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Abstract

We consider the problem{
divu + 〈a;u〉 = f in Ω

u = u0 on ∂Ω.

We show that if curla(x0) �= 0 for some x0 ∈ Ω , then the problem is solvable without restriction on f . We also discuss the regularity 
of the solution.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we study the existence of solutions for the problem{
divu + 〈a;u〉 = f in Ω

u = u0 on ∂Ω

where a is a vector field and 〈.; .〉 stands for the scalar product in Rn. The problem with a ≡ 0 has attracted con-
siderable attention, notably by Bogovski [2], Borchers–Sohr [3], Csató–Dacorogna–Kneuss [4], Dacorogna [5,6], 
Dacorogna–Moser [7], Dautray–Lions [8], Galdi [9], Girault–Raviart [11], Kapitanskii–Pileckas [12], Ladyzhen-
skaya [13], Ladyzhenskaya–Solonnikov [14], Necas [15], Tartar [16], Von Wahl [17,18]. The following theorem is 
standard (cf. Theorem 9.2 in [4]).

Theorem 1. Let n ≥ 1, r ≥ 0 be integers and 0 < s < 1. Let Ω ⊂ Rn be a bounded connected open Cr+2,s set with 
outward unit normal ν. The following conditions are then equivalent.
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(i) f ∈ Cr,s(Ω) and u0 ∈ Cr+1,s(Ω; Rn) satisfy∫
Ω

f =
∫
Ω

divu0 =
∫

∂Ω

〈u0;ν〉.

(ii) There exists u ∈ Cr+1,s(Ω; Rn) verifying{
divu = f in Ω

u = u0 on ∂Ω.

If the vector field a is a gradient of a potential A, then the same result holds ( just replace u by eAu, u0 by eAu0
and f by eAf ) and the problem{

divu + 〈a;u〉 = f in Ω

u = u0 on ∂Ω

is solvable (with optimal regularity for a, f , u0 and u) if and only if∫
Ω

eAf =
∫
Ω

div
(
eAu0

)=
∫

∂Ω

eA〈u0;ν〉.

Our result will show that if

curla(x0) �= 0 for some x0 ∈ Ω,

then (cf. Theorem 2) the problem is solvable without any integral restriction on f and u0. Under slightly strengthening 
this last condition, namely curla �= 0 on ∂Ω , we will also provide (cf. Theorem 3) a solution with optimal regularity. 
We should also point out an interesting point related to the topology of the domain Ω . In a special case (cf. Theorem 5) 
we will see that the right condition is not curla �≡ 0 but that a is not a gradient.

In Section 4 we will also study the kernel of the operator (this kernel will be used in a significant way in Theorem 3) 
La(u) = divu +〈a; u〉. When a ≡ 0 (or more generally when a = gradA), the kernel is classically given (cf. Section 4) 
by curl∗ w so that

div curl∗ w = 0 for every w ∈ C2(Rn;Rn(n−1)/2).
When curla �= 0, it is easily seen that the kernel operator cannot be a first order operator. We provide (cf. Proposi-
tion 10) the most general second order operator (which can be reduced to the operator curl∗ when a ≡ 0) denoted by 
N

α,β,γ

a,2 , so that

La

(
N

α,β,γ

a,2 (w)
)= 0 for every w ∈ C2(Rn;Rn(n−1)/2).

Finally in Sections 5 and 7 we discuss a Poincaré type lemma, both on the boundary (cf. Theorem 14) and in the 
interior (cf. Theorems 16 and 22), of the operator La . For example (cf. Theorem 22), we will find, if La(u) = 0, that 
there exists w such that

u = N
α,β,γ

a,2 (w).

This is the exact analogue of the classical theorem which says that, if divu = 0, there exists w such that u = curl∗ w.
A more detailed version of the present article can be found on the website http://caa.epfl.ch/articles.html.

2. The main theorems

In this paper we will adopt the notation La(u) = divu + 〈a; u〉. Our first theorem is constructive and uses only 
elementary tools, notably the method of characteristics. It is sharp from the point of view of the condition on a
(namely curla �≡ 0). However it is not sharp from the point of view of regularity (although it can be slightly improved, 
see Theorem 9 below).

http://caa.epfl.ch/articles.html
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Theorem 2. Let n ≥ 2, r ≥ 0 be integers and Ω ⊂ Rn a bounded open set, with Ω Cr+4 diffeomorphic to the unit 
closed ball. Let f ∈ Cr+3(Ω), u0 ∈ Cr+4(Ω; Rn) and a ∈ Cr+3(Ω; Rn) be such that

curla(x0) �= 0 for some x0 ∈ Ω.

Then there exists u ∈ Cr+1(Ω; Rn) satisfying{
divu + 〈a;u〉 = f in Ω

u = u0 on ∂Ω.

Our second theorem is sharp from the point of view of regularity (except for the regularity of a, which should be 
a ∈ Cr,s ), but the hypothesis curla �≡ 0 has to be strengthened.

Theorem 3. Let n ≥ 2, r ≥ 0 be integers, 0 < s < 1 and Ω ⊂ Rn a bounded open smooth set. Let f ∈ Cr,s(Ω), 
u0 ∈ Cr+1,s(Ω; Rn) and a ∈ Cr+4,s(Ω; Rn) be such that

inf
x∈∂Ω

{∣∣curla(x)
∣∣}≥ δ > 0.

Then there exists u ∈ Cr+1,s(Ω; Rn) satisfying{
divu + 〈a;u〉 = f in Ω

u = u0 on ∂Ω.

Moreover the correspondence (f, u0) → u can be chosen linear and there exists K = K(r, s, ‖a‖Cr+4,s , δ, Ω) such 
that

‖u‖Cr+1,s ≤ K
(‖f ‖Cr,s + ‖u0‖Cr+1,s

)
.

Remark 4. As already said the natural hypothesis is, in view of Theorem 2, curla(x0) �= 0 for some x0 ∈ Ω , but, at the 
moment, in the present theorem we need a stronger hypothesis. It will be clear from the proof that we can replace the 
hypothesis curla �= 0 on ∂Ω , by other hypotheses such as, for example, in addition to the natural condition, a = gradA

near ∂Ω .

Finally when Ω is not simply connected we see, in a special case (including the case of harmonic fields), that the 
right condition is not curla �≡ 0 but that a is not a gradient.

Theorem 5. Let n ≥ 2, r ≥ 0 be integers, 0 < s < 1 and Ω ⊂ Rn be a bounded open smooth set. Let f ∈ Cr,s(Ω), 
u0 ∈ Cr+1,s(Ω; Rn) and a ∈ Cr,s(Ω; Rn) be such that

curla ≡ 0 in Ω but �A ∈ Cr+1,s(Ω) with a = gradA.

Then there exists u ∈ Cr+1,s(Ω; Rn) satisfying{
divu + 〈a;u〉 = f in Ω

u = u0 on ∂Ω.

Moreover the correspondence (f, u0) → u can be chosen linear and there exists K = K(r, s, ‖a‖Cr,s , Ω) such that

‖u‖Cr+1,s ≤ K
(‖f ‖Cr,s + ‖u0‖Cr+1,s

)
.

Remark 6.

(i) The hypothesis on a implies that Ω is not simply connected and a �≡ 0. Conversely if Ω is not simply connected, 
there exists such an a. Note that in Theorem 2 the set Ω is simply connected.

