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Abstract

We develop a variational framework to detect high energy solutions of the planar Schrödinger–Poisson system{−�u + a(x)u + γwu = 0,

�w = u2 in R
2

with a positive function a ∈ L∞(R2) and γ > 0. In particular, we deal with the periodic setting where the corresponding functional 
is invariant under Z2-translations and therefore fails to satisfy a global Palais–Smale condition. The key tool is a surprisingly strong 
compactness condition for Cerami sequences which is not available for the corresponding problem in higher space dimensions. In 
the case where the external potential a is a positive constant, we also derive, as a special case of a more general result, the existence 
of nonradial solutions (u, w) such that u has arbitrarily many nodal domains. Finally, in the case where a is constant, we also show 
that solutions of the above problem with u > 0 in R2 and w(x) → −∞ as |x| → ∞ are radially symmetric up to translation. Our 
results are also valid for a variant of the above system containing a local nonlinear term in u in the first equation.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The present paper is concerned with standing (or solitary) wave solutions of Schrödinger–Poisson systems of the 
type {

iψt − �ψ + E(x)ψ + γwψ = 0,

�w = |ψ |2 in R
d ×R. (1.1)
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Here ψ : Rd × R → C is the (time-dependent) wave function, x �→ E(x) is a real external potential, and γ ∈ R is a 
parameter. The function w represents an internal potential for a nonlocal self-interaction of the wave function ψ . The 
standing wave ansatz ψ(x, t) = e−iλtu(x), λ ∈ R reduces (1.1) to the system{−�u + a(x)u + γ wu = 0,

�w = u2 for u : Rd → R (1.2)

with a(x) = E(x) +λ. The second equation determines w :Rd → R only up to harmonic functions, but it is natural to 
choose w as the Newton potential of u2, i.e., the convolution of u2 with the fundamental solution Φd of the Laplacian. 
With this formal inversion of the second equation in (1.2), we obtain the integro-differential equation

−�u + a(x)u + γ
[
Φd ∗ |u|2]u = 0 in R

d, (1.3)

where Φd(x) = 1
d(2−d)ωd

|x|2−d in case d ≥ 3 and Φd(x) = 1
2π

log |x| in case d = 2. Here, as usual, ωd denotes the 

volume of the unit ball in Rd .
In the three dimensional case, (1.3) has been extensively studied. For d = 3, a ≡ λ > 0 and γ > 0, it was intro-

duced by Pekar [27] in 1954 for describing the quantum mechanics of a polaron at rest and by Choquard in 1976 for 
describing an electron trapped in its hole. In [20], Lieb proved the existence of a unique ground state of (1.2) which is 
positive and spherically symmetric, using a minimization argument. In [22], Lions proved the existence of infinitely 
many distinct spherically symmetric solutions when a(x) is a nonnegative, radially symmetric potential. In [28] Pen-
rose derived (1.3) in his discussion about the self gravitational collapse of a quantum-mechanical system. Recently, 
existence and regularity results have also been obtained for a(x) 	≡ λ and for more general convolution potentials, see 
[1,13,18,23,25].

In some recent works, local nonlinear terms of the form b|u|p−2u, b ∈ R, p > 2 have been added to the right hand 
side of (1.3). Those nonlinear terms are frequently used in Schrödinger equations to model the interaction among 
particles [7,9]. A large amount of papers are devoted to the study of existence of solutions of the corresponding 
Schrödinger–Poisson system (also called Schrödinger–Maxwell system) in the three dimensional case. In particular 
for γ < 0, b > 0, 2 < p < 6, we quote the results [3,4,16,30,6]. Conversely, for γ > 0 and b < 0, the corresponding 
system has been studied in [8] and it represents a Hartree model for crystals (see also [26]).

The literature is scantier for the planar case d = 2, which is the focus of the present paper. In this case, Masaki 
[24] proved global well-posedness of the Cauchy problem for (1.1) in a subspace of H 1(R2). Moreover, Stubbe and 
Vuffray [12] established existence and uniqueness of positive, spherically symmetric solutions of (1.2) in the case 
a ≡ λ, d ≤ 6, using shooting methods for the associated ODE system (see also [11] for the one-dimensional case). 
Unlike in the case d = 3, variational methods have rarely been used in the planar case in which (1.3) becomes

−�u + au + γ

2π

(
log

(| · |) ∗ |u|2)u = 0 in R
2. (1.4)

Note that, at least formally, (1.3) has a variational structure related to the energy functional

u �→ 1

2

∫
R2

(|∇u|2 + a(x)u2)dx + γ

4

∫
R2

∫
R2

Φd

(|x − y|2)u2(x)u2(y) dxdy.

In case d ≥ 3 and a ∈ L∞(Rd), this functional is well-defined and of class C1 on H 1(Rd), but it is not well defined on 
H 1(R2) in case d = 2. Considering the case d = 2, a ≡ λ ∈ R and γ > 0, Stubbe [32] set up a variational framework 
for (1.4) within a subspace of H 1(R2). By using strict rearrangement inequalities, he proved that there exists, for any 
λ ≥ 0, a unique ground state, which is a positive spherically symmetric decreasing function. In addition, he proved 
that there exists a negative number λ∗ such that for any λ ∈ (λ∗, 0) there exist two ground states with different L2

norm. In the limiting case λ = λ∗, there is again a unique ground state.
In the present work we focus on (1.4) in the case γ > 0, and by rescaling we may assume γ = 2π . More precisely, 

we will consider a generalization of (1.4) given by

−�u + a(x)u + (
log

(| · |) ∗ |u|2)u = b|u|p−2u in R
2 (1.5)

with b ≥ 0, p ≥ 2 and a ∈ L∞(R2). We wish to emphasize that all of our results are new even for b = 0, i.e., for 
Eq. (1.4). As remarked before, the energy functional
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u �→ I (u) = 1

2

∫
R2

(|∇u|2 + a(x)u2)dx + 1

4

∫
R2

∫
R2

log
(|x − y|2)u2(x)u2(y) dxdy − b

p

∫
R2

|u|p dx

is not well defined on H 1(R2). Inspired by Stubbe [32], we will consider the smaller Hilbert space

X :=
{
u ∈ H 1(

R
2) :

∫
R2

log
(
1 + |x|)u2(x) dx < ∞

}
.

It is not difficult to see that I defines a C1-functional on X. Moreover, critical points u ∈ X of I are strong solutions 
of (1.5) in W 2,p(R2) for all p ≥ 1, and they are classical solutions in C2(R2) if a is Hölder continuous, see Propo-
sition 2.3 below. So X provides a variational framework for (1.5), but some difficulties appear due to the following 
unpleasant facts. First, the norm of X is not translation invariant, whereas the functional I is invariant under every 
translation which leaves the external potential a invariant. Second, the quadratic part of I is not coercive on X even 
if infR2 a > 0. These difficulties enforce the implementation of new ideas and estimates within the variational frame-
work. On the other hand, somewhat surprisingly, the specific form of I also allows to establish much better existence 
and multiplicity results than those available in the case d ≥ 3 or for the simpler equation

−�u + a(x)u = |u|p−2u, u ∈ H 1(
R

2). (1.6)

In fact, our main results suggest that the structure of the solution set of (1.5) is in general much richer than the one of 
(1.6) or related problems in higher dimensions.

Our first main result is concerned with the periodic setting.

Theorem 1.1. Suppose that p ≥ 4, b ≥ 0, and that a : R2 → (0, ∞) is continuous and Z2-periodic. Then (1.5) admits 
a sequence of solution pairs ±un ∈ X such that I (un) → ∞ as n → ∞. Moreover, the restriction of I to the associated 
Nehari manifold N := {u ∈ X \ {0} : I ′(u)u = 0} attains a global minimum, and every minimizer u ∈N of I |N is a 
solution of (1.5) which does not change sign and obeys the variational characterization

I (u) = inf
u∈X

sup
t∈R

I (tu).

We remark that Theorem 1.1 yields infinitely many geometrically distinct solutions (i.e., solutions generating dif-
ferent Z2-orbits) and also ground state solutions of (1.5), i.e., energy minimizers within the set of nontrivial solutions. 
This seems to be the first existence result for (1.5) in the periodic setting even in the special case b = 0. We also 
note that a result on the existence of solutions with arbitrarily high energy is not available for (1.6) without additional 
nondegeneracy assumptions (see e.g. [15]).

Our second main result is concerned with a different symmetric setting in the case where a is a positive constant. 
We need to fix some notation. Let G be a closed subgroup of the orthogonal group O(2) such that

Fix(G) = {0}, where Fix(G) := {
x ∈ R

2 : Ax = x for all A ∈ G
}
. (1.7)

Moreover, let τ : G → {−1, 1} be a group homomorphism. The pair (G, τ) gives rise to a group action of G on X
defined by

A ∗ u(x) := τ(A)u
(
A−1x

)
for A ∈ G, u ∈ X, and x ∈ R

2. (1.8)

The following result is concerned with solutions of (1.5) in the invariant subspace

XG := {u ∈ X : A ∗ u = u for all A ∈ G}.

Theorem 1.2. Suppose that p ≥ 4, b ≥ 0, and that a in (1.5) is a positive constant. Let G, τ be as above, and suppose 
that τ ≡ 1 or that G is finite. Then (1.5) admits a sequence of solution pairs ±un ∈ XG such that I (un) → ∞ as 
n → ∞. Moreover, the restriction of I to the associated Nehari manifold NG := {u ∈ XG \ {0} : I ′(u)u = 0} attains a 
global minimum, and every minimizer u ∈NG of I |NG

is a G-invariant solution of (1.5) which obeys the variational 
characterization
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I (u) = inf
u∈XG

sup
t∈R

I (tu),

and it does not change sign if τ ≡ 1.

Some remarks seem appropriate. The assumptions on G and τ ensure that the closed subspace XG ⊂ X is infinite 
dimensional. If τ is nontrivial and A ∈ G is given with τ(A) = −1, then every u ∈ XG satisfies u(A−1x) = −u(x). 
In particular, u vanishes on the set {x ∈ R

2 : Ax = x} and changes sign in R2 if u 	= 0. Let us briefly discuss some 
examples. In case G = O(2), τ ≡ 1 the space XG consists of radial functions in X. In this case Theorem 1.2 yields the 
existence of infinitely many radial solutions. Next, let G = {id, A1, A2}, where Ai is the reflection at the coordinate 
hyperplane {xi = 0} for i = 1, 2. Moreover, let τ : G → {−1, 1} be the homomorphism defined by τ(A1) = −1 and 
τ(A2) = 1 (this defines a homomorphism since A1 and A2 commute). Then u ∈ XG if and only if

u(−x1, x2) = −u(x1, x2) and u(x1,−x2) = u(x1, x2) for all x = (x1, x2) ∈R
2. (1.9)

Hence Theorem 1.2 yields a sequence of solution pairs ±un, n ∈ N of (1.5) with unbounded energy and such that un is 
odd with respect to the hyperplane {x1 = 0} and even with respect to the hyperplane {x2 = 0}. We point out that such a 
result is not available for (1.6) in the case where a > 0 is constant; in fact, (1.6) does not admit any nontrivial solutions 
which vanish on a hyperplane, see e.g. [17]. As a third example we may consider, for given k ∈N, the subgroup G of 
O(2) of order 2k generated by the (counter-clockwise) π

k
-rotation

A ∈ O(2), A(x) = (x1 cosπ/k − x2 sinπ/k, x1 sinπ/k + x2 cosπ/k) for x = (x1, x2) ∈R
2.

