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Abstract

We show the existence of self-similar solutions with fat tails for Smoluchowski’s coagulation equation for homogeneous kernels 
satisfying C1

(
x−ayb + xby−a

)
≤ K (x,y) ≤ C2

(
x−ayb + xby−a

)
with a > 0 and b < 1. This covers especially the case of 

Smoluchowski’s classical kernel K(x, y) = (x1/3 + y1/3)(x−1/3 + y−1/3).
For the proof of existence we take a self-similar solution hε for a regularized kernel Kε and pass to the limit ε → 0 to obtain 

a solution for the original kernel K . The main difficulty is to establish a uniform lower bound on hε . The basic idea for this is to 
consider the time-dependent problem and to choose a special test function that solves the dual problem.
© 2015 Elsevier Masson SAS. All rights reserved.

Résumé

Nous démontrons l’existence des solutions auto-similaires avec queues lourdes pour l’équation de coagulation de Smoluchowski 
avec un noyau K satisfaisant C1

(
x−ayb + xby−a

)
≤ K (x,y) ≤ C2

(
x−ayb + xby−a

)
avec a > 0 et b < 1. Cela contient en 

particulier le noyau classique de Smoluchowski K(x, y) = (x1/3 + y1/3)(x−1/3 + y−1/3).
Pour la démonstration de l’existence nous prenons une solution auto-similaire hε pour un noyau régularisé Kε et nous obtenons 

une solution pour le noyau original K en passant à la limite ε → 0. La difficulté principale consiste à établir une borne inférieure 
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pour hε . La clé ici est de considérer le problème dépendant du temps et choisir une solution du problème dual comme fonction test 
dans la formulation faible de l’équation auto-similaire.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Smoluchowski’s equation and self-similarity

Smoluchowski’s coagulation equation [13] describes irreversible aggregation of clusters through binary collisions 
by a mean-field model for the density f (ξ, t) of clusters of mass ξ . It is assumed that the rate of coagulation of clusters 
of size ξ and η is given by a rate kernel K = K(ξ, η), such that the evolution of f is determined by

∂tf (ξ, t) = 1

2

ξ∫
0

K(ξ − η,η)f (ξ − η, t)f (η, t)dη − f (ξ, t)

∞∫
0

K(ξ,η)f (η, t)dη. (1)

Applications in which this model has been used are numerous and include, for example, aerosol physics, polymeriza-
tion, astrophysics and mathematical biology (see e.g. [1,3]).

A topic of particular interest in the theory of coagulation is the scaling hypothesis on the long-time behaviour 
of solutions to (1). Indeed, for homogeneous kernels one expects that solutions converge to a uniquely determined 
self-similar profile. This issue is however only well-understood for the solvable kernels K(x, y) = 2, K(x, y) = x + y

and K(x, y) = xy. In these cases it is known [9] that (1) has one fast-decaying self-similar solution with finite mass 
and a family of so-called fat-tail or heavy-tailed self-similar solutions with power-law decay. Such solutions with 
certain infinite moments have been studied extensively in probability theory and are of considerable interest since 
they predict a high probability of the occurrence of extreme events. Furthermore, in [9] the domains of attraction of all 
these self-similar solutions under the evolution (1) have been completely characterized. For non-solvable kernels much 
less is known and it is exclusively for the case of kernels with homogeneity γ < 1. In [5,6] existence of self-similar 
solutions with finite mass has been established for a large range of kernels and some properties of those solutions 
have been investigated in [2,4,7]. More recently, the first existence results of self-similar solutions with fat tails have 
been proved, first for the diagonal kernel [11], then for kernels that are bounded by C(xγ + yγ ) for γ ∈ [0, 1) [12]. 
It is the goal of this paper to extend the results in [12] to singular kernels, such as Smoluchowski’s classical kernel 
K(x, y) = (x1/3 + y1/3)(x−1/3 + y−1/3).

In order to describe our results in more detail, we first derive the equation for self-similar solutions. Such solutions 
to (1) for kernels of homogeneity γ < 1 are of the form

f (ξ, t) = β

tα
g (x) , α = 1 + (1+γ )β, x = ξ

tβ
, (2)

where the self-similar profile g solves

−α

β
g − xg′(x) = 1

2

x∫
0

K(x − y, y)g(x − y)g(y)dy − g(x)

∞∫
0

K(x,y)g(y)dy. (3)

It is known that for some kernels the self-similar profiles are singular at the origin, so that the integrals on the right-
hand side are not finite and it is necessary to rewrite the equation in a weaker form. Multiplying the equation by x and 
rearranging we obtain that a weak self-similar solution g solves

∂x(x
2g(x)) = ∂x

⎡
⎣ x∫ ∞∫

yK(y, z)g(z)g(y)dz dy

⎤
⎦+
(

(1 − γ ) − 1

β

)
xg(x) (4)
0 x−y



B. Niethammer et al. / Ann. I. H. Poincaré – AN 33 (2016) 1223–1257 1225
in a distributional sense. If one in addition requires that the solution has finite first moment, then this also fixes 
β = 1/(1 − γ ) and in this case the second term on the right hand side of (4) vanishes.

