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Abstract

We consider fully nonlinear obstacle-type problems of the form{
F(D2u,x) = f (x) a.e. in B1 ∩ �,

|D2u| ≤ K a.e. in B1\�,

where � is an open set and K > 0. In particular, structural conditions on F are presented which ensure that W2,n(B1) solutions 
achieve the optimal C1,1(B1/2) regularity when f is Hölder continuous. Moreover, if f is positive on B1, Lipschitz continuous, 
and {u �= 0} ⊂ �, we obtain interior C1 regularity of the free boundary under a uniform thickness assumption on {u = 0}. Lastly, 
we extend these results to the parabolic setting.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Obstacle-type problems appear in several mathematical disciplines such as minimal surface theory, potential theory, 
mean field theory of superconducting vortices, optimal control, fluid filtration in porous media, elasto-plasticity, and 
financial mathematics [1–5]. The classical obstacle problem involves minimizing the Dirichlet energy on a given 
domain in the space of square integrable functions with square integrable gradient constrained to remain above a fixed 
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obstacle function and with prescribed boundary data. Due to the structure of the Dirichlet integral, this minimization 
process leads to the free boundary problem

�u = f χ{u>0} in B1,

where B1 ⊂R
n is the unit ball centered at the origin. A simple one-dimensional example shows that even if f ∈ C∞, 

u is not more regular than C1,1, and Lipschitz continuity of f yields this optimal regularity via the Harnack inequality.
An obstacle-type problem is a free boundary problem of the form

�u = f χ� in B1, (1)

where � is an (unknown) open set. If � = {u �= 0} and f is Lipschitz continuous, monotonicity formulas may be 
used to prove C1,1 regularity of u. Nevertheless, this method strongly depends on the Lipschitz continuity of f . 
Recently, a harmonic analysis technique was developed in [6] to prove optimal regularity under the weakest possible 
assumption: if the Newtonian potential of f is C1,1, then u is uniformly C1,1 in B1/2, where the bound on the Hessian 
depends on ‖u‖L∞(B1).

Fully nonlinear analogs of (1) have been considered by several researchers. The case

F(D2u) = f χ� in B1

has been studied in [7] for � = {u > 0} and in [8] when � = {u �= 0}. Moreover, a fully nonlinear version of the 
method in [6] was developed in [9] and applied to{

F(D2u) = 1 a.e. in B1 ∩ �,

|D2u| ≤ K a.e. in B1\�,

where � is an open set, K > 0, and u ∈ W 2,n(B1). The idea is to replace the projection on second-order harmonic 
polynomials carried out in [6] with a projection involving the BMO estimates in [10]. For convex operators, this tool 
is employed to prove that u is C1,1 in B1/2 and, under a standard thickness assumption, that the free boundary is 
locally C1.

Our main result is Theorem 1 and establishes optimal regularity for the more general free boundary problem{
F(D2u,x) = f (x) a.e. in B1 ∩ �,

|D2u| ≤ K a.e. in B1\�,
(2)

where � is an open set, K > 0, f is Hölder continuous, and under certain structural conditions on F (see §1.1). As 
a direct consequence, we obtain optimal regularity for general operators F(D2u, Du, u, x) and thereby address [9, 
Remark 1.1], see Corollary 2. Free boundary problems of this type appear in the mean field theory of superconducting 
vortices [3, Introduction] and optimal switching problems [11].

The underlying principle in the proof is to locally apply Caffarelli’s elliptic regularity theory [12] to rescaled 
variants of (2) in order to obtain a bound on D2u. The main difficulty lies in verifying an average Ln decay of the 
right-hand side in question. However, one may exploit that u ∈ C1,α(B1), D2u is bounded in B1\�, and the BMO 
estimates in [10] to prove that locally around a free boundary point, the coincidence set B1\� decays fast enough to 
ensure the Ln decay. Our assumptions on F involve conditions which enable us to utilize standard tools such as the 
maximum principle and Evans–Krylov theorem.

Moreover, once we establish that u ∈ C1,1 in B1/2, the corresponding regularity theory for the free boundary fol-
lows in a standard way through the classification of blow-up solutions and is carried out in §3. Indeed, non-degeneracy 
holds if f is positive on B1 and {|∇u| �= 0} ⊂ �. Furthermore, blow-up solutions around thick free boundary points 
are half-space solutions, and this fact combines with a directional monotonicity result to yield C1 regularity of the 
free boundary, see Theorem 15 for a precise statement.

Finally, we generalize the above-mentioned results to the parabolic setting (see also [13]) in §4 by considering the 
free boundary problem{H(u(X),X) = f (X) a.e. in Q1 ∩ �,

|D2u| ≤ K a.e. in Q1\�,

where X = (x, t) ∈ R
n ×R, H(u(X), X) := F(D2u(X), X) − ∂tu(X), Q1 is the parabolic cylinder B1(0) × (−1, 0), 

� ⊂ Q1 is some open set, and K > 0.
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1.1. Setup

In what follows, we record the structural conditions on the operator F that will be employed throughout this 
paper. The first three conditions are well known in the study of free boundary problems and provide tools such as the 
maximum principle and Evans–Krylov theorem. The last condition, which we denote by (H4), controls the oscillation 
of the operator in the x-variable and enables the application of Caffarelli’s regularity theory in our general framework. 
Moreover, we note that throughout the paper the constants of proportionality in our estimates may change from line 
to line while still being denoted by the same symbol C.

(H1) F(0, x) = 0 for all x ∈ B1.

(H2) The operator F is uniformly elliptic with ellipticity constants λ0, λ1 > 0 such that

P−(M − N) ≤ F(M,x) − F(N,x) ≤P+(M − N) ∀x ∈ B1,

where M and N are symmetric matrices and P± are the Pucci operators

P−(M) := inf
λ0 Id≤N≤λ1 Id

TrNM, P+(M) := sup
λ0 Id≤N≤λ1 Id

TrNM.

(H3) F(M, x) will be assumed to be concave or convex in M for all x in B1.

(H4)

|F(M,x) − F(M,y)| ≤ C(|M| + 1)|x − y|α,

for some α ∈ (0, 1].

Remark 1. Note that (H1) is not restrictive since we can consider G(M, x) := F(M, x) − F(0, x) which fulfills (H2)
with the same ellipticity constants as well as (H3) and (H4). The uniform ellipticity also implies Lipschitz regularity,

|F(M,x) − F(N,x)| ≤ max{|P−(M − N)|, |P+(M − N)|} ≤ nλ1|M − N |. (3)

In particular,

|F(M,x) − F(M,y)| ≤ |F(M,x) − F(0, x)| + |F(M,y) − F(0, y)| ≤ 2nλ1|M|. (4)

Remark 2. Let

β̃(x) = sup
M∈S

|F(M,x) − F(M,0)|
|M| + 1

,

where S is the space of symmetric matrices. Note that (H4) implies the Hölder continuity of β̃ at the origin.