Let τ : G → {−1, 1} be the homomorphism defined by τ(Aj ) = (−1)j for j ∈ N. Then Theorem 1.2 applies and 
yields sign changing solutions which are invariant under the corresponding action defined by (1.8). Note that any such 
solution has at least 2k (conical) nodal domains in R2. We also point out that the assumption (1.7) is not essential for 
the existence of the sequence (un)n in Theorem 1.2, since it can always be achieved by enlargening G suitably. More 
precisely, if F := Fix(G) 	= {0}, we may consider the orthogonal splitting R2 := E ⊕ F and define B ∈ O(2) \ G by 
Bx = −x for x ∈ F and Bx = x for x ∈ E. Then B is an involution which commutes with every element of G, so we 
may consider G̃ = G ∪ {B} and τ̃ : G̃ → {−1, 1} defined by τ̃ |G = τ and τ̃ (B) = −1 in place of G and τ . Denoting 
by X

G̃
the invariant subspace of X with respect to the corresponding group action defined by (1.8) with G̃, τ̃ in place 

of G, τ , we then have Fix(G̃) = 0 and XG̃
⊂ XG.

In view of the fact that, by the results above, (1.5) has a large solution set in general, it is a natural aim to classify 
different types of solutions via their geometric properties. The first step within this rather ambitious program is the 
study of the shape and possible uniqueness of positive solutions (1.5). Related to this, we have the following result.

Theorem 1.3. Suppose that p ≥ 2, and that a is a positive constant in (1.5). Then every positive solution u ∈ X of (1.5)
is radially symmetric up to translation and strictly decreasing in the distance from the symmetry center. Moreover, if 
b = 0, then u is unique up to translation.

We note that Ma and Zhao [23] proved the corresponding statement for (1.3) in the case d = 3, a ≡ 1 and γ = 1. 
Their approach relies on a reformulation of (1.3) as an integral equation and a moving plane argument. The results of 
[23] apply to a general class of integral equations, but they do not apply to (1.5) since the logarithmic integral kernel 
is sign-changing. Our proof of Theorem 1.3 relies on a more direct and simpler variant of the moving plane method 
for the corresponding system, see Section 6 below. We also point out that the uniqueness claim in Theorem 1.3 is a 
simple consequence of the uniqueness result for positive, radial solutions in [12].

The paper is organized as follows. In Section 2 we set up the variational framework and establish useful preliminary 
estimates. We also address the notion and regularity of weak solutions, see Proposition 2.3 below. Section 3 contains 
the key compactness condition, Proposition 3.1 which is fundamental for our existence results. Roughly speaking, 
Proposition 3.1 asserts that the functional I satisfies the Cerami condition at arbitrary energy levels’ up to translations’ 
if a is periodic and positive. In Section 4 we then prove Theorem 1.1. The proof is based on deformation arguments 
which differ considerably from previous works. In particular, we need to implement new estimates on the Krasnoselski 
genus of neighborhoods of the noncompact set of critical points of I at a given energy level. Moreover, special 
care is needed at some points since the norm of X is not translation invariant. Section 5 is devoted to the proof of 
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Theorem 1.2. The key observation here is the fact that, in the G-invariant setting described above, the restriction of I
to the invariant space XG satisfies the Cerami condition. Finally, in Section 6 we will prove a slightly more general 
variant of Theorem 1.3, and we will deduce Theorem 1.3 in the end of this section.

2. Preliminaries

In the following, we assume that a ∈ L∞(R2) satisfies infR a > 0. Then we may endow H 1(R2) with the scalar 
product

〈u,v〉 =
∫
R2

(∇u · ∇v + a(x)uv
)
dx, for u,v ∈ H 1(

R
2).

The corresponding norm given by

‖u‖2 :=
∫
R2

(|∇u|2 + a(x)u2)dx, for u ∈ H 1(
R

2)

is equivalent to the standard H 1(R2)-norm. We define the symmetric bilinear forms

(u, v) �→ B1(u, v) =
∫
R2

∫
R2

log
(
1 + |x − y|)u(x)v(y) dxdy,

(u, v) �→ B2(u, v) =
∫
R2

∫
R2

log

(
1 + 1

|x − y|
)

u(x)v(y) dxdy,

(u, v) �→ B0(u, v) = B1(u, v) − B2(u, v) =
∫
R2

∫
R2

log
(|x − y|)u(x)v(y) dxdy.

Here the definition is restricted, in each case, to measurable functions u, v : R2 → R such that the corresponding 
double integral is well defined in Lebesgue sense. Note that, since 0 ≤ log(1 + r) ≤ r for r > 0, we have by the 
Hardy–Littlewood–Sobolev inequality [21]∣∣B2(u, v)

∣∣ ≤
∫
R2

∫
R2

1

|x − y|
∣∣u(x)v(y)

∣∣dxdy ≤ C0|u| 4
3
|v| 4

3
for u,v ∈ L

4
3
(
R

2) (2.1)

with a constant C0 > 0. Here and in the following, |u|p stands for the Lp-norm of a function u ∈ Lp(R2), 1 ≤ p ≤ ∞. 
We now define the functionals

V1 : H 1(
R

2) → [0,∞], V1(u) = B1
(
u2, u2) =

∫
R2

∫
R2

log
(
1 + |x − y|)u2(x)u2(y) dxdy,

V2 : L 8
3
(
R

2) → [0,∞), V2(u) = B2
(
u2, u2) =

∫
R2

∫
R2

log

(
1 + 1

|x − y|
)

u2(x)u2(y) dxdy,

V0 : H 1(
R

2) → R∪ {∞}, V0(u) = B0
(
u2, u2) =

∫
R2

∫
R2

log
(|x − y|)u2(x)u2(y) dxdy.

Note that, as a consequence of (2.1), we have∣∣V2(u)
∣∣ ≤ C0|u|48

3
for all u ∈ L

8
3
(
R

2), (2.2)

so V2 only takes finite values on L
8
3 (R2) ⊂ H 1(R2). Next we define, for any measurable function u :R2 →R,

|u|2∗ :=
∫

2

log
(
1 + |x|)u2(x) dx ∈ [0,∞].
R
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We note that, since

log
(
1 + |x − y|) ≤ log

(
1 + |x| + |y|) ≤ log

(
1 + |x|) + log

(
1 + |y|) for x, y ∈ R

2, (2.3)

we have the estimate

B1(uv,wz) ≤
∫
R2

∫
R2

[
log

(
1 + |x|) + log

(
1 + |y|)]∣∣u(x)v(x)

∣∣∣∣w(y)z(y)
∣∣dxdy

≤ |u|∗|v|∗|w|2|z|2 + |u|2|v|2|w|∗|z|∗ for u,v,w, z ∈ L2(
R

2) (2.4)

with the conventions ∞ · 0 = 0 and ∞ · s = ∞ for s > 0. The following lemma will also be useful in the sequel.

Lemma 2.1. Let (un)n be a sequence in L2(R2) such that un → u ∈ L2(R2) \ {0} pointwise a.e. on R2. Moreover, let 
(vn)n be a bounded sequence in L2(R2) such that

sup
n∈N

B1
(
u2

n, v
2
n

)
< ∞. (2.5)

Then there exists n0 ∈N and C > 0 such that |vn|∗ < C for n ≥ n0.
If, moreover,

B1
(
u2

n, v
2
n

) → 0 and |vn|2 → 0 as n → ∞, (2.6)

then

|vn|∗ → 0 as n → ∞, n ≥ n0. (2.7)

Proof. By assumption and Egorov’s Theorem, there exists n0 ∈N, R, δ > 0 and a measurable subset A ⊂ BR(0) such 
that |A| > 0 and u2

n(x) ≥ δ for every n ≥ n0. Since

1 + |x − y| ≥ 1 + |y|
2

≥ √
1 + |y| for every x ∈ BR(0), y ∈R

2 \ B2R(0),

we may then estimate

B1
(
u2

n, v
2
n

) ≥
∫

R2\B2R(0)

∫
A

log
(
1 + |x − y|)u2

n(x)v2
n(y) dxdy

≥ δ|A|
2

∫
R2\B2R(0)

log
(
1 + |y|)v2

n(y) dy = δ|A|
2

(
|vn|2∗ −

∫
B2R(0)

log
(
1 + |y|)v2

n(y) dy

)

≥ δ|A|
2

(|vn|2∗ − log(1 + 2R)|vn|22
)
.

Since |vn|22 and B1(u
2
n, v

2
n) remain bounded in n by assumption, it follows that |vn|∗ also remains bounded in n, as 

claimed. If moreover (2.6) holds, then the estimate above yields (2.7). �
In the following, we fix b ≥ 0, p ≥ 4 and consider the functional

I : H 1(
R

2) → R∪ {∞}, I (u) = 1

2
‖u‖2 + 1

4
V0(u) − b

p
|u|pp.

We also define the Hilbert space

X := {
u ∈ H 1(

R
2) : |u|2∗ < ∞}

with norm given by u �→ ‖u‖2
X := ‖u‖2 + |u|2∗.

Note that, by (2.4), the restriction of I to X (also denoted by I in the following) only takes finite values in R. We have 
the following properties.
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Lemma 2.2.

(i) The space X is compactly embedded in Ls(R2) for all s ∈ [2, ∞).
(ii) The functionals V0, V1, V2 and I are of class C1 on X.

Moreover, V ′
i (u)v = 4Bi(u

2, uv) for u, v ∈ X and i = 0, 1, 2.

(iii) V2 is continuous (in fact continuously differentiable) on L
8
3 (R2).

(iv) V1 is weakly lower semicontinuous on H 1(R2).
(v) I is weakly lower semicontinuous on X.

(vi) I is lower semicontinuous on H 1(R2).

Proof. (i) follows from Rellich’s Theorem (see Theorem XIII.65 in [29]).
We prove (ii) and (iii). Let un be a sequence in X converging to some u ∈ X. It follows that un is bounded and

∣∣V1(un) − V1(u)
∣∣ =

∫ ∫
R2×R2

log
(
1 + |x − y|)u2

n(x)
(
u2

n(y) − u2(y)
)
dxdy

+
∫ ∫
R2×R2

log
(
1 + |x − y|)(u2

n(x) − u2(x)
)
u2(y)dxdy

≤
∫ ∫
R2×R2

log
(
1 + |x|)u2

n(x)
∣∣un(y) − u(y)

∣∣∣∣un(y) + u(y)
∣∣

+
∫ ∫
R2×R2

log
(
1 + |y|)u2

n(x)
∣∣un(y) − u(y)

∣∣∣∣un(y) + u(y)
∣∣

+
∫ ∫
R2×R2

log
(
1 + |x|)∣∣un(x) − u(x)

∣∣∣∣un(x) + u(x)
∣∣u2(y)dxdy

+
∫ ∫
R2×R2

log
(
1 + |y|)∣∣un(x) − u(x)

∣∣∣∣un(x) + u(x)
∣∣u2(y)dxdy

≤ |un|2∗|un − u|2|un + u|2 + |un|22|un − u|∗|un + u|∗
+ |u|22|un − u|∗|un + u|∗ + |u|2∗|un − u|2|un + u|2

≤ C‖un − u‖X (2.8)

for a suitable positive constant C > 0. Hence we derive that V1(un) tends to V1(u), as n → ∞.
For any v ∈ X the Gateaux derivative of V1 at u ∈ X is given by

V ′
1(u)v = 4

∫ ∫
R2×R2

log
(
1 + |x − y|)u2(x)u(y)v(y)dxdy.

