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Abstract

We prove sharp Hölder continuity and an estimate of rupture sets for sequences of solutions of the following nonlinear problem 
with negative exponent

�u = 1

up
in Ω, p > 1.

As a consequence, we prove the existence of rupture solutions with isolated ruptures in a bounded convex domain in R2.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. The setting and main results

Of concern is the following MEMS problem in a bounded domain Ω ⊂R
n

�u = u−p in Ω (1.1)

where p > 1.
Problem (1.1) arises in modeling an electrostatic Micro-Electromechanical System (MEMS) device. We refer to the 

books by Pelesko and Bernstein [18] for physical derivations and Esposito, Ghoussoub and Guo [7] for mathematical 
analysis.

Of special interest are solutions that give rise to singularities in the equation, that is, such that u ≈ 0 in some region, 
which in the physical model represents a rupture in the device. The main result of this paper is to give a sharp estimate 
on the Hölder continuity of solutions near the ruptures and estimates on Hausdorff dimensions of such rupture sets 
under natural energy assumptions.
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We now state our main results.

Theorem 1.1. Let (ui) be a sequence of positive smooth solutions to (1.1) in B2(0), satisfying

sup
i

∫
B2(0)

|∇ui |2 + u
1−p
i + u2

i = M < +∞, (1.2)

where B2(0) ⊂ R
n is the open ball of radius 2. Then:

• The functions ui are uniformly bounded in C
2

p+1 (B1);
• Up to subsequence, ui converges uniformly to u∞ in B1, strongly in H 1(B1), and u−p

i converges to u−p∞ in 
L1(B1);

• Outside {u∞ = 0}, ui converges to u∞ in any Ck norm, for any k;
• u∞ is a stationary solution of (1.1).

By a solution we mean that u ∈ H 1, u−p ∈ L1 and it satisfies (1.1) in the sense of distributions. We say a solution 
u ∈ H 1 ∩ L1−p is stationary if for any smooth vector field Y with compact support,∫ (

1

2
|∇u|2 − 1

p − 1
u1−p

)
divY − DY(∇u,∇u) = 0. (1.3)

For positive smooth solutions this condition follows from variations of the energy functional

E(u) =
∫

1

2
|∇u|2 − u1−p

p − 1

with respect to perturbations of the parametrization of the domain, that is,

d

dt
E

(
u
(
x + tY (x)

))∣∣∣∣
t=0

= 0. (1.4)

Formula (1.3) can also be obtained by multiplying (1.1) by Y · ∇u and integrating by parts. Such condition is classical 
in many works dealing with partial regularity, for example in the work Evans [8] and Bethuel [1] in obtaining partial 
regularity for harmonic maps. It also appeared in the work of Pacard [16] on partial regularity results for weak solutions 
of semilinear supercritical equations.

In harmonic map and many other problems, it is not always true that the weak limit of stationary solutions is still 
stationary. For the problem (1.1), it is also not so direct to prove that the weak limit of distributional solutions is still 
a distributional solution. This is where the uniform Hölder continuity enters into our arguments. In particular, this 
uniform Hölder continuity is crucial for the establishment of those strong convergence in the above theorem.

Next we consider the partial regularity problem for stationary solutions.

Theorem 1.2. Assume u is a C
2

p+1 continuous, stationary solution of (1.1). Then {u = 0} is a closed set with Hausdorff 
dimension no more than n − 2. Moreover, if n = 2, {u = 0} is a discrete set.

Previous estimates on the zero set of solutions include Jiang, Lin, who prove that the dimension of {u = 0} is at 
most n − 2 + 4

p+2 , for solutions u ∈ H 1, u−p ∈ L1. The exponent was later improved to n − 2 + 2
p+1 by Dupaigne, 

Ponce and Porretta [5] for the same class of solutions. Jiang and Lin [13] and Guo and Wei [12] also considered 
finite energy solutions, and proved that the dimension of the zero set of solutions is at most n − 2 + 4

p+1 . Dávila

and Ponce [4] improved the exponent for these solutions to n − 2 + 2
p+1 . In all these cases it is not known whether 

the best exponent obtained is optimal. The dimension estimate in Theorem 1.2 is the smallest compared to these 
previous results, although we assume a Hölder and stationary condition. However it is optimal because in 2 dimensions 

u(r) = cpr
2

p+1 is a radial singular solution, which satisfies the conditions in Theorem 1.2.
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We also would like to mention that, the sharp Hölder continuity corresponds to the classical C1,1 regularity in the 
obstacle problem (see for example Caffarelli [2]),

�u = χ{u>0}, u ≥ 0,

which can be viewed as the special case p = 0 of (1.1). When p ∈ (0, 1), the C1,
1−p
p+1 regularity for minimizers was 

also studied in Phillips [17]. Since we will use the blow up analysis and Federer’s dimension reduction principle to 
prove Theorem 1.2, which involve various steps of passing to the limit, this uniform continuity and the consequent 
strong convergence property will play an important role in this proof.

As an application of the preceding theorems, we consider the original MEMS problem in a bounded domain

−�v = λ

(1 − v)p
in Ω, v = 0 on ∂Ω, (1.5)

where Ω ⊂R
n is a smooth bounded domain. Here rupture means v = 1.

It is known that there exists a critical parameter λ∗ > 0 such that for λ < λ∗, problem (1.5) has a minimal solution 
and for λ > λ∗ there are no positive solutions. In [6], Esposito, Ghoussoub and Guo showed that when n ≤ 7, the 
extremal solution at λ∗ is smooth and hence there is a secondary bifurcation near λ∗. When the domain is convex, it 
is known that the only solutions for λ small is the minimal solution. Thus by Rabinowitz’s bifurcation theorem [19], 
there exists a sequence of λi ≥ c0 > 0 and a sequence of solutions {ui = 1 − vi} such that minui → 0. By convexity 
of Ω and the moving plane method, there is a neighborhood Ωδ of ∂Ω such that ui remains uniformly positive in 

Ωδ (see Lemma 3.2 in [12]). As a consequence of Theorem 1.1, ui are uniformly bounded in C
2

p+1 (Ω) and hence 
converges uniformly to a Hölder continuous function u∞ with nonempty rupture set {u∞ = 0}. Applying Theorem 1.2
we obtain the following result.

Theorem 1.3. Let Ω ⊂R
2 be a convex set. Then there exists a λ∗ > 0 such that the following problem

�u = λ∗

up
in Ω, u = 1 on ∂Ω (1.6)

admits a weak solution u such that u is Hölder continuous and the rupture set of u consists a finite number of points.

Theorem 1.3 was proved by Guo and the third author [12] under the condition that p < 3 and that the domain has 
two axes of symmetries.