2. Interior C1,1 regularity

In this section, we prove optimal regularity in the interior for W 2,n(B1) solutions of the free boundary problem (2):

Theorem 1. Let f ∈ Cα(B1) be a given function and � a domain such that u : B1 →R is a W 2,n(B1) solution of{
F(D2u,x) = f (x) a.e. in B1 ∩ �,

|D2u| ≤ K a.e. in B1\�.

Assume F satisfies (H1)–(H4). Then there exists a constant C > 0, depending on ‖u‖W 2,n(B1)
, ‖f ‖Cα(B1), the dimen-

sion, and the ellipticity constants such that

|D2u| ≤ C, a.e. in B1/2.
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Since W 2,n(B1) solutions of (2) are C1,α(B1), one may utilize the above theorem to deduce an optimal regularity 
result for more general operators and thereby address [9, Remark 1.1]:

Corollary 2. Let f ∈ Cα(B1) be a given function and � a domain such that u : B1 →R is a W 2,n(B1) solution of{
F(D2u,Du,u, x) = f (x) a.e. in B1 ∩ �,

|D2u(x)| ≤ K a.e. in B1\�,

and assume that: F(0, v, t, x) = 0 for all v ∈ R
n, t ∈ R, and x ∈ B1; F satisfies (H1)–(H3) in the matrix variable 

(keeping all other variables fixed); and

|F(M,w1, s1, x1) − F(M,w2, s2, x2)| ≤ C(|M| + 1)(|w1 − w2|α1 + |s1 − s2|α2 + |x1 − x2|α3),

for some αi ∈ (0, 1]. Then there exists a constant C > 0, depending on ‖u‖W 2,n(B1)
, ‖f ‖Cα(B1), the dimension, and 

the ellipticity constants such that

|D2u| ≤ C, a.e. in B1/2.

Proof. Define

F̃ (M,x) := F(M,Du(x),u(x), x),

and simply note that the assumptions on F together with the fact that u ∈ C1,α(B1) imply that F̃ satisfies the assump-
tions of Theorem 1. �
Standing assumptions. Unless otherwise stated, we let x0 ∈ B1/2 ∩ � and assume without loss of generality that 
u(x0) = |∇u(x0)| = 0 (otherwise we can replace u(x) with ũ(x) := u(x) − u(x0) − ∇u(x0) · (x − x0)).

Moreover, set

Ar(x0) := (Br(x0)\�) − x0

r
= B1\((� − x0)/r).

Whenever we refer to a solution u of (2), it is implicit that u ∈ W 2,n(B1) and F satisfies (H1)–(H4).
The theorem will be established through several key lemmas. The first step consists of finding an approximation 

for the Hessian of u at x0 through the following projection lemma.

Lemma 3. Let f ∈ L∞(B1) and u be a solution to (2). Then there exists a constant C = C(‖u‖W 2,n(B1)
,

‖f ‖L∞(B1), n, λ0) > 0 such that

min
F(P,x0)=f (x0)

 

Br(x0)

|D2u(y) − P |2 dy ≤ C, ∀r ∈ (0,1/4).

Proof. Let Qr(x0) := (D2u)r,x0 = ffl
Br (x0)

D2u(y) dy and note that for t ∈ R, the ellipticity and boundedness of F
implies

P−(t Id) ≤ F(Qr(x0) + t Id, x0) − F(Qr(x0), x0) ≤ P+(t Id)

⇒ λ0tn − C ≤ F(Qr(x0) + t Id, x0) ≤ λ1tn + C.

Thus, there exists ξr(x0) ∈ R such that F(Qr(x0) + ξr (x0) Id, x0) = f (x0) (by continuity). With this in mind,

min
F(P,x0)=f (x0)

 

Br(x0)

|D2u(y) − P |2 dy ≤
 

Br (x0)

|D2u(y) − Qr(x0) − ξr (x0) Id |2 dy

≤ 2
 

Br(x0)

|D2u(y) − Qr(x0)|2 dy + 2ξr (x0)
2

≤ 2CBMO + 2ξr(x0)
2,
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where we have used the BMO estimate in [9]. It remains to find a uniform bound on ξr(x0): applying (3), (4), Hölder’s 
inequality, and the BMO estimate again, we obtain

|F(Qr(x0), x0)| =
∣∣∣∣
 

Br(x0)

F (Qr(x0) − D2u(y) + D2u(y), x0) dy

∣∣∣∣
≤

 

Br(x0)

|F(D2u(y), x0)| + nλ1|D2u(y) − Qr(x0)|dy

≤
 

Br(x0)

(|F(D2u(y), x0) − F(D2u(y), y)| + |F(D2u(y), y)|

+ nλ1|D2u(y), x0) − Qr(x0)|
)
dy

≤
 

Br(x0)

|F(D2u(y), x0) − F(D2u(y), y)|dy

+ max{‖f ‖∞, nλ1K}

+ nλ1

√ 
Br(x0)

|D2u(y) − Qr(x0)|2 dy

≤ 2nλ1‖D2u‖W 2,n(B1)
+ max{‖f ‖∞, nλ1K} + CBMO =: C.

Thus,

P−(ξr (x0) Id) ≤ F(Qr(x0) + ξr (x0) Id, x0) − F(Qr(x0), x0) ≤P+(ξr (x0) Id)

⇒ λ0ξr (x0)n − C ≤ F(Qr(x0) + ξr (x0) Id, x0) ≤ λ1ξr(x0)n + C

⇒ λ0ξr (x0)n − C ≤ f (x0) ≤ λ1ξr (x0)n + C.

In particular, |ξr(x0)| ≤ ‖f ‖∞+C
λ0n

and this concludes the proof. �
In what follows, let Pr(x0) denote any minimizer of

min
F(P,x0)=f (x0)

 

Br(x0)

|D2u(y) − P |2 dy,

for r ∈ (0, 1/4). Lemma 3 and the triangle inequality readily imply that the growth of Pr(x0) is controlled in r :

Corollary 4. Let f ∈ L∞(B1) and u be a solution to (2). Then there exists a constant C0 = C0(‖D2u‖W 2,n(B1)
,

‖f ‖L∞(B1), n, λ0) such that

|P2r (x0) − Pr(x0)| ≤ C0 ∀r ∈ (0,1/8).

Remark 3. (H4) is not needed in the proofs of Lemma 3 and Corollary 4.

Next we verify that Pr(x0) is an approximation to D2u(x0) in the following sense.

Lemma 5. Let f ∈ L∞(B1) and u be a solution to (2). Then there exists a constant C1 = C1(K, ‖f ‖L∞(B1), n, λ0, λ1,

‖u‖W 2,n(B1)
) such that

sup
x∈Br (x0)

∣∣∣∣u(x) − 1

2
〈Pr(x0)(x − x0), (x − x0)〉

∣∣∣∣ ≤ C1r
2 ∀r ∈ (0,1/8).
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Proof. Assume without loss of generality that F is concave (otherwise, consider F̃ (M, x) := −F(−M, x) and 
v = −u) and define

ur,x0(y) := u(ry + x0)

r2
− 1

2
〈Pr(x0)y, y〉,

G(Q) := G(Q,x0) := F(Pr(x0) + Q,x0) − f (x0).