Since ∣∣V ′
1(u)v

∣∣ ≤ 4
∫ ∫
R2×R2

log
(
1 + |x|)u2(x)u(y)v(y) + 4

∫ ∫
R2×R2

log
(
1 + |y|)u2(x)u(y)v(y)

≤ |u|2∗|u|2|v|2 + |u|22|u|∗|v|∗ ≤ K‖u‖3
X‖v‖X (2.9)

we deduce that V ′
1(u) ∈ X∗ and ‖V ′

1(u)‖ ≤ K‖u‖3
X for any u ∈ X.

Now we prove that V ′(un) tends to V ′(u) in X∗ if un → u in X.
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Suppose that un tends to u in X. It follows that un is bounded and for any v ∈ X we have

|V ′
1(un)v − V ′

1(u)v|
4

=
∫ ∫
R2×R2

log
(
1 + |x − y|)(u2

n(x)un(y) − u2(x)u(y)
)
v(y)dxdy

=
∫ ∫
R2×R2

log
(
1 + |x − y|)(u2

n(x) − u2(x)
)
un(y)v(y)dxdy

+
∫ ∫
R2×R2

log
(
1 + |x − y|)(un(y) − u(y)

)
u2(x)v(y)dxdy

≤
∫ ∫
R2×R2

log
(
1 + |x|)∣∣un(x) − u(x)

∣∣∣∣un(x) + u(x)
∣∣∣∣un(y)

∣∣∣∣v(y)
∣∣dxdy

+
∫ ∫
R2×R2

log
(
1 + |y|)∣∣un(x) − u(x)

∣∣∣∣un(x) + u(x)
∣∣∣∣un(y)

∣∣∣∣v(y)
∣∣dxdy

+
∫ ∫
R2×R2

log
(
1 + |x|)∣∣un(y) − u(y)

∣∣u2(x)
∣∣v(y)

∣∣dxdy

+
∫ ∫
R2×R2

log
(
1 + |y|)∣∣un(y) − u(y)

∣∣u2(x)
∣∣v(y)

∣∣dxdy

≤ |un − u|∗|un + u|∗|un|2|v|2 + |un − u|2|un + u|2|un|∗|v|∗
+ |un − u|2|v|2|u|2∗ + |un − u|∗|v|∗|u|22

≤ K‖un − u‖X‖v‖X (2.10)

for a suitable some K > 0, independent of v. Hence ‖V ′
1(un) − V ′

1(u)‖ ≤ K‖un − u‖X and thus V1 is continuously 
differentiable on X. Moreover V ′

1(u)v = 4B1(u
2, uv) holds.

Let un be a sequence on L8/3(R2) converging to some u ∈ L8/3(R2) in L8/3(R2). Now we evaluate∣∣V2(un) − V2(u)
∣∣ ≤

∫ ∫
R2×R2

log

(
1 + 1

|x − y|
)

u2
n(x)

∣∣u2
n(y) − u2(y)

∣∣dxdy

+
∫ ∫
R2×R2

log

(
1 + 1

|x − y|
)∣∣u2

n(x) − u2(x)
∣∣u2(y)dxdy

≤
∫ ∫
R2×R2

1

|x − y|u
2
n(x)

∣∣un(y) − u(y)
∣∣∣∣un(y) + u(y)

∣∣

+
∫ ∫
R2×R2

1

|x − y|
∣∣un(x) − u(x)

∣∣∣∣un(x) + u(x)
∣∣u2(y)dxdy

≤ C|un − u|8/3|un + u|8/3|un|28/3 + |un − u|8/3|un + u|8/3|u|28/3

≤ C|un − u|8/3
[(|un|8/3 + |u|8/3

)|un|28/3 + (|u|8/3 + |u|8/3
)|u|28/3

]
≤ C|un − u|8/3

(|un|8/3 + |u|8/3
)(|un|28/3 + |u|28/3

)
. (2.11)

From (2.11) we derive that if un tends to u in L8/3 as n → ∞, then V2(un) tends to V2(u) as n → ∞. Hence V2 is 
continuous on L

8
3 (R2). For any v ∈ L8/3(R2) the Gateaux derivative of V2 at u ∈ L8/3(R2) along v is given by

V ′
2(u)v = 4

∫ ∫
2 2

log

(
1 + 1

|x − y|
)

u2(x)u(y)v(y)dxdy.
R ×R
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Since ∣∣V ′
2(u)v

∣∣ ≤ 4
∫ ∫
R2×R2

1

|x − y|u
2(x)

∣∣u(y)
∣∣∣∣v(y)

∣∣
≤ 4C0|u2|4/3|uv|4/3 ≤ 4C0|u|38/3|v|8/3 (2.12)

we deduce ‖V ′
2(u)‖ ≤ K|u|38/3 for any u ∈ L8/3(R2).

Now we prove that V2 is continuously differentiable on L8/3(R2). Suppose that un tends to u in L8/3(R2). It 
follows that un is bounded and for any v ∈ L8/3(R2)

|V ′
2(un)v − V ′

2(u)v|
4

=
∫ ∫
R2×R2

log

(
1 + 1

|x − y|
)(

u2
n(x)un(y) − u2(x)u(y)

)
v(y)dxdy

=
∫ ∫
R2×R2

log

(
1 + 1

|x − y|
)(

u2
n(x) − u2(x)

)
un(y)v(y)dxdy

+
∫ ∫
R2×R2

1

|x − y|
∣∣un(y) − u(y)

∣∣u2(x)
∣∣v(y)

∣∣dxdy

≤
∫ ∫
R2×R2

1

|x − y|
∣∣un(x) − u(x)

∣∣∣∣un(x) + u(x)
∣∣∣∣un(y)

∣∣∣∣v(y)
∣∣dxdy

≤ C|un − u|8/3|v|8/3|u|28/3 + |un − u|8/3|un + u|8/3|un|8/3|v|8/3

= C|un − u|8/3|v|8/3
(|u|28/3 + |un + u|8/3|un|8/3

)
≤ C1|un − u|8/3|v|8/3 (2.13)

for some suitable some positive constants C, C1, independent of v. Hence ‖V ′
2(un) − V ′

2(u)‖ ≤ C1|un − u|8/3 and 
thus V2 is continuous differentiable on L8/3(R2).

Furthermore we deduce that V2 is C1 on X and V ′
2(u)v = 4B2(u

2, uv) holds.
It follows that V0 = V1 − V2 is C1 on X and V ′

0(u)v = 4B0(u
2, uv) holds. We also infer that I is C1 on X.

We prove (iv). Let un be a sequence in H 1(R2) and u ∈ H 1(R2). Suppose that un weakly converges to u in H 1(R2). 
For R > 0 fixed, un strongly converges to u in L2(BR) and

lim
n→∞

∫ ∫
BR(0)×BR(0)

log
(
1 + |x − y|)u2

n(x)u2
n(y)dxdy =

∫ ∫
BR(0)×BR(0)

log
(
1 + |x − y|)u2(x)u2(y)dxdy.

It follows that

lim inf
n→∞ V1(un) ≥

∫ ∫
BR(0)×BR(0)

log
(
1 + |x − y|)u2(x)u2(y)dxdy. (2.14)

By Monotone Convergence theorem, we derive

lim
R→∞

∫ ∫
BR(0)×BR(0)

log
(
1 + |x − y|)u2(x)u2(y)dxdy = V1(u)

and then

lim inf
n→∞ V1(un) ≥ V1(u).

We prove (v). Now let un be a sequence in X and u ∈ X. Assume that un weakly converges to u in X. It follows 
that un strongly converges to u in L8/3(R2) and thus from (ii) we have limn→∞ V2(un) = V2(u).
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Moreover un weakly converges to u in H 1(R2) and by (iv), we have lim infn→∞ V1(un) ≥ V1(u). Taking also into 
account (i), we conclude that

lim inf
n→∞ I (un) ≥ I (u).

Finally, (vi) follows from (iv) and the continuity of the functional

u �→ I (u) − 1

4
V1(u) = 1

2
‖u‖2 − 1

4
V2(u) − b

p
|u|pp

with respect to the H 1-norm. �
As a consequence of 2.2(ii), we find that

I ′(u)v = 〈u,v〉 + B0
(
u2, uv

) − b

∫
R2

|u|p−2uv dx for u,v ∈ X, (2.15)

so u ∈ X is a critical point of I if and only if it is a weak solution of (1.5) in the sense that the RHS of (2.15) vanishes 
for every v ∈ X. Moreover, we have the following regularity result.

Proposition 2.3. Let u ∈ X be a weak solution of (1.5), i.e., a critical point of I . Then u ∈ W 2,p(R2) for every p ≥ 1, 
and u is a strong solution of (1.5). Moreover, we have:

(i) |u(x)|eα|x| → 0 as |x| → ∞ for every α > 0.
(ii) The function w : R2 →R, w(x) = ∫

R2 log |x − y|u2(y) dy is of class C3 on R2 and satisfies

�w = u2 in R
2, w(x) − |u|22 log |x| → 0 as |x| → ∞.

Furthermore, if a is Hölder continuous, then u ∈ C2(R2) is a classical solution of (1.5).

Proof. We first show that the function w defined in (ii) is locally bounded and has the asserted asymptotics. If |x| ≤ 1, 
we have∣∣w(x)

∣∣ ≤
∫

B2(x)

∣∣log |x − y|∣∣u2(y) dy +
∫

R2\B2(x)

log |x − y|u2(y) dy, (2.16)

Since 1 ≤ |x − y| ≤ 1 + |y| for y ∈R
2 \ B2(x), we find that∫

R2\B2(x)

log |x − y|u2(y) dy ≤ ‖u‖2
X.

Moreover, by Young’s inequality and Sobolev embeddings, we have∫
B2(x)

∣∣log |x − y|∣∣u2(y) dy ≤
( ∫
B2(0)

∣∣log |y|∣∣2
dy

)1/2

‖u‖2
L4(B2(x))

≤ c0‖u‖2
X, (2.17)

where c0 > 0 is a constant. Hence (2.16) implies that w ∈ L∞(B1(0)). Next, we consider x ∈ R
2 with |x| ≥ 1, and we 

note that

w(x) − |u|22 log |x| =
∫
R2

h(x, y)u2(y) dy with h(x, y) = log |x − y| − log |x| = log
|x − y|

|x| .

Note that h(x, y) → 0 as |x| → ∞ for every y ∈ R
2. Moreover,

log
1 ≤ h(x, y)1{|y−x|≥ 1 }(y) ≤ log

(
1 + |y|) for all x, y ∈ R

2 with |x| ≥ 1.

2 2



S. Cingolani, T. Weth / Ann. I. H. Poincaré – AN 33 (2016) 169–197 179
Since the functions [log 1
2 ]u2 and log(1 + | · |)u2 are in L1(R2), Lebesgue’s Theorem implies that

∫
|y−x|≥ 1

2

h(x, y)u2(y) dy → 0 as |x| → ∞. (2.18)

Moreover, since u ∈ X, we have

0 ≤ log |x|
∫

|y−x|≤ 1
2

u2(y) dy ≤
∫

|y|≥ |x|
2

log
(
2
[
1 + |y|])u2(y) dy → 0 as |x| → ∞,

and, similarly as in (2.17),∫
|y−x|≤ 1

2

∣∣log |x − y|∣∣u2(y) dy ≤ c1‖u‖2
L4(B 1

2
(x))

→ 0 as |x| → ∞

with a constant c1 > 0. Combining these estimates with (2.18), we conclude that∫
R2

h(x, y)u2(y) dy → 0 as |x| → ∞.

and thus the asymptotics in (ii) are proved. By Agmon’s Theorem (see [2]), it follows that u satisfies (i), and elliptic 
regularity theory then yields that u ∈ W 2,p(R2) for every p ∈ [1, ∞), and that u is a strong solution of (1.5). Moreover, 
u ∈ C

1,β

loc (R2) for all β ∈ (0, 1) by Sobolev embeddings. Hence elliptic regularity implies that w ∈ C
3,β

loc (R2) satisfies 
�w = u2.