The proof of the uniform Hölder estimate for positive solutions in Theorem 1.1 is inspired by the work of 
Noris, Tavares, Terracini and Verzini [15], where uniform Hölder estimates are established for a strongly competitive 
Schrödinger system. A contradiction argument leads after scaling to a globally Hölder stationary nontrivial solution 
of

u�u = 0, u ≥ 0 in R
n. (1.7)

But a Liouville theorem of [15] says that u is trivial. The argument is carried out in Section 2 and we give the Liouville 
theorem in Appendix A for completeness. The proof of the remaining statements of Theorem 1.1 is given in Section 4, 
after some preliminaries in Section 3. The proof actually applies to a sequence of stationary solutions having a uniform 
Hölder bound. Section 5 contains the proof of Theorem 1.2.

2. The uniform Hölder continuity

In this section we prove

Theorem 2.1. Let ui be a sequence of positive solutions to (1.1) in B4 with

sup
i

∫
B4

ui < +∞.

Then

sup
i

‖ui‖
C

2
p+1 (B1)

< +∞.
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An important result that we will use is the following Liouville type theorem obtained by Noris, Tavares, Terracini 
and Verzini [15]. By completeness we give a proof in Appendix A.

Theorem 2.2. Let α ∈ (0, 1). Assume ū∞ ≥ 0, ū∞ ∈ H 1
loc(R

n), is a globally Cα(Rn) function satisfying

ū∞�ū∞ = 0 in R
n, (2.1)

and that ū∞ is stationary, i.e.∫
Rn

1

2
|∇ū∞|2 divY − DY(∇ū∞,∇ū∞) = 0,

for any vector field Y ∈ C∞
0 (Rn, Rn). Then ū∞ is constant.

The remaining part of this section will be devoted to the proof of Theorem 2.1.

Proof of Theorem 2.1. Note that because ui is subharmonic and positive,

sup
i

‖ui‖L∞(B2(0)) < +∞.

Take η ∈ C∞(Rn) such that η ≡ 1 in B1(0), {η > 0} = B2(0), η = 0 in Rn \ B2(0). Denote

ûi = uiη.

We will actually prove that

sup
i

‖ûi‖
C

2
p+1 (B̄2(0))

< +∞.

Assume this is not true. Because ûi are smooth in B2, there exist xi, yi ∈ B2(0) such that as i → +∞,

Li = |ûi (xi) − ûi (yi)|
|xi − yi |

2
p+1

= max
x,y∈B2(0),x �=y

|ûi (x) − ûi (y)|
|x − y| 2

p+1

→ +∞. (2.2)

Note that because ûi are uniformly bounded, as i → +∞, |xi − yi | → 0.
Denote ri = |xi − yi | and zi = (yi − xi)/ri . Since |zi | = 1, we can assume that zi → z∞ ∈ S

n−1. Define

ũi (x) := L−1
i r

− 2
p+1

i ûi (xi + rix) = L−1
i r

− 2
p+1

i ui(xi + rix)η(xi + rix),

and

ūi (x) := L−1
i r

− 2
p+1

i ui(xi + rix)η(xi).

These functions are defined in Ωi = 1
ri

(B2(0) − xi). Note that Ωi converges to Ω∞, which may be the entire space or 
a half space.

We first present some facts about these rescaled functions, which will be used below. By definition we have

ũi (x) = η(xi + rix)

η(xi)
ūi(x),

and

∇ũi (x) = ri∇η(xi + rix)

η(xi)
ūi(x) + η(xi + rix)

η(xi)
∇ūi (x)

= L−1
i r

p−1
p+1
i ui(xi + rix)∇η(xi + rix) + η(xi + rix)

η(xi)
∇ūi (x)

= η(xi + rix)∇ūi (x) + O
(
L−1

i r

p−1
p+1
i

)
.

η(xi)
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By (2.2) and noting that |zi | = 1, we have

1 = ∣∣̃ui(0) − ũi (zi)
∣∣ = max

x,y∈Ωi,x �=y

|̃ui(x) − ũi (y)|
|x − y| 2

p+1

. (2.3)

Next, because η is Lipschitz continuous in B2(0), for x ∈ Ωi , we have a constant C which depends only on 
supB2(0) ui and the Lipschitz constant of η, such that∣∣̃ui(x) − ūi (x)

∣∣ ≤ C

Lir
2

p+1
i

∣∣η(xi + rix) − η(xi)
∣∣

≤ CL−1
i r

p−1
p+1
i |x|. (2.4)

This converges to 0 uniformly on any compact set of Ω∞ as i → +∞. By the Lipschitz continuity of η, we also have

ũi (x) ≤ CL−1
i r

p−1
p+1
i dist(x, ∂Ωi). (2.5)

Finally, we note that ūi satisfies

�ūi = εi ū
−p
i . (2.6)

Here εi = L
−p−1
i η(xi)

p+1 → 0 as i → +∞.
We divide the proof into two cases.

Case 1. Ai := ũi (0) → +∞.
By (2.5),

dist(0, ∂Ωi) ≥ cLir
− p−1

p+1
i Ai → +∞.

Hence Ωi converges to Rn. By (2.3), we can assume that (after passing to a subsequence of i) ̃ui − Ai converges to 
ū∞ uniformly on any compact set of Rn. By (2.4), ūi − Ai converges to the same ū∞ uniformly on any compact set 
of Rn.

For any R > 0, if i large, (2.3) and (2.4) imply that

inf
BR(0)

ūi ≥ inf
BR(0)

ũi − CL−1
i r

p−1
p+1
i R ≥ Ai − R

2
p+1 − CL−1

i r

p−1
p+1
i R ≥ Ai

2
.

So

0 ≤ �(ūi − Ai) ≤ 2pεiA
−p
i → 0.

By standard W 2,q estimates, for any q ∈ (1, +∞), ūi − Ai are uniformly bounded in W 2,q

loc (Rn). Then by the Sobolev 
embedding theorem, for any α ∈ (0, 1), ūi − Ai are uniformly bounded in C1,α

loc (Rn). By letting i → +∞ in (2.6), we 
see ū∞ is a harmonic function on Rn.

By the uniform convergence of ūi − Ai , we can take the limit in (2.3) to get

1 = ∣∣ū∞(0) − ū∞(z∞)
∣∣ = max

x,y∈Ωi

|ū∞(x) − ū∞(y)|
|x − y| 2

p+1

.

The first equality implies that ū∞ is non-constant, while the second one implies that ū∞ is globally 2/(p + 1)-Hölder 
continuous, hence a constant by the Liouville theorem for harmonic functions. This is a contradiction.

Case 2. Ai := ũi (0) → A∞ ∈ [0, +∞).
By the first equality in (2.3),

1 ≤ ũi (0) + ũi (zi). (2.7)
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Then by (2.5),

cLir
− p−1

p+1
i ≤ dist(0, ∂Ωi) + dist(zi, ∂Ωi) ≤ 2dist(0, ∂Ωi) + 1.

So we still have dist(0, ∂Ωi) → +∞, and Ω∞ =R
n.