Then, G(0) = 0 and

G(D2ur,x0(y)) = F(D2u(ry + x0), x0) − f (x0)

= F(D2u(ry + x0), ry + x0) − f (x0) + h(y)

where h(y) := F(D2u(ry + x0), x0) − F(D2u(ry + x0), ry + x0). Thus, ur,x0 solves{
G(D2ur,x0(y)) = f (ry + x0) − f (x0) + h(y), in B1 \ Ar(x0),

G(D2ur,x0(y)) = F(D2u(ry + x0), ry + x0) − f (x0) + h(y), in Ar(x0).

Next note that if ry + x0 /∈ �, then F(D2u(ry + x0), ry + x0) is essentially bounded, so by letting{
φ(y) := f (ry + x0) − f (x0) in B1 \ Ar(x0),

φ(y) := F(D2u(ry + x0), ry + x0) − f (x0) in Ar(x0),

it follows that φ has an L∞ bound depending only on the given data and

G(D2ur,x0(y)) = φ(y) + h(y) a.e. in B1. (5)

Moreover, ur,x0(y) := ur,x0(y) − (ur,x0)1,0 −y · (∇ur,x0)1,0 solves the same equation (recall (g)r,x0 = ffl
Br(x0)

g(y) dy). 
Since

ur,x0(0) = |∇ur,x0(0)| = 0

(u(x0) = |∇u(x0)| = 0 by assumption) it follows that

(ur,x0)1,0 = −ur,x0(0),

(∇ur,x0)1,0 = −∇ur,x0(0),

and we may write ur,x0(y) = ur,x0(y) − ur,x0(0) − y · ∇ur,x0(0). Next we wish to apply Theorem 2 in [12]. First note 
that our assumptions on F imply the required interior a priori estimates for G; moreover, G has no spatial dependence 
so it remains to verify the Ln condition of φ + h. Since φ has an L∞ bound depending only on the given data, we 
need to verify it solely for h. Indeed, let s ≤ 1 and note that thanks to (H4),

ˆ

Bs

|h(y)|ndy ≤ (rs)αn

ˆ

Bs

(|D2u(ry + x0)| + 1)ndy

≤ C(‖u‖W 2,n(B1)
+ 1)sαn. (6)

Therefore, applying the theorem yields

‖ur,x0‖L∞(B1/2) = ‖ur,x0 − ur,x0(0) − y · ∇ur,x0(0)‖L∞(B1/2)

≤ C(‖ur,x0‖L∞(B1/2) + 1), (7)

where C does not depend on r . Moreover, due to the concavity of G (which is inherited from F ), there is a linear 
functional L so that L(Q) ≥ G(Q, x0) and L(0) = 0 (this linear functional depends on x0). In particular,

L(D2ur,x0(y)) ≥ G(D2ur,x0(y), x0) = φ(y) + h(y),

a.e. in B1 (recall (5)); this fact together with (6), Theorem 9.20 in [14] applied to the subsolution u+
r,x0

, and Theorem 4 
in [12] applied to v(y) = supur,x0 − ur,x0(y) implies
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‖ur,x0‖L∞(B1/2) ≤ C‖ur,x0‖L2(B1)
+ ‖φ + h‖Ln(B1)

≤ C‖ur,x0‖L2(B1)
+ C(K,‖f ‖L∞(B1), n,λ0, λ1,‖u‖W 2,n(B1)

),

and applying the Poincaré inequality twice yields

‖ur,x0‖L2(B1)
≤ C‖D2ur,x0‖L2(B1)

= C

 

Br (x0)

|D2u(y) − Pr(x0)|2 dy ≤ C,

where Lemma 3 is used in the last inequality. This combined with (7) implies

‖ur,x0‖L∞(B1/2) ≤ C;
thus,

sup
Br/2(x0)

∣∣∣∣u(x) − 1
2 〈Pr(x0)(x − x0), (x − x0)〉

r2

∣∣∣∣ ≤ C.

The result now follows by replacing r/2 with r and utilizing Corollary 4. �
Lemma 6. Let f ∈ C0(B1) and u be a solution to (2). Then there exists a constant M = M(K, ‖f ‖L∞(B1), n, λ0) such 
that, for any r ∈ (0, 1/8),

|Ar/2(x0)| ≤ |Ar(x0)|
2n

if |Pr(x0)| > M .

Proof. Let ur,x0(y) := u(ry+x0)

r2 − 1
2 〈Pr(x0)y, y〉 and

G̃(Q,y) := F(Pr(x0) + Q,ry + x0) − f (x0).

Remark 1 below Theorem 8.1 in [15] implies the existence of a solution vr,x0 to the equation{
G̃(D2vr,x0(y), y) = f (ry + x0) − f (x0) in B1,

vr,x0 = ur,x0 on ∂B1;
(8)

set

wr,x0 := ur,x0 − vr,x0 ,

and note that by definition

G̃(D2ur,x0(y), y) = F(D2u(ry + x0), ry + x0) − f (x0).

Therefore,

G̃(D2ur,x0(y), y) − G̃(D2vr,x0(y), y) = (
F(D2u(ry + x0), ry + x0) − f (x0)

) − (f (ry + x0) − f (x0))

= (
F(D2u(ry + x0), ry + x0) − f (ry + x0)

)
χAr(x0)

=: φ̃(y)χAr(x0),

where φ̃ ∈ L∞(B1). Combining this information with (H2) and the definition of G̃ yields

P−(D2wr,x0(y)) ≤ G̃(D2ur,x0(y), y) − G̃(D2vr,x0(y), y)

= φ̃(y)χAr (x0) ≤P+(D2wr,x0).

Since φ̃ ∈ L∞(B1) with bounds depending only on the given data and Ar(x0) is relatively closed in B1 (recall that �
is open), we may apply the ABP estimate to obtain

‖wr,x0‖L∞(B1) ≤ C(K,f,n,λ0, λ1)|Ar(x0)|1/n. (9)
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Since (H4) holds, we may combine Remark 3 following Theorem 8.1 in [15] with a standard covering argument to 
deduce

‖D2vr,x0‖C0,α(B4/5)
≤ C(‖vr,x0‖L∞(B4/5) + C);

now by applying Lemma 5 and the maximum principle for (8) we obtain

‖vr,x0‖L∞(B4/5) ≤ ‖vr,x0‖L∞(∂B1) + 2C0‖f ‖L∞(B1)

= ‖ur,x0‖L∞(∂B1) + 2C0‖f ‖L∞(B1) ≤ C. (10)

In particular, since f ∈ C0(B1), H(M, y) := G̃(D2vr,x0(y) +M, y) +f (x0) −f (ry + x0) is continuous in y on B4/5
and has the same ellipticity constants as F (note also that H(0, y) = 0 in B4/5). Moreover, wr,x0 solves the equation

