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Abstract

The aim of this paper is twofold:
(1) On the one hand, the paper revisits the spectral analysis of semigroups in a general Banach space setting. It presents some 

new and more general versions, and provides comprehensible proofs, of classical results such as the spectral mapping theorem, 
some (quantified) Weyl’s Theorems and the Krein–Rutman Theorem. Motivated by evolution PDE applications, the results apply 
to a wide and natural class of generators which split as a dissipative part plus a more regular part, without assuming any symmetric 
structure on the operators nor Hilbert structure on the space, and give some growth estimates and spectral gap estimates for the 
associated semigroup. The approach relies on some factorization and summation arguments reminiscent of the Dyson–Phillips 
series in the spirit of those used in [96,87,51,86].

(2) On the other hand, we present the semigroup spectral analysis for three important classes of “growth-fragmentation” equa-
tions, namely the cell division equation, the self-similar fragmentation equation and the McKendrick–Von Foerster age structured 
population equation. By showing that these models lie in the class of equations for which our general semigroup analysis theory 
applies, we prove the exponential rate of convergence of the solutions to the associated first eigenfunction or self-similar profile 
for a very large and natural class of fragmentation rates. Our results generalize similar estimates obtained in [103,73] for the cell 
division model with (almost) constant total fragmentation rate and in [19,18] for the self-similar fragmentation equation and the cell 
division equation restricted to smooth and positive fragmentation rate and total fragmentation rate which does not increase more 
rapidly than quadratically. It also improves the convergence results without rate obtained in [84,36] which have been established 
under similar assumptions to those made in the present work.
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1. Introduction

This paper deals with the study of decay properties for C0-semigroup of bounded and linear operators and their 
link with spectral properties of their generator in a Banach framework as well as some applications to the long-time 
asymptotic of growth-fragmentation equations.

1.1. Spectral analysis of semigroups

The study of spectral property of (unbounded) operators and of C0-semigroups of operators has a long history 
which goes back (at least) to the formalization of functional analysis by D. Hilbert [60,61] at the beginning of the 
20th century for the first issue and surely before the modern theoretical formalization of C0-semigroups of operators 
in general Banach spaces impulsed by E. Hille and K. Yosida [62,123,63] in the 1940’s for the second issue. For a 
given operator � on a Banach space X which generates a C0-semigroup S�(t) = et� of bounded operators, the two 
following issues are of major importance:

• describe its spectrum �(�), the set of its eigenvalues and the associated eigenspaces;
• prove the spectral mapping theorem

�(et�)\{ 0} = et�(�), (1.1)

and deduce the asymptotical behavior of trajectories associated to the semigroup.
Although it is well-known that the first issue can be a complicated task and the second issue is false in general 

(see [64] or [35, Section IV.3.a] for some counterexamples), there exist some particular classes of operators (among 
which is the class of self-adjoint operators with compact resolvent in a Hilbert space) for which these problems can be 
completely solved. In the present paper, motivated by evolution partial differential equation applications and inspired 
by the recent paper [51] (see also [96,87,86]), we identify a class of operators which split as

�=A+B, (1.2)

where A is “much more regular than B” and B has some dissipative property (and then a good localization of its 
spectrum) for which a positive answer can be given. The dissipative property assumption we make can be formulated 
in terms of the time indexed family of iterated time convolution operators (ASB)(∗k)(t) in the following way

(H1) for some a∗ ∈ R and for any a > a∗, � ≥ 0, there exists a constant Ca,� ∈ (0, ∞) such that the following growth 
estimate holds

∀ t ≥ 0, ‖SB ∗ (ASB)(∗�)(t)‖B(X) ≤ Ca,� eat . (1.3)

On the other hand, we make the key assumption that some iterated enough time convolution enjoys the growth and 
regularizing estimate:

(H2–3) there exists an integer n ≥ 1 such that for any a > a∗, there holds

∀ t ≥ 0, ‖(ASB)(∗n)(t)‖B(X,Y ) ≤ Ca,n,Y eat , (1.4)

or

∀ t ≥ 0, ‖SB ∗ (ASB)(∗n)(t)‖B(X,Y ) ≤Ca,n,Y eat , (1.5)

for some suitable subspace Y ⊂X and a constant Ca,n,Y ∈ (0, ∞).

In assumption (H2–3) we will typically assume that Y ⊂D(�ζ ), ζ > 0, and/or Y ⊂X with compact embedding.
Roughly speaking, for such a class of operators, we will obtain the following set of results:
• Spectral mapping theorem. We prove a partial, but principal, spectral mapping theorem which asserts that

�(et�)∩�eat = et�(�)∩�a , ∀ t ≥ 0, ∀a > a∗, (1.6)
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where we define the half-plane �a := { ξ ∈ C; �eξ > a} for any a ∈ R. Although (1.6) is less accurate than (1.1), it 
is strong enough to describe the semigroup evolution at first order in many situations. In particular, it implies that the 
spectral bound s(�) and the growth bound ω(�) coincide if they are at the right hand side of a∗, or in other words

max(s(�), a∗)= max(ω(�), a∗), (1.7)

and it gives even more accurate asymptotic information on the semigroup whenever �(�) ∩�a∗ �= ∅.
• Weyl’s Theorem. We prove some (quantified) version of the Weyl’s Theorem which asserts that the part of the 

spectrum �(�) ∩ �a∗ consists only of discrete eigenvalues and we get some information on the localization and 
number of eigenvalues as well as some estimates on the total dimension of the associated sum of eigenspaces.

• Krein–Rutman Theorem. We prove some (possibly quantified) version of the Krein–Rutman Theorem under some 
additional (strict) positivity hypothesizes on the generator � and the semigroup S�.

Let us describe our approach in order to get the above mentioned “spectral mapping theorem”, this one being the 
key result in order to get our versions of Weyl’s Theorem and Krein–Rutman Theorem. Following [96,87,51] (and 
many authors before!), the spectral analysis of the operator � with splitting structure (1.2) is performed by writing 
the resolvent factorization identity (with our definition of the resolvent in (2.1))

R�(z)=RB(z)−RB(z)AR�(z) (1.8)

as well as

R�(z)=RB(z)−R�(z)ARB(z), (1.9)

or an iterative version of (1.9), and by exploiting the information that one can deduce from (1.3), (1.4) and (1.5) at the 
level of the resolvent operators.

At the level of the semigroup, (1.8) yields the Duhamel formula

S� = SB + SB ∗ (AS�),
in its classic form, and (1.9) yields the Duhamel formula

S� = SB + S� ∗ (ASB), (1.10)

in a maybe less standard form (but also reminiscent of perturbation arguments in semigroup theory).
On the other hand, iterating infinitely one of the above identities, it is well-known since the seminal articles by 

Dyson and Phillips [33,105], that S� can be expended as the Dyson–Phillips series

S� =
∞∑
�=0

SB ∗ (ASB)(∗�), (1.11)

as soon as the right hand side series converges, and that matter has not an easy answer in general. The summability is-
sue of the Dyson–Phillips series can be circumvented by considering the finite iteration of the Duhamel formula (1.10)

S� =
n−1∑
�=0

SB ∗ (ASB)(∗�) + S� ∗ (ASB)(∗n). (1.12)

It is a usual trick in order to establish eventual norm continuity (see [16] and the references therein) and it has been 
also recently used in [51,86] in order to enlarge or to shrink the functional space where the semigroup S� satisfies 
some spectral gap estimate.

In the present work, and in the case �a∗ ∩ �(�) = {λ}, where λ ∈ C is a semisimple eigenvalue and a∗ < a <
�eλ in order to make the discussion simpler, our spectral mapping theorem simply follows by using the classical 
representation of the semigroup by means of the inverse Laplace transform of the resolvent, as already established by 
Hille in [62]. More precisely, we may write
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S�(t)=
�,λ eλt +
N−1∑
�=0


⊥
�,λSB ∗ (ASB)(∗�)(t)

+ i

2π

a+i∞∫

a−i∞
ezt (−1)N 
⊥

�,λR�(z) (ARB(z))
N dz, (1.13)

for N large enough, in such a way that each term is appropriately bounded. Here 
�,λ stands for the projector on 
the (finite dimensional) eigenspace associated to λ and 
⊥

�,λ := I −
�,λ. From that formula, we will deduce the 
spectral mapping theorem (1.6), and more importantly for us, we will generalize the Liapunov result [75] about the 
asymptotic behavior of trajectories to that class of equations. It is worth emphasizing that our result characterizes the 
class of operators with “separable spectrum” for which the partial spectral mapping theorem holds (in the sense that 
we exhibit a condition which is not only sufficient but also necessary!) and then, in some sense, we prove for general 
semigroup the spectral mapping theorem known for analytic semigroup or more generally eventually continuous 
semigroup [104,64] and for general Banach space the partial spectral mapping theorem in a Hilbert space framework 
that one can deduce from the Gearhart–Prüss Theorem [44,107].

With such a representation formula at hand, the precise analysis of the semigroup S� reduces to the analysis of 
the spectrum of � at the right hand side of a, for any a > a∗. In other words, the next fundamental issue consists 
in describing the part of the spectrum �(�) ∩�a in order to take advantage of the information given by (1.6). The 
simplest situation is when �(�) ∩�a only contains eigenvalues with finite (algebraical) multiplicity which is the 
situation one gets when one can apply Weyl’s Theorem [122] (see also [67, Theorem IV.5.35]). In our second main 
result in an abstract setting, we recover Voigt’s version [118] of Weyl’s Theorem (for which we give a comprehensive 
and elementary proof) and we deduce a characterization of semigroups in a general Banach space for which the partial 
spectral mapping theorem holds with finite and discrete eigenspectrum in �a . We must emphasize that our proof is 
very simple (it exclusively uses the Fredholm alternative [40] in its most basic form) and in particular does not use the 
essential spectrum set nor the Fredholm operators theory. Moreover we are able to formulate a quantified version of 
the Weyl’s Theorem in the sense that we exhibit a bound on the total dimension of the eigenspaces associated to the 
discrete eigenvalues which lie in �(�) ∩�a .

In order to describe in a more accurate way the spectrum �(�), one of the most popular techniques is to use a 
self-adjointness argument for the operator � as an infinite dimensional generalization of the symmetric structure of 
matrix. That implies �(�) ⊂ R and, together with Weyl’s Theorem, leads to a completely satisfactory description 
of the operator’s spectrum and the dynamics of the associated semigroup. One of the most famous applications of 
that strategy is due to Carleman [23] who carried on with the study of the linearized space homogeneous Boltzmann 
equation initiated by Hilbert and who obtained the spectral gap for the associated operator by combining Weyl’s 
Theorem together with the symmetry of the operator [60] and the regularity of the gain term [61] (see also the work by 
Grad [46,47] on the same issue, and the work by Ukai [113] on the more complicated space nonhomogeneous setting). 
It is worth emphasizing that this kind of hilbertian arguments have been recently extended to a class of operators, 
named as “hypocoercive operators”, which split as a self-adjoint partially coercive operator plus an anti-adjoint 
operator. For such an operator one can exhibit an equivalent Hilbert norm which is also a Liapunov function for the 
associated evolution dynamics and then provides a spectral gap between the first eigenvalue and the remainder of the 
spectrum. We refer the interested reader to [115] for a pedagogical introduction as well as to [59,56,97,57,58,116,31,
30] for some of the original articles.

In the seminal work [96], C. Mouhot started an abstract theory of “enlargement of the functional space of spectral 
analysis of operators” which aims to carry on the spectral knowledge on an operator � and its associated semigroup 
S� in some space E (typically a “small Hilbert space” in which some self-adjointness structure can be exploited) 
to another larger general Banach space E ⊃ E. It is worth emphasizing that the “enlargement of functional spaces” 
trick for spectral analysis is reminiscent of several earlier papers on Boltzmann equations and on Fokker–Planck 
type equations where, however, the arguments are intermingled with some nonlinear stability arguments [4,5,121]
and/or reduced to some particular evolution PDE in some situation where explicit eigenbasis can be exhibited [15,43]. 
While [96] was focused on the linearized space homogeneous Boltzmann operator and the results applied to sectorial 
operators, the “extension theory” (we mean here “enlargement” or “shrinkage” of the functional space) has been next 
developed in the series of papers [87,51,86] in order to deal with non-sectorial operators. A typical result of the theory 
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is that the set �(�) ∩�a does not change when the functional space on which � is considered changes. We do not 
consider the extension issue, which is however strongly connected to our approach, in the present work and we refer 
to the above mentioned articles for recent developments on that direction.

Let us also mention that one expects that the spectrum �(�) of � is close to the spectrum �(B) of B if A is 
“small”. Such a “small perturbation method” is an efficient tool in order to get some information on the spectrum 
of an operator � “in a perturbation regime”. It has been developed in [105,64,117,67], and more recently in [1,16]. 
Again, we do not consider that “small perturbation” issue here, but we refer to [87,88,6,112] where that kind of 
method is investigated in the same framework as the one of the abstract results of the present paper.

Last, we are concerned with a positive operator � defined on a Banach lattice X and the associated semigroup 
S� as introduced by R.S. Phillips in [106]. For a finite dimensional Banach space and a strictly positive matrix the 
Perron–Frobenius Theorem [101,42] states that the eigenvalue with largest real part is unique, real and simple. Or in 
other words, there exists a∗∗ ∈R such that �(�) ∩�a∗∗ = { λ } with λ ∈R a simple eigenvalue. In an infinite dimen-
sional Banach space the Krein–Rutman Theorem [71] establishes the same result for a class of Banach lattices and 
under convenient strict positivity and compactness assumptions on �. The Krein–Rutman Theorem is then extended 
to broader classes of Banach lattices and broader classes of operator in many subsequent articles, see e.g. [49,50,3]. 
We present a very natural and general version of the abstract Krein–Rutman Theorem on a Banach lattice assuming 
that, additionally to the above splitting structure, the operator � satisfies a weak and a strong maximum principle. 
Our result improves the known versions of Krein–Rutman Theorem in particular because we weaken the required 
compactness assumption made on (the resolvent of) �. Moreover, our result is quite elementary and self-contained.

Let us stress again that our approach is very similar to the “extension of the functional space of spectral analysis of 
operators” and that our starting point is the work by Mouhot [96] where (1.9) is used in order to prove an enlargement 
of the operator spectral gap for the space homogeneous linearized Boltzmann equation. Because of the self-adjointness 
structure of the space homogeneous linearized Boltzmann equation one can conclude thanks to a classical argument 
(namely the operator B is sectorial and the last term in (1.13) with the choice N = 1 converges, see [100] or [35, 
Corollary IV.3.2 and Lemma V.1.9]). Our approach is in fact reminiscent of the huge number of works on the spectral 
analysis of operators which take advantage of a splitting structure (1.2) and then consider � as a (compact, small) 
perturbation of B. One of the main differences with the classical approach introduced by Hilbert and Weyl is that 
when one usually makes the decomposition

�=A0 +B0 (1.14)

where B0 is dissipative and A0 is B0-compact, we make the additional splitting A0 = A +Ac with A “smooth” and 
Ac small (it is the usual way to prove that A0 is B0-compact) and we write

�=A+B, B := Ac +B0. (1.15)

In such a way, we get quite better “smoothing properties” on A (with respect to A0) without losing to much of 
the “dissipative property” of B (with respect to B0). That splitting makes possible to get quantitative estimates (with 
constructive constants) in some situations. Of course, the drawback of the method is that one has to find an appropriate 
splitting (1.2) for the operator as well as an appropriate space X for which one is able to prove the estimates (1.3), (1.4)
and (1.5). However, the efficiency of the method is attested by the fact that it has been successfully used for several 
evolution PDEs such as the space homogeneous and space nonhomogeneous elastic Boltzmann equations in [96,51], 
the space homogeneous and space nonhomogeneous inelastic Boltzmann equations in [87,112], some Fokker–Planck 
type equations in [51,6,86,34], the Landau equation in [24] and the growth-fragmentation equation in [19,18] and in 
the present paper.

1.2. Growth-fragmentation equations

The second aim of the paper is to establish the long-time asymptotics for the solutions of some growth-
fragmentation equations as a motivation, or an illustration, of the abstract theory developed in parallel. We then 
consider the growth-fragmentation equation

∂tf =�f := Df +Ff in (0,∞)× (0,∞). (1.16)
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Here f = f (t, x) ≥ 0 stands for the number density of cells (or particles, polymers, organisms, individuals), where 
t ≥ 0 is the time variable and x ∈ (0, ∞) is the size (or mass, age) variable. In Eq. (1.16) the growth operator is given 
by

(Df )(x) := −∂x(τ (x)f (x))− ν(x)f (x) (1.17)

where the (continuous) function τ : [0, ∞) → R is the drift speed (or growth rate), and we will choose τ(x) = 1 or 
τ(x) = x in the sequel, and the function ν : [0, ∞) → [0, ∞) is a damping rate. The drift and damping term D models 
the growth (for particles and cells) or the aging (for individuals) and the death which can be represented by the scheme

{x} e−ν(x)−→ {x + τ(x) dx}.
On the other hand, the fragmentation operator F is defined by

(Ff )(x) :=
∞∫
x

k(y, x)f (y)dy −K(x)f (x) (1.18)

and the fragmentation kernel k is related to the total rate of fragmentation K by

K(x)=
x∫

0

k(x, y)
y

x
dy. (1.19)

The fragmentation operator F models the division (breakage) of a single mother particle of size x into two or more 
pieces (daughter particles, offspring) of size xi ≥ 0, or in other words, models the event

{x} k−→ {x1} + . . . .+ {xi} + . . . , (1.20)

in such a way that the mass is conserved

x =
∑
i

xi , 0 ≤ xi ≤ x.

It is worth emphasizing that the above mass conservation at the microscopic level is rendered by Eq. (1.19) at the 
statistical level.