Finally, if a is Hölder continuous, then u satisfies an equation of the form −�u = f with (locally) Hölder contin-
uous f : R2 →R, so u ∈ C2(R2) by elliptic regularity. �

We add some observations on the functional geometry of I .

Lemma 2.4. There exists α > 0 such that

inf
{
I (u) : u ∈ X : ‖u‖ = β

}
> 0 for 0 < β ≤ α (2.19)

and

inf
{
I ′(u)u : u ∈ X : ‖u‖ = β

}
> 0 for 0 < β ≤ α. (2.20)

Proof. By (2.2) and Sobolev embeddings we have

I (u) ≥ ‖u‖2

2
− V2(u)

4
− b

p
|u|pp ≥ ‖u‖2

2
− C0

4
|u|48

3
− b

p
|u|pp

≥ 1

2

(‖u‖2 − C1‖u‖4 − C2‖u‖p
) = ‖u‖2

2

(
1 − C1‖u‖2 − C2‖u‖p−2)

for u ∈ X with constants C1, C2 > 0. This readily implies that (2.19) holds for α > 0 sufficiently small.
Since

I ′(u)(u) = ‖u‖2 + V0(u) − b|u|pp ≥ ‖u‖2 − V2(u) − b|u|pp
for u ∈ X, a similar estimate shows that (2.20) holds for α > 0 sufficiently small. �
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Lemma 2.5. Let u ∈ X \ {0}. Then the function ϕu :R → R, ϕu(t) = I (tu) is even and has the following properties.

(i) If

V0(u) − b|u|44 < 0 in case p = 4 and V0(u) < 0 or b > 0 in case p > 4, (2.21)

then there exists a unique tu ∈ (0, ∞) such that ϕ′
u > 0 on (0, tu) and ϕ′

u < 0 on (tu, ∞). Moreover, ϕu(t) → −∞
as t → ∞.

(ii) If (2.21) does not hold, then ϕ′
u > 0 on (0, ∞), and ϕu(t) → ∞ as t → ∞.

Proof. The assertions follow easily from the fact that

ϕ′
u(t)

t
= ‖u‖2 + t2V0(u) − btp−2|u|pp for t > 0. �

We also need the following continuity property of the bilinear form B1.

Lemma 2.6. Let (un)n, (vn)n, (wn)n be bounded sequences in X such that un → u weakly in X. Then, for every z ∈ X, 
we have B1(vnwn, z(un − u)) → 0 as n → ∞.

Proof. We put c1 := supn∈N |vn|2|wn|2 and c2 := supn∈N |vn|∗|wn|∗. Then c1, c2 < ∞ by assumption. Using (2.3)
again, we estimate∣∣B1

(
vnwn, z(un − u)

)∣∣ ≤ |vn|2|wn|2
∫
R2

log
(
1 + |x|)∣∣z(x)

∣∣∣∣un(x) − u(x)
∣∣dx + |vn|∗|wn|∗|z|2|un − u|2

≤ c1

∫
R2

log
(
1 + |x|)∣∣z(x)

∣∣∣∣un(x) − u(x)
∣∣dx + o(1) (2.22)

as n → ∞, since un → u strongly in L2(R2) by Lemma 2.2(i). For fixed R > 0, we have∫
R2

log
(
1 + |x|)∣∣z(x)

∣∣∣∣un(x) − u(x)
∣∣dx = fn(R) + gn(R)

with

fn(R) :=
∫

BR(0)

log
(
1 + |x|)∣∣z(x)

∣∣∣∣un(x) − u(x)
∣∣dx ≤ log(1 + R)|z|2|un − u|2 → 0 (2.23)

as n → ∞ and

gn(R) :=
∫

R2\BR(0)

log
(
1 + |x|)∣∣z(x)

∣∣∣∣un(x) − u(x)
∣∣dx

≤
( ∫
R2\BR(0)

log
(
1 + |x|)∣∣z(x)

∣∣2
dx

) 1
2
(∫
R2

log
(
1 + |x|)|un − u|2 dx

) 1
2 ≤ h(R), (2.24)

where

h(R) :=
( ∫
R2\BR(0)

log
(
1 + |x|)∣∣z(x)

∣∣2
dx

) 1
2

sup
n∈N

(|un|∗ + |u|∗
) → 0 as R → ∞. (2.25)

Combining (2.22), (2.23) and (2.24), we find that

lim sup
n→∞

∣∣B1
(
vnwn, z(un − u)

)∣∣ ≤ c1h(R) for every R > 0

and therefore |B1(vnwn, z(un − u))| → 0 as n → ∞ by (2.25). �
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3. A compactness condition

In the following, we assume that

a :R2 → (0,∞) is continuous and Z
2-periodic. (3.1)

Then the functional I is invariant under translations with respect to Z2. In the following, we fix some notation for the 
action of translation. For a function u :R2 → R and x ∈R2, we define

x ∗ u :R2 →R, [x ∗ u](y) = u(y − x) for y ∈R
2.

The main result of this section is the following.

Proposition 3.1. Let (un)n be a sequence in X such that

I (un) → d > 0 and
∥∥I ′(un)

∥∥
X′

(
1 + ‖un‖X

) → 0 as n → ∞. (3.2)

Then, after passing to a subsequence, there exist points xn ∈ Z
2, n ∈N such that

xn ∗ un → u strongly in X as n → ∞
for some nonzero critical point u ∈ X of I .

The remainder of this section will be occupied with the proof of Proposition 3.1. So we assume from now on that 
we are given a sequence (un)n ⊂ X satisfying (3.2).

Lemma 3.2. If (tn)n is a bounded sequence in [0, ∞), then

I (tnun) ≤ I (un) + o(1) as n → ∞. (3.3)

Moreover, if tn → 0 as n → ∞, then

lim inf
n→∞ I (tnun) ≥ 0. (3.4)

Proof. We have

I (tnun) − I (un) = t2
n − 1

2
‖un‖2 + t4

n − 1

4
V0(un) − b

t
p
n − 1

p
|un|pp

and

V0(un) = I ′(un)(un) + b|un|pp − ‖un‖2 = o(1) + b|un|pp − ‖un‖2 as n → ∞, (3.5)

so that

I (tnun) − I (un) = −
(

t4
n − 1

4
− t2

n − 1

2

)
‖un‖2 − b

(
t
p
n − 1

p
− t4

n − 1

4

)
|un|pp + o(1)

= − (t2
n − 1)2

4
‖un‖2 − b

p

(
t
p
n − p

4
t4
n + p

4
− 1

)
|un|pp + o(1)

≤ o(1) as n → ∞,

where the last step follows from the fact that the map t �→ tp − p
4 t4 + p

4 − 1 is nonnegative on [0, ∞) since p ≥ 4
(with global minimum 0 attained at t = 1). This shows (3.3). If moreover tn → 0 as n → ∞, then we have, using (3.5)
again

I (tnun) =
(

t2
n

2
− t4

n

4

)
‖un‖2 + b

(
t4
n

4
− t

p
n

p

)
|un|p + o(1) ≥ o(1)

as n → ∞. Hence (3.4) holds. �
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Lemma 3.3. The sequence (un)n is bounded in H 1(R2).

Proof. Suppose by contradiction that, after passing to a subsequence,

‖un‖ → ∞ as n → ∞. (3.6)

Put vn := un‖un‖ for n ∈N, so that ‖vn‖ = 1 for all n. We claim that

inf
n∈N sup

x∈Z2

∫
B2(x)

v2
n(y) dy > 0. (3.7)

Suppose by contradiction that this is false. Then, after passing to a subsequence, vn → 0 in Ls(R2) for every s > 2 by 
Lions’ Lemma, see e.g. [33], and thus, by Lemma 2.2(iii),

V2(tvn) → 0 and |tun|p → 0 as n → ∞ for every t ≥ 0.

Hence

I (tvn) = t2

2
‖vn‖2 + t4

4
V1(tvn) + o(1) ≥ t2

2
+ o(1) for every t ≥ 0

as n → ∞, whereas, on the other hand,

I (tvn) = I

(
t

‖un‖un

)
≤ I (un) + o(1) = d + o(1) as n → ∞ for every t ≥ 0 (3.8)

by Lemma 3.2. This is a contradiction for t >
√

2d , so we conclude that (3.7) holds. Thus there exists a sequence of 
points xn ∈ Z

2, n ∈N such that, after passing to a subsequence, the sequence of the functions

wn := xn ∗ vn ∈ X, n ∈N

converges weakly in H 1(R2) to some nonzero function w ∈ H 1(R2). Passing to a subsequence again if necessary, we 
may also assume that wn → w pointwise a.e. on R2. Since, by (3.8), we have I (wn) = I (vn) ≤ d + o(1) as n → ∞, 
we find that

V1(wn) = I (wn) − 1

2
+ V2(wn) + b

p
|wn|pp ≤ C for all n ∈N (3.9)

with a constant C > 0. We now distinguish two cases:
Case 1: b > 0 and p > 4. In this case we estimate, using (3.9), that

I (tvn) = I (twn) = t2

2
+ t4

4

(
V1(wn) − V2(wn)

) − b
tp

p
|wn|pp

≤ t2

2
+ t4

4
C − b

tp

p
|w|pp + o(1),

so that, since b > 0 and p > 4, there exists n0 ∈ N and t0 > 0 such that

I

(
t0

‖un‖un

)
= I (t0vn) ≤ −1 for n ≥ n0. (3.10)

Since t0‖un‖ → 0 as n → ∞, (3.10) contradicts (3.4).

Case 2: b = 0 or p = 4. In this case we have

I (tvn) = I (twn) = t2

2
+ t4

4
ρn for t ≥ 0 (3.11)

with ρn := V0(wn) − b
p
|wn|pp for n ∈N. We claim that

ρ := lim supρn < 0. (3.12)

n→∞
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Indeed, if, by contradiction, lim infn→∞ ρn ≥ 0 after passing to a subsequence, then Lemma 3.2 and (3.11), applied 
with t1 = √

4d imply that

d + o(1) = I (un) ≥ I (t1vn) + o(1) ≥ t2
1

2
+ o(1) = 2d + o(1) as n → ∞,

a contradiction. Hence (3.12) holds, and thus (3.11) implies that there exists n0 ∈ N and t0 > 0 such that (3.10) also 
holds in this case. Again, we arrive at a contradiction to (3.4).