By (2.3), we can assume that (by passing to a subsequence of i) ̃ui converges to ū∞ uniformly on any compact set 
of Rn. By (2.4), ūi converges to the same ū∞ uniformly on any compact set of Rn. By this uniform convergence, we 
can take the limit in (2.7) to get

1 ≤ ū∞(0) + ū∞(z∞).

So the open set D := {ū∞ > 0} is non-empty.
Let D′ � D be a compact set, and δ = 1

2 infD′ ū∞, so that δ > 0. Then if i is large,

inf
D′ ūi ≥ δ.

By the same argument as in Case 1, we see

�ū∞ = 0 in D.

Hence ū∞ is smooth in D. In particular, if {ū∞ = 0} = ∅, we can use the same argument as in Case 1 to get a 
contradiction.

In the following we assume {ū∞ = 0} �= ∅. Without loss of generality, assume that ū∞(0) = 0.
We claim that

ūi → ū∞ in H 1
loc

(
R

n
)

(2.8)

and

εi ū
1−p
i → 0 in L1

loc

(
R

n
)

(2.9)

Indeed, take a function η ∈ C∞
0 (Rn). Testing the equation of ūi with ūiη

2, we get∫
Rn

|∇ūi |2η2 + εi ū
1−p
i η2 + 2ūiη∇ūi∇η = 0. (2.10)

First, by applying the Cauchy inequality to the last term, we have∫
Rn

|∇ūi |2η2 + εi ū
1−p
i η2 ≤ 4

∫
Rn

ū2
i |∇η|2.

Because ūi are uniformly bounded in any compact set of Rn, ūi are uniformly bounded in H 1
loc(R

n). By the uniform 
convergence of ūi , they must converge weakly to ū∞ in H 1

loc(R
n).

By taking limit in (2.10), we obtain

lim
i→+∞

∫
Rn

|∇ūi |2η2 − |∇ū∞|2η2 + εi ū
1−p
i η2 = −

∫
Rn

|∇ū∞|2η2 + 2ū∞η∇ū∞∇η.

On the other hand, take a σ > 0 small so that {ū∞ = σ } is a smooth hypersurface. Then because ū∞ is harmonic in 
{ū∞ > σ },∫

{ū∞>σ }
|∇ū∞|2η2 + 2ū∞η∇ū∞∇η =

∫
{ū∞=σ }

∂ū∞
∂ν

ū∞η2

= σ

∫
{ū∞=σ }

∂ū∞
∂ν

η2

= σ

∫
{ū∞>σ }

∇ū∞∇η2

= O(σ).
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Here ν is the outward unit normal vector to ∂{ū∞ > σ }. By letting σ → 0, we see∫
Rn

|∇ū∞|2η2 + 2ū∞η∇ū∞∇η = 0.

Hence

lim
i→+∞

∫
Rn

|∇ūi |2η2 − |∇ū∞|2η2 + εi ū
1−p
i η2 = 0.

This proves both (2.8) and (2.9).
Because ūi > 0 in Ωi , it is smooth.
Let Y ∈ C∞

0 (Ωi, Rn). Then by standard domain variation calculation, i.e. (1.4),∫
Ωi

(
1

2
|∇ūi |2 − εi

p − 1
ū

1−p
i

)
divY − DY(∇ūi ,∇ūi ) = 0.

By the previous lemma, we can take the limit to get∫
Rn

1

2
|∇ū∞|2 divY − DY(∇ū∞,∇ū∞) = 0.

Now we can apply Theorem 2.2, which implies ū∞ is a constant. This is a contradiction because both {ū∞ > 0}
and {ū∞ = 0} are nonempty.

In conclusion, the assumption (2.2) does not hold. So ûi are uniformly bounded in C
2

p+1 (B2). Since ûi = ui in B1, 
this finishes the proof of Theorem 2.1. �
Remark 2.3. An essential point in this proof is the fact that

ū∞�ū∞ = 0.

This is well defined, because �ū∞ is a Radon measure and ū∞ is continuous. From this we also get, in the distribu-
tional sense

�ū2∞ = 2|∇ū∞|2.

3. Some tools

In this section we first present some consequences of the uniform Hölder continuity, which we will use to prove 
Theorems 1.1 and 1.2. Therefore, throughout this section we assume that (ui) is a sequence of stationary solutions of 
(1.1) in B2(0) satisfying

sup
i

‖ui‖
C

2
p+1 (B3/2(0))

< +∞. (3.1)

By Theorem 2.1, this includes the case that ui are positive solutions of (1.1) in B2(0) satisfying (1.2).

Lemma 3.1. There exists a constant C such that for any i, x ∈ B1 and r ∈ (0, 1/2),∫
Br (x)

u
−p
i ≤ Cr

n−2 p
p+1 .

Proof. Take a nonnegative function η ∈ C∞
0 (B2r (x)) such that η ≡ 1 in Br(x) and |�η| ≤ Cr−2. Then∫

u
−p
i η =

∫ (
ui − ui(x)

)
�η ≤ Cr

n−2+ 2
p+1 .
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Here we have used the uniform 2/(p + 1)-Hölder continuity of ui , which implies that

sup
Br(x)

∣∣ui − ui(x)
∣∣ ≤ Cr

2
p+1 . � (3.2)

Lemma 3.2. There exists a constant C depending only on M , such that for any i, x ∈ B1 and r ∈ (0, 1/2),∫
Br (x)

|∇ui |2 + u
1−p
i ≤ Cr

n−2 p−1
p+1 .

Proof. First by the previous lemma and the Hölder inequality,∫
Br (x)

u
1−p
i ≤

( ∫
Br(x)

u
−p
i

) p−1
p ∣∣Br(x)

∣∣ 1
p ≤ Cr

n−2 p−1
p+1 .

Take a nonnegative function η ∈ C∞
0 (B2r (x)) such that η ≡ 1 in Br(x) and |∇η| ≤ 2r−1. Testing the equation of 

ui with (ui − ui(x))η2, we get∫
|∇ui |2η2 + u

−p
i

(
ui − ui(x)

)
η2 = −2

∫
∇ui∇η

(
ui − ui(x)

)
η.

The Cauchy inequality gives∫
|∇ui |2η2 ≤

∫
u

−p
i

∣∣ui − ui(x)
∣∣η2 + 8

∫
|∇η|2(ui − ui(x)

)2
.

Then using the previous lemma and (3.2) we have∫
|∇ui |2η2 ≤ sup

Br (x)

∣∣ui − ui(x)
∣∣ ∫ u

−p
i η2 + 8 sup

Br(x)

∣∣ui − ui(x)
∣∣2

∫
|∇η|2

≤ Cr
n−2 p−1

p+1 . �
The following result holds for any 2/(p + 1)-Hölder continuous solutions.

Lemma 3.3. If x ∈ {ui > 0},∣∣∇ui(x)
∣∣ ≤ Cui(x)−

p−1
2 .