In order to simplify the presentation we will only consider situations where the size repartition of offspring is 
invariant by the size scaling of the mother particle, or more precisely that there exists a function (or abusing notation, 
a measure) ℘ : [0, 1] → R+ such that

k(x, y)=K(x)κ(x, y), κ(x, y)= ℘(y/x)/x, (1.21)

as well as, in order that the compatibility relation (1.19) holds,

1∫

0

z℘ (dz)= 1. (1.22)

Here κ(x, .) represents the probability density of the distribution of daughter particles resulting of the breakage of a 
mother particle of size x ∈ (0, ∞) and the assumption (1.21) means that this probability density is invariant by scaling 
of the size. As a first example, when a mother particle of size x breaks into two pieces of exact size σ x and (1 − σ)x, 
σ ∈ (0, 1), the associated kernel is given by

κ(x, y)= δy=σx(dy)+ δy=(1−σ)x(dy)= 1

σ
δx= y

σ
(dx)+ 1

1 − σ δx= y
1−σ (dx), (1.23)

or equivalently ℘ = δσ + δ1−σ . In the sequel, we will also consider the case when ℘ is a smooth function. In any 
cases, we define

z0 := inf supp℘ ∈ [0,1). (1.24)
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The evolution equation (1.16) is complemented with an initial condition

f (0, .)= f0 in (0,∞), (1.25)

and a boundary condition that we will discuss for each example presented below.
Instead of trying to analyze the most general growth-fragmentation equation, we will focus our study on some 

particular but relevant classes of models, namely the cell division equation with constant growth rate, the self-similar 
fragmentation equation and the age structured population equation.

1.2.1. Example 1. Equal mitosis equation
We consider a population of cells which divide through a binary fragmentation mechanism with equal size off-

spring, grow at constant rate and are not damped. The resulting evolution equation is the equal mitosis equation which 
is associated to the operator � =D+F , where D is defined by (1.17) with the choice τ = 1 and ν = 0, and where F
is the equal mitosis operator defined by (1.18) with the following choice of fragmentation kernel

k(x, y)= 2K(x) δx/2(dy)= 4K(x) δ2y(dx). (1.26)

Equivalently, k is given by (1.21) with ℘(dz) := 2 δz=1/2. The associated equal mitosis equation takes the form

∂

∂t
f (t, x)+ ∂

∂x
f (t, x)+K(x)f (t, x)= 4K(2x)f (t,2x), (1.27)

and it is complemented with the boundary condition

f (t,0)= 0. (1.28)

As its name suggests, such an equation appears in the modeling of cell division when mitosis occurs (see [12,111,81,
11] and the references therein for linear models as well as [54,11] for more recent nonlinear models for tumor growth) 
but also appears in telecommunication systems to describe some internet protocols [7].

We assume that the total fragmentation rate K is a nonnegative C1 function defined on [0, ∞) which satisfies the 
positivity assumption

∃x0 ≥ 0, K(x)= 0 ∀x < x0, K(x) > 0 ∀x > x0, (1.29)

as well as the growth assumption

K0 x
γ 1x≥x1 ≤K(x)≤K1 max(1, xγ ), (1.30)

for γ ≥ 0, x0 ≤ x1 <∞, 0 <K0 ≤K1 <∞.
There is no conservation law for the equal mitosis equation. However, by solving the dual eigenvalue–eigenfunction 

problem

D∗φ +F∗φ = λφ, λ ∈ R, φ ≥ 0, φ �≡ 0, (1.31)

one immediately observes that any solution f to the equal mitosis equation (1.27) satisfies

∞∫

0

f (t, x)φ(x) dx = eλt
∞∫

0

f0 φ(x)dx.

The first eigenvalue λ corresponds to an exponential growth rate of (some average quantity of) the solution. In an 
ecology context λ is often called the Malthus parameter or the fitness of the cells/organisms population. In order to 
go further in the analysis of the dynamics, one can solve the primal eigenvalue–eigenfunction problem

Df∞ +Ff∞ = λf∞, f∞ ≥ 0, f∞ �≡ 0, (1.32)

which provides a Malthusian profile f∞, and then define the remarkable (in the sense that it is a separated variables 
function) solution f (t, x) := eλt f∞(x) to the equal mitosis equation (1.27). It is expected that (1.32) captures the 
main features of the model or, more precisely, that

f (t, x)e−λt = f∞(x)+ o(1) as t → ∞. (1.33)
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We refer to [29,81,103,84,102,73] (and the references therein) for results about the existence of solutions to the primal 
and dual eigenvalue problems (1.31) and (1.32) as well as for results on the asymptotic convergence (1.33) without 
rate or with exponential rate.

1.2.2. A variant of example 1. Smooth cell-division equation
We modify the previous equal mitosis model by considering the case of a general fragmentation operator (1.18)

where the total fragmentation rate K still satisfies (1.29) and (1.30) and where, however, we restrict ourself to the case 
of a smooth size offspring distribution ℘. More precisely, we assume

℘′
0 :=

1∫

0

|℘′(z)| dz <∞. (1.34)

We will sometimes make the additional strong positivity assumption

℘(z)≥ ℘∗ ∀ z ∈ (0,1), ℘∗ > 0, (1.35)

or assume the additional monotony condition and the constant number of offspring condition

∂

∂y

x∫

0

κ(y, z) dz≤ 0, nF :=
x∫

0

κ(x, z) dz > 1, ∀x, y ∈ R+. (1.36)

Observe that this monotony condition is fulfilled for the equal and unequal mitosis kernel (1.23) and for the smooth 
distribution of offspring functions ℘(z) := cθ zθ , θ >−1, see [73].

The smooth cell-division equation reads

∂

∂t
f (t, x)+ ∂

∂x
f (t, x)= (Ff (t, .))(x), (1.37)

and it is complemented again with the boundary condition (1.28) and the initial condition (1.25). We call the resulting 
model as the smooth cell-division equation.

The general fragmentation operator is used in physics in order to model the dynamics of cluster breakage and it 
is often associated in that context to the coagulation operator which models the opposite agglomeration mechanism 
(see [80]). It appears later associated with the drift operator D = −τ(x)∂x + τ ′(x) under the name of “cell population 
balance model” (see [41,55]) in a chemical or biological context. The general fragmentation operator is used in order 
to take into account unequal cell-division according to experimental evidence [68,99]. In recent years, the above 
smooth cell-division equation (1.37) has also appeared in many articles on the modeling of proteins [48,108,22,21].

Concerning the mathematical analysis of the smooth cell-division equation, and in particular the long-time behavior 
of solutions, a similar picture as for the equal mitosis equation is expected and some (at least partial) results have been 
obtained in [83,84,82,73,32,19,20,8].

With the above notation and for later references, for both equal mitosis and smooth cell-division equations, we 
introduce the critical exponent α∗ ≥ 1 uniquely implicitly defined by the equation

℘α∗ =K0/K1 ∈ (0,1], ℘α :=
1∫

0

zα ℘ (dz). (1.38)

1.2.3. Example 2. Self-similar fragmentation equation
We consider now a fragmentation rate associated to a power law total fragmentation rate

k(x, y)=K(x)℘ (y/x)/x, K(x)= xγ , γ > 0, (1.39)

where ℘ is a continuous function satisfying (1.34). The pure fragmentation model is then obtained for τ = ν ≡ 0 in 
(1.16) and therefore reads

∂tg = F̃ g,
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where F̃ is a temporary notation for the fragmentation operator associated to the kernel k̃ := k/γ . By analogy with the 
probabilistic name for the associated Markov process, see e.g. [13], we call that model the “self-similar fragmentation 
equation”. This equation arises in physics to describe fragmentation processes. We refer to [39,124,14] for the first 
study and the physics motivations, to [13] and the references therein for a probabilistic approach.

For this equation the only steady states are the Dirac masses, namely x g(t, x) = ρ δx=0. On the other hand, if g is 
a solution to the pure fragmentation equation, we may introduce the rescaled density f defined by

f (t, x)= e−2t g
(
eγ t − 1, xe−t

)
, (1.40)

which is a solution to the fragmentation equation in self-similar variables (see for instance [36])

∂

∂t
f =�f =F f − x ∂

∂x
f − 2f. (1.41)

This is a mass preserving equation with no detailed balance condition. However, defining the associated adjoint oper-
ator �∗, one can show that

�f∞ = 0, �∗φ = 0,

for some positive function f∞ and for φ(x) = x. Eq. (1.41) falls into the class of growth-fragmentation equation 
with first eigenvalue λ = 0 (because of the mass conservation). As for the cell-division equation one expects that the 
remarkable (self-similar profile) solution f∞ is attractive and that (1.33) holds again. Existence of the self-similar 
profile f∞ and convergence (without rate) to this one have been established in [36,84], while a rate of convergence 
for γ ∈ (0, 2) has been proved in [19,18].

1.2.4. Example 3. Age structured population equation
We consider an age structured population of individuals which age, die and give birth, and which is described by 

the density f (t, x) of individuals with age x ≥ 0 at time t ≥ 0. The very popular associated evolution PDE is

∂

∂t
f + ∂

∂x
(τ(x)f )= −ν(x)f, f (t, x = 0)=

∞∫

0

K(y)f (t, y)dy, (1.42)

and it is commonly attributed to A. McKendrick [79] and H. von Foerster [119] (although the dynamics of age 
structured population has been anteriorly developed by A. Lotka and F. Sharpe [77] and before by L. Euler, as well 
as by P.H. Leslie [74] in a discrete time and age framework). In the sequel we call that model as the age structured 
population equation. Let us also mention that nonlinear versions of Eq. (1.42) which take into account possibly 
overcrowding effect can be found in the work of Gurtin and MacCamy [53].

In Eq. (1.42) the function K corresponds to the birth rate, the function ν to the death rate and the function τ to the 
aging rate (so that τ ≡ 1). Notice that the age structured population equation can be seen as a particular example of 
the growth-fragmentation equation (1.16)–(1.18) making the following choice for k:

k(x, y)=K(x) [δ(y = x)+ δ(y = 0)], (1.43)

which corresponds to the limit case σ = 0 in (1.23). In order to simplify the presentation we make the assumptions

τ = ν = 1, 0 ≤K ∈ C1
b(R+)∩L1(R+), ‖ K‖L1 > 1. (1.44)

The expected long-time behavior of solutions to the age structured population equation is the same as the one described 
for a general growth-fragmentation equation, in particular the long-time convergence (1.33) with exponential rate is 
known to hold. Here, the mathematical analysis is greatly simplified by remarking that the offspring number satisfies 
a (Volterra) delay equation (the so-called renewal equation) which in turn can be handled through the direct Laplace 
transform, as first shown by W. Feller [37] and developed later in [38,81,120,65]. Let us also mention that the long-time 
convergence (1.33) can also be obtained by entropy method [89,84].
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1.2.5. Main result
Let us introduce the functional spaces in which we will work. For any exponent p ∈ [1, ∞] and any nonnegative 

weight function ξ , we denote by Lp(ξ) the Lebesgue space Lp(R+; ξ dx) or Lp(R; ξ dx) associated to the norm

‖u‖Lp(ξ) := ‖uξ‖Lp,
and we simply use the shorthand Lpα for the choice ξ(x) := 〈x〉α , α ∈R, 〈x〉2 := 1 + |x|2, as well as the shorthand L̇pα
for the choice ξ(x) := |x|α , α ∈R.

Theorem 1.1. Consider the growth-fragmentation equations with the corresponding structure assumption and bound-
edness of coefficients as presented in the previous sections and define the functional space X as follows:

(1) Cell-division equation: take X = L1
α , α > α∗, where α∗ ≥ 1 is defined in (1.38);

(2) Self-similar fragmentation equation: take X= L̇1
α ∩ L̇1

β , 0 ≤ α < 1 < β;

(3) Age structured population equation: take X= L1.

There exists a unique couple (λ, f∞), with λ ∈R and f∞ ∈X, solution to the stationary equation

Ff∞ − ∂x(τf )− νf∞ = λf∞, f∞ ≥ 0, ‖ f∞‖X = 1. (1.45)

There exists a∗∗ < λ and for any a > a∗∗ there exists Ca such that for any f0 ∈X, the associated solution f (t) =
e�t f0 satisfies

‖ f (t)− eλt 
�,λf ‖X ≤ Ca eat ‖ f0 −
�,λf0‖X , (1.46)

where 
�,λ is the projection on the one dimensional space spanned by the remarkable solution f∞. It is given by


�,λ h= 〈φ,h〉f∞
where φ ∈X′ is the unique positive and normalized solution to the dual first eigenvalue problem

F∗φ + τ∂xφ − νφ = λφ, φ ≥ 0, 〈φ,f∞〉 = 1. (1.47)

Moreover, an explicit bound on the spectral gap λ − a∗∗ is available for

(i) the cell-division equation with constant total fragmentation rate K ≡K0 on (0, ∞), K0 > 0, and a fragmentation 
kernel which satisfies the monotony condition and constant number of offspring condition (1.36);

(ii) the self-similar fragmentation equation with smooth and positive offspring distribution in the sense that (1.34)
and (1.35) hold.

Let us make some comments about the above result.
Theorem 1.1 generalizes, improves and unifies the results on the long-time asymptotic convergence with exponen-

tial rate which were known only for particular cases of growth fragmentation equation, namely for the cell division 
model with (almost) constant total fragmentation rate and monotonous offspring distribution in [103,73] and for the 
self-similar fragmentation equation and the cell division equation restricted to smooth and positive fragmentation rate 
and total fragmentation rate which increases at most quadratically in [19,18]. The rate of convergence (1.46) is proved 
under similar hypothesizes as those made in [84,36], but in [84,36] the convergence is established without rate. It has 
been established in [103,73] a similar L1-norm decay as in (1.46), when however the initial datum is bounded in the 
sense of a (strange and) stronger norm than the L1-norm. It was also conjectured that the additional strong bound-
edness assumption on the initial datum is necessary in order to get an exponential rate of convergence. Theorem 1.1
disproves that conjecture in the sense that the norm involved in both sides of estimate (1.46) is the same. Let us em-
phasize that we do not claim that Theorem 1.1 is new for the age structured population equation. However, we want to 
stress here that our proof of the convergence (1.46) is similar for all these growth-fragmentation equations while the 
previous available proofs (of convergence results with rate) were very different for the three subclasses of models. It is 
also likely that our approach can be generalized to larger classes of growth operator and of fragmentation kernel such 
as considered in [82,32,20,8]. However, for the sake of simplicity, we have not followed that line of research here. 
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It is finally worth noticing that our result excludes the two “degenerate equations” which are the equal self-similar 
fragmentation equation associated to equal mitosis offspring distribution and the age structured population equation 
associated to deterministic birth rate K(z) :=K δz=L.

Let us make some comments about the different methods of proof which may be based on linear tools (Laplace 
transform, Eigenvalue problem, suitable weak distance, semigroup theory) and nonlinear tools (existence of self-
similar profile by fixed point theorems, GRE and E-DE methods).

• Direct Laplace transform method. For the age structured population equation a direct Laplace transform analysis 
can be performed at the level of the associated renewal equation and leads to an exact representation formula which 
in turn implies the rate of convergence (1.46) (see [37,38,65]).

• PDE approach via compactness and GRE methods. Convergence results (without rate) have been proved in [89,
36,84] for a general class of growth-fragmentation equation which is basically the same class as considered in the 
present paper thanks to the use of the so-called general relative entropy method. More precisely, once the existence of 
a solution (λ, f∞, φ) to the primal eigenvalue problem (1.45) and dual eigenvalue problem (1.47) is established, we 
refer to [103,20,82,32] where that issue is tackled, one can easily compute the evolution of the generalized relative 
entropy J defined by

J (f ) :=
∞∫

0

j (f/f∞) f∞ φ dx

for a convex and nonnegative function j : R → R and for a generic solution f = f (t) to the growth-fragmentation 
equation. One can then show the (at least formal) identity

J (f (t))+
t∫

0

DJ (f (s)) ds = J (f (0)) ∀ t ≥ 0, (1.48)

where DJ ≥ 0 is the associated generalized dissipation of relative entropy defined by

DJ (f ) :=
∞∫

0

∞∫

0

k(x∗, x)1x∗≥x [j (u)− j (u∗)− j ′(u∗) (u− u∗)]f∞ φ∗ dxdx∗,

with the notation u := f/f∞ and h∗ = h(x∗). Identity (1.48) clearly implies that J is a Liapunov functional for the 
growth fragmentation dynamics which in turn implies the long-time convergence f (t) → f∞ as t → ∞ (without rate) 
under positivity assumption on the kernel k or the associated semigroup.

• Suitable weak distance. In order to circumvent the possible weak information given by DJ in the case of cell-
division models when k is not positive (for the equal mitosis model for instance) an exponential rate of convergence 
for an (almost) constant total rate of fragmentation has been established by Perthame and co-authors in [103,73] by 
exhibiting a suitable weak distance.

• Entropy–dissipation of entropy (E-DE) method. In the case of the strong positivity assumption (1.35) an 
entropy–dissipation of entropy method has been implemented in [19,8] where the inequality DJ ≥ cJ is proved for 
j (s) = (s − 1)2. The Gronwall lemma then straightforwardly implies a rate of convergence in a weighted Lebesgue 
L2 framework.

• Extension semigroup method. For a general fragmentation kernel (including the smooth cell-division equation 
and the self-similar fragmentation equation) the enlargement of semigroup spectral analysis has been used in [19,18]
in order to extend to an L1 framework some of the convergence (with rate) results proved in [19] in a narrow weighted 
L2 framework thanks to the above E-DE method.