(ii) Observe that the regularity in the theorem is optimal for all the data.
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We now show how a general operator of the form

La,b(u) =
∑

1≤i,j≤n

bi
ju

i
xj

+ 〈a;u〉 = 〈B;∇u〉 + 〈a;u〉

can be brought back to our analysis. But let us first introduce some notations. Let

B = (
bi
j

)1≤i≤n

1≤j≤n
∈ C1(Ω;Rn×n

)
and set

divB = (
divB1, · · · ,divBn

)
where divBi =

∑
1≤j≤n

(
bi
j

)
xj

.

Let B be invertible and define ã = B−t (a − divBt). Assume that Ω , f , u0 and ã verify the hypotheses of either 
Theorem 2 or Theorem 3. We then claim that there exists u (with the corresponding regularity) satisfying{

La,b(u) = f in Ω

u = u0 on ∂Ω.

This is easily seen by setting u = B−1v where{
divv + 〈̃a;v〉 = f in Ω

v = Bu0 on ∂Ω.

Indeed it suffices to observe that divv + 〈̃a; v〉 = La,b(u).

3. Proof of Theorem 2

Although we will be dealing only with vector fields and the divergence and curl operators, it will be, sometimes, 
simpler to use the notations of differential geometry (we adopt the notations in [4]). We will denote, when convenient, 
differential forms as vector fields. For example a vector field u = (u1, · · · , un) is also written as u =∑n

i=1 ui dxi , the 
curl and the divergence operators as

du =
∑

1≤i<j≤n

[
u

j
xi

− ui
xj

]
dxi ∧ dxj ∼ curlu and δu =

n∑
i=1

ui
xi

∼ divu.

The operator curl∗ is seen as the δ operator acting on 2-forms u =∑
uij dxi ∧ dxj namely (where we set uij = −uji

if i ≥ j )

δu =
n∑

j=1

n∑
i=1

u
ij
xi

dxj ∼ curl∗ u = ((
curl∗ u

)1
, · · · , (curl∗ u

)n) ∈ Rn

where

(
curl∗ u

)i =
i−1∑
j=1

∂uji

∂xj

−
n∑

j=i+1

∂uij

∂xj

.

The Hodge ∗ operator as well as the exterior and the interior product are defined as usual; for example the interior 
product of a 1-form u with a 2-form v is defined as

u � v =
n∑

j=1

n∑
i=1

uivij dxj .

Before proceeding with the proof of Theorem 2. We will need two lemmas. The first one allows us to reduce the 
problem to the case where Ω is the unit ball B1.
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Lemma 7. Let r ≥ 1 be an integer, Ω; O ⊂ Rn be two bounded open smooth sets. Let ϕ ∈ Diffr+1(Ω;O), a ∈
C0(O; Rn) and f ∈ C0(O). Define

b = ϕ∗(a) and g = (−1)n−1 ∗ (ϕ∗(∗f )
)
.

Then u ∈ Cr(O; Rn) solves the problem{
divu + 〈a;u〉 = f in O

u = 0 on ∂O
(1)

if and only if v = ∗(ϕ∗(∗u)) ∈ Cr(Ω; Rn) solves{
divv + 〈b;v〉 = g in Ω

v = 0 on ∂Ω.
(2)

Proof. We rewrite (1), after composition with the ∗ operation as

∗δu + ∗(a � u) = ∗f ⇔ d(∗u) + (
a ∧ (∗u)

)= (∗f ).

Composing with ϕ, we get

∗d(∗v) + ∗(ϕ∗(a) ∧ (∗v)
)= (−1)n−1 ∗ ϕ∗(∗f ) ⇔ δv + b � v = g

which is exactly (2). �
The proof of the following lemma is just done by straight computation.

Lemma 8. Let r ≥ 1 be an integer. Let f, g ∈ Cr(B1 \ {0}) and v0 ∈ Cr(∂B1). Let v ∈ Cr(B1 \ {0}) be defined by

v(x) = G(x)v0

(
x

|x|
)

+ V (x)

where G(x) = exp[∫ 1
|x| g( sx

|x| )
ds
s

] and

V (x) =
|x|∫

1

{
exp

[ r∫
|x|

g

(
sx

|x|
)

ds

s

]
f

(
rx

|x|
)

dr

r

}
.

Then v satisfies{ 〈∇v(x);x〉+ g(x)v(x) = f (x) if x ∈ B1 \ {0}
v(x) = v0(x) if x ∈ ∂B1.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Step 1. We start with some simplifications.
(i) Without loss of generality, we may assume that u0 = 0; replacing u by u − u0 and f by f − divu0 − 〈a; u0〉.
(ii) Using Lemma 7, we find that we can take Ω to be the unit ball B1. Combining Lemma 11.13 in [4] and 

Lemma 7 again, we can assume, without loss of generality, that x0 = 0.
(iii) Finally we choose ε > 0 sufficiently small so that curla �= 0 in B2ε .
Step 2. We then search for solutions of the form u = v + a � w + δw, where v ∈ Cr+3(B1; Rn) (constructed in 

Step 3) and w ∈ Cr+2(B1; Λ2) (given in Step 4). The advantage of this decomposition is that it transforms the problem 
into (invoking Theorem 3.5 in [4])

La(u) = divu + 〈a;u〉 = δu + 〈a;u〉 = δv + 〈a;v〉 − da �w = f.

So if, in addition to the above equation, we find that v = 0 on ∂B1 and w = 0 in a neighborhood of ∂B1, we will have 
established the theorem.
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Step 3. We first construct v on B1 \ Bε as v(x) = xV (x), where g(x) = n + 〈a(x); x〉 and V is as in Lemma 8. 
Observe that v ∈ Cr+3(B1 \ Bε; Rn). Applying Lemma 8, we find that V satisfies{ 〈∇V (x);x〉+ g(x)V (x) = f (x) if x ∈ B1 \ Bε

V (x) = 0 if x ∈ ∂B1

and thus v verifies{
divv + 〈a;v〉 = δv + 〈a;v〉 = f in B1 \ Bε

v = 0 on ∂B1.

We then extend v in any Cr+3 way to Bε .
Step 4. We finally construct w ∈ Cr+2(B1; Λ2) to be identically 0 in B1 \ B2ε and, in B2ε , through the formula

w = curla

|curla|2
(
divv + 〈a;v〉 − f

)
.

The v and w have all the claimed properties. �
Using standard elliptic estimates, we can slightly improve the regularity hypotheses.

Theorem 9. Let n ≥ 2, r ≥ 0 be integers, 0 < s < 1 and Ω ⊂ Rn a bounded open set, with Ω Cr+4,s diffeomorphic 
to the closed unit ball. Let f ∈ Cr+2,s(Ω), u0 ∈ Cr+3,s(Ω; Rn) and a ∈ Cr+3,s(Ω; Rn) be such that

curla(x0) �= 0 for some x0 ∈ Ω.

Then there exists u ∈ Cr+1,s(Ω; Rn) satisfying{
divu + 〈a;u〉 = f in Ω

u = u0 on ∂Ω.

Proof. Step 1. As in the proof of Theorem 2, we can assume, without loss of generality, that u0 = 0, Ω = B1 and 
x0 = 0. Moreover ε > 0 is chosen sufficiently small so that curla �= 0 in B2ε . We then find α ∈ Cr+4,s(Ω) a solution of{

�α + 〈a;∇α〉 = f in B1

α = 0 on ∂B1.

Since α = 0 on ∂B1, we find that there exists c = 〈ν; ∇α〉 ∈ Cr+3,s(B1) such that ∇α = cν on ∂B1, where ν =
ν(x) = x is the outward unit normal to ∂B1. We will then look for solutions u of the form u = ∇α + β , where β
satisfies{

divβ + 〈a;β〉 = 0 in B1

β = −cν on ∂B1.