Proof. Denote h
2

p+1 = ui(x) > 0. By the Hölder continuity, ui ≥ h
2

p+1

2 in Bδh(x), where δ depends only the C2/(p+1)

norm of ui . Note that we also have ui ≤ 2h
2

p+1 in Bδh(x).

Define ū(y) = h
− 2

p+1 ui(x + hy). Then in Bδ(0), 1/2 ≤ ū ≤ 2, and ū satisfies Eq. (1.1). By standard elliptic esti-
mates, there exists a constant C depending only on δ and n so that∣∣∇ū(0)

∣∣ ≤ C.

Rescaling back we get the required claim. �
This estimate implies that |∇u

p+1
2

i | ≤ C in {ui > 0}. Thus we get

Corollary 3.4. The function u
p+1

2
i is uniformly Lipschitz continuous.

The next result is taken from [14], and it can be viewed as a non-degeneracy result.
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Lemma 3.5. There exists a constant c depending only on M , such that for any i, x ∈ B1 and r ∈ (0, 1/2),∫
Br (x)

ui ≥ cr
n+ 2

p+1 .

Proof. By the Hölder inequality,∫
Br (x)

1 =
∫

Br(x)

u
− p

p+1
i u

p
p+1
i ≤

( ∫
Br (x)

u
−p
i

) 1
p+1

( ∫
Br (x)

ui

) p
p+1

.

Substituting Lemma 3.1 into this we get the estimate. �
Finally let us recall the monotonicity formula for stationary solutions.

Theorem 3.6. Let u be a stationary solution of (1.1) in B1. Then for any BR(x) ⊂ B1 and r ∈ (0, R),

E(r;x,u) = r
−n+2 p−1

p+1

∫
Br (x)

(
1

2
|∇u|2 − 1

p − 1
u1−p

)
− r

−n+2 p−1
p+1 −1

p + 1

∫
∂Br (x)

u2

is nondecreasing in r . Moreover, if E(r; x, u) ≡ const., then u is homogeneous with respect to x:

u(x + λy) = λ
2

p+1 u(x + y), y ∈ BR(x), λ ∈ (0,1).

Proof. Following the same proof of a monotonicity formula in [11, Lemma 2.2], we have

d

dr
E(r;x,u) = c(n,p)r

2 p−1
p+1 −n

∫
∂Br (x)

(
∂u

∂r
− 2

p + 1
r−1u

)2

≥ 0. (3.3)

The proof uses the stationary assumption on the solution to obtain a Pohozaev type identity used in the calculation.
Formula (3.3) also characterizes the case of equality. �
By the equation we have∫

Br (x)

|∇u|2 + u1−p −
∫

∂Br (x)

uur = 0.

Multiplying this with 2
p−3 r

2 p−1
p+1 −n, and adding it into E(r; x, u), we get another form for E(r; x, u)

E(r;x,u) = r
−n+2 p−1

p+1

∫
Br (x)

(
1

2
+ 2

p − 3

)
|∇u|2 +

(
2

p − 3
− 1

p − 1

)
u1−p − 1

p − 3

d

dr

[
r
−n+2 p−1

p+1

∫
∂Br (x)

u2
]
.

4. The convergence

In this section we prove Theorem 1.1. We can prove actually a stronger statement, so we assume in this section 

that (ui) is a sequence of stationary C
2

p+1 Hölder solutions of (1.1) in B2(0) satisfying the uniform estimate (3.1). By 
Theorem 2.1, this includes the case that ui are positive solutions of (1.1) in B2(0) satisfying (1.2).

Let us list the results we obtained in the previous sections. There exists a constant C independent of i, such that:

(1) For any x ∈ B1 and r ∈ (0, 1/2),∫
Br (x)

|∇ui |2 + u
1−p
i ≤ Cr

n−2 p−1
p+1 . (4.1)



230 J. Dávila et al. / Ann. I. H. Poincaré – AN 33 (2016) 221–242
(2) For any x ∈ B1 and r ∈ (0, 1/2),∫
Br (x)

u
−p
i ≤ Cr

n−2 p
p+1 . (4.2)

(3) For any x, y ∈ B1,∣∣ui(x) − ui(y)
∣∣ ≤ C|x − y| 2

p+1 . (4.3)

(4) For any x ∈ B1 and r ∈ (0, 1/2),∫
Br (x)

ui ≥ 1

C
r

2
p+1 . (4.4)

By (4.3), we can assume that, up to a subsequence, ui converges uniformly to a function u∞ in B1. Then with (4.1), 
ui are also uniformly bounded in H 1(B1), and we can assume that it converges to u∞ weakly in H 1(B1). By the 
uniform convergence, we see u∞ also satisfies the estimates (4.3) and (4.4).

By standard elliptic estimates, for any domain Ω � {u∞ > 0} ∩ B1 and k, ui converges to u∞ in Ck(Ω).

Lemma 4.1. Hn−2+ 2
p+1 ({u∞ = 0} ∩ B1) = 0.

Remark 4.2. This statement can be obtained from [5, Theorem 12] where it is proved that if u ∈ L1(B1), u ≥ 0 a.e., 

is such that �u is a bounded measure and u−p ∈ L1(B1), then Hn−2+ 2
p+1 ({u = 0}) = 0. Note that such u need not 

be continuous, but is well-defined outside some set of zero Newtonian capacity, so this formula makes sense, since 
for any Borel set E ⊂ B1 with zero capacity we have HN−2+θ (E) = 0, if θ > 0. However, note that at this stage 
we do not know if u∞ is a weak solution, even in the distributional sense. This fact will be proved after establishing 
Lemma 4.3.

In our context we can give a short proof.

Proof of Lemma 4.1. First by (4.4), for any x ∈ {u∞ = 0} ∩ B1 and r ∈ (0, 1/2),

sup
Br(x)

u∞ ≥ cr
2

p+1 .

Then by the Hölder continuity (4.3) for u∞, there exists a ball Bδr(y) ⊂ Br(x) (δ depends on the Hölder constant of 
u∞) such that

u∞ ≥ cr
2

p+1 in Bδr(y).

In particular, Bδr(y) ⊂ {u∞ > 0}. This means for any x ∈ {u∞ = 0} ∩ B1 and r ∈ (0, 1/2),

|{u∞ = 0} ∩ Br(x)|
|Br(x)| ≤ 1 − cδ.

By the Lebesgue differentiation theorem, |{u∞ = 0} ∩ B1| = 0.
Then because u−p

i converges to u−p uniformly in any compact set of {u∞ > 0} ∩ B1, u−p
i converges to u−p a.e. 

in B1. By the Fatou lemma,∫
B1

u
−p∞ ≤ lim inf

i→+∞

∫
B1

u
−p∞ ≤ C.