• Markov semigroup method. Markov semigroups techniques have been widely used since the first papers by Metz, 
Diekmann and Webb on the age structured equation and the equal mitosis equation in a bounded size setting [120,81], 
see also [35] and the references therein for more recent papers. That approach has also been applied to more general 
growth-fragmentation equations (still in a bounded interval setting) in [110] (see also [10] and the references therein 
for recent developments) and to other linear Boltzmann models (related to neuron transport theory) by Mokhtar-
Kharroubi in [92–94]. The Markov semigroup method consists in proving that the spectral bound is an algebraic 
simple eigenvalue associated to a positive eigenfunction and a positive dual eigenfunction and the only eigenvalue 
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with maximum real part. It fundamentally uses the positivity structure of the equation and some compactness argu-
ment (at the level of the resolvent of the operator or at the level of the terms involved in the Dyson–Phillips series). 
This approach classically provides a convergence result toward the first eigenfunction, but does not provide any rate 
of convergence in general (see however the recent work [95] where a rate of convergence is established).

Let us conclude that our method in the present paper is clearly a Markov semigroup approach. Our approach is then 
completely linear, very accurate and still very general. The drawback is the use of the abstract semigroup framework 
and some complex analysis tool (and in particular the use of the Laplace transform and the inverse Laplace transform) 
at the level of the abstract (functional space) associated evolution equation. The main novelty comes from the fact that 
we are able to prove that the considered growth-fragmentation operator falls in the class of operators with splitting 
structure as described in the first part of the introduction and for which our abstract Krein–Rutman Theorem applies. 
In particular, in order to deduce the growth estimates on the semigroup from the spectral knowledge on the generator, 
we use the iterated Duhamel formula (instead of the Dyson–Phillips series) as a consequence of our more suitable 
splitting (1.15) (instead of (1.14)). That more suitable splitting and our abstract semigroup spectral analysis theory 
make possible to establish some rate of convergence where the usual arguments lead to mere convergence results 
(without rate).

The outline of the paper is as follows. In the next section, we establish the partial spectral mapping theorem in an 
abstract framework. In Section 3, we establish two versions of the Weyl’s Theorem in an abstract framework and we 
then verify that they apply to the growth-fragmentation equations in Section 4. Section 5 is devoted to the statement 
and proof of an abstract version of the Krein–Rutman Theorem. In the last section we apply the Krein–Rutman theory 
to the growth-fragmentation equation which ends the proof of Theorem 1.1.

2. Spectral mapping for semigroup generators

2.1. Notation and definitions

There are many textbooks addressing the theory of semigroups since the seminal books by Hille and Philipps [63,
64] among them the ones by Kato [67], Davies [28], Pazy [100], Arendt et al. [3] and more recently by Engel and 
Nagel [35] to which we refer for more details. In this section we summarize some basic definitions and facts on the 
analysis of operators in an abstract and general Banach space picked up from above mentioned books as well as from 
the recent articles [51,85]. It is worth mentioning that we adopt the sign convention of Kato [67] on the resolvent 
operator (which is maybe opposite to the most widespread convention), see (2.1). For a given real number a ∈ R, we 
define the half complex plane

�a := {z ∈ C, �e z > a}.
For some given Banach spaces (X1, ‖ · ‖X1) and (X2, ‖ · ‖X2) we denote by B(X1, X2) the space of bounded linear 
operators from X1 to X2 and we denote by ‖ · ‖B(X1,X2) or ‖ · ‖X1→X2 the associated norm operator. We write 
B(X1) = B(X1, X1). We denote by C (X1, X2) the space of closed unbounded (and thus possibly bounded) linear 
operators from X1 to X2 with dense domain, and C (X1) = C (X1, X1). We denote by K (X1, X2) the space of 
compact linear operators from X1 to X2 and again K (X1) = K (X1, X1).

For a given Banach space (X, ‖ ·‖X), we denote by G (X) the space of generators of a C0-semigroup. For � ∈ G (X)
we denote by S�(t) = et �, t ≥ 0, the associated semigroup, by D(�) its domain, by N(�) its null space, by

M(�)=
⋃
α∈N∗

N(�α)

its algebraic null space, and by R(�) its range. For any given integer k ≥ 1, we define D(�k) the Banach space 
associated with the norm

‖f ‖D(�k) =
k∑
j=0

‖ �jf ‖X.

For two operators A, B ∈ C (X), we say that A is B-bounded if A ∈ B(D(B), X) or, in other words, if there exists a 
constant C ∈ (0, ∞) such that

∀f ∈X, ‖ Af ‖X ≤ C(‖ f ‖X + ‖Bf ‖X).
Of course a bounded operator A is always B-bounded (whatever is B ∈ C (X)).
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For � ∈ G (X), we denote by �(�) its spectrum, so that for any z ∈ C\�(�) the operator � − z is invertible and 
the resolvent operator

R�(z) := (�− z)−1 (2.1)

is well-defined, belongs to B(X) and has range equal to D(�). We then define the spectral bound s(�) ∈R ∪ {−∞ }
by

s(�) := sup{ �e ξ ; ξ ∈�(�)}
and the growth bound ω(�) ∈R ∪ {−∞ } by

ω(�) := inf{ b ∈R; ∃Mb s.t. ‖ S�(t)‖B(X) ≤Mb ebt ∀ t ≥ 0},
and we recall that s(�) ≤ ω(�) as a consequence of Hille’s identity [62]: for any ξ ∈�ω(�) there holds

−R�(ξ)=
∞∫

0

S�(t) e
−ξ t dt, (2.2)

where the RHS integral normally converges.
We say that � is a-hypo-dissipative on X if there exists some norm ‖ | · ‖ |X on X equivalent to the initial norm 

‖ · ‖X such that

∀f ∈D(�), ∃ϕ ∈ F(f ) s.t. �e 〈ϕ, (�− a)f 〉 ≤ 0, (2.3)

where 〈·, ·〉 is the duality bracket for the duality in X and X′ and F(f ) ⊂X′ is the dual set of f defined by

F(f )= F‖|·‖|(f ) :=
{
ϕ ∈X′; 〈ϕ,f 〉 = ‖|f ‖|2X = ‖|ϕ‖|2X′

}
.

We just say that � is hypo-dissipative if � is a-hypo-dissipative for some a ∈ R. From the Hille–Yosida Theorem it 
is clear that any generator � ∈ G (X) is a hypo-dissipative operator and that

ω(�) := inf{b ∈ R; � is b-hypo-dissipative}.
A spectral value ξ ∈�(�) is said to be isolated if

�(�)∩ {z ∈C, |z− ξ | ≤ r} = {ξ} for some r > 0.

In the case when ξ is an isolated spectral value we may define the spectral projector 
�,ξ ∈ B(X) by the Dunford 
integral


�,ξ := i

2π

∫

|z−ξ |=r ′
R�(z) dz, (2.4)

with 0 < r ′ < r . Note that this definition is independent of the value of r ′ as the resolvent

C \�(�)→ B(X), z→ R�(z)

is holomorphic. It is well-known that 
2
�,ξ = 
�,ξ , so that 
�,ξ is indeed a projector, and its range R(
�,ξ ) =

M(�− ξ) is the closure of the algebraic eigenspace associated to ξ . More generally, for any compact part of the 
spectrum of the form � =�a ∩�(�) we may define the associated spectral projector 
�,� by


�,� := i

2π

∫
γ

R�(z) dz, (2.5)

for any closed path γ : [0, 1] →�a which makes one direct turn around �.
We recall that ξ ∈ �(�) is said to be an eigenvalue if N(� − ξ) �= {0}. The range of the spectral projector is 

finite-dimensional if and only if there exists α0 ∈N
∗ such that
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N(�− ξ)α =N(�− ξ)α0 �= {0} for any α ≥ α0,

and in such a case

M(�− ξ)=M(�− ξ)=N((�− ξ)α0) and N(�− ξ) �= {0}.
In that case, we say that ξ is a discrete eigenvalue, written as ξ ∈�d(�). For any a ∈ R such that

�(�)∩�a = {ξ1, . . . , ξJ }
where ξ1, . . . , ξJ are distinct discrete eigenvalues, we define without any risk of ambiguity


�,a :=
�,ξ1 + . . .
�,ξJ .
For some given Banach spaces X1, X2, X3 and some given functions

S1 ∈ L1(R+;B(X1,X2)) and S2 ∈L1(R+;B(X2,X3)),

we define the convolution S2 ∗ S1 ∈ L1(R+; B(X1, X3)) by

∀ t ≥ 0, (S2 ∗ S1)(t) :=
t∫

0

S2(s) S1(t − s)ds.

When S1 = S2 and X1 =X2 =X3, we define recursively S(∗1) = S and S(∗�) = S ∗ S(∗(�−1)) for any � ≥ 2.
For a generator L of a semigroup such that ω(L) < 0 we define the fractional powers L−η and Lη for η ∈ (0, 1) by 

Dunford formulas [69,70], see also [35, Section II.5.c],

L−η := c−η
∞∫

0

λ−ηRL(λ)dλ, Lη := cη
∞∫

0

λη−1LRL(λ)dλ, (2.6)

for some constants cη, c−η ∈ C
∗. The operator L−η belongs to B(X) and, denoting Xη := R(L−η), the operator Lη

is the unbounded operator with domain D(Lη) = Xη and defined by Lη = (L−η)−1. We also denote X0 = X and 
X1 =D(L). Moreover, introducing the J -method interpolation norm

‖f ‖
X̃η

:= inf
{

sup
t>0

‖ t−η J (t, g(t))‖X; g such thatf =
∞∫

0

g(t)
dt

t

}

with J (t, g) := max(‖g‖X, t‖ Lg‖X) and the associated Banach space X̃η which corresponds to the interpolation 
space S(∞, −η, X0; ∞, 1 − η, X1) of Lions and Peetre [76] defined by

X̃η := {f ∈X; ‖f ‖
X̃η
<∞},

the following inclusions

Xη ⊂ X̃η ⊂Xη′ (2.7)

hold with continuous embedding for any 0 < η′ < η < 1. Let us emphasize that the first inclusion follows from 
the second inclusion in [70, Proposition 2.8] and [70, Theorem 3.1] while the second inclusion in (2.7) is a conse-
quence of the first inclusion in [70, Proposition 2.8] together with [70, Theorem 3.1] and the classical embedding 
S(∞, −θ, X0; ∞, 1 − η, X1) ⊂ S(1, −θ ′, X0; ∞, 1 − θ ′, X1) whenever X1 ⊂X0 and 0 < θ ′ < θ < 1.

2.2. An abstract spectral mapping theorem

We present in this section a “principal spectral mapping theorem” for a class of semigroup generators � on a 
Banach space which split as a hypodissipative part B and a “more regular part” A, as presented in the introduction. In 
order to do so, we introduce a more accurate version of the growth and regularizing assumption (H2–3), namely
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(H2) there exist ζ ∈ (0, 1] and ζ ′ ∈ [0, ζ ) such that A is Bζ ′
-bounded and there exists an integer n ≥ 1 such that for 

any a > a∗, there holds

∀ t ≥ 0, ‖SB ∗ (ASB)(∗n)(t)‖B(X,D(�ζ )) ≤Ca,n,ζ eat (2.8)

for a constant Ca,n,ζ ∈ (0, ∞).

Theorem 2.1. Consider a Banach space X, the generator � of a semigroup S�(t) = et� on X, two real numbers 
a∗, a′ ∈ R, a∗ < a′, and assume that the spectrum �(�) of � satisfies the following separation condition

�(�)∩�a∗ ⊂�a′ . (2.9)

The following growth estimate on the semigroup

(1) there exists a projector 
 ∈ B(X) satisfying �
 =
�, �1 :=�|X1 ∈ B(X1), X1 := R
, �(�1) ⊂�a∗ and 
for any real number a > a∗ there exists a constant Ca such that

∀ t ≥ 0,
∥∥∥et �(I −
)

∥∥∥
B(X)

≤ Ca ea t , (2.10)

is equivalent to the following splitting structure hypothesis

(2) there exist two operators A, B ∈ C (X), such that � =A +B and hypothesizes (H1) and (H2) are satisfied.

Moreover, under assumption (2), for any a > a∗ there exists an explicitly computable constant M =M(a, A, B)
such that

�(�)∩�a ⊂ B(0,M) := { z ∈ C; |z|<M}. (2.11)

Remark 2.2.

(a) Theorem 2.1 gives a characterization (and thus a criterium with the conditions (H1) and (H2)) for an operator � to 
satisfy a partial (but principal) spectral mapping theorem under the only additional assumption that the spectrum 
satisfies a separation condition.

(b) Hypothesis (H1) holds for any � ∈ N if it is true for � = 0 (that is (B − a) is hypodissipative in X for any real 
number a > a∗) and A ∈ B(X).

(c) The implication (1) ⇒ (2) is just straightforward by taking A :=�
 and B :=�(I −
). With such a choice we 
have A ∈ B(X) by assumption, next A ∈ B(X, D(�)), because �A =A2 ∈ B(X), and B−a is hypodissipative 
in X for any real number a > a∗ so that hypothesis (H1) is satisfied as well as hypothesis (H2) with n = 1, ζ = 1
and ζ ′ = 0.

(d) We believe that the implication (2) ⇒ (1) is new. It can be seen as a condition under which a “spectral 
mapping theorem for the principal part of the spectrum holds” in the sense that (1.6) holds. Indeed, defin-
ing �0 := �(I − 
), for any a > a∗ there holds �(�) = �(�0) ∪ �(�1), �(et�) = �(et�0) ∪ �(et�1), 
�(et�1) = et�(�1) (because �1 ∈ B(X1)), �(�0) ⊂ �a (by hypothesis) and �(et�0) ⊂ �eat (from the con-
clusion (2.10)). In particular, under assumption (2) the spectral bound s(�) and the growth bound ω(�) coincide 
if they are at the right hand side of a∗, or in other words (1.7) holds.

(e) When a∗ < 0 the above result gives a characterization of uniformly exponentially stable semigroup (see e.g. [35, 
Definition V.1.1]) in a Banach space framework. More precisely, if assumption (2) holds with a∗ < 0, then

S� is uniformly exponentially stable iff s(�) < 0.

That last assertion has to be compared to the Gearhart–Prüss Theorem which gives another characterization of 
uniform exponential stability in a Hilbert framework, see [44,107,3] as well as [35, Theorem V.1.11] for a com-
prehensive proof.
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(f) Although the splitting condition in (2) may seem to be strange, it is in fact quite natural for many partial differential 
operators, including numerous cases of operators which have not any self-adjointness property, as that can be seen 
in the many examples studied in [96,87,88,51,6,19,18,24,34,112,25].

(g) For a sectorial operator B, hypothesis (H1) holds for any operator A which is suitably bounded with respect to B. 
More precisely, in a Hilbert space framework, for a “hypo-elliptic operator B of order ζ ” and for a Bζ ′

-bounded 
operator A, with ζ ′ ∈ [0, ζ ), in the sense that for any f ∈D(B)

(Bf,f )≤ −a ‖Bζ f ‖2 +C‖f ‖2 and ‖Af ‖ ≤ C (‖Bζ ′
f ‖ + ‖f ‖),

then (H1) holds and (H2) holds with n = 0. A typical example is B = −� and A = a(x) · ∇ in the space L2(Rd)

with a ∈ L∞(Rd). In that case, Theorem 2.1 is nothing but the classical spectral mapping theorem which is known 
to hold in such a sectorial framework. We refer to [100, Section 2.5] and [35, Section II.4.a] for an introduction to 
sectorial operators (and analytic semigroups) as well as [35, Section IV.3.10] for a proof of the spectral mapping 
theorem in that framework.

(h) Condition (H2) is fulfilled for the same value of n if A and B satisfy (H1) as well as

t �→ ‖(ASB)(∗n)(t)‖B(X,D(�ζ )) e
−at ∈ Lp(0,∞)

for any a > a∗ and for some p ∈ [1, ∞].
(i) It is worth emphasizing that our result does not require any kind of “regularity” on the semigroup as it is usually 

the case for “full” spectral mapping theorem. In particular, we do not require that the semigroup is eventually 
norm continuous as in [64] or [35, Theorem IV.3.10]. Let us also stress that some “partial” spectral mapping 
theorems have been obtained in several earlier papers as in [66,114,118,91,72] under stronger assumptions than
(H1)–(H2). See also Remark 3.2-(e).

Proof of Theorem 2.1. We only prove that (2) implies (1) since the reverse implication is clear (see Remark 2.2-(c)).
The proof is split into four steps. From now on, let us fix a ∈ (a∗, a′).

Step 1. We establish the cornerstone estimate

∀ z ∈�a, ‖(ARB(z))
n+1‖B(X) ≤ Ca 1

〈z〉α , (2.12)

where n ≥ 1 is the integer given by assumption (H2) and α := (ζ − ζ ′)2/8 ∈ (0, 1). We recall the notation Xs =D(�s)
for 0 ≤ s ≤ 1, with X0 =X and X1 =D(�). On the one hand, from (2.8) we have

∀ z ∈�a, ‖ RB(z) (ARB(z))
n‖X→Xζ ≤ C′

a,n,

for a constant C′
a,n ∈ (0, ∞) only depending on a, a∗ and Ca,n,ζ . As a consequence, writing

RB(z)
1−ε (ARB(z))

n = (B − z)ε [RB(z) (ARB(z))
n],

we get

∀ z ∈�a, ‖ RB(z)
1−ε (ARB(z))

n‖X→Xζ−ε ≤ Ca,n, (2.13)

for any ε ∈ [0, ζ ].
On the other hand, we claim that

∀ z ∈�a, ‖ RB(z)
ε‖
X̃ζ−ε→X̃ζ ′ ≤ Ca,ε/〈z〉ε (ζ−ζ ′− ε), (2.14)

for any 0 ≤ ε < ζ − ζ ′ and a constant Ca,ε . First, from the resolvent identity

RB(z)= z−1 (RB(z)B − I ),
we have for i, j = 0, 1, i ≥ j ,

∀ z ∈�a, ‖ RB(z)‖Xi→Xj ≤ C1,a
(z),
i,j
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with C1,a
0,0 (z) = C1,a

1,1 (z) = C1,a and C1,a
1,0 (z) = C1,a

1,0 /〈z〉, C1,a
i,j ∈ R+. Next, thanks to the first representation formula 

in (2.6), we clearly have

‖ RB(z)
ε‖X1→X0 ≤ C(a, ε)

∞∫

0

λ−ε

〈z〉 + λ dλ≤Cε,a1,0(z) :=
C
ε,a
1,0

〈z〉ε .