For the following it is convenient to go over to the monomer density function h (x, t) = xg (x, t) and to introduce 
the parameter ρ = γ + 1

β
. Then Eq. (4) becomes

∂x

⎡
⎣ x∫

0

∞∫
x−y

K (y, z)

z
h (z)h (y) dz dy

⎤
⎦− [∂x (xh) + (ρ − 1)h] (x) = 0. (5)

Our approach to find a solution to (5) requires to work with the corresponding evolution equation. Using as new time 
variable log (t) which will be denoted as t from now on, the time dependent version of Eq. (5) becomes

∂th (x, t) + ∂x

⎡
⎣ x∫

0

∞∫
x−y

K (y, z)

z
h (z, t) h (y, t) dz dy

⎤
⎦− [∂x (xh) + (ρ − 1)h] (x, t) = 0, (6)

with initial data

h(x,0) = h0(x). (7)

1.2. Assumptions on the kernel and main result

We now formulate our assumptions on the kernel K . We assume that

K ∈ C1((0,∞) × (0,∞)), K(x, y) = K(y,x) ≥ 0 for all x, y ∈ (0,∞), (8)

K is homogeneous of degree γ ∈ (−∞, 1), that is

K(λx,λy) = λγ K(x, y) for all x, y ∈ (0,∞), (9)

and satisfies the growth condition

C1

(
x−ayb + xby−a

)
≤ K(x,y) ≤ C2

(
x−ayb + xby−a

)
for all x, y ∈ (0,∞), (10)

where a > 0, b < 1, γ = b − a, and C1, C2 are positive constants. We need to assume here that b < 1 since for 
b > 1 we could have gelation and b = 1 is a borderline case that can also not be treated with our methods. The same 
assumption has also been made in related work, where, for example in [2], regularity of self-similar solutions with 
finite mass has been investigated.

Furthermore we assume the following locally uniform bound on the partial derivative: for each interval [d,D] ⊂
(0,∞) there exists a constant C3 = C3 (d,D) > 0 such that

|∂xK (x, y)| ≤ C3

(
y−a + yb

)
for all x ∈ [d,D] and y ∈ (0,∞) . (11)

Our goal in this paper is to prove the existence of self-similar solutions with fat tails. Let us first discuss what we 
can expect on the possible decay behaviours of self-similar solutions. If h(x) ∼ Cx−ρ as x → ∞, then in order for ∫∞

1
K(x,y)

y
h(y) dy < ∞ we need

ρ > b = γ + a and ρ + a > 0. (12)

Note that since γ can be negative, −a can be larger than b. While these conditions are natural it turns out that in 
addition we have to assume ρ > 0 (cf. Lemma 2.10). It is not clear to us whether this is just a technical restriction or 
whether there is really an obstacle to the existence of such solutions for the kernels considered in this paper. In fact, 
it is known that for the diagonal kernel with homogeneity γ ∈ (−∞, 1) fat tail solutions exist for ρ ∈ (γ, 1) [11], but 
the diagonal kernel certainly represents a very special case. Finally, recall that the decay behaviour of h implies that 
the corresponding number density g = h/x has infinite first moment for all ρ.
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Our main result can now be formulated as follows

Theorem 1.1. Let K be a kernel that satisfies assumptions (8)–(11) for some b ∈ (−∞, 1) and a > 0. Then for 
any ρ ∈ (max(−a, b, 0), 1) = (max(b, 0), 1) there exists a non-negative measure h ∈ M([0, ∞)) that solves (5) in 
the sense of distributions. Furthermore this measure h has a continuous density and satisfies h(x) ∼ (1 − ρ)x−ρ as 
x → ∞.

1.3. Strategy of the proof

The idea of the proof is to first consider the regularized kernel

Kε(y, z) := K(y + ε, z + ε).

Proposition 1.2. For any ρ ∈ (max(b, 0), 1) there exists a continuous function hε: (0, ∞) → [0, ∞) that is a weak 
solution to (5) with K replaced by Kε . This solution satisfies

r∫
0

hε(x) dx ≤ r1−ρ and lim
r→∞

∫ r

0 hε(x) dx

r1−ρ
= 1.

The proof of Proposition 1.2 follows closely the proof of Theorem 1.1 in [12] and is based on the idea to construct 
a stationary solution to (6) by using the following variant of Tikhonov’s fixed point theorem.

Theorem 1.3. (See Theorem 1.2 in [5,8].) Let X be a Banach space and (St )t≥0 be a continuous semi-group on X. 
Assume that St is weakly sequentially continuous for any t > 0 and that there exists a subset Y of X that is nonempty, 
convex, weakly sequentially compact and invariant under the action of St . Then there exists z0 ∈ Y which is stationary 
under the action of St .