Step 2. We then continue exactly as in the proof of Theorem 2 where we write β = v + a � w + δw. The only 
difference is that we require v = −cν instead of v = 0 on ∂B1. It is easy to see that v and w have all the appropriate 
properties. �
4. The kernel of the operator

4.1. Definition of the kernel

We now study the kernel of La(u) = divu + 〈a; u〉. Let us first examine the case a ≡ 0. We recall that for a C1

vector field w : Rn → Rn(n−1)/2 the kernel is given by curl∗ w ∈ Rn so that

div curl∗ w = 0 for every w ∈ C2(Rn;Rn(n−1)/2).
We know (by Poincaré lemma) that if divu = 0, then there exists w such that

u = curl∗ w.
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We now turn to the general case where a �≡ 0. We will first define the most general second order kernel acting on 
functions and then extend this definition to kernels acting on 2-forms. This extension to 2-forms is motivated by 
extending the above result (when a ≡ 0). It will moreover turn out to be a crucial point in the proof of Theorem 3. 
Examples are discussed in Section 4.3.

Case 1: kernels acting on functions. Let αm
kl, β

m
l , γ m ∈ C0(Ω). We define the operator, acting on C2 functions w, 

N
α,β,γ
a : C2(Ω) → C0(Ω; Rn) as, for w ∈ C2(Ω),

N
α,β,γ
a (w) = ((

N
α,β,γ
a (w)

)1
, · · · , (Nα,β,γ

a (w)
)n)=

n∑
m=1

(
N

α,β,γ
a (w)

)m
dxm

where(
N

α,β,γ
a (w)

)m =
∑
k≤l

αm
klwxkxl

+
∑

l

βm
l wxl

+ γ mw.

Note that α = (αm
kl)

1≤m≤n
1≤k≤l≤n ∈ R

((n
2

)+n
)
n, β = (βm

l )
1≤m≤n
1≤l≤n ∈ Rn2

and γ = (γ m)1≤m≤n ∈ Rn. It will also be convenient 
to write

αkl =
∑
m

αm
kl dxm, βl =

∑
m

βm
l dxm and γ =

∑
m

γ m dxm.

We should observe that the dependence on a in the kernel is only implicit. It is only when we want to determine α, β
and γ so that La(N

α,β,γ
a (w)) = 0, for every w, that the a plays a role. So, sometimes, when we study the properties 

of the operator Nα,β,γ
a independently of the fact that La(N

α,β,γ
a (w)) = 0, we will write only Nα,β,γ .

Case 2: kernels acting on 2-forms. For w =∑
i<j wij dxi ∧ dxj ∈ C2(Ω; Λ2) we let

N
α,β,γ

a,2 (w) =
∑
m

[∑
i<j

(
N

αij ,βij ,γij
a

(
wij

))m]
dxm.

Note that α = (αm
ijkl)

1≤m≤n
1≤i<j≤n, 1≤k≤l≤n ∈ R

(n
2

)((n
2

)+n
)
n, while

β = (
βm

ijl

)1≤m≤n

1≤i<j≤n, 1≤l≤n
∈R

(n
2

)
n2

and γ = (
γ m
ij

)1≤m≤n

1≤i<j≤n
∈ R

(n
2

)
n.

4.2. The necessary and sufficient condition

We then have the following proposition.

Proposition 10. Let αkl, βl, γ ∈ C1(Ω; Rn). Then La(N
α,β,γ
a (w)) = 0 for every w ∈ C3(Ω) if and only if⎧⎪⎨⎪⎩

αm
mm = 0 ∀m

αm
ll + αl

lm = αl
mm + αm

lm = 0 ∀l < m

αk
lm + αl

km + αm
kl = 0 ∀k < l < m

(3)

{
La(αll) + βl

l = 0 ∀l

La(αlm) + βm
l + βl

m = 0 ∀l < m
(4){

La(βl) + γ l = 0 ∀l

La(γ ) = 0.
(5)

Proof. We have

La

(
N

α,β,γ
a (w)

)=
∑
m

∑
k≤l

(
αm

klwxkxl

)
xm

+
∑
m

∑
l

(
βm

l wxl

)
xm

+
∑
m

(
γ mw

)
xm

+
∑
m

∑
am

(
αm

klwxkxl

)+
∑
m

∑
am

(
βm

l wxl

)+
∑
m

am
(
γ mw

)

k≤l l
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and thus, since La(N
α,β,γ
a (w)) = 0, we find

0 =
∑
m

∑
k≤l

(
αm

klwxkxlxm

)+
∑
k≤l

(
La(αkl)

)
wxkxl

+
∑
m

∑
l

(
βm

l wxlxm

)
+
∑

l

(
La(βl)

)
wxl

+
∑
m

(
γ mwxm

)+ (
La(γ )

)
w.

Let us now examine all the terms depending on the order of derivatives of w.
Terms of order 0 and 1. For the first one we immediately get that La(γ ) = 0. For the terms of order 1, we group 

all the terms with the same indices∑
l

(
La(βl) + γ l

)
wxl

= 0

and hence La(βl) + γ l = 0 for every l.
Terms of order 2. We find∑

k≤l

+
∑
m

∑
l

=
[ ∑

l (k=l)

+
∑
k<l

]
+
[∑

l<m

+
∑

l (m=l)

+
∑
m<l

]
and thus rewriting with the same indices, we get∑

k≤l

(
La(αkl)

)
wxkxl

+
∑
m

∑
l

(
βm

l wxlxm

)=
∑

l

(
La(αll) + βl

l

)
wxlxl

+
∑
l<m

(
La(αlm) + βm

l + βl
m

)
wxlxm.

We hence found exactly (4).
Terms of order 3. Writing the same indices we obtain∑

m

∑
k≤l

=
[ ∑

m (k=l=m)

]
+
[ ∑

m<l (k=l)

+
∑

m>l (k=l)

+
∑

m<l (k=m)

+
∑

k<m (l=m)

]
+
[ ∑

m<k<l

+
∑

k<m<l

+
∑

k<l<m

]
.

We hence find, after uniforming the indices,

0 =
[∑

m

αm
mmwxmxmxm

]
+
∑
l<m

(
αm

ll + αl
lm

)
wxlxlxm

+
∑
l<m

(
αl

mm + αm
lm

)
wxlxmxm +

∑
k<l<m

[
αk

lm + αl
km + αm

kl

]
wxkxlxm.

Therefore (3) is established and the proof is thus complete. �
4.3. Some examples

We now give three examples.

Example 11. When a = gradA, we can choose, for every w ∈ C2(Ω; Λ2),

N
α,β,γ

a,2 (w) = e−A curl∗ w

Proof. Fix i < j and define

βm
ijl = e−A

⎧⎨⎩
1 if l = i and m = j

−1 if m = i and l = j

0 otherwise.

Choose αlm = γ = 0 so that N
α,βij ,γ
a (w) = e−A[−wxj

dxi +wxi
dxj ]. When applied to 2-forms w =∑

wijdxi ∧dxj

we can choose a linear combination of the above N
α,βij ,γ
a (wij ). We thus find
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eA
(
N

α,β,γ

a,2 (w)
)m = eA

∑
i<j

(
N

α,βij ,γ
a

(
wij

))m =
∑
i<j

∑
l

βm
ijlw

ij
xl

=
∑
l<m

βm
lmlw

lm
xl

+
∑
l>m

βm
mllw

ml
xl

=
∑
l<m

wlm
xl

−
∑
l>m

wml
xl

= (
curl∗ w

)m
which is what had to be proved. �

The next example is in some sense generic and will be used in Theorem 22.