Since in both cases we reached a contradiction, we conclude that the sequence (un)n is bounded in H 1(R2), as 
claimed. �
Proof of Proposition 3.1 (completed). We first show that

lim inf
n∈N sup

x∈Z2

∫
B2(x)

u2
n(y) dy > 0. (3.13)

Suppose by contradiction that (3.13) is false. Since the sequence (un)n is bounded in H 1(R2), it then follows from 
Lions’ Lemma (see e.g. [33]) that, after passing to a subsequence, un → 0 in Ls(R2) for every s > 2, and thus, by 
(2.2) and (3.2),

‖un‖2 + V1(un) = I ′(un)un + V2(un) + b|un|pp → 0 as n → ∞,

so that ‖un‖2 → 0, V1(un) → 0 and therefore

I (un) = ‖un‖2

2
+ 1

4

(
V1(un) − V2(un)

) − b

p
|un|pp → 0 as n → ∞,

contradicting the assumption that I (un) → d 	= 0. Hence (3.13) holds. Thus there exists a sequence of points xn ∈ Z
2, 

n ∈N such that, after passing to a subsequence, the sequence of the functions

ũn := xn ∗ un ∈ X, n ∈N,

converges weakly in H 1(R2) to some function u ∈ H 1(R2) \ {0}. We may also assume that ũn → u pointwise almost 
everywhere in R2. Moreover, we have, invoking (3.5) again, that

B1
(
ũ2

n, ũ
2
n

) = V1(ũn) = V1(un) = o(1) + V2(un) + b|un|pp − ‖un‖2,

and the RHS of this inequality remains bounded in n. Consequently, Lemma 2.1 implies that |ũn|∗ remains bounded in 
n, so that the sequence (ũn)n is bounded in X. We may thus assume, passing to a subsequence again if necessary, that 
ũn ⇀ u weakly in X, so that u ∈ X. It then follows by Lemma 2.2(i) that ũn → u strongly in Ls(R2) for s ∈ [2, ∞). 
Next we claim that

I ′(ũn)(ũn − u) → 0 as n → ∞. (3.14)

Indeed, we have∣∣I ′(ũn)(ũn − u)
∣∣ = ∣∣I ′(un)

(
un − (−xn) ∗ u

)∣∣ ≤ ∥∥I ′(un)
∥∥

X′
(‖un‖X + ∥∥(−xn) ∗ u

∥∥
X

)
(3.15)

for every n. Moreover, it is easy to see that

|un|∗ =
∫
R2

log
(
1 + |x − xn|

)
ũ2

n dx ≥ c1 log
(
1 + |xn|

)
for all n

with a constant c1 > 0 and∣∣(−xn) ∗ u
∣∣∗ =

∫
R2

log
(
1 + |x − xn|

)
u2 dx ≤ c2 log

(
1 + |xn|

)
for all n

with a constant c2 > 0. Since moreover ‖un‖ and ‖(−xn) ∗ u‖ are bounded in n, there exists a constant c3 > 0 such 
that
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∥∥(−xn) ∗ u
∥∥

X
≤ c3‖un‖X for all n. (3.16)

Hence (3.15) implies that∣∣I ′(ũn)(ũn − u)
∣∣ ≤ (1 + c3)

∥∥I ′(un)
∥∥

X′ ‖un‖X → 0 as n → ∞,

as claimed in (3.14). Using (3.14), we find that

o(1) = I ′(ũn)(ũn − u)

= o(1) + ‖ũn‖2 − ‖u‖2 + 1

4
V ′(ũn)(ũn − u) − b

∫
R2

|ũn|p−2ũn(ũn − u)dx

= o(1) + ‖ũn‖2 − ‖u‖2 + 1

4

[
V ′

1(ũn)(ũn − u) − V ′
2(ũn)(ũn − u)

]
,

where∣∣∣∣1

4
V ′

2(ũn)(ũn − u)

∣∣∣∣ = ∣∣B2
(
ũ2

n, ũn(ũn − u)
)∣∣ ≤ |ũn|38

3
|ũn − u| 8

3
→ 0

as n → ∞ and

1

4
V ′

1(ũn)(ũn − u) = B1
(
ũ2

n, ũn(ũn − u)
) = B1

(
ũ2

n, (ũn − u)2) + B1
(
ũ2

n,u(ũn − u)
)

with

B1
(
ũ2

n,u(ũn − u)
) → 0 as n → ∞

by Lemma 2.6. Combining these estimates, we obtain that

o(1) = ‖ũn‖2 − ‖u‖2 + B1
(
ũ2

n, (ũn − u)2) + o(1) ≥ ‖ũn‖2 − ‖u‖2 + o(1) ≥ o(1) as n → ∞,

which implies that ‖ũn‖ → ‖u‖ and B1(ũ
2
n, (ũn − u)2) → 0 as n → ∞. Hence ‖ũn − ũ‖ → 0 and, by Lemma 2.1, 

|ũn − ũ|∗ → 0 as n → ∞. We thus conclude that ‖ũn − u‖X → 0 as n → ∞, as claimed.
We still need to show that I ′(u) = 0. Let v ∈ X. Then we have∥∥(−xn) ∗ v

∥∥
X

≤ c4‖un‖X for all n with a constant c4 > 0

by the same argument which leads to (3.16). Moreover, I ′(u)v = limn→∞ I ′(ũn)v, where∣∣I ′(ũn)v
∣∣ = ∣∣I ′(un)(−xn) ∗ v

∣∣ ≤ ∥∥I ′(un)
∥∥

X

∥∥(−xn) ∗ v
∥∥

X
≤ c4

∥∥I ′(un)
∥∥

X
‖un‖X → 0

as n → ∞. Hence I ′(u)v = 0, and the proof is finished. �
4. The periodic setting

In this section, we will complete the proof of Theorem 1.1. As in the last section, we assume that a : R2 → (0, ∞)

is continuous and Z2-periodic. For c > 0 we put

Kc := {
u ∈ X : I ′(u) = 0, I (u) = c

}
.

Moreover, for ρ > 0 we also consider the set

Ac,ρ := {
u ∈ X : ‖u − v‖ ≤ ρ for some v ∈ Kc

}
. (4.1)

We note that Ac,ρ is closed in X and in H 1(R2). Indeed, the closedness in H 1(R2) follows easily from Proposition 3.1. 
We also note that Ac,ρ is symmetric with respect to the reflection u �→ −u and invariant under Z2-translations for every 
c ∈ R, ρ > 0. In the following, γ (A) ∈ N ∪ {0, ∞} denotes the Krasnoselski genus of a closed and symmetric subset 
A ⊂ X (defined with respect to continuity in ‖ · ‖X), see e.g. [31, Chapter II.5] for the definition of γ . The following 
finiteness property is a key step in the proof of Theorem 1.1.
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Proposition 4.1. Let c > 0. Then there exists ρ0 = ρ0(c) > 0 such that γ (Ac,ρ) < ∞ for ρ ∈ (0, ρ0).

Proof. We fix a continuous map

β : L2(
R

2) \ {0} →R
2

which is equivariant under Z2-translations, i.e.,

β(x ∗ u) = x + β(u) for x ∈R
2 and u ∈ L2(

R
2) \ {0}.

We also require that β(−u) = β(u) for every u ∈ L2(R2) \ {0}. A map with these properties has been constructed 
independently in [10] and [5], and in [5] it is called generalized barycenter map. We also put

K̃c := {
u ∈ Kc : β(u) ∈ [−4,4]2}.

We first show that

K̃c is compact in X. (4.2)

To prove this, let un ∈ K̃c , n ∈ N be arbitrary. By Proposition 3.1, there exists a sequence (xn)n ⊂ R
2 such that, after 

passing to a subsequence,

wn := xn ∗ un → u ∈ Kc with respect to ‖ · ‖X as n → ∞.

Consequently,

xn + β(un) = β(wn) → β(u) as n → ∞.

Since β(un) ∈ [−4, 4]2 for all n, this implies that the sequence (xn)n is bounded in R2, so that xn → x ∈ R
2 after 

passing to a subsequence. Consequently,

un → u0 := (−x) ∗ u with respect to ‖ · ‖X as n → ∞.

Indeed, although ‖ · ‖X is not invariant under Z2-translations, we still have∥∥un − (−x) ∗ u
∥∥

X
≤ ∥∥un − (−xn) ∗ u

∥∥
X

+ ∥∥(−xn) ∗ u − (−x) ∗ u
∥∥

X
≤ C‖xn ∗ un − u‖X + o(1) = o(1)

as n → ∞ with a constant C > 0, since the sequence (xn)n ⊂R
2 is bounded. Moreover,

β(u0) = lim
n→∞β(un) ∈ [−4,4]2,

so that u0 ∈ K̃c . Hence (4.2) is proved.
By (4.2) and a standard result (see e.g. [31, Chapter II.5]), we have k := γ (K̃c) < ∞, hence there exists an odd 

and continuous map g0 : K̃c → R
k \ {0}. A priori, g0 is only continuous with respect to ‖ · ‖X , but it easily follows 

from the compactness of K̃c in X that g0 is also continuous with respect to ‖ · ‖. By Tietze’s extension theorem, we 
may extend g0 to an odd and continuous map g : H 1(R2) → R

k (continuous with respect to ‖ · ‖). Since K̃c is also 
compact in H 1(R2), there exists ρ > 0 such that

g(u) 	= 0 for every u ∈ Uρ, (4.3)

where

Uρ := {
u ∈ H 1(

R
2) : ‖u − v‖ ≤ ρ for some v ∈ K̃c

}
.

In the following, we let [·] denote the Gauss bracket, i.e.

[·] :R→ Z, [s] := max{n ∈ Z : n ≤ s}.
We also consider [·] as a map from R2 → Z

2, defining[
(x, y)

] = ([x], [y]) ∈ Z
2 for (x, y) ∈R

2.
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Let

L1 :=
{
u ∈ L2(

R
2) \ {0} : ∣∣β(u) − [

β(u)
]∣∣∞ ≤ 1

2

}

where |x|∞ := max{|x1|, |x2|} for x ∈R
2. Then L1 is invariant under Z2-translations, i.e.

q ∗ L1 = L1 for every q ∈ Z
2.

Moreover, it is easy to see that the map

h1 : L1 → L1, h1(u) = (−[
β(u)

]) ∗ u

is an isometry with respect to ‖ · ‖ which is odd and invariant under Z2-translations, i.e.

h1(q ∗ u) = h1(u) = −h1(−u) for every u ∈ L1, q ∈ Z
2.

We also put

a2 :=
(

1

2
,0

)
, a3 :=

(
0,

1

2

)
, a4 :=

(
1

2
,

1

2

)
∈R

2

and define the sets

Li = ai ∗ L1 ⊂ L2(
R

2) \ {0} for i = 2,3,4.

Then, by construction,

L2(
R

2) \ {0} ⊂
4⋃

i=1

Li.

We define the maps hi : Li → Li , i = 2, 3, 4 by

hi(u) = ai ∗ [
h1

(
(−ai) ∗ u

)]
for u ∈ Li.

These maps are also isometries with respect to ‖ · ‖, and they are odd and invariant under translations. Moreover, for 
every i ∈ 1, . . . , 4 and u ∈ Li we have β(hi(u)) ∈ [0, 1]2. We now consider the sets

Ai := h−1
i (Uρ) ⊂ Li for i = 1, . . . ,4.

Then the sets Ai are closed in H 1(R2), symmetric and invariant under Z2-translations for i = 1, . . . , 4. Let A :=⋃4
i=1 Ai . Using (4.3) and standard arguments in the context of the Krasnoselski genus, one may construct an odd map

ĝ : A → R
4k \ {0}

which is continuous with respect to ‖ · ‖. It remains to prove that

Ac,ρ ⊂ A for ρ > 0 sufficiently small. (4.4)

Once this is established, the restriction of the map ĝ to Ac,ρ is odd and continuous with respect to ‖ · ‖X , and thus it 
follows that γ (Ac,ρ) ≤ 4k.