In order to apply Theorem 1.3 to find a self-similar solution for the coagulation equation with kernel Kε we denote 
for ρ ∈ (b, 1) as Xρ the set of measures hdx ∈M+ ([0,∞)) such that

‖h‖ := sup
R≥0

∫
[0,R] hdx

R1−ρ
< ∞. (13)

The set Y is defined by the family of h ∈Xρ that satisfy∫
[0,r]

hdx ≤ r1−ρ, for all r ≥ 0 (14)

∫
[0,r]

hdx ≥ r1−ρ

(
1 − Rδ

0

rδ

)
+

for all r > 0. (15)

The key part of the analysis is then to show that Y is left invariant under the evolution of (6). Many of the estimates 
are very similar to the ones in [12] apart from some parts in the proof of the lower bound (15). To keep this paper at a 
reasonable length we do not give the details here but the interested reader may find them in the Preprint version [10].

In order to obtain a solution to our original problem we want to pass to the limit ε → 0. The problem is that the 
lower bound (15) that we obtain for hε is not uniform in ε and thus we cannot exclude a priori that we obtain the 
trivial solution in the limit. Accordingly, our first goal is to obtain a uniform lower bound on hε. In order to do so, 
we again investigate the corresponding dual problem and look for a suitable subsolution, that is for a function ψ that 
satisfies

∂tψ ≤ (ρ − 1)ψ − x∂xψ +
∞∫

Kε (x, y)

y
hε (y)

[
ψ (x + y) − ψ(x)

]
dy (16)
0
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(cf. (22) below) with suitably described data ψ(0, ·). However, to obtain uniform bounds for ψ we see from (16) that 
we need uniform bounds on Kε(x,y)

y
hε (y). In particular, we need to have uniform bounds on

με =
1∫

0

hε(x) (x + ε)−a dx, λε =
1∫

0

hε(x) (x + ε)b dx, Lε := max

(
λ

1
1+a
ε ,μ

1
1−b
ε

)
(17)

that are a priori not available. To circumvent this difficulty we rescale hε suitably with Lε and aim for a lower bound 
on the rescaled solution Hε . The proof of the corresponding Proposition 2.1 is the contents of Section 2.1. In a next 
step we need to exclude that Lε → ∞ as ε → 0. In order to do so we derive, assuming that Lε → ∞ a limit equation 
for H := limε→0 Hε and show that this equation does not have a solution with the properties satisfied by H . It is in this 
step that we need the additional assumption ρ > 0 (cf. Lemma 2.10). The bound on Lε implies that the lower bound 
for Hε transfers to the corresponding one for hε. In order to pass to the limit in the equation for hε we in addition need 
to get a better control at the origin (see Lemma 2.12) which allows us to show that a weak limit h of hε (in the sense 
of measures) solves the coagulation equation. This is the contents of Section 2.4. Note that here and in the following 
we denote with some abuse of notation a measure hdx by h, even though we a priori may not know that hdx has a 
density.

In Section 3 we finally show that the limit measure h has a continuous density that decays pointwise in the expected 
manner. The proof is similar to the corresponding one in [12], but somewhat more technical.

2. Existence of a self-similar solution

As described above, our starting point is that we have a continuous positive function hε that is a weak solution to

∂xIε[hε] = ∂x (xhε) + (ρ − 1)hε, with Iε[hε] =
x∫

0

∞∫
x−y

Kε(y, z)

z
hε(y)hε(z) dz dy. (18)

Furthermore we have the estimates
r∫

0

hε(x) dx ≤ r1−ρ and lim
r→∞

r∫
0

hε(x) dx/r1−ρ = 1. (19)

Up to passing to a subsequence we can in the following assume that either Lε, as defined in (17) above, converges or 
Lε → ∞ for ε → 0. Furthermore as the case Lε → 0 behaves slightly differently, we use from now on the following 
notation: we define L := Lε if Lε �→ 0 and L := 1 if Lε → 0 and thus (up to passing maybe to another subsequence) 
we may assume L > 0. For the following let

X = x

L
, hε(x) = Hε(X)L−ρ.

We will first derive a uniform lower integral bound for Hε.

2.1. Uniform lower bound for Hε

The main result of this subsection is the following lower bound on Hε.

Proposition 2.1. For any δ > 0 there exists Rδ > 0 such that

R∫
0

Hε(X)dX ≥ (1 − δ)R1−ρ for all R ≥ Rδ. (20)

Our goal is to prove such a lower bound by a suitable subsolution of the corresponding dual problem. After some 
changes of variables this reduces to finding a subsolution to a function W satisfying (23) below. The idea is now to 
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replace the terms Kε(x,y)
y

hε(y) by corresponding power laws. However, in the limit ε → 0 these functions become too 
singular at the origin, such that we have to make a more complicated ansatz, as described in Lemma 2.2. After some 
surgery (cutting W at the origin) we then obtain a suitable subsolution. For this function we obtain a first lower bound 
in Lemma 2.6 that we can iterate (cf. Lemma 2.7) to finally obtain Proposition 2.1.

In the following we always denote for κ ∈ (0, 1) by ϕκ a non-negative, symmetric standard mollifier with suppϕκ ⊂
[−κ, κ].

2.1.1. Construction of a suitable test function
We start by constructing a special test function and therefore notice that for ψ = ψ (x, t) with ψ ∈ C1 and compact 

support in [0, T ] × [0,∞) we obtain from the equation on hε that

0 =
T∫

0

∞∫
0

∂xψIε [hε] dxdt −
T∫

0

∞∫
0

x∂xψhεdxdt + (ρ − 1)

T∫
0

∞∫
0

ψhεdxdt

=
T∫

0

∞∫
0

∂tψhεdxdt +
∞∫

0

ψ (·,0)hεdx −
∞∫

0

ψ (·, T )hεdx.