Example 12. Let 0 ≤ 2p ≤ n and a =∑p

i=1 x2i dx2i−1.
Case of 0-forms ( for a). We can then choose α,β, γ ∈ C∞ such that, for every w ∈ C2(Ω),

N
α,β,γ

a (w) = e−x1x2(−wx1x2 + x1wx1 − w)dx1 + e−x1x2(wx1x1)dx2

and verifying La(N
α,β,γ

a (w)) = 0, for every w ∈ C3(Ω).
Case of 2-forms ( for a). For w =∑

i<j wij dxi ∧ dxj ∈ C2(Ω; Λ2), we can find α,β, γ ∈ C∞ such that

N
α,β,γ

a,2 (w) = e−x1x2

(
−

n∑
j=2

w
1j
x1xj

+ x1w
12
x1

−
p∑

i=2

x2iw
1(2i−1)
x1

− w12

)
dx1 + e−x1x2

n∑
j=2

w
1j
x1x1 dxj (6)

and satisfying

La

(
N

α,β,γ

a,2 (w)
)= 0, ∀w ∈ C3(Ω;Λ2). (7)

It can, moreover, be rewritten as (where we let σ = e−x1x2dx1)

N
α,β,γ

a,2 (w) = −(σ � da) �w + a � (σ ∧ δw) + δ(σ ∧ δw)

for every w of the form w =∑n
j=2 w1j dx1 ∧ dxj .

Case of 2-forms ( for generic a). If we now consider a = a + dS, where S is a function, we see that if

(α,β, γ ) = e−S(α,β, γ ) ⇔ N
α,β,γ

a,2 (w) = e−SN
α,β,γ

a,2 (w), (8)

then

La

(
N

α,β,γ

a,2 (w)
)= 0, ∀w ∈ C3(Ω;Λ2).

Proof. Case of 0-forms ( for a). We just have to set

αm
kl = e−x1x2

⎧⎨⎩
1 if k = l = 1 and m = 2

−1 if k = m = 1 and l = 2

0 otherwise

βm
l = e−x1x2

{
x1 if l = m = 1

0 otherwise
and γ m = e−x1x2

{−1 if m = 1

0 otherwise.
Case of 2-forms ( for a). More generally we let, for i < j ,

αm
ijkl = e−x1x2

⎧⎨⎩
1 if i = k = l = 1 and j = m = 2, · · · , n
−1 if i = k = m = 1 and j = l = 2, · · · , n
0 otherwise

βm
ijl = e−x1x2

⎧⎨⎩
x1 if i = l = m = 1 and j = 2

−x2s if i = l = m = 1 and j = 2s − 1 with s = 2, · · · ,p
0 otherwise

γ m
ij = e−x1x2

{−1 if i = m = 1 and j = 2
0 otherwise.
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We still have to prove the extra statement. For w ∈ Λ2, we let π1(w) = ∑n
j=2 w1j dx1 ∧ dxj and observe that, for 

every w ∈ Λ2,

N
α,β,γ

a,2 (w) = N
α,β,γ

a,2

(
π1(w)

)
.

We then set, for σ = e−x1x2 dx1,

M(w) = −(σ � da) �w + a � (σ ∧ δw) + δ(σ ∧ δw).

The claim is that

N
α,β,γ

a,2 (w) = N
α,β,γ

a,2

(
π1(w)

)= M
(
π1(w)

)
(9)

and we will thus have La(M(π1(w))) = 0, for every w ∈ C3(Ω; Λ2). So let us prove (9). Let w = π1(w) and 
λ = e−x1x2 so that σ = λ dx1. A direct computation gives

M(w) = −(σ � da) �w + a � (σ ∧ δw) + δ(σ ∧ δw)

= [−λw12 dx1]+
[
−λ

(
p∑

i=2

w1(2i−1)
x1

x2i

)
dx1 + λ

n∑
j=2

(
x2w

1j
x1

)
dxj

]

+
[(

−
n∑

i=2

(
λw1i

x1

)
xi

)
dx1 +

n∑
j=2

((
λw

1j
x1

)
x1

)
dxj

]
.

We have therefore established (9), namely

M(w) = e−x1x2

(
−

n∑
j=2

w
1j
x1xj

+ x1w
12
x1

−
p∑

i=2

x2iw
1(2i−1)
x1

− w12

)
dx1 + e−x1x2

n∑
j=2

w
1j
x1x1 dxj .

Case of 2-forms ( for generic a). It now remains to show the last statement of the example. We have

La

(
N

α,β,γ

a,2 (w)
)= div

(
e−SN

α,β,γ

a,2 (w)
)+ 〈

a; e−SN
α,β,γ

a,2 (w)
〉

= e−S
[
div

(
N

α,β,γ

a,2 (w)
)+ 〈

a;Nα,β,γ

a,2 (w)
〉]

and hence, for every w ∈ C3(Ω; Λ2),

La

(
N

α,β,γ

a,2 (w)
)= e−SLa

(
N

α,β,γ

a,2 (w)
)= 0.

The proof is therefore complete. �
4.4. A sufficient condition

We now show that if curla �= 0, we can then find an operator Nα,β,γ
a satisfying the conditions of Proposition 10, 

with arbitrary αkl .

Proposition 13. Let r ≥ 1 be an integer, O ⊂ Rn be a bounded open set, αm
kl ∈ Cr+4(O) be arbitrary and a ∈

Cr+3(O; Λ1) be such that

inf
x∈O

{∣∣curla(x)
∣∣}≥ δ > 0.

Then there exist βm
l ∈ Cr+1(O) and γ m ∈ Cr(O) verifying{

La(αll) + βl
l = 0 ∀l

La(αlm) + βm
l + βl

m = 0 ∀l < m
and

{
La(βl) + γ l = 0 ∀l

La(γ ) = 0.

Moreover it can be assumed that, for every l, m,



G. Csató, B. Dacorogna / Ann. I. H. Poincaré – AN 33 (2016) 829–848 839
supp
[
βm

l

]
, supp

[
γ m

]⊂
⋃
m

⋃
k≤l

supp
[
αm

kl

]
and, for every 0 ≤ s ≤ 1, there exists K = K(‖a‖Cr+3,s , δ) such that∥∥βm

l

∥∥
Cr+1,s + ∥∥γ m

∥∥
Cr,s ≤ K‖α‖Cr+4,s .

Proof. (i) Define

βl = −
∑
s≥l

La(αls)dxs +
∑

s

λlsdxs = bl + dxl � λ

where λls = −λsl (i.e. λ ∈ Λ2) will be determined later and where we have let

bl = −
∑
s≥l

La(αls)dxs.

We therefore have βl
l = −La(αll) and if l < m

βl
m = λml and βm

l = −La(αlm) + λlm

which leads to βl
m + βm

l = −La(αlm).
(ii) We let γ be defined by

γ = −
∑

l

La(βl)dxl = −
∑

l

La(bl)dxl −
∑

l

La

(
dxl � λ

)
dxl = c − e.

The condition La(γ ) = 0 therefore becomes La(e) = La(c). An easy calculation shows that

La(e) =
∑
l<s

[(
as
xl

− al
xs

)
λls

]= curla � λ.