Last, thanks to the interpolation theorem [76, Théorème 3.1] we get with some 0 ≤ θ < θ ′ < 1

‖ RB(z)
ε‖
X̃θ ′→X̃θ

≤ ‖ RB(z)
ε‖θX1→X1

‖ RB(z)
ε‖θ ′−θ
X1→X0

‖ RB(z)
ε‖1−θ ′
X0→X0

,

from which we conclude to (2.14). Writing now

RB(z) (ARB(z))
n =RB(z)

ε [ RB(z)
1−ε (ARB(z))

n],
with the optimal choice ε= (ζ − ζ ′)/2, we finally deduce from (2.13), (2.14) and the inclusions (2.7) that

∀ z ∈�a, ‖ RB(z) (ARB(z))
n‖X→Xζ ′ ≤ Ca

〈z〉α .

Because A is Bζ ′
-bounded we conclude to (2.12).

Step 2. We prove (2.11). From the splitting � =A +B, we have

R�(z)=RB(z)−R�(z)ARB(z)

on the open region of C where R� and RB are well defined functions (and thus analytic), and iterating the above 
formula, we get

R�(z)=
N−1∑
�=0

(−1)�RB(z) (ARB(z))
� +R�(z)(−1)N (ARB(z))

N (2.15)

for any integer N ≥ 1. We define

U(z) := RB(z)− · · · + (−1)nRB(z) (ARB(z))
n (2.16)

and

V(z) := (−1)n+1(ARB(z))
n+1, (2.17)

where n ≥ 1 is again the integer given by assumption (H2). With N = n + 1, we may rewrite the identity (2.15) as

R�(z)(I − V(z))= U(z). (2.18)

Observing that (2.12) rewrites as

∀ z ∈�a, ‖V(z)‖B(X) ≤ Ca 1

〈z〉α , (2.19)

we have in particular, for M large enough,

z ∈�a, |z| ≥M ⇒ ‖V(z)‖B(X) ≤ 1

2
. (2.20)

As a consequence, in the region �a\B(0, M) the operator I − V is invertible and thus R� is well-defined because of 
(2.18), which is nothing but (2.11).

Step 3. We write a representation formula for the semigroup which follows from some classical complex analysis 
arguments as in [51, Proof of Theorem 2.13] or [100, Chapter 1]. First, the inclusion (2.11) together with the separation 
condition (2.9) implies that

� :=�(�)∩�a ⊂�a′ ∩B(0,M),
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so that � is a compact set of �a and we may define the projection operator 
 on the corresponding eigenspace thanks 
to the Dunford integral (2.5). The projector 
 fulfills all the requirements stated in (1). In order to conclude we just 
have to prove (2.10). In order to do so, for any integer N ≥ 0, we write

S� (I −
)= (I −
)S�

= (I −
)
N−1∑
�=0

(−1)�SB ∗ (ASB)(∗�) + ((I −
)S�) ∗ (ASB)(∗N),

where we have used the iteration of the Duhamel formula (1.12) in the second line. For b >max(ω(�), a), we may 
use the inverse Laplace formula

T (t)f := ((I −
)S�) ∗ (ASB)(∗N)f

= lim
M ′→∞

i

2π

b+iM ′∫

b−iM ′
ezt (−1)N+1 (I −
)R�(z) (ARB(z))

Nf dz

for any f ∈ D(�) and t ≥ 0, and we emphasize that the term T (t)f might be only defined as a semi-convergent 
integral. Because z �→ (I −
)R�(z) (ARB(z))N+1 is an analytic function on a neighborhood of �̄a , we may move 
the segment on which the integral is performed, and we obtain the representation formula

S�(t)(I −
)f =
N−1∑
�=0

(−1)�(I −
)SB ∗ (ASB)(∗�)(t)f

+ lim
M ′→∞

i

2π

a+iM ′∫

a−iM ′
ezt (−1)N+1 (I −
)R�(z) (ARB(z))

Nf dz, (2.21)

for any f ∈D(�) and t ≥ 0.

Step 4. In order to conclude we only have to explain why the last term in (2.21) is appropriately bounded for N large 
enough. Thanks to (2.18), we have

W(z) := R�(z) (ARB(z))
N = U(z)

∞∑
�=0

V(z)� (ARB(z))
N , (2.22)

provided the RHS series converges. On the one hand, defining N := ([1/α] + 1)(n + 1) and β := ([1/α] + 1)α > 1, 
we get from (2.12) that

‖ (ARB(z))
N‖B(X) ≤ ‖ V(z)‖[1/α]+1

B(X) ≤ C

〈y〉β (2.23)

for any z= a+ iy, |y| ≥M . On the other hand, we get from (2.20) that the series term in (2.22) is normally convergent 
uniformly in z= a + iy, |y| ≥M . All together, we obtain

‖W(z)‖B(X) ≤ ‖U(z)‖B(X)

∥∥∥
∞∑
�=0

V(z)�
∥∥∥

B(X)
‖(ARB(z))

N‖B(X)

≤ C

|y|β (2.24)

for any z= a + iy, |y| ≥M .
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In order to estimate the last term in (2.21), we write

∥∥∥ lim
M ′→∞

i

2π

a+iM ′∫

a−iM ′
ezt (I −
)W(z) dz

∥∥∥
B(X)

≤ eat

2π

a+iM∫

a−iM
‖ (I −
)R�(z)‖B(X) ‖(ARB(z))

N‖B(X) dy

+ eat

2π

∫

R\[−M,M]
‖ (I −
)W(a + iy)‖B(X) dy,

where the first integral is finite thanks to �(�) ∩ [a − iM, a + iM] = ∅ and (2.23), and the second integral is finite 
because of (2.24). �

We give now two variants of Theorem 2.1 which are sometimes easier to apply. First, for a generator � of a 
semigroup S� with the splitting structure (1.2) we introduce an alternative growth assumption to (H1), namely

(H1′) for some a∗ ∈ R and for any a > a∗, the operator B − a is hypodissipative and there exists a constant Ca ∈
(0, ∞) such that

∞∫

0

e−a s ‖ ASB(s)‖B(X) ds ≤ Ca. (2.25)

Remark 2.3. Estimate (2.25) is reminiscent of the usual condition under which for a given generator B of a semigroup 
SB the perturbed operator A +B also generates a semigroup (see [104,90], [117, condition (1.1)]). Here however the 
condition Ca < 1 is not required since we have already made the assumption that S� exists.

It is clear by writing

SB ∗ (ASB)(∗�) = [SB ∗ (ASB)(∗�−1)] ∗ (ASB)
and performing an iterative argument, that (H1′) implies (H1). We then immediately deduce from Theorem 2.1 a first 
variant:

Corollary 2.4. Consider a Banach space X, the generator � of a semigroup S�(t) = et� on X and a real number 
a∗ ∈ R. Assume that the spectrum �(�) of � satisfies the separation condition (2.9) and that there exist two operators 
A, B ∈ C (X) such that � =A +B and hypothesizes (H1′) and (H2) are met. Then the conclusions (2.11) and (1) in 
Theorem 2.1 hold.

Next, for a generator � of a semigroup S� with the splitting structure (1.2) we introduce the alternative growth 
and regularizing assumptions to (H1′) and (H2), namely

(H1′′) for some a∗ ∈ R, ζ ∈ (0, 1] and for any a > a∗, ζ ′ ∈ [0, ζ ] the operator B−a is hypodissipative and assumption
(H1) or (H1′) also holds with B(X) replaced by B(D(�ζ ′

));
(H2′′) there exist an integer n ≥ 1 and a real number b > a∗ such that

∀ t ≥ 0, ‖(ASB)(∗n)(t)‖B(X,D(�ζ )) ≤ Cb,n,ζ ebt ,
for a constant Cb,n,ζ ∈ (0, ∞).

Our second variant of Theorem 2.1 is the following.
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Corollary 2.5. Consider a Banach space X, the generator � of a semigroup S�(t) = et� on X and a real number 
a∗ ∈ R. Assume that the spectrum �(�) of � satisfies the separation condition (2.9) and that there exist two operators 
A, B ∈ C (X) such that � = A + B and hypothesizes (H1′′) and (H2′′) are met. Then the conclusions (2.11) and (1)
in Theorem 2.1 hold.

Corollary 2.5 is an immediate consequence of Theorem 2.1 or Corollary 2.4 together with the following simple 
variant of [51, Lemma 2.15] which makes possible to deduce the more accurate regularization and growth condition
(H2) from the rough regularization and growth condition (H2′′).

Lemma 2.6. Consider two Banach spaces E and E such that E ⊂ E with dense and continuous embedding. Consider 
some operators L, A and B on E such that L splits as L =A +B, some real number a∗ ∈R and some integer m ∈N

∗. 
Denoting with the same letter A, B and L the restriction of these operators on E, we assume that the two following 
dissipativity conditions are satisfied:

(i) for any a > a∗, � ≥m, X =E and X = E , there holds

‖(ASB)(∗�)‖B(X) ≤ Ca,� eat ;
(ii) for some constants b ∈R, b > a∗, and Cb ≥ 0, there holds

‖(ASB)(∗m)‖B(E,E) ≤ Cb ebt .

Then for any a > a∗, there exist some constructive constants n = n(a) ∈ N, Ca ≥ 1 such that

∀ t ≥ 0 ‖(ASB)(∗n)(t)‖B(E,E) ≤ Ca ea t .

Proof of Lemma 2.6. We fix a > a∗ and a′ ∈ (a∗, a), and we note T := (A SB)(∗m). For n = pm, p ∈N
∗, we write

(ASB)(∗n)(t)= T (∗p)(t)

=
t∫

0

dtp−1

tp−1∫

0

dtp−2 . . .

t2∫

0

dt1 T (δp) . . . T (δ1)

with

δ1 = t1, δ2 = t2 − t1, . . . , δp−1 = tp−1 − tp−2 and δp = t − tp−1.

For any p ≥ 1, there exists at least one increment δr , r ∈ {1, . . . , p}, such that δr ≤ t/p. Using (ii) in order to estimate 
‖T (δr )‖B(E,E) and (i) in order to bound the other terms ‖T (δq)‖B(X) in the appropriate space X = E or X = E, we 
have

‖T (ASB)(∗n)(t)‖B(E,E)

≤
t∫

0

dtp−1

tp−1∫

0

dtp−2 . . .

t2∫

0

dt1C
′
b e
b δr

∏
q �=r
Ca′,m e

a′ δq

≤ C′
b C

p−1
a′,m e

a′ t eb t/p
t∫

0

dtp−1

tp−1∫

0

dtp−2 . . .

t2∫

0

dt1

= C tp−1 e(a
′+b/p) t ≤ C′ eat ,

by taking p (and then n) large enough so that a′ + b/p < a. �
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3. Weyl’s Theorem for semigroup generators

3.1. An abstract semigroup Weyl’s Theorem

We present in this section a version of Weyl’s Theorem about compact perturbation of dissipative generator in the 
spirit of the above spectral mapping theorem. For that purpose, we introduce the growth and compactness assumption

(H3) for the same integer n ≥ 1 as in assumption (H2) and with the same notation, the time indexed family of 
operators (ASB)(∗(n+1))(t) satisfies the growth and compactness estimate

∀a > a∗,
∞∫

0

‖(ASB)(∗(n+1))(t)‖B(X,Y ) e
−at dt ≤ C′′

n+1,a,

for some constant C′′
n+1,a ≥ 0 and some (separable) Banach space Y such that Y ⊂X with compact embedding.

Theorem 3.1. Consider a Banach space X, the generator � of a semigroup S�(t) = et� on X and a real number 
a∗ ∈ R. The following quantitative growth estimate on the semigroup

(1) for any a > a∗ there exist an integer J ∈ N, a finite family of distinct complex numbers ξ1, . . . , ξJ ∈ �̄a , some 
finite rank projectors 
1, . . . 
J ∈ B(X) and some operators Tj ∈ B(R
j ), satisfying �
j =
j� = Tj
j , 
�(Tj ) = {ξj }, in particular

�(�)∩ �̄a = {ξ1, . . . , ξJ } ⊂�d(�),
and a constant Ca such that

∀ t ≥ 0,
∥∥∥et � −

J∑
j=1

et Tj 
j

∥∥∥
B(X)

≤ Ca ea t , (3.1)

is equivalent to the following splitting structure of the generator

(2) there exist two operators A, B ∈ C (X) such that � =A +B and hypothesizes (H1), (H2) and (H3) are met.

Remark 3.2.

(a) When �(�) ∩ �a∗ �= ∅ the above theorem gives a description of the principal asymptotic behavior of the 
C0-semigroup S�, namely it states that it is essentially compact (see e.g. [45, Definition 2.1]). As a matter of 
fact, if conditions (H1), (H2) and (H3) hold with a∗ < 0, then the C0-semigroup S� is either uniformly exponen-
tially stable or essentially compact.

(b) We adopt the convention {ξ1, . . . , ξJ } = ∅ if J = 0.
(c) In the case when B is sectorial and A is B-compact, Theorem 3.1 is nothing but the classical Weyl’s Theorem 

on the spectrum [122] or [67, Theorem IV.5.35] combined with the spectral mapping theorem, see [35, Sec-
tion IV.3.10] for instance.

(d) Assumption (2) in Theorem 3.1 is similar to the definition in [118] of the fact that “A is B-power compact”, but it 
is written at the semigroup level rather than at the resolvent level. Under such a power compact hypothesis, Voigt 
establishes a generalization of Weyl’s Theorem. His proof uses the analytic property of the resolvent function 
R�(z) obtained by Ridav and Vidav in [109] as we present here. As a matter of fact, Theorem 3.1 is a simple 
consequence of [118, Theorem 1.1] together with Theorem 2.1. However, for the sake of completeness we give 
an elementary proof of Theorem 3.1 (which consists essentially to prove again [118, Theorem 1.1] without the 
help of [109] and to apply Theorem 2.1).

(e) It has been observed in [118] (see also [66,114,91,72]) that a similar conclusion as (3.1) holds under a compactness 
condition on the remainder term



870 S. Mischler, J. Scher / Ann. I. H. Poincaré – AN 33 (2016) 849–898
∞∑
�=n−1

(ASB)∗� = S� ∗ (ASB)(∗n) = (SBA)(∗n) ∗ S�

in the Dyson–Phillips series (1.11). Hypotheses (H1)–(H2)–(H3) provide some conditions on the only operators 
A and B such that the above remainder term enjoys such a nice property.

Proof of Theorem 3.1. Again, we only prove that (2) implies (1) since the reverse implication is clear (see Re-
mark 2.2-(c)).

The cornerstone of the proof is the use of the identity

R�(z)(I − V(z))= U(z)

established in (2.18), where we recall that the functions U and V defined by (2.16) and (2.17) are analytic functions 
on �a∗ with values in B(X). Moreover, we have

V(z) ∈ B(X,Y )⊂ K (X) ∀ z ∈�a (3.2)

because of assumption (H3) and

‖ V(z)‖B(X) ≤ 1/2 ∀ z ∈�a ∩B(0,M)c (3.3)

for some M =M(a) thanks to (2.12).

Step 1. We prove that �(�) ∩�a is finite for any a > a∗.
Let us fix ξ ∈�a and define C(z) := I −V(z), C0 := C(ξ). Because of (3.2) and thanks to the Fredholm alternative 

[40] (see also [17, Theorème VI.6] for a modern and comprehensible statement and proof), there holds

R(C0)=N(C∗
0 )

⊥, dimN(C0)= dimN(C∗
0 ) :=N ∈N.

If N ≥ 1, we introduce (f1, . . . , fN) a basis of the null space N(C0) and (ϕ1, . . . , ϕN) a family of independent 
linear forms in X′ such that ϕi(fj ) = δij . Similarly, we introduce (ψ1, . . . , ψN) a basis of the null space N(C∗

0 ) and 
(g1, . . . , gN) a family of independent linear vectors in X such that ψi(gj ) = δij . Then defining the projectors on X

π0 :=
n∑
i=1

fi ϕi and π1 :=
n∑
i=1

gi ψi,

and X1 := π0(X), X0 := (I − π0)(X), Y1 := π1(X), Y0 := (I − π1)(X), we have

X =X0 ⊕X1, X1 =N(C0)= Vect(f1, . . . , fN),

and

X = Y0 ⊕ Y1, Y0 =R(C0), Y1 = Vect(g1, . . . , gN).

On the one hand, C0 :X0 → Y0 is bijective by definition, and the family of linear mappings

D0(z) := C−1
0 (I − π1)C(z)|X0 :X0 →X0,

is an analytic function with respect to the parameter z ∈�a and satisfies D0(ξ) = IX0 . We deduce that D0(z) is also 
invertible for z belonging to a neighborhood B(ξ, r0(ξ)) of ξ , r0(ξ) > 0, and then

(I − π1)C(z)|X0 :X0 → Y0 is invertible for any z ∈ B(ξ, r0(ξ)). (3.4)

On the other hand, the family of linear mappings

D1(z) := π1C(z)|Y1 : Y1 → Y1,

is an analytic function with respect to the parameter z ∈ �a and D1(z) is invertible for any z ∈ �a ∩ B(0, M ′)c
for M ′ large enough, because V(z) → 0 as �mz→ ∞ from (2.12). Since Y1 is finite dimensional we may define 
z �→ det(D1(z)), which is an analytic function on �a and satisfies det(D1(z)) �= 0 for any z ∈�a ∩ B(0, M ′)c . As a 
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consequence, z �→ det(D1(z)) has isolate zeros and since det(D1(z0)) = 0 there exists a neighborhood B(ξ, r1(ξ)) of 
ξ , r1(ξ) > 0, such that det(D1(z)) �= 0 for any z ∈ B(z0, r1(ξ))\{ξ} from which we deduce

π1C(z)|Y1 : Y1 → Y1 is invertible for any z ∈ B(ξ, r1(ξ))\{ξ}. (3.5)

Gathering (3.4) and (3.5), we get that C(z) : X → Y0 ⊕ Y1 = X is surjective for any z ∈ B(ξ, r(ξ))\{ξ}, r(ξ) :=
min(r0(ξ), r1(ξ)) > 0, and then bijective thanks to the Fredholm alternative.