Choosing ψ such that

T∫
0

∞∫
0

∂xψIε [hε] dxdt −
T∫

0

∞∫
0

x∂xψhεdxdt + (ρ − 1)

T∫
0

∞∫
0

ψhεdxdt −
T∫

0

∞∫
0

∂tψhεdxdt ≥ 0 (21)

we obtain
∞∫

0

ψ (·,0)hεdx ≥
∞∫

0

ψ (·, T )hεdx.

Rewriting (21) we obtain

T∫
0

∞∫
0

hε (x)

⎧⎨
⎩

∞∫
0

Kε (x, y)

y
hε (y)

[
ψ (x + y) − ψ (x)

]
dy − x∂xψ (x) + (ρ − 1)ψ (x) − ∂tψ (x)

⎫⎬
⎭dxdt ≥ 0.

(22)

Defining W by ψ (x, t) = e−(1−ρ)tW (ξ, t) with ξ = x
Let we can rewrite the term in brackets and obtain that it suffices 

to construct W such that

∂tW
( x

Let
, t
)

≤
∞∫

0

Kε (x, y)

y
hε (y)

[
W

(
x + y

Let
, t

)
− W

( x

Let
, t
)]

dy. (23)

For further use we also note that we only need this in weak form, i.e. we need that

T∫
0

∞∫
0

e−(1−ρ)thε (x)

⎧⎨
⎩∂tW

( x

Let
, t
)

−
∞∫

0

Kε (x, y)

y
hε (y)

[
W

(
x + y

Let
, t

)
− W

( x

Let
, t
)]

dy

⎫⎬
⎭dxdt ≤ 0, (24)

provided that we can justify the change from ψ to W .
We furthermore list here some parameters that are frequently used in the following. For given ν ∈ (0,1) that will 

be fixed later we define

β :=
{

b b ≥ 0
νb b < 0

, ω1 := min {ρ − b,ρ} , ω2 := ρ, b̃ := max {0, b} .

As described above, we want to replace the integral kernel Kε and hε by corresponding power laws, but need to 
consider the region near the origin separately.
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Lemma 2.2. For any constant C̃ > 0 there exists a function W̃ ∈ C1 ([0, T ] ,C∞ (R)) solving

∂t W̃ (ξ, t) − C

1∫
0

hε (z)

z

(
LbAβ (z + ε)−a + L−aA−νa (z + ε)b

)[
W̃
(
ξ + z

L

)
− W̃ (ξ)

]
dz

− C

Lρ+a−max{0,b}

∞∫
0

A−νa

η1+ω1

[
W̃ (ξ + η) − W̃ (ξ)

]
dη − C

Lρ−b

∞∫
0

Aβ

η1+ω2

[
W̃ (ξ + η) − W̃ (ξ)

]
dη = 0

with W̃ (·,0) = χ(−∞,A−κ] ∗3 ϕκ/3 (·).
Proof. This is shown in Proposition B.8. �
Remark 2.3. As shown in the appendix W̃ is non-increasing, has support in (−∞,A], is non-negative and bounded 
by 1.

As Kε might get quite singular at the origin for ε → 0, we define now W as the function W (ξ, t) :=
W̃ (ξ, t)χ[Aν,∞) (ξ), i.e. we cut W̃ at ξ = Aν in order to avoid integrating near the origin. Obviously W is not in C1 and 
thus the corresponding ψ is also not differentiable. But as already mentioned it is enough to show that (24) holds, pro-
vided we can justify the change from ψ to W (and reverse). The latter is not difficult and we omit the details here (see 
Lemma 3.5 in [10]). Thus, it suffices to show that (23) holds for all ξ �= Aν and this is done in the following Lemma.

Lemma 2.4. For sufficiently large C̃, inequality (23) holds pointwise for all ξ �= Aν .

Proof. From the non-negativity of W the claim follows immediately for ξ < Aν (where W is identically zero). Thus 
it suffices to consider ξ > Aν . Using furthermore that suppW ⊂ (−∞,A] it suffices to consider ξ ∈ (Aν,A

]
. As W is 

non-increasing on (Aν,A
]

we can estimate − 
[
W
(
ξ + y

Let

)− W (ξ)
] ≤ − 

[
W
(
ξ + y

L

)− W (ξ)
]
. On the other hand 

using the estimates on the kernel K we obtain

−
∞∫

0

Kε

(
Let ξ, y

)
y

hε (y)
[
W
(
ξ + y

Let

)
− W (ξ)

]
dy

≤ −C2

∞∫
0

(
Let ξ + ε

)−a
(y + ε)b + (Let ξ + ε

)b
(y + ε)−a

y
hε (y)

[
W
(
ξ + y

L

)
− W (ξ)

]
dy

≤ −C

∞∫
0

L−aA−νa (y + ε)b + LbAβ (y + ε)−a

y
hε (y)