To prove (4.4), we argue by contradiction, assuming that Ac,ρ 	⊂ A for every ρ > 0. Then there exists

un ∈ A
c, 1

n
\ A for every n ∈N. (4.5)

Moreover, there exist vn ∈ Kc such that ‖un−vn‖ ≤ 1
n

for every n. Without loss, we may assume that un ∈ L1 for every 
n ∈N. Moreover, by the translation invariance of L1, Kc and statement (4.5), we may assume that β(vn) ∈ [0, 1]2 for 
every n ∈ N, so in particular vn ∈ K̃c for every n. By compactness of K̃c, we may pass to a subsequence such that 
‖vn − v‖ → 0 as n → ∞ for some v ∈ K̃c with β(v) ∈ [0, 1]2. Since also ‖un − v‖ → 0 as n → ∞, it follows that 
β(un) ∈ [−2, 2]2 for n sufficiently large. Consequently,

wn := (−[
β(un)

]) ∗ vn ∈ K̃c for n sufficiently large,
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whereas ‖h1(un) − wn‖ = ‖un − vn‖ → 0 as n → ∞. Hence h1(un) ∈ Uρ for n sufficiently large, which implies that 
un ∈ A1 ⊂ A for n sufficiently large. This contradicts (4.5). Hence (4.4) follows, and the proof is finished. �

Next we recall the notion of relative genus.

Definition 4.2. Let D ⊂ Y be closed symmetric subsets of X. We define the genus of Y relative to D, denoted γD(Y ), 
as the smallest number k such that Y can be covered by closed and symmetric subsets U, V with the following 
properties:

(i) D ⊂ U , and there exists an odd continuous map χ : U → D such that χ(u) = u for every u ∈ D.
(ii) γ (V ) ≤ k.

If no such covering exists we set γD(Y ) := ∞.

The following properties are easily verified (see e.g. [14, Proposition 3.4] for similar statements); we include the 
proof for the convenience of the reader.

Lemma 4.3. Let D, Y and Z be closed symmetric subsets of X with D ⊂ Y . Then we have:

(i) (Subadditivity) γD(Y ∪ Z) ≤ γD(Y ) + γ (Z).
(ii) If D ⊂ Z, and if there exists an odd continuous map ϕ : Y → Z with ϕ(u) = u for every u ∈ D, then γD(Y ) ≤

γD(Z).

Note in particular that (ii) implies the monotonicity property γD(Y ) ≤ γD(Z) if D ⊂ Y ⊂ Z.

Proof. (i) By definition of γD(Y ), there exist closed and symmetric sets U, V ⊂ X with D ⊂ U , Y ⊂ U ∪V , γ (V ) =
γD(Y ) and an odd continuous map χ : U → D with χ(u) = u for every u ∈ D. Since V ∪ Z is also closed and 
symmetric and Y ∪ Z ⊂ U ∪ (V ∪ Z), we conclude that γD(Y ∪ Z) ≤ γ (V ∪ Z) ≤ γ (V ) + γ (Z) = γD(Y ) + γ (Z) by 
the subadditivity of γ (see [31, Chapter II.5]).

(ii) By definition of γD(Z), there exist closed and symmetric sets U, V ⊂ X with D ⊂ U , Z ⊂ U ∪ V , γ (V ) =
γD(Z) and an odd continuous map χ : U → D with χ(u) = u for every u ∈ D. We then put Ũ = ϕ−1(U ∩ Z) and 
Ṽ = ϕ−1(V ∩Z), so that Y ⊂ Ũ ∪ Ṽ . Since the map χ̃ = χ ◦ϕ : Ũ → D is odd and continuous and satisfies χ̃(u) = u

for every u ∈ D, it follows from the definition of γ that γD(Y ) ≤ γ (Ṽ ) ≤ γ (V ) = γD(Z). �
In the following, we put

I c := {
u ∈ X : I (u) ≤ c

}
for c ∈R and D := I 0.

Moreover we define

ck := inf
{
c ≥ 0 : γD

(
I c

) ≥ k
}

for k ∈N.

Lemma 4.4. As in Theorem 1.1, let N := {u ∈ X \ {0} : I ′(u)u = 0}. Then we have

c1 = inf
N

I = inf
u∈X\{0} sup

t∈R
I (tu) > 0, (4.6)

Proof. The second equality in (4.6) is an easy consequence of Lemma 2.5, since u ∈N if and only if ϕ′
u(1) = 0. The 

last inequality is an immediate consequence of Lemma 2.4.
Next we show that c1 ≥ infN I . We argue by contradiction, assuming that c1 < infN I , and we fix c ∈ (c1, infN I ). 

We also define N± := {u ∈ X : ±I ′(u)u > 0} and the function

τ : N− → [1,∞), τ (u) := inf
{
t ≥ 1 : I (tu) ≤ 0

}
.
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It follows from Lemma 2.5(i) that τ is a continuous (and even) function. Next we define the map

χ : I c → X, χ(u) =
{0 u = 0,

0 if u ∈N+,

τ (u)u if u ∈N−.

Since c < infN I , χ is well-defined, and it is odd and continuous by (2.20) and the properties of τ . Since we also have 
χ |D = id |D , we conclude that γD(I c) = 0. Since c > c1, this contradicts the definition of c1.

It remains to prove that c1 ≤ infu∈X\{0} supt∈R I (tu). For this let u ∈ X \ {0}, such that supW I < ∞ for W := Ru. 
It then follows from Lemma 2.5 that there exists R > 0 such that {v ∈ W : ‖v‖ ≥ R} ⊂ D. We need to show that c1 ≤
supW I , which follows immediately one we have shown that γD(W ∪ D) ≥ 1. Arguing by contradiction, we suppose 
that γD(W ∪ D) = 0, which implies that there exists an odd continuous map χ : W ∪ D → D such that χ(v) = v for 
every v ∈ D. Since χ(0) = 0 and χ(v) = v for v ∈ W with ‖v‖ ≥ R, there exists vα ∈ W with ‖χ(vα)‖ = α, where 
α > 0 is given in Lemma 2.4. Hence χ(vα) /∈ D, a contradiction. �
Lemma 4.5. We have ck < ∞ for k ∈ N.

Proof. Let W be a k-dimensional subspace of functions in X with support contained in B 1
4
(0) ⊂ R

2. Then for any 
two points x, y contained in the support of function u ∈ W we have |x − y| < 1, and this implies that V0(u) < 0 for 
every u ∈ W \ {0}. As a consequence, it is easy to deduce from Lemma 2.5 that{

u ∈ W : ‖u‖ ≥ R
} ⊂ D for some R > 0, (4.7)

and that cW := supu∈W I (u) < ∞. We claim that

γD

(
I cW

) ≥ k and therefore ck ≤ cW . (4.8)

Indeed, suppose the opposite; then there exist closed and symmetric subsets U, V ⊂ X with I cW ⊂ U ∪ V and such 
that

(i) D ⊂ U , and there exists an odd continuous map χ : U → D such that χ(u) = u for every u ∈ D;
(ii) γ (V ) ≤ k − 1.

By Tietze’s Theorem we may extend χ to an odd and continuous map X → X (still denoted by χ ). We define

O := {
u ∈ W : ∥∥χ(u)

∥∥ < α
}
,

where α is given by Lemma 2.4. By (4.7) we see that O is a bounded and symmetric neighborhood of 0 in W . Hence 
γ (∂WO) = k by the Borsuk–Ulam Theorem, where ∂WO denotes the relative boundary of O in W . We note that 
∂WO ∩ U = ∅, since ‖χ(u)‖ = α for every u ∈ ∂WO and χ(u) ∈ D for every u ∈ U . Consequently, ∂WO ⊂ V and 
therefore

k = γ (∂WO) ≤ γ (V ) = k − 1,

a contradiction. This shows (4.8), as required. �
We need the following deformation lemma.

Lemma 4.6. Let c > 0. Then there exists ρ1 = ρ1(c) > 0 such that the following assertions hold for ρ ∈ (0, ρ1).

(i) Ac,ρ ∩ D =∅.
(ii) There exists ε = ε(c, ρ) > 0 and an odd and continuous map ϕ : I c+ε \ Ac,ρ → I c−ε such that ϕ|D = idD .

Proof. We first show that there exists ρ1 = ρ1(c) > 0 such that (i) holds for ρ ∈ (0, ρ1). Suppose by contradiction that 
this is false; then there exists numbers ρn → 0 and un ∈ Ac,ρn ∩ D for every n ∈ N. There also exist corresponding 
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elements vn ∈ Kc such that ‖un − vn‖ ≤ ρn. Moreover, by Proposition 3.1 there exists xn ∈ Z
2, n ∈ N such that 

xn ∗ vn → v ∈ Kc with respect to ‖ · ‖X . By Z2-translation invariance, we have xn ∗ un ∈ Ac,ρn ∩ D and

‖xn ∗ un − v‖ ≤ ∥∥xn ∗ (un − vn)
∥∥ + ‖xn ∗ vn − v‖ ≤ ‖un − vn‖ + ‖xn ∗ vn − v‖ → 0 as n → ∞.

Since xn ∗ un ∈ D for every n, we then infer from Lemma 2.2(vi) that

c = I (v) ≤ lim inf
n→∞ I (xn ∗ un) ≤ 0,

contrary to our assumption. Hence there exists ρ1 = ρ1(c) > 0 such that (i) holds for ρ ∈ (0, ρ1), as claimed.
Next, we fix ρ ∈ (0, ρ1) and we consider

S := X \ Ac,ρ and S̃δ := {
u ∈ X : ‖u − v‖ ≤ δ for some v ∈ S

}
for δ > 0.

We claim that for δ > 0 sufficiently small we have∥∥I ′(u)
∥∥

X′
(
1 + ‖u‖X

) ≥ 8δ for all u ∈ S̃2δ with c − 2δ2 ≤ I (u) ≤ c + 2δ2. (4.9)

Suppose by contradiction that this is false; then there exist sequences of numbers δn > 0 and functions un ∈ S̃2δn such 
that δn → 0 as n → ∞, whereas∥∥I ′(un)

∥∥
X′

(
1 + ‖un‖X

)
< 8δn and c − 2δ2

n ≤ I (un) ≤ c + 2δ2
n for all n ∈ N.

By Proposition 3.1, there exists, after passing to a subsequence, points xn ∈ Z2, n ∈ N such that

xn ∗ un → u strongly in X as n → ∞
for some u ∈ Kc. Moreover, there exists vn ∈ S such that

‖vn − un‖ ≤ 2δn for every n ∈N.

It then follows that

‖xn ∗ vn − u‖ ≤ ‖xn ∗ vn − xn ∗ un‖ + ‖xn ∗ un − u‖ ≤ ‖vn − un‖ + ‖xn ∗ un − u‖ → 0 as n → ∞.

Since, by Z2-translation invariance, xn ∗ vn ∈ S̃δn for every n, this implies that u is contained in the closure of S with 
respect to ‖ · ‖, so that

‖u − v‖ ≥ ρ for every v ∈ Kc.

This contradicts the fact that u itself is contained in Kc. We conclude that (4.9) holds for ρ > 0 sufficiently small. 
Since ‖ · ‖ ≤ ‖ · ‖X , we may now fix δ > 0 such that

ε := δ2 <
c

2
(4.10)

and such that statement (4.9) holds with S̃2δ replaced by the subset

S2δ := {
u ∈ X : ‖u − v‖X ≤ δ for some v ∈ S

}
.

By [19, Lemma 2.6], there exists a continuous function η : [0, 1] × X → X such that

(i) η(t, u) = u if t = 0 or u /∈ I−1([c − 2ε, c + 2ε]) ∩ S2δ ;
(ii) η(1, I c+ε ∩ S) ⊂ I c−ε ;

(iii) t �→ I (η(t, u)) is nonincreasing for all u ∈ X.