By compactness of the set �̄a∩B(0, M ′), we may cover that set by a finite number of balls B(ξj , r(ξj )), 1 ≤ j ≤ J , 
so that C(z) = I − V(z) is invertible for any z ∈� :=�a\{ ξ1, . . . , ξJ }. As a consequence, the function

W(z) := U(z) (I − V(z))−1

is well defined and analytic on � and coincides with R�(z) on the half plane �b, where b = ω(�) is the growth 
bound of S�. These facts immediately imply that R� =W on � and then

�(�)∩�a ⊂ { ξ1, . . . , ξJ } =�a\�.

Step 2. We prove that �(�) ∩�a∗ ⊂ �d(�). Indeed, for any ξ ∈ �(�) ∩�a∗ , we may write with the notation of 
step 1


�,ξ (I − π1)=
∫

|z−ξ |=r(ξ)/2
R�(z)(I − π1)

=
∫

|z−ξ |=r(ξ)/2
U(z) (I − V(z))−1 (I − π1)= 0,

where in the last line we have used that I−V(z) :X0 → Y0 is bijective for any z ∈ B(ξ, r(ξ)) so that (I−V(z))−1 (I−
π1) is well defined and analytic on B(ξ, r(ξ)). We deduce that


�,ξ =
�,ξπ1,

and then

dimR(
�,ξ )≤ dimR(π1)=N.
That precisely means ξ ∈�d(�).
Step 3. The fact that S� satisfies the growth estimate (3.1) is an immediate consequence of Theorem 2.1. �
3.2. A quantified version of the Weyl’s Theorem

We present now a quantified version of Weyl’s Theorem 3.1.

Theorem 3.3. Consider a Banach space X, the generator � of a semigroup S�(t) = et� on X, a real number a∗ ∈ R

and assume that there exist two operators A, B ∈ C (X) such that � = A + B and the hypothesizes (H1), (H2) and
(H3) of Theorem 3.1 are met. Assume furthermore that

∀a > a∗,
∞∫

0

‖ASB(t)‖B(X,Y ) e
−at dt ≤ Ca, (3.6)

for some constant Ca ∈ R+, and there exists a sequence of N dimensional range increasing projectors πN and a 
sequence of positive real numbers εN → 0 such that

∀f ∈ Y ‖π⊥
N f ‖X ≤ εN‖f ‖Y . (3.7)

For any a > a∗, there exists an integer n∗ (which depends on a constructive way on a, (πN), (εN) and the constants 
involved in the assumptions (H1), (H2), (H3) and (3.6)) such that



872 S. Mischler, J. Scher / Ann. I. H. Poincaré – AN 33 (2016) 849–898
�(�(�)∩�a)≤ n∗, dimR(
�,a)≤ n∗. (3.8)

We assume moreover (H1′′) and ‖(SBA)(∗n)‖B(X,D(�ζ ))e
−at ∈ L1(0, ∞) for any a > a∗. Then, for any a > a∗, there 

exists a constant C′
a such that for any Jordan basis (gi,j ) associated to the eigenspace R
�,a there holds

‖ gi,j‖X = 1, ‖ gi,j‖D(�ζ )∩Y ≤C′
a. (3.9)

Proof of Theorem 3.3. Step 1. Let us fix a > a∗ and let us define for any z ∈�a the compact perturbation of the 
identity

 (z) := I +ARB(z) :X→X.

On the one hand, because of (3.6), we know that there exists a constant Ca such that

∀ z ∈�a ‖ ARB(z)‖B(X,Y ) ≤ Ca,
and then

‖ π⊥
N ARB(z)‖B(X) ≤ εN Ca < 1

for N large enough. We deduce from the above smallness condition that

I + π⊥
N ARB(z) :Rπ⊥

N →Rπ⊥
N

is an isomorphism for any z ∈ �a . On the other hand, thanks to the Fredholm alternative, it is clear that  (z) is 
invertible if, and only if, πN (z) has maximal rank N .

Step 2. For a given basis (g1, . . . , gN) of RπN we denote by πN,i a projection on C gi , 1 ≤ i ≤ N , and we define 
 N,i(z) := πN,i (z). For a given i ∈ {1, . . . , N} and if zi ∈�a satisfies  N,i(zi) = 0 we have

πN,i + πN,iARB(zi)= 0

and

 N,i(z)= πN,i + πN,iA
∞∑
n=0

RB(zi)
n+1 (z− zi)n ∀ z ∈�a ∩B(zi, r),

with r := ‖RB(zi)‖−1 ≥ C−1
a > 0. From the two last equations, we deduce

 N,i(z)= −πN,i
∞∑
n=1

RB(zi)
n (z− zi)n ∀ z ∈�a ∩B(zi, ri)

and we observe that rank N,i(z) = 1 for any z ∈ B(zi, r), z �= zi . As a consequence, in any ball B of radius r , 
rankπN (z) =N for any z ∈ B ∩�a except at most N points z1, . . . , zN ∈ B , and the total dimension of the “defect 
of surjectivity” codim R(πN (zi)) = dim
�,zi is at most N . Covering the region �̄a ∩ B(0, M) by (1 + 2M/r)2

balls of radius r ∈ (C−1
a , M), we see that (3.8) holds with n∗ := (1 + 2MCa)2N .

Step 3. Consider a Jordan basis (gj,m) associated to an eigenvalue ξ ∈�d(�) ∩�a , and then defined by

�gj,m = ξgj,m + gj,m−1.

We write

gj,m =RB(ξ)gj,m−1 −RB(ξ)Agj,m,
and iterating the formula

gj,m =
L−1∑
�=0

(−1)�RB(ξ)(ARB(ξ))
�gj,m−1 + (−1)L(RB(ξ)A)ngj,m,

from which we easily conclude that (3.9) holds. �
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4. Semigroup Weyl’s Theorem for the growth-fragmentation equations

4.1. Equal mitosis and smooth cell-division equations

In this paragraph we are concerned with the equal mitosis equation (1.27) and the cell-division equation (1.37)
with smooth offspring distribution, so that we consider the operator

�f (x) := − ∂

∂x
f (x)−K(x)f (x)+ (F+f )(x)

where K satisfies (1.29) and (1.30) and the gain part F+ of the fragmentation operator is defined by

F+f (x) :=
∞∫
x

k(y, x)f (y) dy (4.10)

with k satisfying (1.21) and ℘ = 2δ1/2 (in the equal mitosis case) or ℘ is a function which satisfies (1.22) and (1.34)
(in the case of the smooth cell-division equation). We recall that the operator is complemented with a boundary 
condition (1.28).

We fix α > α∗, with α∗ > 1 defined thanks to Eq. (1.38), and we set K ′
0 :=K0 − ℘αK1 > 0. When K(0) = 0 or 

℘ = 2δ1/2, we then define the critical abscissa a∗ ∈R by

a∗ := −K ′
0 if γ = 0, a∗ := −∞ if γ > 0.

Observe that when K(0) > 0, the positivity conditions (1.29) and (1.30) imply that there exists a constant K∗ > 0
such that

K(x)≥K∗ ∀x ≥ 0. (4.11)

When K(0) > 0 and ℘ satisfies (1.34), we then define the critical abscissa a∗ ∈R by

a∗ := −min(K ′
0,K∗) if γ = 0, a∗ := −K∗ if γ > 0.

We perform the spectral analysis of � in the Banach space X = L1
α defined at the beginning of Section 1.2.5. We 

also define, for later reference, the Sobolev spaces

W 1,1
α = {f ∈ L1

α, ∂xf ∈ L1
α}, Ẇ 1,1

α := {f ∈ L1
loc; ∂xf ∈ L̇1

α}, α ∈R.

It is worth emphasizing that we classically have (and that is also a straightforward consequence of the lemmas 
which follow)

D(�)= { f ∈ L1
α+γ , ∂xf ∈ L1

α, f (0)= 0}.
As a first step in the proof of Theorem 1.1 we have

Proposition 4.4. Under the above assumptions and definitions of α∗ > 1 and a∗ < 0, the conclusion (2), and then 
(2.11) and (1), of Theorem 3.1 holds for the cell-division semigroup in L1

α for any α > α∗ and for any a > a∗. 
Moreover the conclusions of Theorem 3.3 hold under the additional assumptions that K(0) = 0 and ℘ satisfies the 
smoothness condition (1.34).

In order to establish Proposition 4.4 we will introduce an adequate splitting � =A + B and we prove that A and 
B satisfy conditions (H1), (H2) and (H3) (or one of the “prime” variants of them) for n = 1 or 2 as a consequence of 
the series of technical Lemmas 4.5, 4.6, 4.7, 4.8 and 4.9 below.

Taking a real number R ∈ [1, ∞) to be chosen later, we define

KR :=K χR KcR :=K χcR, kR =KR κ, kcR =KR κ
where χR(x) = χ(x/R), χcR(x) = χc(x/R), χ being the Lipschitz function defined on R+ by χ(0) = 1, χ ′ = −1[1,2]
and χc = 1 − χ , as well as
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F+
R =

∞∫
x

kR(y, x)f (y) dy, F+,c
R =

∞∫
x

kcR(y, x)f (y) dy,

and then

A=AR =F+
R , B = BR = − ∂

∂x
−K(x)+F+,c

R

so that � =A +B.

Lemma 4.5.
(1) For any 0 ≤ α ≤ 1 ≤ β there holds A ∈ B(L̇1

α, L̇
1
α ∩ L̇1

β).

(2) For the mitosis operator, there holds A ∈ B(W 1,1, W 1,1
α ) for any α ≥ 0. In particular A ∈ B(D(�η)) for 

η= 0, 1.
(3) Under assumption (1.34) on ℘ there holds A ∈ B(L̇1

β−1, Ẇ
1,1
β ) for any β ≥ 0.

(4) Under assumption (1.34) on ℘ and the additional assumption K(0) = 0, there holds A ∈ B(L1
α, W

1,1
α ) for any 

α ≥ 0.

Proof of Lemma 4.5. We split the proof into four steps.

Step 1. Fix 0 ≤ f ∈ L̇1
α as well as α′ ≥ α. Recalling from (1.30) that K(x) ≤K1〈x〉γ , 〈x〉 := (1 + x2)γ /2, we compute

‖ Af ‖L̇1
α′

=
∞∫

0

f (x)

x∫

0

kR(x, y) y
α′
dy dx

= ℘α′

∞∫

0

f (x)KR(x)x
α′
dx

≤ ℘α′ K1 〈R〉γ+α′−α
2R∫

0

f (x)xα dx,

so that A ∈ B(L̇1
α, L̇

1
α′).

Step 2. For the mitosis operator, we have

∂xAf = 8 (∂xKR)(2x)f (2x)+ 8KR(2x) (∂xf )(2x),

and similar estimates as above lead to the bound

‖ ∂xAR f ‖L1
α

≤ 4 〈R〉α ‖ K ‖W 1,∞(0,2R) ‖ f ‖W 1,1

for any α ≥ 0 and f ∈W 1,1, from which (2) follows.

Step 3. Under the regularity assumption (1.34), there holds

∂xAf =
∞∫
x

KR(y)℘
′(x/y)y−2 f (y)dy −KR(x)℘ (1) f (x)/x,

so that

‖ ∂xAf ‖L̇1
β

≤ {
℘(1)+℘′

β

}
K1 〈R〉γ

2R∫

0

f (x)xβ−1 dx,

and we conclude with A ∈ B(L̇1 , Ẇ 1,1
β ).
β−1
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Step 4. With the assumption of point (4) and recalling that K is C1, there holds ‖K(x)/x‖L∞(0,2R) for any R ∈ (0, ∞)
and then from the above expression of ∂xAf , we get

‖ ∂xAf ‖L1
α

≤ {
℘(1)+℘′

0

} ‖K(x)/x‖L∞(0,2R)‖ f ‖L1
α

for any f ∈ L1
α and α ≥ 0. �

Lemma 4.6. For any a > a∗ there exists R∗(a) > 0 such that the operator B is a-hypodissipative in L1
α for any 

R ∈ (R∗(a), ∞).

Proof of Lemma 4.6. We introduce the primitive functions

K(z) :=
z∫

0

K(u)du, K(z1, z2) := K(z2)−K(z1) (4.12)

and, for any given a ∈ (a∗, 0], we define the space

E := L1(φ), φ(x) := φ0(x)1x≤x2 + φ∞(x)1x≥x2 ,

where

φ0(x) := eK(x)+a x

eK(x2)+a x2
, φ∞(x) := xα

xα2
,

and where

x2 := max(1, x1,2α/(a +K ′
0)) if γ = 0; (4.13)

x2 := max(1, x1, [3α/(x1K
′
0)]1/γ , [−3a/K ′

0]1/γ ) if γ > 0. (4.14)

We recall that x1 is defined in (1.30) and K ′
0 is defined at the beginning of Section 4.1.

Consider f ∈D(�) a real-valued function and let us show that for any a > a∗ and any R > R∗(a), R∗(a) to be 
chosen later,

∞∫

0

sign(f (x))Bf (x)φ(x)dx ≤ a‖f ‖E . (4.15)

Since the case of complex-valued functions can be handled in a similar way and since the norm ‖ · ‖E is clearly 
equivalent to ‖ · ‖L1

α
, that will end the proof.

On the one hand, we have

‖ F+,cf ‖L1(φ0 1x≤x2 )
=

∞∫

R

KcR(x)f (x)

x∧x2∫

0

℘(y/x)φ0(y)
dy

x
dx

≤ η(x2/R)

∞∫

R

KcR(x)f (x) dx,

with

η(u) := (
sup
[0,x2]

φ0
)( u∫

0

℘(z)dz
)
,

so that, performing one integration by part, we calculate
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x2∫

0

sign(f (x))Bf (x)φ0(x) dx

=
x2∫

0

{ −K(x)|f (x)| − ∂x |f (x)| }φ0(x) dx +
x2∫

0

sign(f ) (F+,cf )φ0 dx

≤ −|f (x2)| + a
x2∫

0

|f (x)|φ0(x) dx + η(x2/R)

∞∫

R

KcR(x)f (x) dx. (4.16)

On the other hand, performing one integration by part again, we compute

∞∫
x2

sign(f (x))BRf (x)φ∞(x) dx

≤ |f (x2)| +
∞∫
x2

|f (x)| { −Kφ∞ + ∂xφ∞ +KcR(x)
x∫

0

℘(
y

x
)φ∞(y)

dy

x
} dx

≤ |f (x2)| +
∞∫
x2

|f (x)| [(℘αK1 −K0) x
γ + α/x]φ∞(x) dx

≤ |f (x2)| +
∞∫
x2

|f (x)|
{
a + θ xγ

}
φ∞(x) dx, (4.17)

with θ := −(a +K ′
0)/2 if γ = 0 and θ := −K ′

0/3 if γ > 0 thanks to the choice of x2. Gathering (4.16) and (4.17), 
and taking R∗ large enough in such a way that η(x2/R

∗) K1 + θ ≤ 0, we get that BR is a-dissipative in E . �
Lemma 4.7. The operator � generates a C0-semigroup on L1

α .

Proof of Lemma 4.7. Thanks to Lemmas 4.5 and 4.6, we have that � is b-dissipative in E with b := ‖ AR‖B(E)+ a. 
On the other hand, one can show that R(� − b) = X for b large enough and conclude thanks to Lumer–Phillips 
Theorem ([78] or [100, Theorem I.4.3]) that � generates a C0-semigroup. Equivalently, one can argue as in [36, proof 
of Theorem 3.2] by introducing an approximation sequence of bounded total fragmentation rates (Kn) and proving 
that for any fixed initial datum f0 ∈ X the associated sequence of solutions (f n) (constructed by a mere Banach 
fixed point theorem in C([0, T ]; E), ∀ T > 0) is a Cauchy sequence. That establishes that for any f0 ∈ E there exists 
a unique solution f ∈ C(R+; E) to the Cauchy problem associated to the operator � and then that � generates a 
C0-semigroup. �

We define

Yr := { f ∈Wr,1
α ∩L1

α+γ+1(R); suppf ⊂ [0,∞)}, r ∈ [0,1],
as a family of interpolating spaces between Y0 = L1

α+γ+1 ⊂X and Y1 ⊂D(�).

Lemma 4.8. If ℘ satisfies (1.34) and K(0) = 0, for any a > a∗ there exists a constant Ca such that

‖ ASB(t)‖B(X,Y1) ≤ Ca eat . (4.18)

If ℘ satisfies (1.34) and K(0) �= 0, for any a > a∗ and any r ∈ [0, 1) there exists a constant Ca,r such that

‖ (ASB)(∗2)(t)‖B(X,Yr ) ≤ Ca,r eat . (4.19)
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Proof of Lemma 4.8. Extending by 0 a function g ∈ L1(R+) outside of [0, ∞), we may identify L1(R+) = { g ∈
L1(R); suppg ⊂ [0, ∞)} and extending k = k(x, y) by 0 outside of {(x, y); 0 ≤ y ≤ x}, we may consider SB(t) and 
A as operators acting on L1(R) which preserve the support [0, ∞) (they then also act on L1(R+)).
Step 1. Assume first K(0) = 0. From Lemma 4.5-(4) and Lemma 4.6, for any f ∈L1

α , we get

‖ ∂x(ASB(t)f )‖L1
α

≤ C ‖ SB(t)f ‖L1
α

≤ Ca eat ‖ f ‖L1
α
.