For any ε > 0, take a maximal ε-separated set {xi, 1 ≤ i ≤ N} of {u∞ = 0} ∩ B1. By definition, Bε/2(xi) are 
disjoint, and

{u∞ = 0} ∩ B1 ⊂
N⋃

Bε(xi).
i
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Note that every Bε(xi) belongs to the ε-neighborhood Nε of {u∞ = 0} ∩ B1. Hence

N∑
i=1

∫
Bε/2(xi )

u
−p∞ ≤

∫
Nε

u
−p∞ , (4.5)

which goes to 0 as ε → 0, by the monotone convergence theorem. Because xi ∈ {u∞ = 0}, by (4.3),

sup
Bε/2(xi )

u∞ ≤ Cε
2

p+1 .

Thus ∫
Bε/2(xi )

u
−p∞ ≥ Cε

n−2 p
p+1 .

Substituting this into (4.5), we see

N∑
i=1

(
diam

(
Bε(xi)

))n−2 p
p+1 ≤ C

N∑
i=1

∫
Bε/2(xi )

u
−p∞

≤ C

∫
Nε

u
−p∞ .

By letting ε → 0, we get Hn−2 p
p+1 ({u∞ = 0} ∩ B1) = 0. �

Since u−1
i converges to u−1∞ a.e. in B1, by passing limit in (4.1) and (4.2) and using the Fatou lemma, we see u∞

also satisfies (4.1) and (4.2). (The estimate of |∇u∞| is a direct consequence of weak convergence in H 1(B1).)

Lemma 4.3. The sequence (u−p
i ) converges to u−p∞ in L1(B1).

Proof. By the Fatou lemma, we always have∫
B1

u
−p∞ ≤ lim inf

i→+∞

∫
B1

u
−p
i .

Thus we only need to prove the reverse inequality∫
B1

u
−p∞ ≥ lim sup

i→+∞

∫
B1

u
−p
i .

By the previous lemma, for any ε > 0, there exists a covering of {u∞ = 0} ∩ B1 by ∩kCk , with diamCk ≤ ε, and∑
i

(diamCk)
n−2 p

p+1 ≤ ε. (4.6)

For each k, take an xk ∈ {u∞ = 0} ∩ B1 ∩ Ck . Denote the open set

U :=
⋃
k

Bdiam Ck
(xk).

U is an open neighborhood of {u∞ = 0} ∩ B1. So in ({u∞ > 0} ∩ B1) \ U , for all i large, u−p
i have a uniformly 

positive lower bound and they converge to u−p∞ uniformly. Hence

lim
i→+∞

∫
u

−p
i =

∫
u

−p∞ . (4.7)
({u∞>0}∩B1)\U ({u∞>0}∩B1)\U
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For each i and k, by (4.2),∫
Bdiam Ck

(xk)

u
−p
i ≤ C(diamCk)

n−2 p
p+1 .

Summing in k and noting (4.6), we see∫
U

u
−p
i ≤

∑
k

∫
Bdiam Ck

(xk)

u
−p
i ≤ Cε.

Combined with (4.7), we obtain∫
B1

u
−p∞ ≥ lim sup

i→+∞

∫
B1

u
−p
i − Cε.

Taking ε → 0, we complete the proof. �
Corollary 4.4. The function u∞ is a solution to (1.1) in the distributional sense.

Lemma 4.5. We have that u1−p
i converges to u1−p∞ in L1(B1) and ui converges to u∞ strongly in H 1(B1).

Proof. Note that for any t, s ≥ 0, |t1−p − s1−p| ≤ C(p)|s − t |(s−p + t−p). Thus, by the previous lemma∫
B1

∣∣u1−p
i − u

1−p∞
∣∣ ≤ C(p) sup

B1

|ui − u∞|
(∫

B1

u
−p
i + u

−p∞
)

≤ C sup
B1

|ui − u∞|.

This converges to 0 by the uniform convergence of ui to u∞.
By testing the equation of ui with uiη

2, where η ∈ C∞
0 (B2), we have∫

B2

|∇ui |2η2 + u
1−p
i η2 =

∫
B2

u2
i �

η2

2
.

By the strong convergence of ui in L2
loc(B2), and the convergence of u1−p

i proved above, we have

lim
i→+∞

∫
B2

|∇ui |2η2 +
∫
B2

u
1−p∞ η2 =

∫
B2

u2∞�
η2

2
.

Since u∞ ∈ H 1(B2) is a weak solution of (1.1), and u1−p∞ ∈ L1
loc, we also have∫

B2

|∇u∞|2η2 + u
1−p∞ η2 =

∫
B2

u2∞�
η2

2
.

This gives

lim
i→+∞

∫
B2

|∇ui |2 =
∫
B2

|∇u∞|2,

and the strong convergence of ui in H 1(B1). �
By this convergence, we can take limit in (1.3) for ui to get the corresponding stationary condition for u∞. This 

finishes the proof of Theorem 1.1.
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5. Dimension reduction for stationary solutions

In this section we assume that u is a 2/(p + 1)-Hölder continuous, stationary solution of (1.1) in B2, with∫
B2

|∇u|2 + u1−p + u2 = M < +∞.

By the results in Section 3, u satisfies all of the estimates (4.1)–(4.4). In particular, {u = 0} is a closed set satisfying 
(by Lemma 4.1)

H
n−2+ 2

p+1
({u = 0}) = 0.

We will use the Federer dimension reduction principle to prove Theorem 1.2. We will mainly follow the treatment 
in Giusti [10, Chapter 11]. For an account of this argument, see also [20, Appendix A].

First let us consider the blow up procedure. Assume that u(0) = 0, for λ → 0, define the blow up sequence

uλ(x) = λ
− 2

p+1 u(λx).

By a rescaling, we see uλ satisfies (4.1)–(4.4), for all ball Br(x) ⊂ Bλ−1(0). By the results established in Section 4, 
we can get a subsequence of λi → 0, so that ui := uλi converges uniformly to a u∞ on any compact set of Rn. (This 
limit may depend on the choice of the sequence λi and thus not unique.)

We also have

(1) For each R, u−p
i converges to u−p∞ in L1(BR);

(2) For each R, u1−p
i converges to u1−p∞ in L1(BR);

(3) For each R, ui converges to u∞ in H 1(BR);
(4) u∞ is a stationary weak solution of (1.1) in the distributional sense;
(5) u∞ is nonzero.

To continue, we first note the following result.

Lemma 5.1. For any ε > 0, if i large, {ui = 0} ∩ B1 lies in an ε-neighborhood of {u∞ = 0} ∩ B1.

Proof. This is because ui converges to u∞ uniformly in any compact set Ω ′ � {u∞ > 0} ∩ B1. Thus for i large, 
ui > 0 in Ω ′. �

Next we would like to use the monotonicity formula to explore the information of the limit u∞.

Lemma 5.2. The limit limr→0 E(r; 0, u) exists and is finite.

Proof. In view of the monotonicity of E(r; 0, u), we only need to show that as r → 0, E(r; 0, u) has a uniform lower 
bound.

By Lemma 3.2, for each r ∈ (0, 1),

r
2 p−1

p+1 −n

∫
Br

|∇u|2 + u1−p ≤ C.

