(t) = w(q ′(t), t), then by Ito’s formula,

dp′(t) = [
wt + (Dw)w + ν�w

](
q ′(t), t

)
dt + √

2νDw
(
q ′(t), t

)
dW̄

= −∇P
(
q ′(t), t

)
dt + √

2νDw
(
q ′(t), t

)
dW̄ . (4.4)

This means that if Q̄t denotes the flow of the SDE (4.3), then

φt

(
q,w(q,0)

) = (
Q̄t (q),w

(
Q̄t (q), t

))
,

Dxφt

(
q,w(q,0)

)[
a

Dw(q,0)a

]
=

[
(DQ̄t (q))a

(Dw(Q̄t (q), t))(DQ̄t (q))a

]
. (4.5)

By the conclusion of Corollary 3.1, the process

M̂t (x;v1, v2) = [
J
(
Dφt(x)

)
v1

] · [(Dφt(x)
)
v2

]
is a 2-form-valued martingale. By choosing

x = (
q,w(q,0)

)
, v1 =

[
a1

Dw(q,0)a1

]
, v2 =

[
a2

Dw(q,0)a2

]
, (4.6)

for the arguments of M̂t , we learn that M̄t (q; a1, a2) := M̂t (x; v1, v2) is a 2-form-valued martingale in Rd . Using 
(4.5) we have

M̄t (q;a1, a2) = J

[
(DQ̄t (q))a1

(Dw(Q̄t (q), t))(DQ̄t (q))a1

]
·
[

(DQ̄t (q))a2

(Dw(Q̄t (q), t))(DQ̄t (q))a2

]
= [(

Dw − (Dw)∗
)(

Q̄t (q), t
)](

DQ̄t(q)
)
a1 · (DQ̄t(q)

)
a2

= Q̄∗
t d̂ᾱt (q;a1, a2), (4.7)

where ᾱt = w(q, t) · dq . In summary, M̄t = Q̄∗
t d̂ᾱt is a martingale (proving our first claim in Remark 1.1(ii)).

When d = 3,

Q̄∗
t d̂ᾱt (q;a1, a2) = [(

ηt ◦ Q̄t (q)
) × (

DQ̄t (q)
)
a1

] · (DQ̄t(q)
)
a2

= [
ηt ◦ Q̄t (q),

(
DQ̄t (q)

)
a1,

(
DQ̄t (q)

)
a2

]
,

where ηt (·) = ∇ × w(·, t) and [a, b, c] is the determinant of a matrix with column vectors a, b and c. Since w is 
divergence-free, the flow Q̄t is volume preserving (see Example 3.1(iii)). Hence

M̄t (q;a1, a2) = [(
DĀt ◦ Q̄t (q)

)
ηt ◦ Q̄t (q), a1, a2

]
,

where Āt = Q̄−1
t . Since M̄t is a martingale, we deduce that the process

M̃t (q) = (
DĀt ◦ Q̄t (q)

)(
ηt ◦ Q̄t (q)

)
,

is a martingale (proving our second claim in Remark 1.1(ii)).
Step 2. Suppose that now u is a solution to the forward Navier–Stokes equation (1.15) and recall that when d = 3, 

we write ξ = ∇ × u. We set w(q, t) = −u(q, T − t) for t ∈ [0, T ]. Then w satisfies (3.2) in the interval t ∈ [0, T ]. 
Recall that q(t) is the solution of SDE (1.16) with the flow Qt . We choose W̄ (t) = W(T − t) − W(T ) in Eq. (4.3). 
According to a theorem of Kunita (see [12] or Theorem 13.15 in p. 139 of [17]), the flows Q and Q̄ are related by the 
formula

Q̄t = QT −t ◦ Q−1
T = Bt .

Observe that ᾱt = −αT −t and

M̄t = Q̄∗
t d̂ᾱt = −B∗

t d̂αT −t = −βt .
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Hence (βt : t ∈ [0, T ]) is a martingale because M̄t is a martingale by Step 1. Also, when d = 3,

M̃t = (
(DĀt )η

t
) ◦ Q̄t (q) = −((

DB−1
t

)
ξT −t

) ◦ Bt .