From Lemma 4.5-(1) and Lemma 4.6 we get a similar estimate on the quantity ‖ ASB(t)‖B(L1
α,L

1
α+γ+1)

and that ends 

the proof of (4.18).

Step 2. We assume now K(0) �= 0. We introduce the notation

B0f (x) := − ∂

∂x
f (x)−K(x)f (x)

and then the shorthands Ac := F+,c , U := ASB , Uc := AcSB , U0 := ASB0 and Uc0 := AcSB0 , where SB (resp. SB0 ) 
is the semigroup associated to the generator B (resp. B0) complemented with the boundary condition (1.28). Thanks 
to the Duhamel formula

SB = SB0 + SB0 ∗AcSB, (4.20)

we have

U =U0 +U0 ∗Uc. (4.21)

From the explicit representation formula

(SB0(t)f )(x)= e−K(x−t,x) f (x − t) ∀ t ≥ 0, ∀x ∈R, (4.22)

where K is the primitive function defined in (4.12), we get

U0(t)f (x)=
∞∫
x

kR(y, x) e
−K(y−t,y) f (y − t) dy,

so that

∂x[U0(t)f (x)] =
∞∫
x

KR(y)℘
′(x/y)y−2 e−K(y−t,y) f (y − t) dy − KR(x)

x
℘ (1) e−K(x−t,x) f (x − t).

Using that K(y − t, y) ≥K∗ t for any y ≥ t , we have

e−K(y−t,y) |f (y − t)| ≤ eat |f (y − t)| ∀ t ≥ 0, ∀y ∈ R,

and we deduce

‖ ∂x[U0(t)f ] ‖L1
α

≤ ℘(1)
2R∫

0

KR(x) 〈x〉α |f (x − t)|
(x − t)+ t dx e

at +
2R∫

0

KR(x)

x∫

0

|℘′(y/x)| 〈y〉α dy
x

|f (x − t)|
(x − t)+ t dx e

at

≤
(
℘(1)+℘′

0

)
K1 〈2R〉γ+α eat

t

2R∫

0

|f (x)|dx.

Since clearly (from the explicit representation formula (4.22) for instance) the same estimate holds for
‖ U0(t) ‖B(L1,L1

α+γ+1)
we get by interpolation and for any r ∈ [0, 1]

‖ U0(t) ‖B(L1,Yr )
≤Ca e

at

t r
.

Thanks to the identity (4.21), the fact that Ac ∈ B(L1
γ , L

1) and Lemma 4.6, we deduce for r ∈ [0, 1)
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‖ U(t)f ‖Yr ≤ Ca e
at

t r
‖f ‖L1 +

t∫

0

Ca
ea(t−s)

(t − s)r ‖ AcSB(s)f ‖L1

≤ Ca,r e
at

t r
‖f ‖L1

max(α,γ )
.

On the other hand, from Lemma 4.5-(1) and Lemma 4.6, we know that

‖ U(t)f ‖L1
α+γ ≤ ‖A‖B(L1

α,L
1
α+γ ) ‖ SB(t)f ‖L1

α
≤ Caeat‖ f ‖L1

α
.

These two estimates together imply (4.19). �
Lemma 4.9. For the equal mitosis equation, there holds

‖(ASB)(∗2)(t)‖B(X,Y1) ≤ C t ∀ t ≥ 0 (4.23)

for some constant C which only depends on K through its norm ‖K‖W 1,∞(0,R), where R is defined in Lemma 4.6.

Proof of Lemma 4.9. Thanks to the Duhamel formula (4.20) and the iterated Duhamel formula

SB = SB0 + SB0 ∗AcSB0 + SB0 ∗AcSB0 ∗AcSB,
we have

U =U0 +U0 ∗Uc and U =U0 +U0 ∗Uc0 +U0 ∗Uc0 ∗Uc,
from which we finally deduce

U∗2 =U∗2
0 +U∗2

0 ∗Uc +U0 ∗Uc0 ∗U +U0 ∗Uc0 ∗Uc ∗U. (4.24)

From the explicit representation formula (4.22), we get

(U0(t)f )(x)= 4KR(2x) e
−K(2x−t,2x)f (2x − t)

as well as

(Uc0 (t)f )(x)= 4KcR(2x) e
−K(2x−t,2x)f (2x − t).

We then easily compute

(U∗2
0 (t)f )(x)=

t∫

0

(U0(t − s)U0(s)f )(x) ds

= 4KR(2x)

t∫

0

e−K(2x−t+s,2x)(U0(s)f )(2x − t + s) ds

= 16KR(2x)

t∫

0

KR(2(2x − t + s)) e−K(2x−t+s,2x)−K(4x−2t+s,2(2x−t+s))f (4x − 2t + s) ds

= 16KR(2x)

u1∫
u0

KR(2u− 4x + 2t) e−"(u)f (u)du (4.25)

with u0 := (4x − 2t) ∧ (2x − t + R/2), u1 := (4x − t) ∧ (2x − t + R/2) and "(u) := K(u − 2x + t, 2x) + K(u,
2u− 4x + 2t). Similarly, we have

(U0 ∗Uc0 (t)f )(x)= 16KR(2x)

u1∫
KcR(2u− 4x + 2t) e−"(u)f (u)du. (4.26)
u0
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The two last terms are clearly more regular (in x) than the initial function f . Moreover, extending by 0 the function 
f outside of [0, ∞), we see thanks to (4.22) that SB0(t)f , and then U∗2

0 (t)f and U0 ∗ Uc0 (t)f , are well defined as 
functions in L1(R). Using the lower bound " ≥ 0 and performing some elementary computations, we easily get from 
(4.24), (4.25) and (4.26) the estimate

‖ ∂x[(ASB)(∗2)(t)f ] ‖L1(R) ≤ CR t ‖ f ‖L1, ∀ t ≥ 0,

which ends the proof of (4.23) since then (ASB)(∗2)(t)f ∈ C(R) and supp (ASB)(∗2)(t)f ⊂ [0, ∞] imply 
(ASB)(∗2)(t)f (0) = 0. �

With all the estimates established in the above lemmas, we are able to present the

Proof of Proposition 4.4. We just have to explain why the hypothesis of Theorem 3.1 are satisfied in each cases. 
Hypothesis (H1) is an immediate consequence of Lemma 4.5-(1) and Lemma 4.6 together with Remark 2.2-(b). For 
that last claim we use that Yr ⊂D(�r ′) for any 0 ≤ r ′ < r < 1 thanks to the classical interpolation theory, see (2.7), 
[70] and [76].

In the case when ℘ satisfies (1.34), Lemma 4.8 and Remark 2.2-(h) imply that hypothesizes (H2) and (H3) are met 
with n = 1, ζ = 1 and ζ ′ = 0 in the case K(0) = 0 and are met with n = 2, ζ ∈ (0, 1) and ζ ′ = 0 in the case K(0) �= 0. 
Also notice that the additional assumptions of Theorem 3.3 are met in the case that K(0) = 0.

For the equal mitosis equation, Lemma 4.5-(2) and Lemma 4.6 imply that assumption (H1) also holds with B(X)
replaced by B(D(�)) and B(X, L1

α+1), while Lemma 4.9 implies that (H2′′) holds with n = 2, ζ = 1, ζ ′ = 0 and 
any b > 0, so that we can apply Corollary 2.5 (assumption (H2) holds with n large enough thanks to Lemma 2.6). 
Finally, hypothesis (H3) follows from (H2) and the fact that D(�) ∩L1

α+1 ⊂X compactly. �
4.2. Quantified semigroup Weyl’s Theorem for the self-similar fragmentation equation

In this paragraph we are concerned with the self-similar fragmentation equation (1.41), so that we consider the 
operator

�f (x) := −x ∂
∂x
f (x)− 2f (x)−K(x)f (x)+ (F+f )(x)

where K(x) = xγ and F+ is defined in (4.10) with k satisfying (1.21), (1.22) and (1.34).
We perform the spectral analysis of � in the Banach space X := L̇1

α ∩ L̇1
β for 0 ≤ α < 1 < β <∞, where we 

recall that the homogeneous Lebesgue space L̇1
α has been defined at the beginning of Section 1.2.5, and we set 

a∗ := α − 1 ∈ [−1, 0). It is worth emphasizing that we classically have (that is again a consequence of the estimates 
established in the series of lemmas which follow, moreover the inclusion ⊃ is just straightforward and it is the only 
inclusion that we will really use)

D(�)= { f ∈ L̇1
α ∩ L̇1

β+γ , ∂xf ∈ L̇1
α+1 ∩ L̇1

β+1}.
As a first step in the proof of Theorem 1.1 we have

Proposition 4.10. Under the above assumptions and definitions, the conclusion (2), and then (2.11) and (1), of Theo-
rem 3.3 holds for the self-similar fragmentation semigroup in L̇1

α ∩ L̇1
β for any a > a∗.

In order to establish Proposition 4.10 we introduce a suitable splitting � = A + B and we prove that A and B
satisfy conditions (H1), (H2), (H3) with n = 1 as well as (3.6) with Y ⊂D(�) as a consequence of the two technical 
Lemmas 4.11 and 4.12 below.

We introduce the following splitting inspired from [18]. With the notation of the previous section, we define

ks(x, y) := k(x, y)χcδ (x)χcε (y)χR(y)
for 0 < ε ≤ δ/2 ≤ 1, R ≥ 2 to be specified later, and then

kc := kc,1 + kc,2 + kc,3
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with kc,1(x, y) = k(x, y) χδ(x), kc,2(x, y) = χcδ (x) χcR(y) and kc,3(x, y) = k(x, y) χcδ (x) χε(y). We then define

Af (x)=
∞∫
x

ks(y, x)f (y) dy, Ac,if (x)=
∞∫
x

kc,i(y, x)f (y) dy,

and then

Ac =Ac,1 +Ac,2 +Ac,3, B0 = −x ∂
∂x

− 2 −K(x), B = B0 +Ac

so that � =A +B.

Lemma 4.11. For any 0 ≤ α′ ≤ 1 ≤ β ′, there hold A ∈ B(L̇1
1, Ẇ

1,1
α′ ∩Ẇ 1,1

β ′ ) and Ac,i ∈ B(L̇1
α′+γ , L̇

1
α′) for i = 1, 2, 3, 

with

‖ Ac,1f ‖L̇1
α′

≤ ℘α′ δγ ‖ f ‖L̇1
α′+γ
,

‖ Ac,2f ‖L̇1
α′

≤ ℘α′

∞∫

R

f (x)xα
′+γ dx,

‖ Ac,3f ‖L̇1
α′

≤ ‖ ℘(z) zα′ ‖L1(0,ε/δ) ‖ f ‖L̇1
α′+γ
.

Proof of Lemma 4.11. For 0 ≤ f ∈ L̇1
α′+γ , we compute

‖ Ac,3f ‖L̇1
α′

=
∞∫

0

f (x)xγ χcδ (x)

x∫

0

℘(y/x)yα
′
χε(y)

dy

x
dx

≤ ‖ ℘(z) zα′ ‖L1(0,2ε/δ)‖ f ‖L̇1
α′+γ
,

and that establishes the last claim. For the other claims we refer to Lemma 4.5 and [18, 3, proof of the main theorem]
where very similar estimates have been proved. �
Lemma 4.12. For any a > a∗ there exist R, δ, ε > 0 such that the operator B is a-hypodissipative in X.

Proof of Lemma 4.12. We define the space

E := L1(φ), φ(x) := xα + η xβ, η > 0.

Consider a real-valued function f ∈D(�) and let us show that for any a > a∗ and for suitable R ∈ (1, ∞), δ ∈ (0, 1), 
ε ∈ (0, δ/2) to be chosen later,

∞∫

0

sign(f (x))Bf (x)φ(x)dx ≤ a‖f ‖E . (4.27)

Since the case of complex-valued functions can be handled in a similar way and since the norm ‖ · ‖E is clearly 
equivalent to ‖ · ‖X , that will end the proof.

From the identity

∞∫

0

sign(f (x))B0f (x)x
r dr =

∞∫

0

((r − 1)xr − xr+γ ) |f |dx

and the following inequality which holds for η > 0 small enough

η (β − 1 − a)xβ ≤ 1 + a − α
xα + η 1 −℘β

xβ+γ ∀x > 0,

2 2



S. Mischler, J. Scher / Ann. I. H. Poincaré – AN 33 (2016) 849–898 881
we readily deduce
∞∫

0

sign(f (x))B0f (x)φ(x)dx ≤ a
∞∫

0

|f | φ dx +
∞∫

0

(
α − a − 1

2
xα − η ℘β + 1

2
xβ+γ ) |f | dx.

On the other hand, we know from Lemma 4.11 that

‖ Acf ‖E ≤ ℘αδγ ‖ f ‖E + ( ℘α
Rβ−α + η℘β)

∞∫

R

xβ+γ |f | + ‖ ℘(z) zα‖L1(0,2ε/δ) ‖f ‖E .

We then easily conclude to (4.27) putting together these two estimates and choosing R large enough, δ small enough, 
and then ε/δ small enough. �
Proof of Proposition 4.10. We just have to explain why the hypotheses of Theorem 3.3 are satisfied. Hypothesis
(H1) is an immediate consequence of Lemma 4.11-(1), Lemma 4.12 and Remark 2.2-(b).

We define

Y := {f ∈W 1,1(R); suppf ⊂ [ε,2R] }
endowed with the norm ‖ · ‖W 1,1 . We also define on X the projection πN onto the 2N + 1 dimension subspace

RπN := { 1[0,2R] p, p ∈ P2N(R)},
where P2N stands for the set of polynomials of degree less that 2N , by

(πNf )(x) := χcε (x)χ2R(x) (pN,R ∗ f )(x), pN,R(x) := p(x/(4R))/(4R),
where pN stands for the Bernstein polynomial pN(x) := αN (1 − x2)N with αN such that ‖ pN‖L1(−1,1) = 1. By very 
classical approximation arguments, we have

‖ f − πNf ‖X ≤ CR√
N

‖ f ‖W 1,1 ∀f ∈ Y,
so that (3.7) is fulfilled.

Finally, Lemma 4.11-(1) and Lemma 4.12 imply that

‖ ASB(t)f ‖Y ≤ Ca eat ‖ f ‖X
for any t ≥ 0, f ∈ X, a > a∗. We then deduce (H2) with n = 1, ζ = 1 and ζ ′ = 0 thanks to Remark 2.2-(h) and 
Y ⊂D(�), and also deduce (H3) with n = 1 and (3.6) from the fact that Y is compactly embedded in X. �
4.3. A remark on the age structured population equation

The aim of this short section is to present a quantified version of the Weyl’s Theorem for the age structured 
population equation (1.42) in the simple case when τ = ν = 1 and K ∈ Cb(R+) ∩ L1(R+). More precisely, we 
consider the evolution equation

∂tf =�f =Af +Bf (4.28)

with A and B defined on M1(R) by

(Af )(x) := δx=0

∞∫

0

K(y)f (y) dy

(Bf )(x) := −∂xf (x)− f (x),
and we emphasize that the boundary condition in (1.42) has been equivalently replaced by the term Af involving a 
Dirac mass (δ0)(x) = δx=0 in x = 0. We perform the spectral analysis of � in the space L1(R+) as well as in the space 
X :=M1(R) of bounded measures endowed with the total variation norm. In that last functional space, the domain 
D(�) is the space BV (R) of functions with bounded variation.
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Lemma 4.13. In X =M1(R), the operators A and B satisfy
(i) A ∈ B(X, Y) where Y =C δ0 ⊂X with compact embedding;
(ii) SB(t) is −1-dissipative;
(iii) the family of operators SB ∗ASB(t) satisfy

‖ (SB ∗ASB)(t)‖X→D(�) ≤C e−t ∀ t ≥ 0.

Proof of Lemma 4.13. We clearly have A ∈ B(X, Y) because K ∈ Cb(R+) and the −1-dissipativity of SB follows 
from the explicit formula

SB(t)f (x)= f (x − t) e−t 1x−t≥0.

We next prove (iii). We write

ASB(t)f = δx=0

∞∫

0

K(y + t) f (y) dy e−t ,

next

(SB ∗ASB)(t)f =
t∫

0

SB(s)ASB(t − s)f ds

=
t∫

0

δx−s=0e
−s 1x−s≥0

∞∫

0

K(y + t − s) f (y) dy e−(t−s) ds

= e−t 1x≤t
∞∫

0

K(y + t − x)f (y) dy,

and then

∂x(SB ∗ASB)(t)f = −e−t δx=t
∞∫

0

K(y + t − x)f (y) dy − e−t 1x≤t
∞∫

0

K ′(y + t − x)f (y) dy.

As a consequence, we deduce

‖∂x(SB ∗ASB)(t)f ‖M1 ≤ ‖ K‖W 1,∞ e−t ‖ f ‖M1

and a similar estimate for ‖(SB ∗ASB)(t)f ‖M1 . �
As a first step in the proof of Theorem 1.1 for the age structured population equation, we have

Proposition 4.14. Under the above assumptions and notation, the conclusion (2), and then (2.11) and (1), of The-
orem 3.3 holds for the age structured population semigroup S� in M1(R) and in L1(R+) for any a > a∗ := −1. 
Moreover, any eigenvalue ξ ∈�d(�) ∩�−1 is algebraically simple.

Proof of Proposition 4.14. In order to prove the result in X =M1(R+), we just have to explain again why the hy-
pothesis of Theorem 3.3 are satisfied. Conditions (H1), (H3) and (3.6) are immediate consequences of Lemma 4.13-(i) 
and (ii) together with Remark 2.2-(b). We refer to [52,26,81] and the references therein for the existence theory in 
L1(R+) (which extends without difficulty to M1(R+)) for the semigroup S�. Hypothesis (H2) with n = 1, ζ = 1 and 
ζ ′ = 0 is nothing but Lemma 4.13-(iii). Finally, taking up again the proof of Theorem 3.3 and using the additional fact 
that dimY = 1, we get the algebraic simplicity of the eigenvalues ξ ∈�(�) ∩�−1.