Since curla �= 0, we can choose

λls = (as
xl

− al
xs

)

|curla|2 La(c) (10)

and thus the result.
(iii) The claim on the support and the estimate are obvious. Note that the dependence of K on δ follows from (10)

and Proposition 16.29 in [4]. �
5. A Poincaré type lemma on the boundary

We now consider our operator Nα,β,γ

a,2 as acting on 2-forms. We therefore have αm
ijkl, β

m
ijl, γ

m
ij ∈ Cr(Ω) and w ∈

Cr+2(Ω; Λ2). The operator is then given by

N
α,β,γ

a,2 (w) =
∑
m

(
N

α,β,γ

a,2 (w)
)m

dxm

where(
N

α,β,γ

a,2 (w)
)m =

(∑
k≤l

∑
i<j

αm
ijklw

ij
xkxl

)
+
(∑

l

∑
i<j

βm
ijlw

ij
xl

)
+
(∑

i<j

γ m
ij wij

)
and the α, β , γ are chosen (see Propositions 10 and 13) so that

La

(
N

α,β,γ

a,2 (w)
)= 0, ∀w ∈ C3(Ω;Λ2).

The first case that we study is a result on the boundary (in Section 7, we will study the case in the interior). More 
precisely given c ∈ Cr,s(Ω; Rn) with ν � c = 〈ν; c〉 = 0 on ∂Ω (where ν is the outward unit normal to ∂Ω) we will 
find w ∈ Cr+2,s(Ω; Λ2) (and αm

ijkl , β
m
ijl , γ

m
ij ) such that Nα,β,γ

a,2 (w) = c on ∂Ω . This is the exact analogue of solving, 
when a ≡ 0, curl∗ w = c on ∂Ω (cf. Lemma 8.11 (ii) in [4]).
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Theorem 14. Let r ≥ 1 be an integer, 0 < s < 1 and Ω ⊂ Rn be a bounded open smooth set. Let a ∈ Cr+3,s(Ω; Rn)

be such that

inf
x∈∂Ω

{∣∣curla(x)
∣∣}≥ δ > 0.

There exist αm
ijkl ∈ C∞(Ω), βm

ijl ∈ Cr+1,s(Ω), γ m
ij ∈ Cr,s(Ω) satisfying

La

(
N

α,β,γ

a,2 (w)
)= 0, ∀w ∈ C3(Ω;Λ2)

with the additional property that for any c ∈ Cr,s(Ω; Rn) with ν � c = 〈ν; c〉 = 0 on ∂Ω , then there exists w ∈
Cr+2,s(Ω; Λ2) verifying

N
α,β,γ

a,2 (w) = c on ∂Ω.

Furthermore there exists K = K(r, s, ‖a‖Cr+3,s , δ, Ω) such that

‖w‖Cr+2,s + ∥∥Nα,β,γ

a,2 (w)
∥∥

Cr,s ≤ K‖c‖Cr,s .

Proof. Step 1. We first find (using Lemma 15 below) αm
ijkl ∈ C∞(Ω) satisfying (11) such that

N
α,β,γ

a,2 (w) = ν � ∂2w

∂ν2
on ∂Ω

for every βm
ijl, γ

m
ij ∈ C0(Ω) and w ∈ Cr+3(Ω; Λ2) verifying

∂w

∂ν
= w = 0 on ∂Ω.

It can also be ensured that αm
ijkl has its support in a small neighborhood O of ∂Ω and curla �= 0 in O . Applying 

Proposition 13 on this O and extending βm
ijl and γ m

ij by 0 in Ω \O , we then find (cf. Proposition 10) βm
ijl ∈ Cr+1,s(Ω)

and γ m
ij ∈ Cr,s(Ω) so that La(N

α,β,γ
a (w)) = 0 is verified for every w ∈ C3(Ω; Λ2).

Step 2. Observe that, since ν � c = 0 on ∂Ω , we have c = ν � (ν ∧ c) on ∂Ω . We then let w = ∑
wijdxi ∧ dxj

satisfying (component by component)⎧⎨⎩�3w = 0 in Ω

∂2w

∂ν2
= ν ∧ c and

∂w

∂ν
= w = 0 on ∂Ω.

The solution w is (cf. Theorems 7.3 and 12.10 in [1]) in C∞(Ω; Λ2) ∩Cr+2,s(Ω; Λ2) and there exists K = K(r, s, Ω)

such that

‖w‖Cr+2,s ≤ K‖c‖Cr,s .

According to Lemma 15 w satisfies on ∂Ω

N
α,β,γ

a,2 (w) = ν � ∂2w

∂ν2
= ν � (ν ∧ c) = c

as wished. �
In the proof of the theorem we used the following lemma.

Lemma 15. Let Ω ⊂Rn a bounded open smooth set. Then there exists αm
ijkl ∈ C∞(Ω) satisfying⎧⎪⎪⎨⎪⎪⎩

αm
ijmm = 0 ∀m ∀i < j

αm
ijll + αl

ij lm = αl
ijmm + αm

ijlm = 0 ∀l < m ∀i < j

αk + αl + αm = 0 ∀k < l < m ∀i < j

(11)
ij lm ijkm ijkl
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such that ( for any βm
ijl, γ

m
ij ∈ C0(Ω))

N
α,β,γ

a,2 (w) = ν � ∂2w

∂ν2
on ∂Ω

for any w ∈ Cr+2(Ω; Λ2) verifying w = ∂w/∂ν = 0 on ∂Ω , where ν is the outward unit normal to ∂Ω . Furthermore 
αm

ijkl can be chosen identically 0 outside an arbitrary small neighborhood of ∂Ω .

Proof. Step 1. We first observe that if Ω ⊂ Rn is a bounded open smooth set and w ∈ C2(Ω) is such that w =
∂w/∂ν = 0 on ∂Ω , then, for every i, j ,

∂2w

∂xi∂xj

= ∂2w

∂ν2
νiνj on ∂Ω.

Step 2. In the sequel we have extended ν in a C∞(Ω; Rn) way so that it is identically 0 outside an arbitrary small 
neighborhood of ∂Ω . We define the αm

ijkl as functions of ν implicitly by the equation

N
α,β,γ

a,2 (w) = δ(ν � δw) + lower order terms in derivatives of w.

Since δδ(ν � δw) = 0 for all w ∈ C3(Ω; Rn(n−1)/2), we obtain that La(N
α,β,γ

a,2 (w)) contains only derivatives of w of 
order less or equal to 2. Therefore, as in the proof of Proposition 10, we must have that (11) is satisfied. Note that for 
any w ∈ Cr+2(Ω; Λ2) verifying w = ∂w/∂ν = 0 on ∂Ω , we have

N
α,β,γ

a,2 (w) = δ

(
n∑

i,j,k=1

νkw
ij
xi

dxk ∧ dxj

)
=

n∑
i,j,k=1

νkw
ij
xkxi

dxj on ∂Ω.

From Step 1 and the fact that |ν|2 = 1 we get that

N
α,β,γ

a,2 (w) =
n∑

i,j,k=1

νiν
2
k

∂2wij

∂ν2
dxj = ν � ∂2w

∂ν2
on ∂Ω.

This proves the lemma. �
6. Proof of Theorems 3 and 5

We now turn to the proof of Theorem 3.

Proof of Theorem 3. Step 1. Let us first simplify the problem. We can assume, without loss of generality, that u0 = 0. 
Indeed it suffices to set v = u − u0 and we find (since La(u0) ∈ Cr,s(Ω)){

La(v) = La(u) − La(u0) = f − La(u0) in Ω

v = 0 on ∂Ω.

So from now on we will assume that u0 = 0. We next show that we can, without loss of generality, assume that

diva = 0 in Ω and 〈a;ν〉 = 0 on ∂Ω (12)

where ν is the outward unit normal to ∂Ω . Indeed Theorem 6.12 (ii) in [4] implies that we can find b ∈ C
r+5,s
N (Ω), 

c ∈ C
r+5,s
N (Ω; Λ2) and g ∈ HN(Ω; Λ1) so that a = db + δc + g and hence, in particular (recall that ν � c = 0 implies 

ν � δc = 0),

div(δc + g) = δ(δc + g) = 0 in Ω and 〈δc + g;ν〉 = ν � (δc + g) = 0 on ∂Ω.