H(D2wr,x0(y), y) = φ(y)χAr (x0) y ∈ B4/5,

where φ has uniform bounds. The operator H also has interior C1,1 estimates since it is concave. Thus, by applying 
Theorem 1 in [12] (cf. Theorem 7.1 in [15]) and a standard covering argument (again utilizing (H4)), we obtain 
wr,x0 ∈ W 2,p(B1/2) for any p > n; selecting p = 2n, it follows thatˆ

B1/2

|D2wr,x0(y)|2n dy ≤ C(‖wr,x0‖L∞(B3/4) + ‖φχAr(x0)‖L2n(B3/4)
)2n

≤ C|Ar(x0)| (11)

(note that the last inequality follows from (9) and the fact that |Ar(x0)| ≤ |B1|). Since |D2u| ≤ K a.e. in Ar(x0) and

Pr(x0) = D2u(ry + x0) − D2vr,x0(y) − D2wr,x0(y),

by utilizing (10) and (11) we obtain

|Ar(x0) ∩ B1/2||Pr(x0)|2n =
ˆ

Ar(x0)∩B1/2

|Pr(x0)|2ndy

=
ˆ

Ar(x0)∩B1/2

|D2u(ry + x0) − D2vr,x0(y) − D2wr,x0(y)|2ndy

≤ C

ˆ

Ar(x0)∩B1/2

|D2vr,x0 |2n + |D2wr,x0 |2n + |D2u(ry + x0)|2ndy

≤ C(|Ar(x0) ∩ B1/2|‖D2vr,x0‖2n
L∞(B1/2)

+ C|Ar(x0)| + K2n|Ar(x0) ∩ B1/2|)
≤ C(|Ar(x0) ∩ B1/2| + |Ar(x0)|) ≤ C|Ar(x0)|.

Next note that

Ar/2(x0) = B1\((� − x0)/(r/2)) = 2(B1/2\((� − x0)/r))

= 2(B1/2 ∩ (B1\((� − x0)/r))) = 2(B1/2 ∩ Ar(x0));
thus, if |Pr(x0)| ≥ (4nC)

1
2n ,

|Ar/2(x0)||Pr(x0)|2n = 2n|Ar(x0) ∩ B1/2||Pr(x0)|2n ≤ 2nC|Ar(x0)|
≤ |Pr(x0)|2n

2n
|Ar(x0)|,

which immediately gives the conclusion of the lemma. �
In other words, Lemma 6 says that the free boundary has a cusp-like behavior at x0 if |Pr(x0)| is large, see Fig. 1. 

We now have all the ingredients to prove interior C1,1 regularity of the solution u.
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Fig. 1. Br(x0)\� and Br/2(x0)\� are translated to the origin and placed on the same scale and generate Ar(x0) and Ar/2(x0), respectively. Here, 
x0 is the tip of a cusp.

Proof of Theorem 1. By assumption, |D2u| is bounded a.e. in B1\�. Therefore, consider a point x0 ∈ � ∩ B1/2
which is a Lebesgue point for D2u and where u is twice differentiable (such points differ from � by a set of measure 
zero). Take M > 0 as in Lemma 6. If lim infk→∞ |P2−k (x0)| ≤ 3M , then Lemma 3 implies

|D2u(x0)| = lim
k→∞

 

B2−k (x0)

|D2u(y)|dy

≤ lim inf
k→∞

 

B2−k (x0)

|D2u(y) − P2−k (x0)|dy +
 

B2−k (x0)

|P2−k (x0)|dy

≤ C1 + 3M.

In the case lim infk→∞ P2−k (x0) > 3M , let k0 ≥ 3 be such that |P2−k0−1 | ≤ 2M and |P2−k | ≥ 2M for all k ≥ k0 (k0 can 
be assumed to exist by taking M bigger if necessary). Then Corollary 4 implies |P2−k0 (x0)| ≤ 2M + C0. Now let

u0(y) := 4k0u(2−k0y + x0) − 1

2
〈P2−k0 (x0)y, y〉

and

F̃ (Q,y) := F(P2−k0 (x0) + Q,2−k0y + x0) − f (2−k0y + x0);
note that F̃ (0, 0) = 0 by the definition of P2−k0 (x0) and u0(y) solves the equation

F̃ (D2u(y), y) = f̃ (y) y ∈ B1, (12)

where

f̃ (y) := g(y)χA
2−k0 (x0),

and

g(y) := F(D2u(2−k0y + x0),2−k0y + x0) − f (2−k0y + x0) ∈ L∞(B1),

with uniform bounds. Our goal is to apply Theorem 3 in [12] (cf. Theorem 8.1 in [15]) to (12); thus, we verify the 
required conditions: Lemma 6 implies

|A2−k0−j (x0)| ≤ 2−jn|A2−k0 (x0)|, ∀j ≥ 0,

from which it follows that 
|gχA

2−k0 (x0)|n ≤ C

 
|χA

2−k0 (x0)|n ≤ Crn, ∀r ∈ (0,1/8);

Br Br
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indeed, take j so that 2−j−1 < r ≤ 2−j and let Ar(x0) be denoted by Ar so that
 

Br

|χA
2−k0 (x0)|n ≤ |A2−k0 ∩ Br |

2n(−j−1)
= 2n2jn · 2−n|2(A2−k0 ∩ Br)|

= 2n2jn · 2−n|2(A2−k0 ∩ B1/2 ∩ Br)|
= 2n2jn · 2−n|2(A2−k0 ∩ B1/2) ∩ B2r |
= 2n2jn · 2−n|A2−k0−1 ∩ B2r |
≤ · · ·
≤ 2n2jn · 2−jn|A2−k0−j ∩ B2j r |
≤ 2n|A2−k0−j | ≤ 2n · 2−jn|A2−k0 | ≤ C22n(2−j−1)n

≤ C22nrn.

We are left with verifying the condition on the oscillation of F̃ . To this aim, note that one may work with β̃
F̃
(y) (see 

e.g. (8.3) of Theorem 8.1 in [15]). With this in mind, and for P = P2−k0 (x0),

β̃
F̃
(y) = sup

Q∈S

∣∣∣F̃ (Q,y) − F̃ (Q,0)

∣∣∣
|Q| + 1

= sup
Q∈S

∣∣F(P + Q,
y

2k0
+ x0) − f (

y

2k0
+ x0) − (F (P + Q,x0) − f (x0))

∣∣
|Q| + 1

= sup
Q∈S

∣∣F(P + Q,
y

2k0
+ x0) − F(P + Q,x0) + (f (x0) − f (

y

2k0
+ x0))

∣∣
|Q| + 1

≤ C|y|α

(the last inequality follows from (H4), the Hölder continuity of f , and the boundedness of P ). Thus, the condition on 
the oscillation of F̃ is verified. Therefore u0 is C2,α at the origin with the bound

|D2u0(0)| ≤ C

for some constant C > 0. This in turn implies

|D2u(x0)| ≤ |D2u0(0)| + |P2−k0 (x0)| ≤ C,

and we conclude. �
3. Free boundary regularity

The aim in this section is to prove free boundary regularity for (2). In general singularities may develop, see 
e.g. [16]. Nevertheless, the free boundary is locally C1 under a uniform thickness assumption and if f ≥ c > 0.