This completes the proof of Part (i).
Step 3. The process x′(t) is a diffusion of the form (3.1) with k = d and

Vi

(
x′, t

) = Vi(q, t) = √
2ν

[
ei

wqi

]
, i = 1, . . . , d,

where ei = [δj
i ]dj=1 is the unit vector in the i-th direction. A straight forward calculation yields that for the standard 

symplectic form ω̄ = ∑
j dpj ∧ dqj ,

iVi (·,t)ω̄ = √
2ν

(
wqi

(·, t) · dq − dpi

) =: √2ν
(
γ t
i − dpi

)
,

LVi(·,t)ω̄ = √
2νd̂γ t

i = √
2ν

∑
j,k

wk
qiqj

(·, t)dqj ∧ dqk,

where w = (w1, . . . , wd). From this and (3.4) we deduce

M̂t = ω̄ + √
2ν

d∑
i=1

t∫
0

φ∗
s

(
d̂γ s

i

)
dWi(s),

because by Step 1, we know that AVω = 0. As in the calculation (4.7), we may choose as in (4.6) for the arguments 
of d̂γ i to deduce

dM̄t = √
2ν

d∑
i=1

Q̄∗
t ζ

t
i dWi(t),

where ζ t
i is really d̂γ t

i but now regarded as a 2-form in Rd . Note

ζ t
i (a1, a2) = C

(
wqi

(·, t))a1 · a2.

Let us write Zt and Y i
t for the antisymmetric matrices associated with the forms Q̄∗

t (d̂ᾱt ) and Q̄∗
t ζ

t
i , respectively. We 

then have

dZt = √
2ν

d∑
i=1

Y i
t dWi(t).

From this, we readily deduce that the quadratic variation of the process Zt is given by

2ν

t∫
0

d∑
i=1

∥∥Y i
s

∥∥2
ds.

We now reverse time as in Step 2 to complete the proof of Part (ii). Part (iii) is an immediate consequence of the 
identity

E‖ZT ‖2 = E‖Z0‖2 + 2νE

T∫
0

d∑
i=1

∥∥Y i
s

∥∥2
ds. �

Example 4.1. In this example, we examine the consequences of Theorem 1.1(i) for the axisymmetric solutions of 
Navier–Stokes equation when d = 3. To ease the notation, we assume that w is a backward solution of Navier–Stokes 
equation (4.2). We follow the notation of Example 2.1 and write w = ae(θ) + cf (θ) + be3, where a, b, and c are
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functions of (r, z, t). As before, let us start from the SDE

dq = w(q, t)dt + ν′dW, (4.8)

with W = (W 1, W 2, W 3) and ν′ = √
2ν. In cylindrical coordinates,

dr = [
a(r, z, t) + νr−1]dt + ν′dWr(t),

dz = b(r, z, t)dt + ν′dW 3(t),

dθ = ĉ(r, z, t)dt + ν′r−1dWθ(t), (4.9)

where Wr = e(θ) · W and Wθ = W · f (θ). In cylindrical coordinates, the SDE (4.9) has an infinitesimal generator of 
the form

A= a∂r + b∂z + ĉ∂θ + ν
(
∂2
r + r−1∂r + ∂2

z + r−2∂2
θ

) =: Â+ ĉ∂θ + νr−2∂2
θ .

We note that the triplet (Wr, Wθ, W 3) consists of 3 (statistically) independent Brownian motions. However, we cannot 
apply Proposition 3.1 because the Brownian motions Wθ and Wr would depend on the initial choice of (r, θ). In order 
to apply Proposition 3.1, it is very essential that we use the same copy of Brownian motions for all starting q(0). This 
is our assumption in (4.8) and would not be the case in (4.9). For a comparison, let us consider a modified system of 
the form

dr = [
a(r, z, t) + νr−1]dt + ν′dB1(t),

dz = b(r, z, t)dt + ν′dB2(t),

dθ = ĉ(r, z, t)dt + ν′r−1dB3(t), (4.10)

where B1, B2 and B3 are 3 independent standard Brownian motions. Here we use the same B = (B1, B2, B3) for all 
initial q(0). If we write Q̂t (r, z, θ) for the flow of SDE (4.10), then

Q̂t (r, z, θ) =
(

ψt(r, z), θ +
t∫

0

ĉ
(
ψs(r, z), s

)
ds + ν′

t∫
0

R−1
s (r, z)dB3(s)

)
,

where ψt(r, z) = (Rt (r, z), Zt(r, z)) is the flow of the first two equations of (4.10). As in Example 2.1, the divergence 
free condition ∇ · u = 0 is equivalent to ψ∗

t γ = γ for the area form γ = rd̂r ∧ d̂z. This can be shown with the aid of 
Proposition 3.1 as in Example 3.1(iii); this time we show that Lvγ = 0, where v = (a + νr−1, b). As in Example 2.1, 
we write αt = α̂t + c̄(·, t)d̂θ . We have

Q∗
t αt = ψ∗

t α̂t + (c̄t ◦ ψt)d̂θ + (c̄t ◦ ψt)

t∫
0

d̂(ĉs ◦ ψs)ds +
t∫

0

d̂R−1
s dB3(s).