[
W
(
ξ + y

L

)
− W (ξ)

]
dy

≤ −C

1∫
0

hε (y)

y

[
LbAβ (y + ε)−a + L−aA−νa (y + ε)b

][
W
(
ξ + y

L

)
− W (ξ)

]
dy

− C

Lρ

∞∫
1/L

Hε (η)

η

[
LbAβ + L−aA−νa (Lη + ε)b

] [
W (ξ + η) − W (ξ)

]
dη

≤ −C

1∫
0

hε (y)

y

[
LbAβ (y + ε)−a + L−aA−νa (y + ε)b

][
W
(
ξ + y

L

)
− W (ξ)

]
dy

− CAβ

Lρ−b

∞∫
0

Hε (η)

η

[
W (ξ + η) − W (ξ)

]
dη − CA−νa

Lρ+a−max{0,b}

∞∫
0

Hε (η)

η1−max{0,b}
[
W (ξ + η) − W (ξ)

]
dη.

(25)
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As ξ > Aν we have by construction

∂tW (ξ, t) = ∂t W̃ (ξ, t) = C̃

1∫
0

hε (z)

z

[
LbAβ (z + ε)−a + L−aA−νa (z + ε)b

][
W̃
(
ξ + z

L

)
− W̃ (ξ)

]
dz

+ C̃
Aβ

Lρ−b

∞∫
0

1

η1+ω2

[
W̃ (ξ + η) − W̃ (ξ)

]
dη

+ C̃
A−νa

Lρ+a−max{0,b}

∞∫
0

1

η1+ω1

[
W̃ (ξ + η) − W̃ (ξ)

]
dη. (26)

Thus, using that W and W̃ coincide on (Aν,∞), in order to show (23), i.e.

∂tW (ξ, t) −
∞∫

0

Kε

(
Let ξ, y

)
y

hε (y)
[
W
(
ξ + y

Let
, t
)

− W (ξ, t)
]

dy ≤ 0

it is sufficient to show

(
C̃ − C

) 1∫
0

hε (z)

z

[
LbAβ (z + ε)−a + L−aA−νa (z + ε)b

][
W̃
(
ξ + z

L

)
− W̃ (ξ)

]
dz

+ Aβ

Lρ−b

∞∫
0

(
C̃

η1+ω2
− C

Hε (η)

η

)[
W̃ (ξ + η) − W̃ (ξ)

]
dη

+ A−νa

Lρ+a−max{0,b}

∞∫
0

(
C̃

η1+ω1
− C

Hε (η)

η1−max{0,b}

)[
W̃ (ξ + η) − W̃ (ξ)

]
dη ≤ 0. (27)

We prove that the three terms on the left-hand side are non-positive individually for sufficiently large C̃. This is obvious 
for the first term as W̃ is non-increasing. It remains to consider the other two terms. Defining V (η) := C

∫∞
η

Hε(r)
r

dr , 
rewriting the second term on the left-hand side and integrating by parts, we obtain

Aβ

Lρ−b

∞∫
0

(
C̃

η1+ω2
− C

Hε (η)

η

)[
W̃ (ξ + η) − W̃ (ξ)

]
dη

= Aβ

Lρ−b

∞∫
0

−∂η

(
C̃

ω2
η−ω2 − V (η)

)[
W̃ (ξ + η) − W̃ (ξ)

]
dη

= Aβ

Lρ−b

∞∫
0

(
C̃

ω2
η−ω2 − V (η)

)
∂ηW̃ (ξ + η)dη.

As W̃ is non-increasing we have ∂ηW̃ (ξ + η) ≤ 0. Furthermore Aβ

Lρ−b ≥ 0 and thus it suffices to show C̃
ω2

η−ω2 −
V (η) ≥ 0 for all η > 0. Due to the rescaling the estimates from Lemma A.1 also hold for Hε and we obtain 

V (η) ≤ Cη−ρ . Using furthermore that ω2 = ρ it remains to show that 
(

C̃
ρ

− C
)

η−ρ ≥ 0 which certainly holds for C̃
sufficiently large. The third term on the left-hand side of (27) can be estimated in the same way. This concludes the 
proof. �
Remark 2.5. The change of variables from ψ to W (and reverse) can be justified rigorously (see Lemma 3.5 in [10]) 
and inequality (24) holds.
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In the following we will derive a lower estimate for W .

2.1.2. Lower bound on W
Lemma 2.6. There exists σ ∈ (max {b, ν} , 1) and θ > 0 such that

1 − W(A − Aσ ) ≤ CtA−θ

for sufficiently large A.