Next, by Theorem 2.1, supBr
u ≤ Cr

2
p+1 . Thus

r
2 p−1

p+1 −n−1
∫

∂Br

u2 ≤ Cr
2 p−1

p+1 −n−1+n−1+ 4
p+1 = C.

Substituting these into the first formulation of E(r; 0, u), we get

E(r;0, u) ≥ −C. �
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By (3.3), for any r ∈ (0, 1),

E(1;0, u) − E(r;0, u) = c

∫
B1\Br

|x|2 p−1
p+1 −n

(
∂u

∂r
− 2

p + 1
r−1u

)2

dx.

Corollary 5.3. We have∫
B1

|x|2 p−1
p+1 −n

(
∂u

∂r
− 2

p + 1
|x|−1u

)2

dx < +∞.

Lemma 5.4. The blow up limit u∞ is a homogeneous solution of (1.1) on Rn.

Proof. By the strong convergence of ui in H 1
loc(R

n), for any η ∈ (0, 1),∫
B

η−1\Bη

|x|2 p−1
p+1 −n

(
∂u∞
∂r

− 2

p + 1
r−1u∞

)2

dx

= lim
i→+∞

∫
B

η−1\Bη

|x|2 p−1
p+1 −n

(
∂ui

∂r
− 2

p + 1
|x|−1ui

)2

dx

= lim
i→+∞

∫
B

η−1λi
\Bηλi

|x|2 p−1
p+1 −n

(
∂u

∂r
− 2

p + 1
|x|−1u

)2

dx

= 0.

The last one is guaranteed by the previous corollary.
This means for a.a. x ∈R

n,

∂u∞
∂r

− 2

p + 1
r−1u∞ = 0.

Integrating this in r , we get

u∞(x) = |x| 2
p+1 u∞

(
x

|x|
)

. �
Define the density function (it may take value −∞)

Θ(x;u) := lim
r→0

E(r;x,u).

We have the following characterization of rupture points.

Lemma 5.5. We have: x ∈ {u > 0} if and only if Θ(x) = −∞.

Proof. If u(x) = 2h > 0, by the continuity of u, u > h in a ball Br0(x) and it is smooth here. Hence for r < r0,

r
2 p−1

p+1 −n

∫
Br (x)

|∇u|2 + u1−p ≤ Cr
2 p−1

p+1 ,

which goes to 0 as r → 0.
On the other hand,

r
2 p−1

p+1 −n−1
∫

u2 ≥ h2r
2 p−1

p+1 −2
,

∂Br (x)
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which goes to +∞ as r → 0. Substituting these into the first formulation of E(r; x, u) we get

lim
r→0

E(r;x,u) = −∞.

If u(x) = 0, the same proof of Lemma 5.2 gives

Θ(x;u) = lim
r→0

E(r;x,u) ≥ −C. �
We record the following continuity property of this density function.

Lemma 5.6. Θ(x; u) is upper semi-continuous in x and u (under the convergence specified as in Theorem 1.1).

Proof. Because u ∈ H 1(B2) and u1−p ∈ L1(B2), by the first formulation of E(r; x, u), E(r; x, u) is a continuous 
function of x. Then since Θ(x) is the decreasing limit of this family of continuous functions, it is upper semi-
continuous in x.

If we have a sequence of stationary weak solutions ui that converges to u∞ strongly in H 1(Br(x)) and 
L1−p(Br(x)) as in Theorem 1.1, then by the trace theorem we also have∫

∂Br (x)

u2
i →

∫
∂Br (x)

u2∞.

This implies directly that

E(r;x,ui) → E(r;x,u∞). (5.1)

For any ε > 0, by definition we can find an r > 0 so that

E(r;x,u∞) ≤ Θ(x;u∞) + ε.

On the other hand, by the monotonicity we always have

Θ(x;ui) ≤ E(r;x,ui).

Thus

lim sup
i→+∞

Θ(x;ui) ≤ lim
i→+∞E(r;x,ui) = E(r;x,u∞) ≤ Θ(x;u∞) + ε.

By taking ε → 0 we can finish the proof. �
Combining the above proof with Lemma 5.4 we can deduce that

Corollary 5.7. Let x0 ∈ {u = 0} and u∞ be a blow up limit of u at x0, then for any r > 0,

E(r;0, u∞) = Θ(0;u∞) = Θ(x0;u).

The first equality comes from the homogeneity of u∞, and the second one can be obtained by combining (5.1) and 
the definition of Θ .

To prove Theorem 1.2, we argue by contradiction. So assume that the Hausdorff dimension of {u = 0} is strictly 
larger than n − 2. Then by definition, there exists a δ > 0 such that

Hn−2+δ
({u = 0} ∩ B1

)
> 0. (5.2)

For a set A ⊂R
n, define

Hn−2+δ∞ (A) := inf

{∑
(diamSj )

n−2+δ, A ⊂
⋃

Sj

}
.

j j
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Then by [10, Lemma 11.2 and Proposition 11.3], (5.2) implies the existence of a density point x0 ∈ {u = 0} ∩ B1, that 
is,

lim sup
r→0

Hn−2+δ∞ ({u = 0} ∩ Br(x0))

rn−2+δ
> 0. (5.3)

We can perform the blow up procedure at x0 to obtain a homogeneous solution u∞,0 on Rn. By noting Lemma 5.1, 
we can prove as in [10, Lemma 11.5] to get

Hn−2+δ∞
({u∞,0 = 0} ∩ B1(0)

) ≥ lim sup
r→0

Hn−2+δ∞ ({u = 0} ∩ Br(x))

rn−2+δ
> 0, (5.4)

if we choose a suitable sequence λi → 0 in the definition of u∞,0.
Since n ≥ 2, (5.4) implies that {u∞,0 = 0} contains a point x1 �= 0, which can also be chosen to be a density point 

by [10, Proposition 11.3]. Note that the origin 0 always belongs to {u∞ = 0} because u∞ is homogeneous. This 
homogeneity also implies that the ray {tx1 : t ≥ 0} ⊂ {u∞,0 = 0}, and

Θ(tx1;u∞,0) ≡ Θ(x1;u∞,0) for t > 0. (5.5)

The main step in the dimension reduction procedure is to blow up once again at x1. Assume that one limit function 
is u∞,1 and we have a sequence λi → 0 so that

ui := λ
− 2

p+1
i u∞,0(x1 + λix) → u∞,1,

in the sense of Theorem 1.1.
We want to show that u∞,1 is in fact translation invariant in the direction x1, thus can be viewed as a function 

defined on Rn−1. This can be achieved by the following lemma, together with the fact that, for any t ∈ R,

Θ(tx1;u∞,1) ≥ lim sup
i→+∞

Θ(tx1;ui) = lim sup
i→+∞

Θ
(
(1 + tλi)x1;u∞,0

)
= Θ(x1;u∞,0) = Θ(0;u∞,0),

where we have used Lemma 5.6 and Corollary 5.7.