3.1. Non-degeneracy and classification of blow-ups

The first step in the free boundary analysis is non-degeneracy (i.e. at least quadratic growth) of the solution near 
a free boundary point. In general this fails even in the one-dimensional problem u′′ = χ{u′′ �=0} (see e.g. [9, §3.1]). 
However, for {|∇u| �= 0} ⊂ �, non-degeneracy follows from a uniform positivity assumption on the right hand side: if 

0 < c ≤ infx∈B1 f (x), then by letting v(x) := u(x) − c|x−x0|2
2nλ1

, one may check that v is a subsolution for F in � ∩ B1
and apply the argument in [9, Lemma 3.1].
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Lemma 7 (Non-degeneracy). Suppose 0 < c ≤ infx∈B1 f (x) and let u be a W 2,n(B1) solution to (2). If {|∇u| �= 0} ⊂ �

and x0 ∈ � ∩ B1/2, then for any r > 0 such that Br(x0) � B1,

sup
∂Br (x0)

u ≥ u(x0) + c

2nλ1
r2.

The previous result immediately implies a linear growth estimate on the gradient (this is usually referred to as 
non-degeneracy of the gradient).

Corollary 8. Suppose 0 < c ≤ infx∈B1 f (x) and let u be a W 2,n(B1) solution to (2). If {|∇u| �= 0} ⊂ � and x0 ∈
� ∩ B1/2, then for any r > 0 such that Br(x0) � B1,

sup
Br(x0)

|∇u| ≥ c

4nλ1
r.

Proof. From the non-degeneracy,

sup
∂Br (x0)

u ≥ u(x0) + c

2nλ1
r2.

Therefore there is a point x ∈ ∂Br(x0) such that u(x) − u(x0) ≥ c
4nλ1

r2. Also,

u(x) − u(x0) ≤ sup
Br(x0)

|∇u||x − x0| = sup
Br(x0)

|∇u|r,

i.e., supBr (x0)
|∇u| ≥ c

4nλ1
r . �

Non-degeneracy of the gradient and the optimal regularity result of Theorem 1 imply the porosity of the free 
boundary inside B1/4, i.e. there is a 0 < δ < 1 such that every ball Br(x) inside B1/2 contains a smaller ball Bδr(y)

for which Bδr(y) ⊂ Br(x)\(∂� ∩ B1/4).

Lemma 9 (Porosity of the free boundary). Suppose 0 < c ≤ infx∈B1 f (x) and let u be a W 2,n(B1) solution to (2). If 
{|∇u| �= 0} ⊂ �, then ∂� ∩ B1/4 is porous.

Proof. Let x0 ∈ ∂� ∩B1/4 and Br(x0) � B1/2. From the non-degeneracy of the gradient, there is a point x ∈ Br/2(x0)

so that

|∇u(x)| ≥ Cr.

Let C̄ be the constant from Theorem 1 and choose 0 < δ ≤ min{ C

2C̄
, 1/2}. If y ∈ Bδr(x), then

|∇u(y)| ≥ |∇u(x)| − |∇u(y) − ∇u(x)| ≥ Cr − ‖D2u‖L∞(B1/2)|x − y|
≥ Cr − ‖D2u‖L∞(B1/2)δr ≥ C

2
r.

In particular, y ∈ � and so Bδr(x) ⊂ Br(x0) ∩ � ⊂ Br(x0)\(∂� ∩ B1/4). �
A well known consequence of the porosity is the Lebesgue negligibility of the free boundary, see e.g. [17].

Corollary 10. Suppose 0 < c ≤ infx∈B1 f (x) and let u be a W 2,n(B1) solution to (2). If {|∇u| �= 0} ⊂ �, then ∂� has 
Lebesgue measure zero in B1/4.

Next, we turn our attention to blow-ups of solutions. By lim supEj we mean the set of all limit points of sequences 
{xjk }, xjk ∈ Ejk

.
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Lemma 11 (Blow-up). Suppose 0 < c ≤ infx∈B1 f (x) and let u be a W 2,n(B1) solution to (2), and assume f to be 
Hölder continuous. If {|∇u| �= 0} ⊂ �, then for any x0 ∈ ∂�(u) ∩ B1/4 there is a sequence {rj } such that

urj (y) := u(x0 + rj y) − u(x0)

r2
j

→ u0(y)

as rj → 0 in C1,α
loc (Rn), and u0 ∈ C1,1(Rn) solves{

F(D2u(y), x0) = f (x0) a.e. in �(u0),

|D2u| ≤ K a.e. in R
n\�(u0),

where �(u0) := R
n\ lim sup(B1/rj ((−x0)/rj )\�(urj )), �(urj ) := (� − x0)/rj . Moreover, {|∇u0| �= 0} ⊂ �(u0).

Proof. Theorem 1 implies u ∈ C1,1(B1/2); since x0 ∈ B1/4, if r > 0 it follows that ur ∈ C1,1(B1/4r ). Let E � R
n

and note that since C1,1(E) ↪→ C
1,α
loc (E) compactly for any α ∈ [0, 1), there is a subsequence {urj } converging in 

C
1,α
loc (Rn) to a function u0 ∈ C1,1(Rn) which is not identically zero by Lemma 7. Note that |D2u0| is bounded a.e. 

in Rn\�(u0) (in fact, |D2u0| = 0 a.e. there since |D2urj (y)| = 0 a.e. on {|∇urj | = 0}). Next, let y0 ∈ {|∇u0| �= 0}
and select δ > 0 such that Bδ(y0) ⊂ �(urj ) for j large enough (for j large |∇urj | �= 0 in a neighborhood of a point 
x where |∇u0(x)| �= 0, so {|∇u0| �= 0} ⊆ �(u0) in particular); note that urj is C2,α(Bδ(y0)) (by [15, Theorem 8.1]). 
We can therefore, without loss of generality, assume strong convergence of urj to u0 in C2(Bδ(y0)). Therefore

F(D2u0(y), x0) = lim
j→∞F(D2urj (y), x0 + rj y)

= lim
j→∞f (x0 + rj y) = f (x0), y ∈ Bδ(y0).