Proof. From the construction in Section B.1 we know that W̃ can be written as W̃ (ξ, t) = ∫∞
ξ

G (η, t)dη with G =
−∂ξ W̃ = G1,1 ∗ G1,2 ∗ G2, where G1,1, G1,2 and G2 solve

∂tG1,1 = CA−νa

Lρ+a−max{0,b}

∞∫
0

1

η1+ω1

[
G1,1 (ξ + η) − G1,1 (ξ)

]
dη

G1,1 (·,0) = δ (· − A + κ) ∗ ϕκ/3

∂tG1,2 = CAβ

Lρ−b

∞∫
0

1

η1+ω2

[
G1,2 (ξ + η) − G1,2 (ξ)

]
dη

G1,2 (·,0) = δ (·) ∗ ϕκ/3

∂tG2 = C

1∫
0

hε (z)

z

[
A−νa

La
(z + ε)b + AβLβ (z + ε)−a

]
·
[
G2

(
ξ + z

L

)
− G2 (ξ)

]
dz

G2 (·,0) = δ (·) ∗ ϕκ/3. (28)

Then one has from Lemma B.10 for any μ ∈ (0,1):

−D∫
−∞

G1,2 (ξ, t)dξ ≤ C
( κ

D

)μ + CAβt

Lρ−bDω2

and

−D+A∫
−∞

G1,1 (ξ, t)dξ =
(A−κ)−(D−κ)∫

−∞
G1,1 (ξ, t)dξ ≤ C

(
κ

D − κ

)μ

+ CA−νat

Lρ+a−max{0,b} (D − κ)ω1

≤ C
( κ

D

)μ + CA−νat

Lρ+a−max{0,b}Dω1
.

In the last step we used that for any δ ∈ (0,1) and D ≥ 1, κ ≤ 1/2 it holds (D − κ)−δ ≤ 2δD−δ . One thus needs an 
estimate for G2. This will be quite similar to the proof of Lemma B.10 but due to the different behaviour for Lε → 0
and Lε �→ 0 we sketch this here again. Defining G̃2 (p, t) := ∫

R
G2 (ξ, t) ep(ξ−κ/3)dξ and multiplying the equation 

for G2 in (28) by ep(ξ−κ/3) and integrating one obtains

∂t G̃2 (p, t) = C

1∫
0

hε (z)

z

[
(z + ε)−a LbAβ + (z + ε)b L−aA−νa

]
·
[
e− pz

L − 1
]

dzG̃2 (p, t)

=: M (p,L) G̃2 (p, t) .

Thus G̃2 (p, t) = ∫ ϕκ/3 (ξ) ep(ξ−κ/3)dξ exp (−t |M (p,L)|) and one can estimate:

R
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|M (p,L)| ≤ C

1∫
0

hε (z)

z

[
(z + ε)−a LbAβ + (z + ε)−a L−aA−νa

]
· pz

L
dz

= Cp
(
Lb−1Aβμε + L−a−1A−νaλε

)
≤ Cp

(
Aβ + A−νa

)
.

For the last step note that due to our notation either L = Lε (in the case Lε �→ 0) and then the estimate is due to the 
definition of Lε . If L = 1 (in the case Lε → 0) one can assume without loss of generality that ε is so small that Lε ≤ 1
(and thus by definition also λε, με ≤ 1). Using this and inserting p := 1

D
we obtain in the same way as in the proof of 

Lemma B.10:
−D∫

−∞
G2 (ξ, t)dξ ≤ C

(( κ

D

)μ + t

D

(
Aβ + A−νa

))
.

Using these estimates on G1,1, G1,2 and G2 one obtains from Lemma B.11 (note also Remark B.12):

1 − W̃ (A − D) =
A−D∫
−∞

(
G1,1 ∗ G1,2 ∗ G2

)
dξ ≤

A− D
4∫

−∞
G1,1dξ +

− D
4∫

−∞
G1,2dξ +

− D
4∫

−∞
G2dξ

≤ C
κμ

Dμ
+ CA−νat

Lρ+a−max{0,b}Dω1
+ CAβt

Lρ−bDω2
+ Ct

(
Aβ + A−νa

)
D

.

Choosing D = Aσ (with A ≥ 1) one has

1 − W̃
(
A − Aσ

)≤ CκμA−μσ + Ct

La+ω1
A−νa−σω1 + Ct

Lρ−b
Aβ−σω2 + Ct

(
Aβ−σ + A−νa−σ

)
.

In the case L = 1 (i.e. Lε → 0) it suffices to consider the exponents of A:

• −μσ < 0, as μ, σ > 0,
• −νa − σω1 < 0, as ω1, a > 0,

• β − σω2 = β − σρ =
{

b − σρ b ≥ 0
νb − σρ b < 0

< 0, independently of the sign of b if we choose σ sufficiently close to 

1 and σ > ν (as b < ρ).

• β − σ =
{

b − σ b ≥ 0
νb − σ b < 0

< 0, independently of the sign of b if we choose σ > b as ν < 1 and b < 1 (note that 

this choice of σ does not collide with the choice made before)
• −νa − σ < 0, as a, σ > 0.

Thus, taking −θ to be the maximum of the (negative) exponents proves the claim in this case.
If L = Lε (i.e. Lε �→ 0) one has to consider also the exponents of L:

• a + ω1 > 0, as a, ω1 > 0,
• ρ − b > 0, as by assumption b < ρ.

Thus either the two terms containing L = Lε are bounded (if Lε is bounded) or converge to zero (if Lε → ∞) and so 
in both cases with the same θ > 0 as above the claim follows. �
2.1.3. The iteration argument

In this section we will prove Proposition 2.1. We therefore define

Fε (X) :=
X∫

0

Hε (Y )dY while for Lε → 0 this reduces to Fε (x) =
x∫

0

hε (y)dy.