Setting v = ebu, we have v = 0 on ∂Ω and δv + (δc + g) � v = ebf . Thus, up to replacing a by δc + g, f by ebf and 
u by ebu, we are lead to solving our problem under the further hypotheses (12).
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Step 2. Consider then the Neumann problem⎧⎨⎩�v − |a|2v = f in Ω

∂v

∂ν
= 〈gradv;ν〉 = 0 on ∂Ω.

Since curla �≡ 0 (here we do not need the full hypothesis on curla), we have that a �≡ 0. We can then find (cf. [1]
or [10]) a solution v ∈ Cr+2,s(Ω), without any restriction on f (note that here we only need a ∈ Cr,s ). Moreover the 
solution is unique and there exists K = K(r, s, ‖a‖Cr,s , Ω) such that

‖v‖Cr+2,s ≤ K‖f ‖Cr,s .

Note that Step 2 is optimal both from the point of view of the regularity of a and for the condition curla �≡ 0.
Step 3. We then apply Theorem 14 to find αm

ijkl ∈ C∞(Ω), βm
ijl ∈ Cr+2,s(Ω), γ m

ij ∈ Cr+1,s(Ω) satisfying

La

(
N

α,β,γ

a,2 (w)
)= 0, ∀w ∈ C3(Ω;Λ2)

and w ∈ Cr+3,s(Ω; Λ2) verifying Nα,β,γ

a,2 (w) = −gradv + av on ∂Ω . Note that this can be done, since −gradv +
av ∈ Cr+1,s(Ω; Rn) and 〈ν; −gradv + av〉 = 0. We finally let

u = gradv − av + N
α,β,γ

a,2 (w).

Clearly this is a solution of our problem. Indeed we have u ∈ Cr+1,s(Ω; Rn) and, by construction, u = 0 on ∂Ω . 
Moreover (since diva = 0) we have, in Ω , that

La(u) = La(gradv − av) + La

(
N

α,β,γ

a,2 (w)
)

= div(gradv − av) + 〈a;gradv − av〉 = �v − |a|2v = f.

The estimate easily follows and this concludes the proof of the theorem. �
We now prove Theorem 5.

Proof of Theorem 5. The proof is almost identical to the preceding one.
Step 1. As before we can assume that u0 = 0. We next show that we can, without loss of generality, assume that 

a ∈ C∞(Ω; Rn),

curla = 0 in Ω, diva = 0 in Ω and 〈a;ν〉 = 0 on ∂Ω

where ν is the outward unit normal to ∂Ω . As before we can find b ∈ C
r+1,s
N (Ω), c ∈ C

r+1,s
N (Ω; Λ2) and g ∈

HN(Ω; Λ1) so that a = db + δc + g. Observe that in the present case δc ∈ HN(Ω; Λ1) and thus can be taken 0
(by incorporating it into g). Indeed since da = 0, we have d(δc) = 0, δ(δc) = 0 and ν � δc = 0 (since ν � c = 0). 
Hence, in particular,

divg = δg = 0 in Ω and 〈g;ν〉 = ν � g = 0 on ∂Ω.

The remaining part of the proof is then as in Step 1 of Theorem 3. Note that now, according to Theorem 6.3 in [4], 
a ∈ C∞(Ω; Rn).

Step 2. This step is identical to that of Theorem 3.
Step 3. We next observe that Nα,β,γ

a,2 (w) = δw + a �w indeed satisfies

La

(
N

α,β,γ

a,2 (w)
)= 0, ∀w ∈ C2(Ω;Λ2).

We then invoke Lemma 8.11 (ii) in [4] to find w ∈ Cr+2,s(Ω; Λ2) verifying

N
α,β,γ

a,2 (w) = δw + a �w = −gradv + av on ∂Ω.

Since −gradv + av ∈ Cr+1,s(Ω; Rn) and 〈ν; −gradv + av〉 = 0, this can indeed be done. We finally have that a so-
lution is given by
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u = gradv − av + N
α,β,γ

a,2 (w) = gradv − av + δw + a �w.

The remaining part of the proof is as in Theorem 3. �
7. Poincaré type lemma in the interior

The results of the present section are not used elsewhere in the article, but we give them for the sake of complete-
ness. We have already studied the problem on the boundary, cf. Theorem 14. The second case that we want to discuss 
is the problem in the interior. Given u with La(u) = divu + 〈a; u〉 = 0 in Ω we will find w (and α, β , γ so that 
La(N

α,β,γ

a,2 (v)) = 0 for every v) such that

N
α,β,γ

a,2 (w) = u in Ω.

This is the exact analogue of finding, provided divu = 0, w with curl∗ w = u.

7.1. The case of the standard symplectic form

We start with a global result (for the notations see Example 12).

Theorem 16. Let Ω ⊂ Rn be a bounded open smooth set. Let a = a + dS ∈ C∞(Ω; Λ1) and let α, β , γ be defined 
as in (8). Let u ∈ C∞(Ω; Λ1) satisfy La(u) = 0. Then there exists w ∈ C∞(Ω; Λ2) verifying

u = N
α,β,γ

a,2 (w).

Proof. Step 1. Let us first show that we can assume that S = 0. Indeed suppose that we already proved the lemma when 

a = a, i.e. for every U ∈ C∞(Ω; Λ1) satisfying La(U) = 0, we can find w ∈ C∞(Ω; Λ2) verifying U = N
α,β,γ

a,2 (w). 
We then set u = e−SU and find that

u = e−SN
α,β,γ

a,2 (w) = N
α,β,γ

a,2 (w).

Observe also that a direct computation shows that La(U) = 0 if and only if La(u) = 0. So from now on we will 
assume that a = a. Thus we may invoke (6) and (7).

Step 2. It remains to verify that with a = a, we have the theorem. Namely if La(u) = 0 in Ω , we have to find w

such that u = N
α,β,γ

a (w) in Ω .
(i) We introduce the following notation x = (x1, · · · , xn) = (x1, ̂x ). We first extend u to Rn in an arbitrary way and 

then define

w1j =
x1∫

0

( s∫
0

etx2uj (t, x̂ )dt

)
ds for j = 2, · · · , n.

Observe that

w
1j
x1x1 = ex1x2uj in Rn for j = 2, · · · , n. (13)

(ii) We next let

g(x) = −ex1x2u1 −
n∑

j=2

w
1j
x1xj

+ x1w
12
x1

−
p∑

i=2

x2iw
1(2i−1)
x1

− w12.

We claim that in Ω the function g is independent of x1, that is g(x) = g( ̂x ). Indeed, using (13) and that La(u) = 0
in Ω , we get that gx1 = 0.

(iii) We finally choose w12 = w12 + g and w1j = w1j for j = 3, · · · , n. We therefore obtain from (13) and the 
definition of w that, in Ω ,

uj = e−x1x2w
1j
x1x1 = e−x1x2w

1j
x1x1 = (

N
α,β,γ

(w)
)j for j = 2, · · · , n.
a,2
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It follows from the definition of g and using that g(x) = g( ̂x ) in Ω , that we also have, in Ω , u1 = (N
α,β,γ

a,2 (w))1, 
which is what had to be established. �
7.2. Some intermediate results

We begin with a definition.