We end the proof by showing that {|∇u0| �= 0} = �(u0) up to a set of measure zero. If there exists a point x in �(u0)

some distance d away from {|∇u0| �= 0}, i.e. dist(x, {|∇u0| �= 0}) ≥ d > 0, then there are points Bd/4(x) � xj → x

such that |∇urj (x
j )| > 0. From nondegeneracy of the gradient,

max
B3d/4(x)

|∇urj | ≥ max
Bd/2(x

j )

|∇urj | ≥ cd,

for some uniform constant c. On the other hand we know that, for j large,

|∇u0 − ∇urj | ≤ cd/2

due to C1,α convergence. Therefore

max
B3d/4(x)

|∇u0| ≥ max
B3d/4(x)

(|∇urj | − |∇u0 − ∇urj |
)

≥ max
B3d/4(x)

|∇urj | − cd/2 ≥ cd/2,

a contradiction to the assumption that x is a distance d away from {|∇u0| �= 0}. Therefore dist(�(u0), {|∇u0| �= 0}) =0
so �(u0) ⊆ {|∇u0| �= 0}. However,

|{|∇u0| �= 0}| ≤ |�(u0)| ≤ |{|∇u0| �= 0}|
= |{|∇u0| �= 0}| + |∂{|∇u0| �= 0}| = |{|∇u0| �= 0}|

by Corollary 10, from which we infer that �(u0) is {|∇u0| �= 0} up to a measure zero set. �
Since blow-up solutions are solutions to a free boundary problem on Rn, one may consider the classification of 

these global solutions. To this aim, one introduces

δr (u, x) := MD(λ ∩ Br(x))
,

r
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where λ := B1 \ � (recall that MD(E) is the smallest possible distance between two hyperplanes containing E). 
Note that δ is well-behaved under scaling and thus with respect to the blow-up procedure: δ1(ur , 0) = δr (u, x), where 
ur(y) = (u(x + ry) − u(x))/r2. Now after blow-up, even for general operators, the operator will solely be a function 
of the matrix variable and if f is a positive function bounded away from zero, by letting G(M) := F(M, x0)/f (x0), 
the problem of classifying global solutions reduces to the content of [9, Proposition 3.2].

Proposition 12. Suppose 0 < c ≤ infx∈B1 f (x), fix x0 ∈ B1, and let u0 be a W 2,n(Rn) solution to{
F(D2u(y), x0) = f (x0) a.e. in �(u0),

|D2u| ≤ K a.e. in R
n\�(u0),

with {|∇u0| �= 0} ⊂ �(u0). If F is convex and there exists ε0 > 0 such that

δr (u, x) ≥ ε0, ∀r > 0, ∀x ∈ ∂�(u0),

then u0 is a half-space solution, u0(x) = γx0[((x − vx0) · ex0)
+]2/2 + c, where ex0 ∈ S

n−1 and γx0 ∈ [1/λ1, 1/λ0] are 
such that F(γx0ex0 ⊗ ex0 , x0) = f (x0).

3.2. Directional monotonicity and C1 regularity of the free boundary

In what follows, two technical monotonicity lemmas will be established and utilized in proving that the free bound-
ary is C1.

Lemma 13. Let u be a W 2,n(B1) solution of{
F(D2u(x), rx) = f (rx) a.e. in B1 ∩ �,

|D2u| ≤ K a.e. in B1\�,
(13)

and assume f is C0,1, infB1 f > 0, and F is convex in the matrix variable and satisfies (H4) with α = 1. If {u �= 0} ⊂ �

and C0∂eu − u ≥ −ε0 in B1, then

C0∂eu − u ≥ 0

in B1/2 provided

ε0 ≤ inf
B1

f/(64nλ1),

and

0 < r ≤ min{‖f ‖L∞(B1)/(2C0‖∇f ‖L∞(B1) + 2C0C),1}.

Proof. Let x ∈ � and ∂F (M, x) denote the subdifferential of F at the point (M, x) and note that convexity implies 
∂F (M, x) �= ∅. Consider a measurable function P M mapping (M, x) to P M(x) ∈ ∂F (M, x). Since u ∈ C

2,α
loc (�) (see 

e.g. [15, Theorem 8.1]), we can define the measurable coefficients aij (x) := (P D2u(x)(rx))ij ∈ ∂F (D2u(x), rx). By 
convexity of F(·, x) and the fact that F(0, x) ≡ 0, we have

aij (x)∂ij u(x) = F(0, rx) + aij (x)∂ij u ≥ F(D2u(x), rx).

Hence,

aij (x)
∂ij u(x + he) − ∂ij u(x)

h
≤ F(D2u(x + he), rx) − F(D2u(x), rx)

h
, (14)

provided x + he ∈ �. Note that by (14) and [18, Theorem 3.8] (uniform limits of viscosity solutions are viscosity 
solutions), we have
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aij (x)∂ij ∂eu(x) ≤ lim sup
h→0

F(D2u(x + he), rx) − F(D2u(x), rx)

h

= lim sup
h→0

F(D2u(x + he), rx) − f (rx)

h

= lim sup
h→0

F(D2u(x + he), rx) − F(D2u(x + he), rx + rhe)

h

+ f (rx + rhe) − f (rx)

h

= r lim sup
h→0

F(D2u(x + he), rx) − F(D2u(x + he), rx + rhe)

h

+ f (rx + rhe) − f (rx)

rh

= r(∂ef )(rx) − r(∂x,eF )(D2u(x), rx),

where ∂x,e denotes the spatial directional derivative in the direction e. If there is y0 ∈ B1/2 ∩ � such that C0∂eu(y0) −
u(y0) < 0, then consider the auxiliary function

w(x) = C0∂eu(x) − u(x) + c
|x − y0|2

2nλ1
,

where c = infB1 f/2 > 0. Note that for r ≤ min{c/(C0‖∇f ‖L∞(B1) + C0C), 1},
aij (x)∂ijw(x) ≤ rC0(∂ef )(rx) − rC0(∂x,eF )(D2u(x), rx) − f (rx) + c

≤ rC0‖∇f ‖L∞(B1) + rC0C − f (rx) + c ≤ 2c − f (rx) ≤ 0.

Hence w is a supersolution in B1/4(y0) ∩ � and therefore attains its minimum on the boundary of B1/4(y0) ∩ �. 
However on ∂�, w is positive (since both u and ∂eu are zero); thus, the minimum is attained on ∂B1/4(y0), and this 
implies

0 > min
B1/4(y0)∩�

w ≥ −ε0 + c

32nλ1
,

a contradiction if ε0 ≤ c/(32nλ1). �
Lemma 14. Let u be a W 2,n(B1) solution of (13) where f is C0,1, F is C1, convex and satisfies (H1), (H2) and (H4)
with α = 1. Assume further that {∇u �= 0} ⊂ � and infB1 f > 0. If C0∂eu − |∇u|2 ≥ −ε0 in B1 for some C0, ε0 > 0, 
then

C0∂eu − |∇u|2 ≥ 0

in B1/2 provided that ε0 ≤ μ1 and 0 < r ≤ μ2, where μ1 > 0 and μ2 > 0 are constants depending on given bounds.

Proof. By differentiating (13), it follows that

Fij (D
2u(y), ry)∂ij∇u = r∇f (ry) − r∇xF (D2u(y), ry) weakly in �.