We first show the following Lemma, that will be the key in the proof of Proposition 2.1.
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Lemma 2.7. There exists θ > 0 such that

Fε (A) ≥ −CAν(1−ρ) + Fε

((
A − Aσ

)
eT
)

e−(1−ρ)T

(
1 − C

Aθ

)
for A sufficiently large.

Proof. From the choice of ψ and W respectively (using also the non-negativity and monotonicity properties of W )

Fε (A) =
A∫

0

Hε (X)dX ≥
∞∫

0

W (X,0)Hε (X)dX ≥ e−(1−ρ)T

∞∫
0

Hε (X)W

(
X

eT
, T

)
dX

≥ e−(1−ρ)T

∞∫
Aν

∂XFε (X)W

(
X

eT
, T

)
dX

= −e−(1−ρ)T Fε

(
Aν
)
W

(
Aν

eT
, T

)
−

∞∫
Aν

e−(1−ρ)T e−T Fε (X)∂ξW

(
X

eT
, T

)
dX

≥ −CAν(1−ρ) + e−(1−ρ)T

∞∫
Aνe−T

Fε

(
XeT
)(

G1,1 ∗ G1,2 ∗ G2
)
(X,T )dX

where we changed variables in the last step and used that W is bounded, ∂ξW = −G1,1 ∗ G1,2 ∗ G2 on (Aν,∞) as 
well as Fε (Aν) ≤ Aν(1−ρ). Noting that for σ > ν we have Aνe−T ≤ A − Aσ for sufficiently large A and using also 
the monotonicity of Fε we can further estimate

Fε (A) ≥ −CAν(1−ρ) + e−(1−ρ)T

∞∫
A−Aσ

Fε

(
XeT
)(

G1,1 ∗ G1,2 ∗ G2
)
(X,T )dX

≥ −CAν(1−ρ) + e−(1−ρ)T Fε

((
A − Aσ

)
eT
) ∞∫
A−Aσ

(
G1,1 ∗ G1,2 ∗ G2

)
(X,T )dX

= −CAν(1−ρ) + Fε

((
A − Aσ

)
eT
)

e−(1−ρ)T W
(
A − Aσ

)
≥ −CAν(1−ρ) + Fε

((
A − Aσ

)
eT
)

e−(1−ρ)T

(
1 − C

Aθ

)
,

while in the last step Lemma 2.6 was applied. �
We are now prepared to prove Proposition 2.1. This will be done by some iteration argument using recursively 

Lemma 2.7.

Proof of Proposition 2.1. Let α := eT > 1. For any δ > 0 there exists Rε,δ > 0 such that Fε (R) ≥ R1−ρ (1 − δ) for 

all R ≥ Rε,δ . For A0 >
(

α
α−1

) 1
1−σ

we define a sequence {Ak}k∈N0
by Ak+1 := α

(
Ak − Aσ

k

)
. From the choice of A0

one obtains that Ak is strictly increasing and one has Ak → ∞ as k → ∞. Furthermore αAk = Ak+1 + αAσ
k and thus

Ak = Ak+1

α

(
1 + α

Aσ
k

Ak+1

)
.

By iteration one obtains for any N ∈N:

A0 = AN

αN

N−1∏ (
1 + α

Aσ
k

Ak+1

)
. (29)
k=0
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For any N ∈N and 0 ≤ k < N applying Lemma 2.7 one gets by induction:

Fε (Ak) ≥ Fε (AN)α−(N−k)(1−ρ)

N−1∏
n=k

(
1 − C

Aθ
n

)
− C

N−1∑
m=k

α−(m−k)(1−ρ)

(
m−1∏
n=k

(
1 − C

Aθ
n

))
Aν(1−ρ)

m , (30)

where we use the convention 
∑u

k=l ak = 0 and 
∏u

k=l ak = 1 if u < l. Thus for k = 0 one particularly obtains

Fε (A0) ≥ Fε (AN)α−N(1−ρ)

N−1∏
n=0

(
1 − C

Aθ
n

)
− C

N−1∑
m=0

α−m(1−ρ)

(
m−1∏
n=0

(
1 − C

Aθ
n

))
Aν(1−ρ)

m

= Fε (AN)α−N(1−ρ)

N−1∏
n=0

(
1 − C

Aθ
n

)
− C

N−1∑
m=0

α(ν−1)(1−ρ)m

(
m−1∏
n=0

(
1 − C

Aθ
n

))(
α−mAm

)ν(1−ρ)

=: (I ) − (II) . (31)

We now estimate the two terms separately.
Let δ∗ := δ/2. Choosing N sufficiently large such that AN ≥ Rε,δ∗ one has, using also (29)

(I ) ≥ (1 − δ∗)A
1−ρ
N α−N(1−ρ)

N−1∏
n=0

(
1 − C

Aθ
n

)
= (1 − δ∗)

(
AN

αN

)1−ρ N−1∏
n=0

(
1 − C

Aθ
n

)

= (1 − δ∗)A
1−ρ
0

∏N−1
n=0

(
1 − C

Aθ
n

)
(∏N−1

k=0

(
1 + α

Aσ
k

Ak+1

))1−ρ
. (32)

Let 0 < D0 < D be parameters to be fixed later and assume A0 > D. One has Ak+1 = α
(
Ak − Aσ

k

)
. Thus using the 

monotonicity of Ak

Ak+1

Ak

= α
(

1 − Aσ−1
k

)
> α
(

1 − Dσ−1
0

)
=: β0 > 1

if we fix D0 sufficiently large as α > 1. Using this, one has Ak+1 > β0Ak and thus by iteration Ak+1 > βk+1
0 A0.