An inspection of the proof of [19, Lemma 2.6] also shows that η can be constructed such that η(t, −u) = −η(t, u) for 
t ∈ [0, 1], u ∈ X since the underlying functional I is even in u. Since D ∩ I−1([c − 2ε, c + 2ε]) = ∅ by (4.10), the 
map

ϕ : I c+ε \ Ac,ρ → I c−ε, ϕ(u) = η(1, u)

has the desired properties. �
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Corollary 4.7. The values ck are critical values of the functional I .

Proof. Suppose by contradiction that Kck
=∅ for some k. Then also Ack,ρ =∅ for every ρ > 0, and thus Lemma 4.6

yields ε > 0 and an odd and continuous map η : I ck+ε → I ck−ε such that η|D = idD . This contradicts the definition 
of ck . �
Proposition 4.8. ck → ∞ as k → ∞.

Proof. Suppose by contradiction that

ck → c < ∞ as k → ∞.

By Proposition 4.1 and Lemma 4.6, there exists ρ, ε > 0 such that γ (Ac,ρ) < ∞, Ac,ρ ∩ D = ∅ and such that there 
exists an odd and continuous map ϕ : I c+ε \ Ac,ρ → I c−ε such that ϕ|D = idD . Consequently,

γD

(
I c+ε \ Ac,ρ

) ≤ γD

(
I c−ε

)
< ∞

by definition of c. Moreover, by the subadditivity property,

γD

(
I c+ε

) ≤ γD

(
I c+ε \ Ac,ρ

) + γ (Ac,ρ) < ∞,

which contradicts the fact that c + ε > ck for all k. The proof is finished. �
Proof of Theorem 1.1 (completed). By Lemma 4.5, Corollary 4.7 and Proposition 4.8, there exists a sequence of 
critical points ±uk ∈ X of I , k ∈N such that I (uk) = ck → ∞. Moreover, by Lemma 4.4, we have that

c1 = inf
N

I = inf
u∈X\{0} sup

t∈R
I (tu) > 0,

and by Corollary 4.7 this value is attained by a critical point of I (which is contained in N ).
Next, let u ∈N be an arbitrary minimizer of I |N . We show that u is a critical point of I . Suppose by contradiction 

that I ′(u)v < 0 for some v ∈ X. Since I ′ is continuous, there exists δ, ρ > 0 such that

I ′(t (u + sv)
)
v < 0 for t ∈ [1 − δ,1 + δ], s ∈ [−ρ,ρ]. (4.11)

Moreover, since I ′((1 − δ)u)u > 0 > I ′((1 + δ)u)u, there exists ŝ ∈ (0, ρ) with

I ′((1 − δ)(u + ŝv)
)
(u + ŝv) > 0 > I ′((1 + δ)(u + ŝv)

)
(u + ŝv),

which implies that t̂ (u + ŝv) ∈ N for some t̂ ∈ (1 − δ, 1 + δ). By Lemma 2.5 and (4.11), we find that

I
(
t̂ (u + ŝv)

) − I (u) ≤ I
(
t̂ (u + ŝv)

) − I (t̂u) = −
ŝ∫

0

I ′(t̂ (u + sv)
)
v ds < 0,

contradicting the fact that u is a minimizer of I |N . Hence u is a critical point of I , as claimed.
Finally, if u ∈N is a minimizer of I |N , it is easy to see that |u| ∈N is a minimizer of I |N as well, so it is a critical 

point of I by the considerations above. By Proposition 2.3, |u| ∈ W 2,p(R2) for every p ≥ 1, and −�|u| + q|u| = 0
on R2 with some function q ∈ L∞

loc(R
2). The strong maximum principle and the fact that u 	≡ 0 therefore imply that 

|u| > 0 on R2, which shows u does not change sign. �
5. The G-invariant setting

This section is devoted to the proof of Theorem 1.2. Since the proof is similar but easier than the proof of Theo-
rem 1.1, we skip some of the details. We thus assume from now on that

a is constant on R
2. (5.1)

Moreover, we let G ⊂ O(2) and τ : G → {−1, 1} satisfy the assumptions of Theorem 1.2. Our aim is to detect critical 
points of the restriction of the function I to the invariant subspace
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XG := {u ∈ X : A ∗ u = u for all A ∈ G},
where ∗ denotes the group action defined in (1.8). By the principle of symmetric criticality, any critical point of the 
restriction of I to XG (which we will denote by I as well in the following) is a critical point of I . We have the 
following compactness condition which improves Proposition 3.1 in the symmetric setting.

Proposition 5.1. Suppose that G, τ satisfy the assumptions of Theorem 1.2. Then the restriction of I to XG satisfies 
the Cerami condition at every energy level d > 0. More precisely, if (un)n is a sequence in XG satisfying

I (un) → d > 0 and
∥∥I ′(un)

∥∥
X′

G

(
1 + ‖un‖X

) → 0 as n → ∞,

then there exists a nonzero critical point u ∈ XG of I such that, after passing to a subsequence,

un → u in X as n → ∞.

Proof. The invariance of I under the action G implies that I ′(v)w = 0 for all v ∈ XG, w ∈ X⊥
G, where X⊥

G denotes 
the orthogonal complement of XG in X. Consequently, we have ‖I ′(v)‖X′

G
= ‖I ′(v)‖X′ for all v ∈ XG. Hence the 

sequence (un)n satisfies the assumption of Proposition 3.1, and thus we may pass to a subsequence such that

xn ∗ un → u0 strongly in X as n → ∞ (5.2)

for some nonzero critical point u0 ∈ X of I and a suitable sequence (xn)n ⊂ R
2. We show that the sequence (xn)n

is bounded. Suppose by contradiction that |xn| → ∞ after passing to a subsequence. We may assume that xn|xn| → z0
as n → ∞. By assumption (1.7), there exists A ∈ G with Az0 	= z0. Put yn := −xn for n ∈ N. Then we have, since 
A ∗ un = un for every n ∈N,∣∣A ∗ (yn ∗ u0) − yn ∗ u0

∣∣
2 ≤ ∣∣A ∗ (yn ∗ u0 − un)

∣∣
2 + |un − yn ∗ u0|2 = 2|yn ∗ u0 − un|2

= 2|u0 − xn ∗ un|2 → 0 as n → ∞. (5.3)

However,

∣∣A ∗ (yn ∗ u0) − yn ∗ u0
∣∣2
2 − 2|u0|22 = −2τ(A)

∫
R2

u0
(
A−1x − yn

)
u0(x − yn) dx

= −2τ(A)

∫
R2

u0
(
A−1(z − zn)

)
u0(z) dz

= −2
∫
R2

(zn ∗ v)u0 dz (5.4)

with v := A ∗ u0 and zn := Ayn − yn. Moreover, since Az0 	= z0, we find that

|zn| = |xn − Axn| = |xn|
∣∣Az0 − z0 + o(1)

∣∣ → ∞ as n → ∞,

and therefore∫
R2

(zn ∗ v)u0 dx → 0 as n → ∞.

Consequently, (5.4) implies that∣∣A ∗ (yn ∗ u0) − yn ∗ u0
∣∣
2 → 2|u0|2 	= 0,

contrary to (5.3). The contradiction shows that (xn)n is bounded, so that xn → x0 as n → ∞ after passing to a 
subsequence. Hence (5.2) implies that un → u := (−x0) ∗ u0 in X, where u is also a nonzero critical point of I . 
Moreover, u ∈ XG since XG is closed and un ∈ XG for every n ∈N. �
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As a consequence of Proposition 5.1, the sets

Kc := {
u ∈ XG : I ′(u) = 0, I (u) = c

}
c > 0

are compact and therefore satisfy γ (Kc) < ∞, where, as before, the Krasnoselski genus γ is defined with respect to 
continuity in the norm ‖ · ‖X . Setting

I c := {
u ∈ XG : I (u) ≤ c

}
for c ∈ R and D := I 0,

we have the following deformation lemma.

Lemma 5.2. Let c > 0. Then for every neighborhood U of Kc in XG with U ∩ D = ∅ there exists ε > 0 and an odd 
and continuous map ϕ : I c+ε \ U → I c−ε such that ϕ|D = idD .

Proof. Let

S := XG \ U and Sδ := {
u ∈ XG : ‖u − v‖XG

≤ δ for some v ∈ S
}

for δ > 0.

It is standard to deduce from Proposition 5.1 that there exists δ ∈ (0, 
√

c/2) such that∥∥I ′(u)
∥∥

X′
G

(
1 + ‖u‖XG

) ≥ 8δ for all u ∈ S2δ with c − 2δ2 ≤ I (u) ≤ c + 2δ2. (5.5)

Let ε := δ2. By [19, Lemma 2.6], there exists a continuous function η : [0, 1] × XG → XG such that

(i) η(t, u) = u if t = 0 or u /∈ I−1([c − 2ε, c + 2ε]) ∩ S2δ ;
(ii) η(1, I c+ε ∩ S) ⊂ I c−ε ;

(iii) t �→ I (η(t, u)) is nonincreasing for all u ∈ XG.

Moreover, η can be constructed such that η(t, −u) = −η(t, u) for t ∈ [0, 1], u ∈ XG since the underlying functional 
I is even in u. Since D ∩ I−1([c − 2ε, c + 2ε]) =∅, the map

ϕ : I c+ε \ U → I c−ε, ϕ(u) = η(1, u)

has the asserted properties. �
For closed symmetric subsets D ⊂ Y ⊂ XG we now define the relative genus γD(Y ) as in Definition 4.2, noting 

that Lemma 4.3 still holds. We then define the nondecreasing sequence of values

ck := inf
{
c ≥ 0 : γD

(
I c

) ≥ k
}
, k ∈ N.

Precisely as in the proof of Lemma 4.4, we see that

c1 := inf
NG

I = inf
u∈XG\{0} sup

t∈R
I (tu) > 0, (5.6)

where NG := {u ∈ XG \ {0} : I ′(u)u = 0}. Moreover we have

ck < ∞ for k ∈ N. (5.7)

The proof of (5.7) is similar to the one of Lemma 4.5. The only difference is that we have to choose, for given k ∈ N, 
a k-dimensional subspace W of functions in XG with support contained in B 1

4
(0) ⊂ R

2. In the case where τ ≡ 1, we 

may simply choose a space W consisting of radial C1-functions supported in B 1
4
(0). In the case where τ 	≡ 1, G is 

assumed to be finite. This implies that there exists x0 ∈ R
2 \ {0} with Ax0 	= x0 for all A ∈ G \ {id}, since the set{

x ∈R
2 : Ax = x for some A ∈ G, A 	= id

}
is a finite union of subspaces of R2 of dimension less than or equal to one. As a consequence,

Ax0 	= Bx0 for all A,B ∈ G with τ(A) = 1, τ (B) = −1. (5.8)
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Without loss, we may assume that |x0| < 1
4 . It then follows from (5.8) that there exists an open neighborhood U ⊂

B 1
4
(0) of x0 such that

A(U) ∩ B(U) =∅ for all A,B ∈ G with τ(A) = 1, τ (B) = −1. (5.9)

We may therefore pick a k-dimensional subspace W̃ of C1-functions supported in U and define

W :=
{ ∑

A∈τ−1(1)

ψ ◦ A−1 −
∑

B∈τ−1(−1)

ψ ◦ B−1 : ψ ∈ W̃

}
.