Since F is C1, u ∈ C
2,α
loc (�) (by [15, Theorem 8.1]), and the right hand side of the equation above is in L∞(�)

(hence, Lp(�) for any p > 0), it follows by elliptic regularity theory that ∇u ∈ W
2,p

loc (�) for any p < ∞ (see e.g. [14, 
Corollary 9.18]). By applying the operator Fij (D

2u(y), ry)∂ij to |∇u|2, we obtain

Fij (D
2u(y), ry)∂ij |∇u(y)|2

= 2Fij (D
2u(y), ry)∂ijku(y)∂ku(y) + 2Fij (D

2u(y), ry)∂iku(y)∂jku(y)

= 2r(∇f (ry) − ∇xF (D2u(y), ry)) · ∇u(y) + 2Fij (D
2u(y), ry)∂iku(y)∂jku(y). (15)
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For differentiable operators, the ellipticity condition can be written as

Fij (D
2u(y), ry)ξiξj ≥ λ0|ξ |2;

thus, (15) yields

Fij (D
2u(y), ry)∂ij |∇u(y)|2 ≥ 2r(∇f (ry) − ∇xF (D2u(y), ry)) · ∇u(y) + 2λ0|D2u(y)|2. (16)

Now (H1)–(H2) and the positivity of f imply

0 < c ≤ f (ry) = |F(D2u(y), ry) − F(0, ry)| ≤ 2nλ1|D2u|, (17)

where c := infB1 f . By combining (16) and (17), it follows that

Fij (D
2u(y), ry)∂ij |∇u(y)|2 ≥ 2r(∇f (ry) − ∇xF (D2u(y), ry)) · ∇u(y) + c2λ0

2n2λ2
1

.

The proof now follows as in Lemma 13: assume by contradiction that there is a point y0 ∈ B1/2 ∩ � such that 

C0∂eu(y0) − |∇u(y0)|2 < 0 (outside � we have |∇u| = 0). Let d = c2λ0
4n2λ2

1
and

w(y) = C0∂eu(y) − |∇u(y)|2 + d
|y − y0|2

2nλ1
.

Next note that for r small enough, w is a supersolution of Fij (D
2u(y), ry)∂ij in B1/4(y0) ∩ �. Indeed,

Fij (D
2u(y), ry)∂ijw ≤ rC0‖∇f ‖L∞(B1) + rC0C

− 2r(∇f (ry) − ∇xF (D2u(y), ry)) · ∇u(y) − c2λ0

2n2λ2
1

+ d

≤ rC1 − c2λ0

2n2λ2
1

+ d ≤ 0,

where for the last inequality we require r ≤ c2λ0
4n2λ2

1C1
. Therefore w attains a minimum on the boundary of B1/4(y0) ∩�. 

However, on ∂�, w is non-negative since both u and ∂eu are zero, so the minimum has to be attained on ∂B1/4(y0), 
and this implies

0 > min
B1/4(y0)∩�

w ≥ −ε0 + d

32nλ1

which is a contradiction if ε0 ≤ d/(32nλ1). �
We are now in a position to prove that under a suitable thickness assumption, the free boundary is locally C1.

Theorem 15. Let u : B1 → R be a W 2,n(B1) solution of (2). Let F be a convex operator satisfying (H1), (H2), 
and (H4) with α = 1, and assume further that f is C0,1. If {u �= 0} ⊂ � and there exists ε > 0 such that

δr (u, x) > ε, ∀r < 1/4, x ∈ ∂� ∩ Br,

then there exists r0 > 0 depending only on ε and given bounds such that ∂� ∩ Br0(x) is a C1-graph.

Proof. Let x ∈ ∂� ∩ B1/8 and ur(y) := u(ry+x)

r2 , and note that it suffices to consider the case when |∇u(x)| = 0. By 
Theorem 1 we have a uniform C1,1-estimate with respect to r and can therefore find a subsequence {urj } converging 
in C1

loc(R
n) to a global solution u0, where u0(0) = 0. The thickness assumption implies δr(u, x) > ε for all r > 0, 

hence u0(y) = γ
((y·ex)+)2

2 according to Proposition 12 (since {|∇u| �= 0} ⊆ {u �= 0} up to a set of measure zero), where 
γ ∈ [1/λ1, 1/λ0] and ex ∈ ∂B1. Now let 0 < s ≤ 1. Then
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∂eu0

s
− u0 ≥ 0

in B1 for any direction e ∈ ∂B1 such that e · ex ≥ s. From the C1-convergence of {urj } we have

∂eurj

s
− urj ≥ −ε0

in B1 for j ≥ k(s, x) and ε0 as in Lemma 13. Therefore urj fulfills the assumptions of this lemma and the above 
inequality can be improved to

∂eurj (y)

s
− urj (y) ≥ 0, y ∈ B1/2. (18)

For s = 1, i.e. e = ex , multiplying (18) by exp(e · y) implies

∂e[exp(−e · y)urj (y)] = exp(−e · y)(∂eurj (y) − urj (y)) ≥ 0.

Integrating this expression yields

exp(−e · y)urj (y) − urj (0)︸ ︷︷ ︸
=0

=
e·yˆ

0

∂e[exp(−e · z)urj (z)]d(e · z) ≥ 0,

so urj (y) ≥ 0 in B1/2 and ∂eurj (y) ≥ 0 follows from (18). In particular, we have shown that if x ∈ ∂� ∩ B1/8 and 
e · ex ≥ s, then ∂eu(z) ≥ 0 for all z ∈ Brj /2(x), where rj = rj (s, x). Now

∂� ∩ B1/16 ⊂
⋃

x∈∂�∩B1/16

Brj /2(x),

so by extracting a finite subcover and relabeling the radii, it follows that

∂� ∩ B1/16 ⊂
N⋃

k=1

Bηk
(xk),

where ηk = ηk(xk, s); set η = η(s) := min
k

ηk . Thus, for all x ∈ ∂� ∩ B1/16, we have ∂eu(z) ≥ 0 for all z ∈ Bη(x), 

where η only depends on s and the given data (via the C1 convergence of urj ). Therefore, if s0 ∈ (0, 1), by letting 
r0 := η(s0), it follows that the free boundary ∂� ∩Br0(x) is s0-Lipschitz. Moreover, note that in a small neighborhood 
of the origin, by picking s sufficiently small, the Lipschitz constant of the free boundary can be made arbitrarily small 
(the neighborhood only depends on η(s)). This shows that the free boundary is locally C1 at x, and the same reasoning 
applies to any other point in ∂� ∩ Br0(x). �
Remark 4. In view of Lemma 14, we can replace the condition {u �= 0} ⊂ � by {∇u �= 0} ⊂ � in Theorem 15
whenever F is C1.

4. Parabolic case

In this section we generalize the former results regarding optimal regularity of the solution as well as C1 regularity 
of the free boundary to the non-stationary setting. Since the parabolic case is very similar to the elliptic one, we mostly 
outline the proofs. The setup of the problem is as follows.