Definition 17. Let A ∈ Rn×n be a matrix with entries ai
j , where the upper index i stands for the row and the lower 

index j stands for the column. Then we define A� as the matrix

A� = {(
A�

)kl

ij

}1≤k≤l≤n

1≤i≤j≤n
∈ R

((n
2

)+n
)×((n

2

)+n
)

by ordering the indices (k, l) standing for the rows, respectively (i, j) standing for the columns, in lexicographic order 
and (

A�
)kl

ij
= ak

i a
k
j if k = l and

(
A�

)kl

ij
= ak

i a
l
j + ak

j a
l
i if k < l.

Lemma 18. The following identities hold true

(AB)� = A�B�,
(
A�

)−1 = (
A−1)� and detA� = (detA)n+1.

Proof. Step 1. We start with the first statement. Let r ≤ t and p ≤ q be given. We have to show that(
(AB)�

)rt
pq

= (
A�B�

)rt
pq

. (14)

We discuss only the case r < t (the case r = t being handled similarly). In this case we get

(
(AB)�

)rt
pq

= (AB)rp(AB)tq + (AB)rq(AB)tp =
n∑

i,j=1

ar
i a

t
j b

i
pb

j
q +

n∑
i,j=1

ar
i a

t
j b

i
qb

j
p. (15)

On the other hand we have that the right hand side of (14) is

(
A�B�

)rt
pq

=
∑
i<j

(
ar
i a

t
j + ar

j a
t
i

)(
bi
pb

j
q + bi

qb
j
p

)+
n∑

i=1

(
ar
i a

t
i + ar

i a
t
i

)
bi
pbi

q .

If we expand the products in this last equation and split the sum in (15) as 
∑

i,j =∑
i<j + 

∑
i>j + 

∑
i=j , one easily 

confirms that (14) holds true.
Step 2. The second statement of the lemma follows from the first statement and the fact that (In)

� = I(n
2

)+n, where 

In ∈ Rn×n is the identity matrix.
Step 3. We next prove the statement on the determinant.
Step 3.1. Let us show that if A is an upper triangular matrix, meaning that ap

q = 0 if q < p, then A� is also an 
upper triangular matrix. We have to show that for every i ≤ j and k ≤ l (A�)kl

ij = 0 if (ij) < (kl). In view of the 
lexicographic ordering, the inequality (ij) < (kl) is equivalent to: either i < k or {i = k and j < l}.

Case 1: i < k. By assumption we get that ak
i = 0. Moreover if l > k, then also al

i = 0. We therefore have

(
A�

)kl

ij
=
{

ak
i a

k
j = 0 if k = l

ak
i a

l
j + ak

j a
l
i = 0 if k < l.

Case 2: i = k and j < l. If k = l, then we have by assumption that ak
j = al

j = 0. Whereas if k < l, then al
i = al

k =
al
j = 0. We can therefore conclude as in Case 1.

Step 3.2. Let us first assume that A is an upper triangular matrix. From Step 1 we therefore obtain

detA� =
∏(

A�
)ij
ij

=
∏(

A�
)ij
ij

n∏(
A�

)ii
ii

=
∏(

ai
i a

j
j

) n∏
ai
i a

i
i .
i≤j i<j i=1 i<j i=1
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It can be easily shown by induction that 
∏

i<j ai
i a

j
j = (

∏n
i=1 ai

i )
n−1. This leads to

detA� =
(

n∏
i=1

ai
i

)n−1( n∏
i=1

ai
i

)2

=
(

n∏
i=1

ai
i

)n+1

= (detA)n+1.

This shows the lemma for upper triangular matrices. If A is an arbitrary matrix, then PAP −1 = U , where U is upper 
triangular. From Step 1 we obtain that P �A�(P �)−1 = U� which leads to detA� = detU� = (detU)n+1 = (detA)n+1, 
which was what had to be shown. �

Below we will use the following lemma. Since in the statement of the lemma there is no dependence on a, we have 
dropped the subindex a in Nα,β,γ

a .

Lemma 19. Let O, Ω ⊂ Rn be two open sets and ψ ∈ Diff∞(Ω; O). Then there exists a unique invertible map 
σ = σψ , such that

σ : C∞(
Ω;R

((n
2

)+n
)
n ×Rn2 ×Rn

)→ C∞(
O;R

((n
2

)+n
)
n ×Rn2 ×Rn

)
,

satisfies, for every f ∈ C∞(O) and (α, β, γ ) ∈ C∞(Ω; R
((n

2

)+n
)
n ×Rn2 ×Rn),

∗ψ∗(∗Nσ(α,β,γ )(f )
)= Nα,β,γ (f ◦ ψ) in Ω. (16)

Remark 20. It follows from the proof that σ is linear and can be written in the form

σ(α,β, γ )(x) = Aψ(x) · (α(ψ−1(x)
)
, β

(
ψ−1(x)

)
, γ

(
ψ−1(x)

))
,

where Aψ is an invertible matrix of dimension 
((

n
2

)+ n
)
n + n2 + n and · denotes the multiplication between matrices 

and vectors.

Proof of Lemma 19. Step 1. Let us write explicitly Eq. (16) in terms of f (ψ), fxs (ψ) and fxsxt (ψ). The right hand 
side of (16), namely

Nα,β,γ
(
f (ψ)

)=
n∑

m=1

[∑
k≤l

αm
kl

(
f (ψ)

)
xkxl

+
n∑

l=1

βm
l

(
f (ψ)

)
xl

+ γ mf (ψ)

]
dxm,

becomes after a straightforward calculation

(
Nα,β,γ

(
f (ψ)

))m =
∑
s<t

fxsxt (ψ)
∑
k≤l

αm
kl

(
ψs

xl
ψt

xk
+ ψt

xl
ψs

xk

)+
n∑

s=1

fxsxs (ψ)
∑
k≤l

αm
klψ

s
xl

ψs
xk

+
n∑

s=1

fxs (ψ)

(∑
k≤l

αm
klψ

s
xlxk

+
n∑

l=1

βm
l ψs

xl

)
+ γ mf (ψ). (17)

Using the notation σ(α, β, γ ) = (α,β, γ ), we get by a direct calculation that the left hand side of (16) is of the form

(∗ψ∗(∗Nα,β,γ (f )
))m =

∑
s≤t

Am
stfxsxt (ψ) +

m∑
s=1

Bm
s fxs (ψ) + Cmf (ψ),

where Am
st , B

m
s and Cm are abbreviations for

Am
st =

n∑
q=1

(−1)q−1+n−mα
q
st (ψ)det(∇ψ)

1···̂q···n
1···m̂···n

Bm
s =

n∑
(−1)q−1+n−mβ

q
s (ψ)det(∇ψ)

1···̂q···n
1···m̂···n
q=1
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Cm =
n∑

q=1

(−1)q−1+n−mγ q(ψ)det(∇ψ)
1···̂q···n
1···m̂···n,

where 1 · · · q̂ · · ·n means that the row q has been omitted in ∇ψ , and 1 · · · m̂ · · ·n means that the column m has been 
omitted. In view of (17), Eq. (16) is valid for every f if and only if the following set of equations is satisfied for every 
m = 1, · · · , n⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k≤l

αm
kl

(
ψs

xl
ψt

xk
+ ψt

xl
ψs

xk

)= Am
st for every s < t

∑
k≤l

αm
klψ

s
xl

ψs
xk

= Am
ss for every s = 1, · · · , n

∑
k≤l

αm
klψ

s
xkxl

+
n∑

l=1

βm
l ψs

xl
= Bm

s for every s = 1, · · · , n

γ m = Cm

(18)

Step 2. In view of Step 1, we have to show that the linear system of equations (18) can be solved uniquely for 
(α,β, γ ) in terms of (α, β, γ ), and conversely.