Lemma 5.8. Let u be a homogeneous stationary solution of (1.1) on Rn, satisfying estimates (4.1)–(4.4) for all balls 
Br(x). Then for any x �= 0, Θ(x, u) ≤ Θ(0, u). Moreover, if Θ(x, u) = Θ(0, u), u is translation invariant in the 
direction x, i.e. for all t ∈R,

u(tx + ·) = u(·) in R
n.

Proof. With the help of the estimates (4.1)–(4.4), similar to the proof of Lemma 5.2, for any x0 ∈ R
n, there exists a 

constant C such that

lim
r→+∞E(r;x0, u) ≤ C.

And we can define the blowing down sequence with respect to the base point x0,

uλ(x) = λ
− 2

p+1 u(x0 + λx), λ → +∞.

Since u is homogeneous with respect to 0,

uλ(x) = u
(
λ−1x0 + x

)
,

which converges to u(x) as λ → +∞ uniformly in any compact set of Rn. uλ also converges strongly in H 1
loc(R

n), 

u
1−p
λ and u−p

λ converge in L1
loc(R

n). Then by the homogeneity of u and these convergence, we see

Θ(0;u) = E(1;0, u) = lim
λ→+∞E(1;0, uλ)

= lim
λ→+∞E(λ;x0, u)

≥ Θ(x0;u).
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Moreover, if Θ(x0; u) = Θ(0, u), the above inequality becomes an equality:

lim
λ→+∞E(λ;x0, u) = Θ(x0;u).

This then implies that E(λ; x0, u) ≡ Θ(x0; u) for all λ > 0. By (3.3), u is homogeneous with respect to x0. Then for 
all λ > 0,

u(x0 + x) = λ
− 2

p+1 u(x0 + λx) = u
(
λ−1x0 + x

)
.

By letting λ → +∞ and noting that u(λ−1x0 + ·) are uniformly bounded in C
2

p+1 (Rn), we see

u(x0 + ·) = u(·) on R
n.

Because u is homogeneous with respect to 0, a direct scaling shows that Θ(tx0; u) = Θ(x0; u) for all t > 0, so 
the above equality still holds if we replace x0 by tx0 for any t > 0. A change of variable shows this also holds for 
t < 0. �

We have shown that u∞,1 can be viewed as a weak solution of (1.1) in Rn−1. Note that the u∞,1 is still in 
H 1

loc(R
n−1) and 2/(p + 1)-Hölder continuous. The following result shows that the stationary condition is also pre-

served under this operation.

Lemma 5.9. Let u = u(x1, · · · , xn−1) ∈ H 1
loc(R

n−1) ∩ L
−p

loc (Rn−1) be a weak solution of (1.1) in Rn−1. Take ū to be 
the trivial extension of u to R

n,

ū(x1, · · · , xn) = u(x1, · · · , xn−1).

Then u is stationary if and only if ū is stationary.

Proof. First assume ū is stationary but u is not stationary. By definition there exists a vector field Y ∈C∞
0 (Rn−1,Rn−1), 

such that∫
Rn−1

(
1

2
|∇u|2 − 1

p − 1
u1−p

)
divY − DY(∇u,∇u) = δ > 0.

For any T , take a function ηT ∈ C∞
0 ((−T − 1, T + 1)) such that η ≡ 1 in (−T , T ), |η′| ≤ 2. Then

Ȳ (x1, · · · , xn−1, xn) = Y(x1, · · · , xn−1)η(xn)

is a smooth vector field in Rn with compact support. So∫
Rn

(
1

2
|∇ū|2 − 1

p − 1
ū1−p

)
div Ȳ − DȲ (∇ū,∇ū) = 0.

However, direct calculation shows that this also equals∫
Rn−1×{−T <xn<T }

(
1

2
|∇u|2 − 1

p − 1
u1−p

)
divY − DY(∇u,∇u)

+
∫

Rn−1×{T <|xn|<T +1}

(
1

2
|∇ū|2 − 1

p − 1
ū1−p

)
div Ȳ − DȲ (∇ū,∇ū)

= 2T δ + O(1).

Hence if we choose T large we get a contradiction with the stationary condition of ū. This proves the stationary 
condition for u.
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Now assume u is stationary. For any vector field Ȳ ∈ C∞
0 (Rn, Rn), by noting that ∂ū

∂xn
= 0 a.e., we have∫

Rn

(
1

2
|∇ū|2 − 1

p − 1
ū1−p

)
div Ȳ − DȲ (∇ū,∇ū)

=
+∞∫

−∞

[ ∫
Rn−1

(
1

2
|∇u|2 − 1

p − 1
u1−p

) ∑
1≤i≤n−1

∂Ȳi

∂xi

−
∑

1≤i,j≤n−1

∂Ȳi

∂xj

∂u

∂xi

∂u

∂xj

]

+
∫

Rn−1

[(
1

2
|∇u|2 − 1

p − 1
u1−p

) +∞∫
−∞

∂Ȳn

∂xn

]
= 0.

This proves the stationary condition for ū. �
Similar to (5.4), when u∞,1 is viewed as a function defined on Rn, we have

Hn−2+δ∞
({u∞,1 = 0} ∩ B1(0)

)
> 0.

Then if we view u1 as a function defined on Rn−1, this means

Hn−3+δ∞
({u∞,1 = 0} ∩ B1(0)

)
> 0.

We can repeat this reduction procedure until we get a stationary weak solution u∞,n−2 on R2, which satisfies

Hδ∞
({u∞,n−2 = 0} ∩ B1(0)

)
> 0.

In particular, {u∞,n−2 = 0} cannot be a singleton because δ > 0. However, this contradicts the following lemma, and 
thus disproves our initial assumption (5.2).

Lemma 5.10. Let u be a 2/(p + 1)-Hölder continuous, homogeneous solution of (1.1) in R2. Then {u = 0} = {0}.

Here we only need the solution to be understood in the distributional sense, i.e. u−p ∈ L1
loc(R

2).

Proof. There exists a function ϕ(θ) ∈ C
2

p+1 (S1) such that in the polar coordinates,

u(r, θ) = r
2

p+1 ϕ(θ).

Then ∫
B1

u−p =
1∫

0

(∫
S1

ϕ(θ)−pdθ

)
r
− 2p

p+1 +1
dr < +∞.

So ∫
S1

ϕ(θ)−pdθ < +∞.

If there exists a θ0 ∈ S
1 such that ϕ(θ0) = 0, then∣∣ϕ(θ) − ϕ(θ0)

∣∣ ≤ C|θ − θ0|
2

p+1 .

Hence near θ0, ϕ−p grows like |θ − θ0|−
2p

p+1 . Since 2p
p+1 > 1, ϕ−p cannot be in L1(S1). This is a contradiction and we 

must have ϕ > 0 on S1. �
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Remark 5.11. Similar arguments show that there does not exist homogeneous solutions in R1.