• Let Qr(X) := Br(x) × (t − r2, t), where X = (x, t). For convenience, Qr := Qr(0).
• Instead of (2) we consider the following problem,{H(u(X),X) = f (X) a.e. in Q1 ∩ �,

2 (19)
|D u| ≤ K a.e. in Q1\�,
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where H(u(X), X) := F(D2u(X), X) − ∂tu(X), � ⊂ Q1 is some unknown set, and K is a positive constant as 
before. We still assume F to satisfy (H1)–(H3) for all X ∈ Q1 and

F(M,x, t) − F(M,y, s) ≤ C(|M| + 1)(|x − y|α1 + |t − s|α2), (20)

with α1, α2 ∈ (0, 1].
• We assume f to be at least Hölder continuous in both the spatial and time coordinates.
• Let Ar(X

0) := {(x, t) ∈ Q1 : (rx, r2t) ∈ Qr\� − x0}.
• D̃2u := (D2u, ∂tu) denotes the parabolic Hessian.
• Let

δr (u,X0) := inf
t∈[t0−r2,t0+r2]

MD(Projx(A ∩ (Br(x
0) × {t})))

r
,

where MD(E) stands for the minimal diameter, i.e., the smallest distance between two parallel hyperplanes that 
trap the set E, and Projx is the projection on the spatial coordinates.

The main theorems corresponding to Theorems 1 and 15 are now stated for the parabolic case; the first giving the 
optimal regularity of solutions.

Theorem 16 (Interior C1,1
x ∩ C

0,1
t regularity). Let u : Q1 → R be a W 2,n

x ∩ W
1,n
t solution of (19). Then there is 

C = C(n, λ0, λ1, ‖u‖∞, ‖f ‖α) > 0 such that

|D̃2u| ≤ C, in Q1/2.

The second theorem gives C1 regularity of the free boundary if we add some additional assumptions on δr , f
and F , as in the elliptic setting.

Theorem 17 (C1 regularity of the free boundary). Let u : Q1 → R be a W 2,n
x ∩ W

1,n
t solution of (19), and assume 

{u �= 0} ⊂ �. Suppose that f is Lipschitz in (x, t) and f ≥ c > 0. Let F be convex in the matrix variable and suppose 
F satisfies (H1), (H2), and (20) with α1 = α2 = 1. Then there exists an ε > 0 such that if

δr (u,X0) > ε

uniformly in r and X0 ∈ ∂� ∩ Qr , then ∂� ∩ Qr0 is a C1-graph in space–time, where r0 depends only on ε and the 
data.

Theorem 16 follows from results corresponding to [13, Lemma 2.1 and Proposition 2.2] which readily generalize to 
the parabolic setting thanks to our results in the elliptic case and [13, Remark 6.3]. Indeed, we can show the inequality

sup
Qr(0)

|u − Pr | ≤ Cr2, r ∈ (0,1)

for some parabolic polynomials Pr that solve the homogeneous equation

H(Pr ,0) = 0,

a result that is in the same vein as Lemma 5. Moreover, the above inequality together with an argument similar to the 
proof of Lemma 6 imply the geometric decay of the coincidence sets,

|Ar/2| ≤ |Ar |
2n+1

.

Theorem 16 is then proven in the same way as in the elliptic case.
Regarding the regularity of the free boundary, Lemma 7 is easily generalized since the maximum principle holds 

in our case as well (see [19, Corollary 3.20]), and the rest of the results are extended with the following parabolic 
blow-up lemma.
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Lemma 18. Let u be a W 2,n
x ∩ W

1,n
t solution to (19). If {u �= 0} ⊂ �, then for any (x0, t0) ∈ ∂�(u) ∩ Q1/4 there is a 

sequence {rj } such that

urj (y, t) := u(x0 + rj y, t0 + r2
j t)

r2
j

→ u0(y, t)

locally uniformly as rj → 0, and u0 solves{
F(D2u(y, t), x0, t0) − ∂tu(y, t) = f (x0, t0) a.e. in �(u0),

|D̃2u| ≤ K a.e. in R
n+1\�(u0),

(21)

where {u0 �= 0} ⊂ �(u0).

Proof. By C1,1
x ∩ C

0,1
t regularity of u and the fact that u = 0 on ∂�, it follows that, up to a subsequence, urj → u0

locally uniformly. Define �(u0) to be the limit involving the open sets �j := {(x, t) : (x0 + rj x, t0 + r2
j t) ∈ �} (as in 

the elliptic case), and note that D̃2u is bounded on the complement of �(u0) (since {u �= 0} ⊂ �). Moreover, u0 is 
not identically zero by non-degeneracy. Next, let (y, t) ∈ {u �= 0} and select δ > 0 such that Qδ(y, t) ⊂ �j for j large 
enough; note that urj is C2,α

x ∩ C
1,α
t in this set (by the parabolic Evans–Krylov theorem [20]). We can therefore, 

without loss of generality, assume C2
x ∩ C1

t convergence of urj to u0 in Qδ(y, t). In particular,

F(D2u0(y, t), x0, t0) = lim
j→∞

(
F(D2urj (y, t), x0 + rj y, t0 + r2

j t) − ∂turj (y, t)
)

= lim
j→∞f (x0 + rj y, t0 + r2

j t) = f (x0, t0), y ∈ Qδ(y, t).

Finally, non-degeneracy implies that the equation in (21) is satisfied a.e. in �(u0). �
Since blow-up solutions are solutions to a free boundary problem on Rn+1, one may consider the classification of 

these global solutions just like in the elliptic case. By letting G(M) :=H(M, x0, t0)/f (x0, t0), the problem reduces to 
the content of [13, Proposition 3.2].

Proposition 19. Fix X0 := (x0, t0). If u0 is a solution to{
H(D2u(y),X0) = f (X0) a.e. in �(u0),

|D2u| ≤ K a.e. in R
n+1\�(u0),

with {u0 �= 0} ⊂ �(u0), and there exists ε0 > 0 such that

δr (u, x) ≥ ε0, ∀r > 0, ∀x ∈ ∂�(u0),

then u0 is time-independent and of the form u0(x) = γX0[((x − vX0) · eX0)
+]2/2, where eX0 ∈ S

n and γX0 ∈
[1/λ1, 1/λ0] are such that F(γX0eX0 ⊗ eX0, X0) = f (X0).

This proposition can, in turn, be used to prove that the time derivative ∂tu vanishes on the free boundary. The proof 
follows the same line of reasoning as in [13] except that Proposition 3.2 is replaced in their proof with Proposition 19. 
The result is stated in the following lemma.

Lemma 20. Let u, f , F and δr be as in Theorem 17 and {u �= 0} ⊂ �. Then

lim
��X→∂�

∂tu(X) = 0.

The parabolic counterpart of Lemma 13 follows by replacing w given in that proof with

C∂eu(X) − u(X) + c̃
|x − x0|2 − (t − t0)

2nλ1 + 1
,

where c̃ := infQ1 f/2; this is where the additional assumptions on F and f come into play. With this in mind, the 
proof of Theorem 17 follows as in the elliptic case.
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