Now, according to Theorem 1.1(i), the process Mt := d̂(Q∗
t αt ), is a martingale. This is no longer true for the process 

M̂t := d̂(Q̂∗
t αt ). Indeed the component c̄(r, z, t) satisfies

∂t c̄ + Âc̄ = 2r−1∂r c̄,

which in turn implies that the process

c̄t ◦ ψt − 2

t∫
0

R−1
s ∂r c̄s ◦ ψsds,

is a martingale. �
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Appendix A

A.1. Contact diffusions

Recall that contact forms are certain 1-forms that are non-degenerate in some rather strong sense. To explain this, 
recall that when α is a contact form in dimension n = 2d + 1, then the set lx = {v : dαx(v, w) = 0 for all w ∈ TxM}
is a line. Also, if we define the kernel of α by

ηα
x = ηx = {

v : α(x;v) = 0
}
,

then the contact condition really means that lx and ηx give a decomposition of Rn that depends solely on α:

R
n = ηx ⊕ lx . (A.1)

We also define the Reeb vector field R(x) = Rα(x) to be the unique vector such that

R(x) ∈ lx, α
(
x;R(x)

) = 1.

The role of Hamiltonian vector fields in the contact geometry are played by contact vector fields.

Definition A.1. A vector field X is called an α-contact vector field if LXα = f α for some scalar-valued positive 
continuous function f . �

It is known that for a given a function H : M → R, there exists a unique contact α-vector field XH = Xα
H such 

that iXH
α = α(XH ) = H . The vector field XH is the analog of Hamiltonian vector field in contact geometry (with H

playing the role of Hamiltonian function). The function f can be expressed in terms of H with the aid of the Reeb 
vector field R = Rα ; indeed, f = dH(Rα), and as a result,

LXH
α = dH

(
Rα

)
α.

In our Euclidean setting, we consider a form α = u · dx for a vector field u and

β(v1, v2) := dα(v1, v2) = C(u)v1 · v2,

where C(u) = Du − (Du)∗. (Recall that we are writing A∗ for the transpose of A.) Since C∗ = −C, we have that 
detC = (−1)n detC. This implies that C cannot be invertible if the dimension is odd. Hence the null space lx of 
C(u)(x) is never trivial and our assumption dim�x = 1 really means that this null space has the smallest possible 
dimension. Now (A.1) simply means that u(x) · R(x) �= 0. Of course R is chosen so that u(x) · R(x) ≡ 1. Writing 
u⊥ and R⊥ for the space of vectors perpendicular to u and R respectively, then η = u⊥, and we may define a matrix 
C′(u) which is not exactly the inverse of C(u) (because C(u) is not invertible), but it is specified uniquely by two 
requirements:

(i) C′(u) restricted to R⊥ is the inverse of C(u) : u⊥ → R⊥.
(ii) C′(u)R = 0.

The contact vector field associated with H is given by

XH = −C′(u)∇H + HR.
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In particular, when n = 3, the form α = u · dx is contact if and only if u · ξ is never 0, where ξ = ∇ × u is the curl 
(vorticity) of u. In this case the Reeb vector field is given by R = ξ/(u · ξ), and

LZu = ∇(u · Z) + ξ × Z.

We also write ū = u/(u · ξ). The contact vector field associated with H is given by

XH = ū × ∇H + HR.

Let x(t) be a diffusion satisfying (3.1) and assume that this diffusion has a random flow φt . Given a contact form 
α, set αt = φ∗

t α as before.

Definition A.2.

(i) We say that the diffusion (3.1) is α-contact, if for some scaler-valued semimartingale Zt of the form,

dZt = g0
(
x(t), t

)
dt +

k∑
i=1

gi

(
x(t), t

) ◦ dWi(t), (A.2)

for g0, . . . , gk > 0, we have

dαt = αtdZt .

(ii) We say that the diffusion (3.1) is α-semicontact, if there exists a continuous scalar-valued function positive f (x, t)
such that

Mt = αt −
t∫

0

f
(
x(s), s

)
αsds,

is a martingale. �
We end this subsection with two propositions.

Proposition A.1. The following statements are equivalent:

(i) The diffusion (3.1) is α-contact.
(ii) There exists a scaler-valued process At of the form

dAt = h0
(
x(t), t

)
dt +

k∑
i=1

hi

(
x(t), t

) ◦ dWi(t),

with h1, . . . , hk > 0 and h0 + ∑k
i=1 h2

i > 0, such that αt = eAt α.
(iii) The vector fields V0, . . . , Vk are α-contact.