We may then easily extend the spectral analysis performed in M1(R+) to the functional space L1(R+). Indeed, for 
a function f ∈ L1, Theorem 3.3 implies that
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‖ et�f −
J∑
j=1

etξj
jf ‖M1 ≤ Ca eat ‖ f ‖M1

for any a > −1 and t ≥ 0. Because S� is well defined in L1 and the domain of � as an operator in M1(R+) is 
BV (R+) ⊂ L1(R+), all the terms involved in the above expression belong to L1 and we can replace the norms ‖ .‖M1

by the norms ‖ .‖L1 . �
5. The Krein–Rutman Theorem in an abstract setting

In this section we consider a “Banach lattice of functions” X. We recall that a Banach lattice is a Banach space 
endowed with an order denoted by ≥ (or ≤) such that the following hold:

– The set X+ := {f ∈X; f ≥ 0} is a nonempty convex closed cone.
– For any f ∈ X, there exist some unique (minimal) f± ∈ X+ such that f = f+ − f−, we then denote |f | :=
f+ + f− ∈X+.

– For any f, g ∈X, 0 ≤ f ≤ g implies ‖ f ‖ ≤ ‖g‖.

We may define a dual order ≥ (or ≤) on X′ by writing for ψ ∈X′

ψ ≥ 0 (or ψ ∈X′+) iff ∀f ∈X+ 〈ψ,f 〉 ≥ 0,

so that X′ is also a Banach lattice.
We then restrict our analysis to the case when X is a “space of functions”. The examples of spaces we have in 

mind are the space of Lebesgue functions X = Lp(U ), 1 ≤ p <∞, U ⊂ R
d borelian set, the space X = C(U ) of 

continuous functions on a compact set U and the space X = C0(U ) of uniformly continuous functions defined on 
an open set U ⊂ R

d and which tend to 0 at the boundary of U . For any element (function) f in such a “space of 
functions” X, we may define without difficulty the composition functions θ(f ) and θ ′(f ) for θ(s) = |s| and θ(s) = s±
as well as the support suppf as a closed subset of U . Although we believe that our results extend to a broader class 
of Banach lattices, by now on and in order to avoid technicality, we will restrict ourself to these examples of “space of 
functions” without specifying anymore but just saying that we consider a “Banach lattice of functions” (and we refer 
to the textbook [3] for possible generalization). As a first consequence of that choice, we may then obtain a nice and 
simple property on the generator of a positive semigroup.

Definition 5.1. Let us consider a Banach lattice X and a generator � of a semigroup S� on X.
(a) We say that the semigroup S� is positive if S�(t)f ∈X+ for any f ∈X+ and t ≥ 0.
(b) We say that a generator � on X satisfies Kato’s inequalities if the inequality

∀f ∈D(�) �θ(f )≥ θ ′(f )�f (5.1)

holds for θ(s) = |s| and θ(s) = s+.
(c) We say that −� satisfies a “weak maximum principle” if for any a > ω(�) and g ∈X+ there holds

f ∈D(�) and (−�+ a)f = g imply f ≥ 0. (5.2)

(d) We say that the opposite of the resolvent is a positive operator if for any a > ω(�) and g ∈ X+ there holds 
−R�(a)g ∈X+.

Here the correct way to understand Kato’s inequalities is

∀f ∈D(�), ∀ψ ∈D(�∗)∩X′+ 〈θ(f ),�∗ψ〉 ≥ 〈θ ′(f )�f,ψ〉,
where �∗ is the adjoint of �.

It is well known (see [98] and [2, Remark 3.10] and the textbook [3, Theorems C.II.2.4, C.II.2.6 and Re-
mark C-II.3.12]) that the generator � of a positive semigroup S� on one of our Banach lattice space of functions
satisfies Kato’s inequalities (5.1). It is also immediate from the Hille’s identity (2.2) that (a) implies (d) and then (c) 
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in the general Banach lattice framework. For a broad class of spaces X the properties (a), (b), (c) and (d) are in fact 
equivalent and we refer again to the textbook [3] for more details on that topics.

Last, we need some strict positivity notion on X and some strict positivity (or irreducibility) assumption on S�
that we will formulate in term of “strong maximum principle”. It is worth mentioning that we have not assumed 
that X+ has nonempty interior, so that the strict positivity property cannot be defined using that interior set (as in 
Krein–Rutman’s work [71], see also [27]). However, we may define the strict order > (or <) on X by writing for 
f ∈X

f > 0 iff ∀ψ ∈X′+\{0} 〈ψ,f 〉> 0,

and similarly a strict order > (or <) on X′ by writing for ψ ∈X′

ψ > 0 iff ∀g ∈X+\{0} 〈ψ,g〉> 0.

It is worth emphasizing that from the Hahn–Banach Theorem, for any f ∈X+ there exists ψ ∈X′+ such that ‖ ψ‖X′ =
1 and 〈ψ, f 〉 = ‖ f ‖X from which we easily deduce that

∀f,g ∈X, 0 ≤ f < g implies ‖ f ‖X < ‖ g‖X. (5.3)

Definition 5.2. We say that −� satisfies the “strong maximum principle” if there holds

f ∈D(�)∩X+\{0} and (−�+μ)f ≥ 0 imply f > 0,

and there exists for some � ≥ 0 such that

f ∈D(��) and |f |> 0 imply f > 0 or f < 0.

We can now state the following version of the Krein–Rutman Theorem in a general and abstract setting.

Theorem 5.3. We consider a generator � of a semigroup S� on a Banach lattice of functions X, and we assume that
(1) � satisfies the property (1) of the semigroup Weyl’s Theorem 3.1 for some a∗ ∈ R;
(2) there exist b > a∗ and ψ ∈D(�∗) ∩X′+\{0} such that �∗ψ ≥ bψ;
(3) S� is positive (and � satisfies Kato’s inequalities);
(4) −� satisfies a strong maximum principle.

Defining λ := s(�), there holds

a∗ < λ= ω(�) and λ ∈�d(�),
and there exist 0 < f∞ ∈D(�) and 0 < φ ∈D(�∗) such that

�f∞ = λf∞, �∗φ = λφ, R
�,λ = Vect(f∞),

and then


�,λf = 〈f,φ〉f∞ ∀f ∈X.
Moreover, there exists a∗∗ ∈ (a∗, λ) and for any a > a∗∗ there exists Ca > 0 such that for any f0 ∈X

‖ S�(t)f − eλt 
�,λf0‖X ≤ C eat ‖ f0 − 
�,λf0‖X ∀ t ≥ 0.

Remark 5.4.

(a) Theorem 5.3 generalizes the Perron–Frobenius Theorem [101,42] for strictly positive matrix �, the Krein–
Rutman Theorem [71] for irreducible, positive and compact semigroup on a Banach lattice with non-empty 
interior cone and the Krein–Rutman Theorem variant [3, Corollary III-C.3.17] (see also [49] for the original 
proof) for irreducible, positive, eventually norm continuous semigroup with compact resolvent in a general Ba-
nach lattice framework. We also refer to the book by Dautray and Lions [27] for a clear and comprehensible 
version of the Krein–Rutman Theorem as well as to the recent books [93,9] and the references therein for more 
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recent developments on the theory of positive operators. The main novelty here is that with assumptions (1) and
(2) we do not ask for the semigroup to be eventually norm continuous and we only ask power compactness on the 
decompositions A and B of the operator � instead of compactness on the resolvent R�.

(b) Condition (2) is necessary because the requirement (1) only implies the needed compactness and regularity on the 
iterated operator (A RB(z))n for z ∈�a∗ . Condition (2) can be removed (it is automatically verified) if condition
(1) holds for any a∗ ∈ R.

(c) In a general Banach lattice framework and replacing the strong maximum principle hypothesis (4) by the more 
classical irreducibility assumption on the semigroup (see for instance [3, Definition C-III.3.1]) Theorem 5.3 is 
an immediate consequence of Theorem 3.1 together with [3, Theorem C-III.3.12] (see also [28,49,50]). We do 
not know whether the strong maximum principle and the irreducibility are equivalent assumptions although both 
are related to strict positivity of the semigroup or the generator. Anyway the strong maximum principle for the 
operator −� is a very natural notion and hypothesis from our PDE point of view and that is the reason why 
we have chosen to presented the statement of Theorem 5.3 in that way. Moreover, the proofs in [3, part C] are 
presented in the general framework of Banach lattices and positive or reducible semigroups (no compactness 
assumption is required in the statement of [3, Theorem C-III.3.12]) so that quite abstract arguments are used 
during the proof. We give below a short, elementary and somewhat self-contained proof of Theorem 5.3, and thus 
do not use [3, Theorem C-III.3.12].

Proof of Theorem 5.3. We split the proof into five steps.

Step 1. On the one hand, let us fix 0 ≤ f0 ∈D(�) such that C := 〈f0, ψ〉 > 0 which exists by definition of ψ . Then 
denoting f (t) := S�(t)f0, we have

d

dt
〈f (t),ψ〉 = 〈�f (t),ψ〉 = 〈f (t),�∗ψ〉 ≥ b 〈f (t),ψ〉,

which in turn implies

〈f (t),ψ〉 ≥ C ebt ∀ t ≥ 0. (5.4)

On the other hand, from Theorem 2.1 we know that ω(�) ≤ max(a∗, λ). As a consequence, if λ < b for any a ∈
(max(a∗, λ), b) there exists Ca ∈ (0, ∞) such that

〈f (t),ψ〉 ≤ ‖ ψ‖X′ ‖ f (t)‖X ≤ Ca ‖ ψ‖X′ eat ‖f0‖X.
That would be in contradiction with (5.4). We conclude that a∗< b ≤ λ = ω(�).
Step 2. We prove that there exists f∞ ∈X such that

‖ f∞‖ = 1, f∞ > 0, �f∞ = λf∞. (5.5)

Thanks to the Weyl’s Theorem 3.1 we know that for some a < 0

�(�)∩�a = ∪Jj=1{ ξj } ⊂�d(�), �eξj = λ,
with J ≥ 1. We introduce the Jordan basis V := { g1,1, . . . , gJ,LJ } of � in the invariant subspace R
�,a as the family 
of vectors

gj,� �= 0, �gj,� = ξjgj,� + gj,�−1 ∀ j ∈ {1, . . . , J }, ∀� ∈ {1, . . . ,Lj },
with the convention gj,k = 0 if k ≤ 0 or k ≥ Lj + 1, as well as the projectors (associated to the basis V )


j,� := projection ongj,�, 
k := projection on Vect(gj,k, 1 ≤ j ≤ J }.
For any fix g ∈ V we write g = g1 − g2 + ig3 − ig4 with gα ≥ 0 and we remark that there exist α ∈ {1, . . . , 4 } and 
k0 ≥ 1 such that 
k0g

α =
�,agα �= 0. We then define k∗ = k∗(gα) := max{ k; 
kgα �= 0}, that set being not empty 
(since it contains k0). We may split the semigroup as

e�tgα =
∑∑

e�t 
j,�g
α + e�t (I −
�,a),
j �
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with 
j,�gα = (πj,�gα) gj,�, πj,�gα ∈ C, and

e�t gj,� = eξj t gj,� + . . .+ t�−1 eξj tgj,1.

Using the positivity assumption (3) and keeping only the leading order term in the above expressions, we have thanks 
to Theorem 3.1

0 ≤ 1

tk
∗−1
e(�−λ)tgα =

J∑
j=1

(πj,k∗g
α)e(ξj−λ)tgj,1 + o(1).

There exist a sequence (tn) which tends to infinity and complex numbers zj ∈ C, |zj | = 1, such that, passing to the 
limit in the above expression, we get

0 ≤
J∑
j=1

(πj,k∗g
α) zj gj,1 =: g∞.

Because of the choice of α and the fact that the vectors gj,1, 1 ≤ j ≤ J , is independent, we have then g∞ ∈R
�,a ∩
X+\{ 0}. Applying again the semigroup, we get

0 ≤ e�t g∞ =
J∑
j=1

eξj t [(πj,k∗gα) zj gj,1] ∀ t ≥ 0,

which in particular implies

J∑
j=1

�m{
eξj t [(πj,k∗gα) zj gj,1]

} = 0 ∀ t ≥ 0,

and then πj,k∗gα = 0 if �m ξj �= 0. As a conclusion, we have proved that there exists g∞ ∈ N(� − λ) ∩ X+\{ 0}. 
Together with the strong maximum principle we conclude that f∞ := g∞/‖ g∞‖ satisfies (5.5).

Moreover, the above argument for any g = gj,Lj associated to ξj �= λ and for any α ∈ {1, . . . , 4} such that 

j,Lj g

α �= 0 implies that πj,k∗gα = 0, or in other words

max
ξj �=λ

Lj <max
ξj=λ

Lj . (5.6)

Step 3. We prove that there exists φ ∈X′ such that

φ > 0, �∗φ = λφ. (5.7)

We define S∗
� to be the dual semigroup associated to S� and we emphasize that it is not necessarily strongly continuous 

(for the norm in X′) but only weakly continuous (for the weak topology σ(X′, X)). However, introducing the splitting

S∗
� = (S�(I −
�,a))∗ + (S�
�,a)∗

and observing that

‖ (S�(I −
�,a))∗‖B(X) ≤ Ca eat
for some a < λ, the same finite dimension argument as in Step 2 implies that there exists φ ∈N(�∗ − λ) ∩X′\{ 0}.

Let us prove the strict positivity property. For a > s(�) and g ∈X+\{ 0}, thanks to the weak and strong maximum 
principles (3) and (4), there exists 0 < f ∈X such that

(−�+ a)f = g.
As a consequence, we have

〈φ,g〉 = 〈φ, (−�+ a)f 〉
= 〈(a −�∗)φ,f 〉 = (a − λ) 〈φ,f 〉> 0.

Since g ∈X+ is arbitrary, we deduce that φ > 0. That concludes the proof of (5.7).
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Step 4. We prove that N(� − λ) = Vect(f∞). Consider a normalized eigenfunction f ∈ XR\{0} associated to the 
eigenvalue λ. First we observe that from Kato’s inequality

λ|f | = λf sign(f )=�f sign(f )≤�|f |.
That inequality is in fact an equality, otherwise we would have

λ〈|f |, φ〉 �= 〈�|f |, φ〉 = 〈|f |,�∗φ〉 = λ〈|f |, φ〉,
a contradiction. As a consequence, |f | is a solution to the eigenvalue problem λ|f | =�|f | so that the strong maxi-
mum principle assumption (4) implies f > 0 or f < 0, and without loss of generality we may assume f > 0. Now, 
thanks to Kato’s inequality again, we write

λ(f − f∞)+ =�(f − f∞) sign+(f − f∞)≤�(f − f∞)+,

and for the same reason as above that last inequality is in fact an inequality. Since (f − f∞)+ = |(f − f∞)+|, the 
strong maximum principle implies that either (f − f∞)+ = 0, or in other words f ≤ f∞, either (f − f∞)+ > 0
or in other words f > f∞. Thanks to (5.3) and to the normalization hypothesis ‖ f ‖ = ‖ f∞‖ = 1 the second case 
in the above alternative is not possible. Repeating the same argument with (f∞ − f )+ we get that f∞ ≤ f and we 
conclude with f = f∞. For a general eigenfunction f ∈ XC associated to the eigenvalue λ we may introduce the 
decomposition f = fr + ifi and we immediately get that fα ∈ XR is an eigenfunction associated to λ for α = r, i. 
As a consequence of what we have just established, we have fα = θαf∞ for some θα ∈ R and we conclude that 
f = (θr + iθi) f∞ ∈ Vect(f∞) again.

Step 5. We first claim that λ is algebraically simple. Indeed, if it was not the case, there would exist f ∈XR such that 
�f = λf + f∞ and then

λ〈f,φ〉 = 〈f,�∗φ〉 = 〈�f,φ〉 = 〈λf + f∞, φ〉,
which in turn implies 〈f∞, φ〉 = 0, a contradiction. With the notation of step 2 and thanks to (5.6), that implies that 
for any ξj �= λ there holds Lj < 1 or in other words �(�) ∩ �̄λ = {λ}. We conclude the proof by using the semigroup 
Weyl’s Theorem 3.1, which in particular implies that �(�) ∩�a∗∗ = {λ} for some a∗∗ ∈ (a∗, λ) because �(�) ∩�a
is finite for any a > a∗. �
6. Krein–Rutman Theorem for the growth-fragmentation equations

This section is devoted to the proof of Theorem 1.1.

6.1. General growth-fragmentation equations

We present below the proof of the part of Theorem 1.1 which holds in full generality. Namely, we prove (1.45), 
(1.46) and (1.47) for the three models of growth-fragmentation equations.

We start with the cell-division equation for which we apply the Krein–Rutman Theorem 5.3 in the Banach lattice 
L1((x0z0, ∞); 〈x〉αdx), α > 1, where z0 is defined by (1.24), instead of L1

α in order that the operator � enjoys a 
strong maximum principle. We have proved (1) in Proposition 4.4. We have �∗1 = K(x) (1 − ℘0) ≥ 0 so that (2)
holds with b = 0 > a∗. The weak maximum principle (3) is an immediate consequence of Kato’s inequalities which 
in turn follows from the fact that F+θ(f ) ≥ θ ′(f )F+f a.e for any f ∈D(�), θ(s) = |s| and θ(s) = s+. The strong 
maximum principle (4) follows from the fact that the equation

f ∈D(�)\{0}, |f | ∈D(�) and (−�+μ)|f | ≥ 0

may be rewritten as

−∂x |f | + (K(x)+μ)|f | ≥ F+ |f | ≥ 0,

and we conclude as in [84, proof of Theorem 3.1] that the continuous function |f | does not vanish on (x0z0, ∞), so 
that f > 0 on (x0z0, ∞) or f < 0 on (x0z0, ∞) because f is also continuous.
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For the self-similar equation the proof is exactly the same by applying the Krein–Rutman Theorem 5.3 in the 
Banach lattice L1(R+; (xα + xβ)dx), 0 ≤ α < 1 < β <∞. Let us just emphasize that condition (1) has been proved 
in Proposition 4.10 and that condition (2) with b= 0 > a∗ follows from the fact that �∗φ = 0 for the positive function 
φ(x) = x. We refer to [36, Section 3] for the proof of the weak and strong maximum principles (3) and (4).