Step 2.1. Let us first show that we can solve (18) for (α,β, γ ). Note that entries of the adjoint matrix adj(∇ψ) of 
∇ψ are precisely given by(

adj(∇ψ)
)q
m

= (−1)q−m det(∇ψ)
1···̂q···n
1···m̂···n for every q,m = 1, · · · , n.

Moreover let us denote, for s < t , αst = (α1
st , · · · , αn

st ) and Ast = (A1
st , · · · , An

st ). From the definition of Am
st we 

therefore obtain that

Ast = (−1)n−1(adj(∇ψ)
)t

αst = (−1)n−1 det∇ψ(∇ψ)−t αst (ψ).

We therefore fix s < t and obtain from the first system of equations in (18), that

αst (ψ) = (−1)n−1

det∇ψ
(∇ψ)tAst = (−1)n−1

det∇ψ
(∇ψ)t

{∑
k≤l

αm
kl

(
ψs

xl
ψt

xk
+ ψt

xl
ψt

xk

)}
m=1,···,n

.

We can proceed exactly in the same way to solve for αss , β and γ . This proves the existence of σ .
Step 2.2. Let us now show that the system (18) can be solved for (α, β, γ ) in terms of (α,β, γ ). Let us 

denote τ = σ−1 and write τ = {(τm
1 , τm

2 , τm
3 )}m=1,···,n, meaning that τm

1 (α,β, γ ) = αm, τm
2 (α,β, γ ) = βm and 

τm
3 (α,β, γ ) = γ m. From the last equation in (18) we immediately get that γ m = τm

3 (α,β, γ ) = τm
3 (γ ) = Cm(γ )

is well defined. It remains to show that one can solve the first three equations in (18) for α and β . Note that for each 
fixed m ∈ {1, · · · , n} there are exactly 

(
n
2

) + 2n unknowns (αm
kl, β

m
l ). This is also exactly the number of linear equa-

tions. Thus one can write the first three equations of (18) in matrix form with some square matrix Mψ = M(∇ψ, ∇2ψ)

as Mψ · (αm, βm) = Gm(α(ψ),β(ψ), ∇ψ), for some vector Gm with 
(
n
2

)+ 2n entries depending on Am
st and Bm

s . We 
will show that Mψ is invertible. Using the lexicographic order to enumerate the 

(
n
2

)+ n entries of αm and then the n
entries of βm, one observes that M can be written in block-matrix form

Mψ =
(

A 0
B C

)
,

where A, C are square matrices and (see Definition 17) A = (∇ψ)�, C = ∇ψ and B = B(∇2ψ) is a function of 
the second derivatives of ψ . From the statement on the determinant in Lemma 18 we have detA = det(∇ψ)� =
(det∇ψ)n+1. We thus get that detMψ = (det∇ψ)n+2. We can therefore define τm

1 and τm
2 as(

αm,βm
)= (

τm
1 (α,β, γ ), τm

2 (α,β, γ )
)= M−1

ψ · (Gm
(
α(ψ),β(ψ),∇ψ

))
.

This shows the existence of τ . By construction, we obviously have that τ = σ−1. The lemma is therefore proved. �
We use below the following notation an = (

n
)((

n
)+ n

)
n, bn = (

n
)
n2 and cn = (

n
)
n.
2 2 2 2
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Proposition 21. Let O, Ω ⊂ Rn be open, ψ ∈ Diff∞(Ω; O), a ∈ C∞(O; Λ1) and a = ψ∗(a). Then there ex-

ists (α,β, γ ) ∈ C∞(O; Ran × Rbn × Rcn) such that KerLa = RangeN
α,β,γ

a,2 if and only if there exists (α, β, γ ) ∈
C∞(Ω; Ran ×Rbn ×Rcn) such that KerLa = RangeN

α,β,γ

a,2 .

Proof. We assume without loss of generality that (α, β, γ ) exists such that KerLa = RangeN
α,β,γ

a,2 . We have to 

show the existence of (α,β, γ ) such that KerLa = RangeN
α,β,γ

a,2 . The reverse direction follows in the same way, by 
repeating the argument with ψ−1 instead of ψ .

Step 1. From Lemma 19, we know that for every 1 ≤ i < j ≤ n there exists a map σij such that σij : C∞(Ω;
R
((n

2

)+n
)
n ×Rn2 ×Rn) → C∞(O; R

((n
2

)+n
)
n ×Rn2 ×Rn) satisfies, setting (αij , βij , γ ij ) = σij (αij , βij , γij ),

∗ψ∗(∗N
αij ,βij ,γ ij

a (f )
)= N

αij ,βij ,γij
a (f ◦ ψ), for every f ∈ C∞(O). (19)

We define (α,β, γ ) = {αij , βij , γ ij }1≤i<j≤n. Let w = ∑
wijdxi ∧ dxj ∈ C∞, when we write w ◦ ψ we mean that 

w ◦ ψ(x) =∑
wij (ψ(x))dxi ∧ dxj . It follows from (19) and the definition of Nα,β,γ

a,2 , respectively Nα,β,γ

a,2 , that

∗ψ∗(∗N
α,β,γ

a,2 (w)
)= N

α,β,γ

a,2 (w ◦ ψ) for every w ∈ C∞(
O;Λ2). (20)

Step 2. We now show that with the above choice of (α,β, γ ) we have KerLa = RangeN
α,β,γ

a,2 . We start with 
one of the inclusions. So let u ∈ KerLa . Define then v by v = ∗ψ∗(∗u) ∈ C∞(Ω; Λ1). By Lemma 7 we have that 
v ∈ KerLψ∗(a) = KerLa and so by assumption there exists a w ∈ C∞(Ω; Λ2) such that v = N

α,β,γ

a,2 (w). Define 

w = w ◦ ψ−1 ∈ C∞(O; Λ2), this implies that v = N
α,β,γ

a,2 (w ◦ ψ). We then get from (20) that v = N
α,β,γ

a,2 (w ◦ ψ) =
∗ψ∗(∗N

α,β,γ

a,2 (w)), which implies that u = N
α,β,γ

a,2 (w) and thus shows that u ∈ RangeN
α,β,γ

a,2 . We next prove the other 

inclusion and let u ∈ RangeN
α,β,γ

a,2 . Thus there exists w ∈ C∞(O; Λ2) such that u = N
α,β,γ

a,2 (w). Define then v =
∗ψ∗(∗u) ∈ C∞(Ω; Λ1). We obtain from (20) that v = N

α,β,γ

a,2 (w◦ψ). Therefore v ∈ RangeN
α,β,γ

a,2 and it follows from 
the assumption that La(v) = Lψ∗(a)(v) = 0. Lemma 7 implies then that La(u) = 0 which proves the proposition. �
7.3. The local theorem

We now obtain a local result (in Theorem 16 we obtained a global result for the particular vector field a or a + dS) 
for a general vector field a (recall that da is identified with curla).

Theorem 22. Let x0 ∈ Rn, 0 ≤ 2p ≤ n and, in a neighborhood of x0, a ∈ C∞ with rank[da] = 2p. Then there exist 
α, β, γ ∈ C∞ such that, in a neighborhood of x0,

La

(
N

α,β,γ

a,2 (w)
)= 0, ∀w ∈ C3.

If furthermore u ∈ C∞ satisfies La(u) = 0, then there exists w ∈ C∞ such that u = N
α,β,γ

a,2 (w), in a neighborhood 

of x0, or equivalently KerLa = RangeN
α,β,γ

a,2 .

Proof. From Theorem 13.6 in [4], we find a diffeomorphism ψ such that ψ∗(a) = a + dS. The theorem is then 
a consequence of Theorem 16 and Proposition 21. �
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