Proposition A.2. The following statements are equivalent:

(i) The diffusion (3.1) is α-semicontact.
(ii) For some continuous scalar-valued positive function f (x, t), we have AVα = f α.

The proof of Proposition A.2 is omitted because it is an immediate consequence of (3.4) and the definition.

Proof of Proposition A.1. Suppose that the vector fields V0, . . . , Vk are α-contact. Then there exist scalar-valued 
functions g0(x, t), . . . , gk(x, t) such that LVi

α = giα. From this and Proposition 3.1 we learn that dαt = αtdZt for 
Zt as in (A.2). Hence (iii) implies (i).
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Now assume (i) and set

Yt = exp

(
−Zt + 1

2
[Z]t

)
,

where [Z] denotes the quadratic variation of Z. We have

dYt = Yt

(−dZt + d[Z]t
)
,

d
(
Ytα

t
) = αtYt

(−dZt + d[Z]t
) + Ytdαt + d[Y,α]t

= αtYtd[Z]t + d[Y,α]t = αtYtd[Z]t − αtYtd[Z]t = 0,

with [Y, α]t denoting the quadratic co-variation process of Yt and αt . Hence Ytα
t = α and we have (ii) for At =

Zt − 1
2 [Z]t .

We now assume (ii). We certainly have

dαt = αeAt

(
dAt + 1

2
d[A]t

)
= αt

(
dAt + 1

2
d[A]t

)

= αt

(
g0

(
x(t), t

)
dt +

k∑
i=1

gi

(
x(t), t

) ◦ dWi(t)

)
,

for g0 = h0 + 1
2 (

∑
i h

2
i ) and gi = hi for i = 1, . . . , k. Comparing this to (3.4) yields LVi

α = giα for i = 0, . . . , k. 
Hence (iii) is true and this completes the proof. �
A.2. Viscosity limit

In this subsection, we make some formal reasoning to support our comments in Remark 1.1(iii). For a weak 
solution of the Euler equation (1.15) it is not clear how to make sense of Circulation Formula (1.10) or (2.3). The 
main challenge is that for a rough vector field u that satisfies (1.15) in some weak sense, we do not have a satisfactory 
candidate for the flow of the ODE (1.9). As it turns out, it is much easier to construct a regular flow for SDE (1.16)
(see Remark 1.1(i)). Motivated by this, let us start with a diffusion x(t) = (q(t), p(t)) satisfying

dq = Hp(q,p, t)dt + √
2νdW,

dp = −Hq(q,p, t)dt + √
2νΓ (q, t)dW, (A.3)

and examine the Circulation Formula for it in low ν limit. Writing ω for the realization of the Brownian motion in (A.3)
and Xν

t (x; ω) = Xt(x) = (Qt (x), Pt (x)) for the corresponding flow, the map ω �→ Xν· (·; ω) induces a probability 
measure Pν on the space of measurable maps X : R2d × [0, T ] → R

2d . Let us write Ft for the σ -field generated by 
(W(s) : 0 ≤ s ≤ t). From (A.3), it is not hard to see that Ft coincides with the σ -field generated by (Xs(x) : 0 ≤ s ≤ t)

for any given x. By Corollary 3.1,∫ {∫ [(
DQt(x)

)∗
Pt (x) − (

DQs(x)
)∗

Ps(x)
] · J (

x,X·(·)
)
dx

}
Pν

(
dX·(·)

) = 0, (A.4)

provided that s ≤ t , and J (x, X·(·)) is a vector field that is divergence-free, smooth and of compact support in 
x-variable, and is Fs measurable in X·(·)-variable. The question is what regularity of X is needed to guarantee a 
passage to the limit ν → 0. As was observed by Viterbo [18], we can make sense of the integral in the curly brackets 
if both P and Q possess half a derivative in L2. If, for example we can control H

1
2 -norm of Xt uniformly in t , then 

we can pass to the limit in (A.4) and assert that any limit point P of Pν in low ν limit is the law of the flow of a 
process x(·) that is ω̄-semisymplectic in some weak sense. We remark that in view of our proof in Section 4 and the 
system (4.1), the kind of Hamiltonian function H(q, p, t) and Γ (q, t) we have in mind depend on ν and are given by 
|p|2/2 + P(q, t) and Du(q, t) respectively. For such choices of Hamiltonian function and Γ , we do not know how to
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control the H
1
2 -norm of the flow. We also note that in general the only known bound on Γ is

ν

t∫
0

∣∣Du(q, s)
∣∣2

dqds < ∞,

which is not strong enough to imply that the martingale 
∫ t

0

√
2νΓ (q(s), s)dW(s) goes to 0 as ν → ∞.
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