By (5.9), W is a k-dimensional subspace of XG of functions supported in B 1
4
(0). We may thus proceed as in the proof 

of Lemma 4.5 to obtain (5.7).
With the help of Lemma 5.2, we now deduce (similarly as in Corollary 4.7) that

the values ck, k ∈N, are critical values of the functional I ∈ C1(XG,R). (5.10)

We also observe that

ck → ∞ as k → ∞. (5.11)

This follows as in the proof of Proposition 4.8, with Ac,ρ replaced by an arbitrary neighborhood U of Kc with 
γ (U) < ∞ and U ∩ D =∅. The existence of such a neighborhood follows from the compactness of Kc (see e.g. [31, 
Chapter II.5]).

By combining the statements (5.6), (5.7), (5.10) and (5.11), we may now finish the proof of Theorem 1.2 by the 
same arguments as in the proof of Theorem 1.1 (see the end of Section 4). The only difference is given by the fact that 
the implication

u ∈ XG �⇒ |u| ∈ XG

is only true if τ ≡ 1, and thus the last assertion in Theorem 1.2 requires this extra assumption.

6. Symmetry and uniqueness of positive solutions

This section is concerned with the proof of Theorem 1.3. More precisely, we will prove a symmetry result in a 
slightly more general setting and deduce Theorem 1.3 afterwards. Let f :R → R be locally Lipschitz with f (0) = 0. 
We study classical solutions (u, w) of the nonlinear system{−�u = wu + f (u) in R

2,

−�w = 2πu2 in R
2,

(6.1)

subject to the conditions

u ∈ L∞(
R

2) and w(x) → −∞ as |x| → ∞. (6.2)

By Agmon’s Theorem (see [2]), (6.1) and (6.2) imply that

u(x) = o
(
e−α|x|) as |x| → ∞ for every α > 0. (6.3)

Moreover, since every semibounded harmonic function R2 →R is constant, we have

w(x) = c −
∫
R2

log |x − y|u2(y) dy for x ∈R
2 with a constant c ∈ R. (6.4)

The main result of this section is the following.

Theorem 6.1. Every classical solution (u, w) of (6.1), (6.2) with u > 0 in R2 is radially symmetric up to translation 
and strictly decreasing in the distance from the symmetry center. Moreover, if f (u) = −au with a constant a > 0, then 
(u, w) is unique up to translation.
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The proof will be given by a variant of the moving plane method. For λ ∈R, we put

Hλ := {
x ∈R

2 : x1 > λ
}
, Tλ = ∂Hλ = {

x ∈ R
2 : x1 = λ

}
.

Moreover, we let R2 → R
2, x �→ xλ denote the reflection of x at Tλ. From now on, we consider a fixed solution of 

(6.1), (6.2) with u > 0, and we set

uλ(x) = u
(
xλ

)
, wλ(x) = w

(
xλ

)
for x ∈R

2, λ ∈R.

On Hλ we define the difference functions

uλ = uλ − u, wλ = wλ − w

which satisfy the system of equations{
−�uλ + uλ = wλu

λ + (w + hλ)uλ,

−�wλ = 2π
[(

uλ
)2 − u2] = 2π

(
uλ + u

)
uλ

in Hλ (6.5)

with

hλ(x) :=
{

f (uλ(x))−f (u(x))
u(x)

+ 1, if u(x) 	= 0,

1, if u(x) = 0.

Since f is Lipschitz continuous on [0, ‖u‖L∞(R2)], there exists a constant C = C(u) > 0 such that

‖hλ‖L∞(Hλ) ≤ C for every λ ∈R. (6.6)

It follows from (6.4) that

wλ(x) =
∫
Hλ

log
|x − yλ|
|x − y|

(
uλ(y) + u(y)

)
uλ(y) dy for x ∈ Hλ. (6.7)

Since log |x−yλ|
|x−y| > 0 for every x, y ∈ Hλ, we have the implication

uλ ≥ 0 in Hλ �⇒ wλ ≥ 0 in Hλ (6.8)

for every λ ∈ R. In the following, we let v− := min{v, 0} denote the negative part of a function defined on a subset 
of R2. Note that v− is a nonpositive function with this convention. We need the following estimate:

Lemma 6.2. There exists a constant κ > 0 such that∥∥w−
λ

∥∥
L2(Hλ)

≤ κcλ

∥∥u−
λ

∥∥
L2(Hλ)

for every λ ∈ R,

where

cλ =
( ∫

Mλ

(y1 − λ)2u2(y) dy

) 1
2

and Mλ := {
x ∈ Hλ : uλ(x) < 0

}
.

Proof. We note that

0 ≤ log
|x − yλ|
|x − y| ≤ log

(
1 + |y − yλ|

|x − y|
)

≤ |y − yλ|
|x − y| = 2(y1 − λ)

|x − y| for x, y ∈ Hλ.

Since also uλ(y) < 0 implies that 0 ≤ uλ(y) ≤ u(y), we may use the integral representation (6.7) to conclude that

w−
λ (x) ≥

∫
Mλ

2(y1 − λ)

|x − y|
(
uλ(y) + u(y)

)
u−

λ (y) dy ≥ 4
∫

Mλ

(y1 − λ)

|x − y| u(y)u−
λ (y) dy

for x ∈ Hλ, so that, by the Hardy–Littlewood–Sobolev inequality,∥∥w−
λ

∥∥
L2(Hλ)

≤ κ cλ

∥∥u−
λ

∥∥
L2(Hλ)

with a constant κ > 0 independent of λ, as claimed. �
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Lemma 6.3. There exists λ̄ > 0 such that uλ ≥ 0 in Hλ for λ ≥ λ̄.

Proof. By (6.2) and (6.6), we may choose λ1 > 0 such that w+hλ ≤ 0 in Hλ for λ ≥ λ1. Multiplying the first equation 
in (6.5) by u−

λ and integrating, we may estimate with the help of Lemma 6.2

∥∥u−
λ

∥∥2
L2(Hλ)

≤ ∥∥u−
λ

∥∥2
H 1(Hλ)

=
∫
Hλ

[
wλu

λu−
λ + (w + hλ)

(
u−

λ

)2]
dx ≤

∫
Hλ

w−
λ uλu−

λ dx

≤ ∥∥w−
λ

∥∥
L2(Hλ)

∥∥uλ
∥∥

L∞(Hλ)

∥∥u−
λ

∥∥
L2(Hλ)

≤ κ cλ‖u‖L∞(R2)

∥∥u−
λ

∥∥2
L2(Hλ)

.

Since cλ → 0 as λ → ∞ by (6.3), there exists λ̄ ≥ λ1 such that

κ cλ‖u‖L∞(R2) < 1 for λ ≥ λ̄,

so that u−
λ ≡ 0 on Hλ for λ ≥ λ̄, as claimed. �

Lemma 6.4. If λ ∈R is such that uλ ≥ 0 in Hλ, then also wλ ≥ 0 on Hλ. Moreover, either uλ ≡ 0 ≡ wλ or

uλ > 0, wλ > 0 on Hλ (6.9)

and

∂u

∂x1
< 0,

∂w

∂x1
< 0 on Tλ. (6.10)

Proof. We already noted in (6.8) that uλ ≥ 0 in Hλ implies wλ ≥ 0 in Hλ. Moreover, if uλ 	≡ 0, then wλ is strictly 
positive in Hλ and

∂wλ

∂x1
= −2

∂w

∂x1
> 0 on Tλ

by the Hopf lemma. Conversely, if wλ 	≡ 0, then also uλ 	≡ 0 by (6.7), and uλ satisfies

−�uλ + (1 − w − hλ)uλ ≥ uλwλ ≥ 0 in Hλ.

Hence uλ > 0 in Hλ by the maximum principle, and

∂uλ

∂x1
= −2

∂u

∂x1
> 0 on Tλ

by the Hopf lemma. �
Lemma 6.5. Let λ ∈R. If uλ > 0 in Hλ, then there exists ε > 0 such that uμ ≥ 0 in Hμ for μ ∈ (λ − ε, λ).

Proof. Let BR := BR(0) for R > 0. By (6.2), (6.3) and (6.6), we may fix R > 1 large enough such that

w + hμ ≤ 0 in Hμ \ BR for every μ ∈ R (6.11)

and ( ∫
R2\BR

(y1 − μ)2u2(y) dy

) 1
2

<
1

κ‖u‖L∞(R2)

for every μ ∈ [λ − 1, λ], (6.12)

where κ is as in Lemma 6.2. Moreover, by (6.9), (6.10) and the continuity of u, ∂u
∂x1

, there exists 0 < ε < 1 such that

uμ > 0 in Hμ ∩ BR for μ ∈ (λ − ε,λ]. (6.13)

Arguing similarly as in the proof of Lemma 6.2 with μ ∈ (λ − ε, λ] in place of λ, we may multiply the first equation 
in (6.5) – with μ in place of λ – with u−

μ and integrate, obtaining the estimate



196 S. Cingolani, T. Weth / Ann. I. H. Poincaré – AN 33 (2016) 169–197
∥∥u−
μ

∥∥2
L2(Hμ)

≤ ∥∥u−
μ

∥∥2
H 1(Hμ)

=
∫

Hμ\BR

[
wμuμu−

μ + (w + hμ)
(
u−

μ

)2]
dx ≤

∫
Hμ\BR

w−
μ uμu−

μ dx

≤ ∥∥w−
μ

∥∥
L2(Hμ)

∥∥uμ
∥∥

L∞(Hμ)

∥∥u−
μ

∥∥
L2(Hμ)

≤ κ cμ‖u‖L∞(R2)

∥∥u−
μ

∥∥2
L2(Hμ)

. (6.14)

Here we used (6.13) in the second step, (6.11) in the third step and Lemma 6.2 in the last step. We note that (6.12) and 
(6.13) also imply that

cμ ≤
( ∫
R2\BR

(y1 − μ)2u2(y) dy

) 1
2

<
1

κ‖u‖L∞(R2)

for μ ∈ (λ − ε,λ].

Consequently, (6.14) implies that u−
μ ≡ 0 for μ ∈ (λ − ε, λ]. �

Proof of Theorem 6.1 (completed). Put

λ1 := inf{λ ∈R : uλ ≥ 0 in Hλ}
By Lemma 6.3 we have λ1 < ∞, whereas the positivity of u and (6.3) imply that λ1 > −∞. Moreover, as a conse-
quence of Lemmas 6.4 and 6.5, we have that uλ1 ≡ 0 and wλ1 ≡ 0. Repeating the same argument with x1 replaced by 
the second coordinate direction x2, we also find λ2 ∈R such that u and w are symmetric with respect to the hyperplane 
{x ∈R

2 : x2 = λ2}. Now consider λ := (λ1, λ2) ∈ R
2 and the translated functions

ũ, w̃ :R2 → R, ũ(x) = u(x − λ), w̃(x) = w(x − λ).

These functions also solve (6.1), (6.2) and satisfy

ũ(x) = ũ(−x), w̃(x) = w̃(−x) for x ∈R
2.

It is then easy to see that every symmetry hyperplane of ũ and w̃ must contain the origin. Consequently, repeating 
the moving plane procedure in an arbitrary direction in place of the x1-coordinate direction, we obtain that ũ and w̃
are symmetric with respect to any hyperplane containing zero, hence radially symmetric. The uniqueness of positive, 
radial solutions in the case where f (u) = −au with a > 0 is proved in [12, Theorem 1.1.]. �
Proof of Theorem 1.3 (completed). Let u ∈ X be a solution of (1.5) with constant a. By Proposition 2.3, u and 
the function w : R2 → R defined by (6.4) satisfy condition (6.2), and (u, w) is a classical solution of (6.1) with the 
Lipschitz continuous function f (u) = b|u|p−2u − au (here we need the assumption p ≥ 2). Consequently, the claim 
follows from Theorem 6.1. �
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