Finally, we prove the discreteness of {u = 0} in the case of n = 2.
Assume there exists xi ∈ {u = 0} ∩ B1, such that xi → x0 but xi �= x0. Take ri = |x − xi | and define

ui(x) = r
− 2

p+1
i u(x0 + rix).

After passing to a subsequence of i, we can assume that ui converges uniformly to a 2/(p + 1)-Hölder continuous, 
homogeneous solution u∞ in any compact set of R2. Since zi = (xi − x0)/ri ∈ S

1, we can also assume that zi →
z∞ ∈ S

1. By the uniform convergence of ui ,

u∞(z∞) = lim
i→+∞ui(zi) = 0.

However, Lemma 5.10 says u∞ > 0 outside the origin. This is a contradiction and {u = 0} ∩B1 must be a discrete set.
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Appendix A. A Liouville theorem

In this appendix we give a proof of Theorem 2.2, following the argument of [15].
Eq. (2.1) implies that

�ū2∞ = 2|∇ū∞|2, (A.1)

in the distributional sense. Moreover, ū∞ is harmonic in the open set {ū∞ > 0}. So if ū∞ > 0 everywhere, it is 
a harmonic globally Hölder function on Rn and we can use the standard arguments to deduce that is constant.

In the following we assume {ū∞ = 0} �= ∅. First we present some monotonicity formulas. It is here that the station-
ary condition on the solution is used.

Proposition A.1. For r > 0 and x ∈ R
n,

D(r;x) := r2−n

∫
Br (x)

|∇ū∞|2

is nondecreasing in r .

Proof. For a proof, see [3, Lemma 2.1]. In fact by the stationary condition, we have

(n − 2)

∫
Br (x)

|∇ū∞|2 = r

∫
∂Br (x)

|∇ū∞|2 − 2

(
∂ū∞
∂r

)2

.

Then direct calculations give

d

dr
D(r;x) = 2r2−n

∫ (
∂ū∞
∂r

)2

≥ 0. �

∂Br (x)
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Next let H(r; x) := r1−n
∫
∂Br

ū2∞. By (A.1), direct calculations give

dH

dr
= 2r1−n

∫
∂Br

ū∞
∂ū∞
∂r

= 2r1−n

∫
Br

ū∞�ū∞

= 2

r
D(r). (A.2)

Then we get

Proposition A.2 (Almgren monotonicity formula). For r > 0 and x ∈R
n,

N(r;x) := D(r;x)

H(r;x)

is nondecreasing in r . Moreover, if N(r; x) ≡ d , then

ū∞(x + ry) = rd ū∞(x + y).

Proof. Without loss of generality, take x = 0.

d

dr
N(r) = H(r)[2r2−n

∫
∂Br

( ∂ū∞
∂r

)2] − D(r)(2r1−n
∫
∂Br

ū∞ ∂ū∞
∂r

)

H(r)2

= 2r3−2n

∫
∂Br

ū2∞
∫
∂Br

( ∂ū∞
∂r

)2 − (
∫
∂Br

ū∞ ∂ū∞
∂r

)2

H(r)2

≥ 0.

If N(r) ≡ d , for any r ,∫
∂Br

ū2∞
∫

∂Br

(
∂ū∞
∂r

)2

−
( ∫

∂Br

ū∞
∂ū∞
∂r

)2

= 0.

By the characterization of the equality case of the Cauchy inequality, there exists a λ(r) such that

∂ū∞
∂r

= λ(r)ū∞.

Integrating in r we get a function ϕ(r) such that

ū∞(y) = ϕ
(|y|)ū∞

(
y

|y|
)

.

Then a direct calculation shows that ϕ(|y|) = |y|d . �
Proposition A.3. If N(r0; x) ≥ d , then for r > r0,

r1−n−2d

∫
∂Br (x)

ū2∞

is nondecreasing in r .

Proof. Direct calculation using (A.2) shows

d

dr

(
r1−n−2d

∫
∂Br (x)

ū2∞
)

= −2dr−n−2d

∫
∂Br (x)

ū2∞ + 2r1−n−2d

∫
Br (x)

|∇ū∞|2

≥ 0.

Here we have used Proposition A.2, in particular, the fact that N(r) ≥ d for every r ≥ r0. �
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Because ū∞ is globally Cα ,

ū∞(x) ≤ C
(
1 + |x|α)

in R
n.

Hence for any x and r large,∫
∂Br (x)

ū2∞ ≤ Crn−1+2α.

Combining this with the previous proposition we get

N(r;x) ≤ α, for any r > 0, x ∈ {ū∞ = 0}. (A.3)

The next result is the so-called “doubling property”.

Proposition A.4. Let x ∈ {ū∞ = 0} and R > 0 such that N(R; x) ≤ d , then for every 0 < r ≤ R

H(r;x) ≥ H(R;x)
r2d

R2d
. (A.4)

Proof. By (A.2), if H(r) > 0,

d

dr
logH(r) = 2N(r)

r
≤ 2d

r
.

This means r−2dH(r) is non-increasing in r . Consequently, H(r) > 0 for all r ∈ (0, R), and (A.4) is a direct conse-
quence of the monotonicity of r−2dH(r). �
Remark A.5. By this doubling property, we can prove that {ū∞ = 0} has zero Lebesgue measure. In fact, more proper-
ties such as the unique continuation property can be proved by this method, see [3, Lemma 3.3] and [9, Theorem 1.2].

By this doubling property, if N(R; x) ≤ d < α, then for all r ∈ (0, R),

H(r;x) ≥ Cr2d .

However, if ū∞(x) = 0, because ū∞ is Cα continuous,

H(r;x) ≤ Cr2α.

If r small, this is a contradiction. In other words, N(r; x) ≥ α for any r > 0.
Combining this fact with (A.3), we see for any x ∈ {ū∞ = 0} and r > 0, N(r; x) ≡ α. By Proposition A.2,

ū∞(x + y) = |y| 2
p+1 ū∞

(
x + y

|y|
)

.

In particular, {ū∞ = 0} is a cone with respect to any point in {ū∞ = 0}. This then implies that {ū∞ = 0} is a linear 
subspace of Rn. Assume {ū∞ = 0} = R

k for some k < n. (Note that ū∞ is nontrivial, so {ū∞ = 0} cannot be the 
whole Rn.) If k ≤ n − 2, {ū∞ = 0} has zero capacity and then ū∞ is a harmonic function. Because ū∞ ≥ 0, by the 
strong maximum principle, either ū∞ > 0 everywhere or ū∞ ≡ 0. Both of these two lead to a contradiction.

If k = n −1, assume {ū∞ = 0} = {x1 = 0}. Then by the Schwarz reflection principle, ū∞ = c|x1| for some constant 
c > 0. This again contradicts the global α-Hölder continuity of ū∞ because α < 1.
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