Finally, for the age structured population equation we apply the Krein–Rutman Theorem 5.3 in the Banach lattice 
L1(R+). As in [89, Appendix], we observe that, denoting by λ >−1 the real number such that

∞∫

0

K(x) e−(1+λ) x dx = 1,

which exists thanks to condition (1.44), the function

ψ(x) := e(1+λ)x
∞∫
x

K(y) e−(1+λ) y dx

is a solution to the dual eigenvalue problem

�∗ψ = ∂xψ −ψ +K(x)ψ(0)= λψ, 0 ≤ψ ∈ L∞(R+),

so that in particular (2) holds with λ > a∗ = −1. Condition (1) has been proved in Proposition 4.14 and the proof of 
the weak and strong maximum principles (3) and (4) is classical.

6.2. Quantified spectral gap theorem for the cell-division equation with constant total fragmentation rate

We consider the particular case of the cell-division equation with constant total fragmentation rate and fragmen-
tation kernel which furthermore fulfills condition (1.36) for which we can give an accurate long-time asymptotic 
behavior (as formulated in point (i) of Theorem 1.1) and answer to a question formulated in [103,73]. We then con-
sider the equation

∂tf + ∂xf +K0f =K0

∞∫
x

κ(y, x)f (y) dy (6.8)

with vanishing boundary condition (1.28), where K0 > 0 is a constant and κ satisfies (1.36). In such a situation, we 
have the following accurate description of the spectrum.

Proposition 6.5. The first eigenvalue is given by λ = s(�) := (nF − 1)K0 with nF defined in (1.36). On the other 
hand, for any a∗∗ ∈ (−K0, (nF − 1)K0) and any α > α∗, with α∗ large enough (but explicit and given during the 
proof), the spectral gap �(�) ∩�a∗∗ = {λ } holds in X := L1

α .

We use the following extension (shrinkage) of the functional space of the semigroup decay proved in [86].

Theorem 6.6 (Extension of the functional space of the semigroup decay). Let E and E be two Banach spaces such 
that E ⊂ E with dense and continuous embedding, and let L be the generator of a semigroup SL(t) := etL on E, L
the generator of a semigroup SL(t) := etL on E with L|E = L.

We assume that there exist two operators A, B ∈ C (E) such that

L =A+B, L=A+B, A=A|E, B = B|E,

and a real number a∗∗ ∈ R such that there hold:

(i) B − a is hypodissipative on E, B − a is hypodissipative on E for any a > a∗∗;
(ii) A ∈ B(E), A ∈ B(E);



S. Mischler, J. Scher / Ann. I. H. Poincaré – AN 33 (2016) 849–898 889
(iii) there is n ≥ 1 such that, for any a > a∗∗ and for some constant C′
a ∈ (0, ∞),

∥∥∥(ASB)(∗n)(t)
∥∥∥

B(E,E)
≤C′

a e
at .

The following equivalences hold:

(1) There exists a finite rank projector 
L ∈ B(E) which commutes with L and satisfies �(L|
L) = {0}, so that the 
semigroup SL = etL satisfies the growth estimate

∀ t ≥ 0, ‖SL(t)−
L‖B(E) ≤ CL,a ea t (6.9)

for any a > a∗∗ and some constant CL,a > 0;
(2) There exists a finite rank projector 
L ∈ B(E) which commutes with L and satisfies �(L|
L) = {0}, so that the 

semigroup SL = etL satisfies the growth estimate

∀ t ≥ 0, ‖SL(t)−
L‖B(E) ≤ CL,a ea t (6.10)

for any a > a∗∗ and some constant CL,a > 0.

Proof of Proposition 6.5. Step 1. We recall some facts presented in [103,73]. We introduce the rescaled function 
g(t, x) := f (t, x) e−λt and the associated rescaled equation

∂tg + ∂xg+ nFK0g =K0

∞∫
x

κ(y, x)g(y) dy (6.11)

with vanishing boundary condition (1.28) and initial condition g(0) = f0. We observe that the number of particles

∞∫

0

g(t, x) dx

is conserved. One can then show using the Tikhonov’s infinite dimensional version of the Brouwer fixed point theorem 
that there exists a steady state f∞ by proceeding exactly as for the self-similar fragmentation equation [36, Section 3]
(see also [103,73] where other arguments are presented). Existence of the steady state f∞ is also given by the Krein–
Rutman Theorem presented in Section 6.1. This steady sate corresponds to the first eigenfunction associated to the 
first eigenvalue (nF − 1) K0 of the cell-division equation (6.8).

Anyway, under assumption (1.36), it has been shown during the proof of [103, Theorem 1.1] and [73, Theorem 1.1]
that the solution g to (6.11) satisfies

‖ g(t)− 〈f0〉f∞‖−1,1 ≤ e−λt ‖ f0 − 〈f0〉f∞‖−1,1

where for any f ∈ L1
1 with mean 0 we have defined

‖ f ‖−1,1 :=
∞∫

0

∣∣∣
x∫

0

f (y)dy

∣∣∣ dx.

Step 2. For the mitosis equation, we introduce the splitting � =A +B where

A := F+
R , B := −∂x − nF K0 +F+,c

R ,

with the notation of Section 4.1. We define E := L1
α , α > 1, and for any f ∈L1

α with mean 0 we define

‖ f ‖−1,α :=
∞∫ ∣∣∣

x∫
f (y)dy

∣∣∣ 〈x〉α−1 dx,
0 0
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as well as the Banach space E obtained by completion of L1
α with respect to the norm ‖ · ‖−1,α . Let us explain now 

why the hypotheses (i), (ii) and (iii) in Theorem 6.6 are fulfilled. We clearly have that A satisfies (ii) in both spaces 
E and E , as well as that B satisfies (i) in the space E for any a > a∗, a∗ := −K0(1 − ℘α) thanks to Lemma 4.6. We 
claim that B also satisfies (i) in the space E for any α > log2 3 and any a > a′ := 2K0 (3 × 2−α − 1). In order to prove 
that last claim we proceed along the line of the proof of [103, Theorem 1.1]. For any g ∈ E , we introduce the notation

g(t) := eBt g, G(t, x) :=
x∫

0

g(t, u) du,

and we compute

∂tG+ ∂xG+ 2K0G= −2K0

∞∫
x

χcR(2y) ∂yG(t,2y)dy

= 2K0χ
c
R(2x)G(t,2x)+ 4K0

∞∫
x

(χcR)
′(2y)G(t,2y)dy.

Similarly as in the proof of Lemma 4.6, we define

φ(x) := 1[0,x2] + xα−1

xα−1
2

1[x2,∞)

and we compute for R ≥ x2

∂t

∞∫

0

|G|φ +
∞∫

0

|G|φ α − 1

x
1x≥x2 + 2K0

∞∫

0

|G|φ

≤ K0

2α−1

∞∫

0

|G|φ χcR + K0

2α−1

∞∫

0

|(χcR)′|x |G| φ dx

≤ 3
K0

2α−1

∞∫

0

|G|φ,

where in the last line we have used that |x (χcR)′| ≤ 2 by definition of χcR . We conclude by taking x2 =R large enough.
Moreover, we claim that∥∥∥(ASB)(∗2)(t)

∥∥∥
B(E,E)

≤C′ (1 + t) e−μt , (6.12)

with μ := nFK0 = 2K0. In order to prove estimate (6.12), as in the proof of Lemma 4.9 and with the same notation, 
we compute starting from (4.25)

U
(∗2)
0 (t)g(x)= 16K2

0χR(2x) e
−μt

u1∫
u0

χR(2u− 4x + 2t)g(u)du

= 16K2
0χR(2x) e

−μt { [
χR(2u− 4x + 2t)G(u)

]u=u1
u=u0

− 2

R

u1∫
u0

χ ′
R(2u− 4x + 2t)G(u)du

}
,

and we get then for any β ≥ 0

‖ U(∗2)
0 (t)g‖L1 ≤ C (1 + t) e−μt ‖ G‖L1 .
β
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We have a similar estimate for U0 ∗Uc0 and we then obtain (6.12) thanks to formula (4.24). We conclude by using the 
shrinkage of functional space result stated in Theorem 6.6, and we get for possible definition of α∗ the unique real 
number such that 3℘α∗ − nF = [a∗∗ − (nF − 1)K0]/K0 for any fixed a∗∗ ∈ (−K0, (nF − 1)K0).

Step 3. For the cell division equation with smooth offspring distribution ℘ we can proceed along the line of [73, 
Theorem 1.1] and of step 2. We introduce the same splitting as for the mitosis equation and we work in the same 
spaces. We clearly have again that A satisfies (ii) in both spaces E and E and B satisfies (i) in E. We claim that 
B also satisfies (i) in the space E for any a > a′ ∈ (−nFK0, 0) and any α > α′ where α′ > 1 is such that a′/K0 =
−nF + 4

α′ nF +℘α′−1. Indeed, we have

∂tG+ ∂xG+ nF K0G= −K0

∞∫
x

∞∫
y

κcR(z, y) ∂zG(z) dzdy

= −K0

∞∫
x

βcR(z, x)G(z) dz,

with

βcR(z, x) := − ∂

∂z

∞∫
x

κcR(z, y) dy

= −nF (x/z) (χcR(z))′ + χcR(z)β(z, x),
where

β(z, x) := − ∂

∂z

∞∫
x

κ(z, y) dy, nF (u) :=
1∫
u

℘ (u′) du′,

and where κcR(x, y) = χcR(x) κ(x, y) is defined on R2+ by extended it to 0 outside of the set { (x, y) ∈R
2; 0 < y < x}. 

On the one hand, we have

 1(z) :=
z∫

0

nF (x/z) |(χcR(z))′|φ(x)dx

≤ nF |(χcR(z))′| (x2 + zα/α)≤ 4

α
nF φ(z)

for any z≥ 0 if x2 ≤Rα/α. On the other hand, we have

 2(z) :=
z∫

0

χcR(z)β(z, x)φ(x) dx

≤ χcR(z)
{
η(x2/R)+℘α−1 φ(z)

}
, η(u) :=

u∫

0

℘(u′) du′,

for any z≥ 0. Next, we compute

∂t

∞∫

0

|G|φ +
∞∫

0

|G|φ α − 1

x
1x≥x2 + nF K0

∞∫

0

|G|φ

≤K0

∞∫ { z∫
|βcR(z, x)|φ(x)dx

}
|G(z)|dz
0 0
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≤K0

∞∫

0

{
 1(z)+ 2(z)

}
|G(z)|dz

≤K0

{ 4

α
nF + η(x2/R)+℘α−1

} ∞∫

0

|G|φ dx,

and we take α > 1 large enough and next R/x2 large enough.
We next claim that U0 := ASB0 with B0 := −∂x −μ, μ := nF K0, satisfies

‖ U0(t)g‖L1
β

≤ C (
1 + 1

t

)
e−μt ‖ g‖−1,1. (6.13)

Starting from the definition

(U0(t))(x) := e−μt K0

∞∫
x

κR(y, x) ∂yG(y − t) dy

= −e−μt K0 κR(x, x)G(x − t)− e−μt K0

∞∫
x

∂y[κR(y, x)] G(y − t) dy,

we compute

‖ U0(t)g‖L1
β

≤K0 e
−μt

∞∫

0

χR(x) 〈x〉β ℘ (1) |G(x − t)|
x − t + t dx

+K0 e
−μt

∞∫

0

y∫

0

{
|(χR)′| 1

y
℘ (
x

y
)+ χR(y) x

y3
|℘′(x

y
)|

}
〈x〉β G(y − t) dy

≤K0 e
−μt CR,β

(
1 + 1

t

) ∞∫

0

|G(z) | dz,

and that ends the proof of (6.13). We introduce the notation E1 :=E, E0 := E and E1/2 as the 1/2 complex interpolation 
between the spaces E0 and E1. From the above estimates, we have for any a >−μ that

‖ U0(t)‖Ej ,Ej+1/2 ≤ C t−1/2 eat , for j = 0,1/2.

Thanks to (4.24) it is not difficult now to prove that (6.12) holds also in the present case. We conclude again by using 
the shrinkage of functional space result stated in Theorem 6.6. �
6.3. Quantified spectral gap for the self-similar fragmentation equation with positive kernel

We present a second situation where a very accurate and quantitative description of the spectrum (as formulated in 
point (ii) of Theorem 1.1) is possible.

Proposition 6.7. Consider the self-similar fragmentation equation (1.41) and assume that the fragmentation kernel 
satisfies (1.39), (1.34) and (1.35). Then, there exists a computable constant a∗∗ ∈ (a∗, 0) such that the spectral gap 
�(�) ∩�a∗∗ = {0 } holds in the functional space X= L̇1

α ∩ L̇1
β , 0 ≤ α < 1 < β .

Proof of Proposition 6.7. We split the proof into four steps.

Step 1. A priori bounds. We fix a = a∗/2, where a∗ is the same as in Proposition 4.10. From Proposition 4.10 and then 
Theorem 3.3, there exists a constant Ra such that for any eigenfunction f associated to an eigenvalue ξ ∈�(�) ∩�a , 
which satisfies the normalization condition
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∞∫

0

|f (y)|y dy = 1, (6.14)

there holds
∞∫

0

|f (y)| 〈y〉2+γ dy ≤Ra, |ξ | ≤Ra. (6.15)

Together with the eigenvalue problem rewritten as

∂x(x
2f )= x2 [ xγ f + ξ f −F+f ],

we deduce that x2f ∈ BV (R+) ⊂ L∞(R+) and then, iterating the argument, that for any δ ∈ (0, 1) there exists Cδ
such that

‖ f ‖W 1,∞(δ,1/δ) ≤ Cδ. (6.16)

Step 2. Positivity. From (6.14) and (6.15) we clearly have

1/δ∫

δ

|f (y)|y dy ≥ 1 − 2R δ. (6.17)

Taking δ1 := 1/(4R), we see that there exists at least one point x1 ∈ (2δ1, 1/(2δ1)) such that

|f (x1)| ≥ δ2
1/2. (6.18)

Introducing the logarithm function θ defined by f (y) = |f (y)| eiθ(y) which is locally well defined for any y ∈ (0, ∞)
such that f (y) �= 0, we see from (6.18) and (6.16) that there exist an interval I1 ⊂ (δ1, 1/δ1), x1 ∈ I1, and a computable 
real number ε1 := ε(δ1) > 0 such that

|I1| ≥ ε1 and �e(f (x) e−iθ(x1))≥ δ2
1/4 ∀x ∈ I1, (6.19)

and better (since cos and |f (x)| are Lipschitz functions)

|I1| ≥ ε1 and |f (x)| ≥ δ2
1/4, |θ(x1)− θ(x)| ≤ π/4 ∀x ∈ I1. (6.20)

On the other hand, we know that 
�,0f = 0 which yields

∞∫

0

�e
{
f (y) e−iθ(x1)

}
y dy = 0.

From (6.15) again, we deduce that

1/δ∫

δ

�e
{
f (y) e−iθ(x1)

}
y dy ≤ 2R δ.

But together with the positivity property (6.19), there exists δ2 < δ1 such that 2Rδ2 < κ2 := ε1 δ
2
1/8 > 0 and for any 

δ ∈ (0, δ2)
1/δ∫

δ

(
�e

{
f (y) e−iθ(x1)

})
− y dy ≥ κ2.

Using the same arguments as above, there exists x2 ∈ (δ2, 1/δ2) such that

|f (x2)| cos(θ(x2)− θ(x1))≤ −κ2 δ
2
2/2,
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and then there exist an interval I2 ⊂ (δ2, 1/δ2) and some constants ε2, κ2 > 0 such that

|I2| ≥ ε2 and |f (y)| ≥ κ2 ∀y ∈ I2,
as well as

cos[θ(y)− θ(x)] ≤ 0 ∀x ∈ I1, ∀y ∈ I2.
We may assume without loss of generality that x1 > x2.

Step 3. By definition of the growth-fragmentation operator � and denoting signf := f̄ /|f |2 where f̄ stands for the 
complex conjugate of f , we clearly have

∞∫

0

(�|f | − (�f ) signf )φ =
∞∫

0

y∫

0

k(y, x) |f (y)| (1 − signf (y) signf (x))φ(x) dxdy.

Since

�e{1 − signf (y) signf (x)} = 1 − cos[θ(y)− θ(x)] ≥ 1 ∀x ∈ I1, ∀y ∈ I2,
we deduce that

�e
∞∫

0

(�|f | − (�f ) signf )φ

≥ ℘∗ δγ−1
2

∫

I2

|f (y)|
∫

I1

{
1 − cos[θ(y)− θ(x)]

}
x dx

}
dy

≥ ℘∗ δγ−1
2 δ1 ε1 ε2 κ2 =: −a∗∗.

Step 4. Conclusion. For any mass normalized eigenvector f ∈D(�) associated to an eigenvalue ξ ∈�a ∩�(�)\{ 0}, 
there holds thanks to step 3

�eξ 〈|f |, φ〉 = �e〈ξf signf,φ〉
= �e〈�f signf,φ〉
≤ 〈�|f |, φ〉 + a∗∗

and then �eξ ≤ a∗∗. As a consequence, �a∗∗ ∩�(�) = {0} and we conclude thanks to Theorem 3.1. �
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