We continue to estimate (I) and thus consider first 
∏N−1

n=0

(
1 − C

Aθ
n

)
while we assume that D0 is sufficiently large 

such that C
Dθ < 1 and thus also C

Aθ
n

< 1 by the monotonicity of An. Taking the logarithm of the product one has using 

the estimate log (1 − x) ≥ − x
1−x

:

N−1∑
n=0

log

(
1 − C

Aθ
n

)
≥

N−1∑
n=0

− C

Aθ
n

· 1

1 − C
Aθ

n

= −C

N−1∑
n=0

1

Aθ
n − C

≥ −C

N−1∑
n=0

1

βnθ
0 Aθ

0 − C

≥ −C

N−1∑
n=0

1

βθn
0

1

Dθ − C
≥ −C

βθ
0

βθ
0 − 1

1

Dθ − C
=: − Cβ

Dθ − C
.

Thus one obtains using exp (−x) ≥ 1 − x:

N−1∏
n=0

(
1 − C

Aθ
n

)
≥ exp

(
− Cβ

Dθ − C

)
≥ 1 − Cβ

Dθ − C
. (33)

Considering 
∏N−1

k=0

(
1 + α

Aσ
k

Ak+1

)
and applying again first the logarithm on the product and then using log(1 + x) ≤ x

one obtains

N−1∑
k=0

log

(
1 + α

Aσ
k

Ak+1

)
≤

N−1∑
k=0

α
Aσ

k

Ak+1
≤ α

N−1∑
k=0

Aσ−1
k ≤ αAσ−1

0

N−1∑
k=0

(
βσ−1

0

)k ≤ αDσ−1
∞∑

k=0

(
βσ−1

0

)k
=: Cγ Dσ−1.
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Thus one can estimate

(
N−1∏
k=0

(
1 + α

Aσ
k

Ak+1

))1−ρ

≤ exp
[(

Cγ Dσ−1
)

(1 − ρ)
]

= 1 +
∞∑

n=1

(1 − ρ)n Cn
γ Dn(σ−1)

n!

≤ 1 + Dσ−1
∞∑

n=1

Cn
γ (1 − ρ)n

n! ≤ 1 + exp
(
Cγ (1 − ρ)

)
D1−σ

. (34)

Combining the estimates of (33) and (34) one obtains

∏N−1
n=0

(
1 − C

Aθ
n

)
(∏N−1

k=0

(
1 + α

Aσ
k

Ak+1

))1−ρ
≥ 1 − Cβ

Dθ−C

1 + exp
(
Cγ (1−ρ)

)
D1−σ

= 1 −
Cβ

Dθ−C
+ exp

(
Cγ (1−ρ)

)
D1−σ

1 + exp
(
Cγ (1−ρ)

)
D1−σ

≥ 1 − Cβ

Dθ − C
− exp

(
Cγ (1 − ρ)

)
D1−σ

. (35)

Together with (32) this shows

(I ) ≥ (1 − δ∗)A
1−ρ
0

(
1 − Cβ

Dθ − C
− exp

(
Cγ (1 − ρ)

)
D1−σ

)
. (36)

To estimate (II) we first note that one has 
∏m−1

n=0

(
1 − C

Aθ
n

)
≤ 1 as well as 

∏m−1
k=0

(
1 + α

Aσ
k

Ak+1

)
≥ 1 for any m ∈ N0. 

Using this as well as (29) for N = m and m = 0, . . . , N − 1 one obtains

(II) = C

N−1∑
m=0

α(ν−1)(1−ρ)m

(
m−1∏
n=0

(
1 − C

Aθ
n

))(
α−mAm

)ν(1−ρ) ≤ C

N−1∑
m=0

α(ν−1)(1−ρ)m
(
α−mAm

)ν(1−ρ)

= C

N−1∑
m=0

α(ν−1)(1−ρ)m
A

ν(1−ρ)
0(∏m−1

k=0

(
1 + α

Aσ
k

Ak+1

))ν(1−ρ)
≤ C

N−1∑
m=0

α(ν−1)(1−ρ)mA
ν(1−ρ)
0

≤ A
ν(1−ρ)
0 C

∞∑
m=0

α(ν−1)(1−ρ)m =: CνA
ν(1−ρ)
0 . (37)

Combining (36), (37) and (31) yields

Fε (A0) ≥ (1 − δ∗)
(

1 − Cβ

Dθ − C
− exp

(
Cγ (1 − ρ)

)
D1−σ

)
A

1−ρ
0 − CνA

ν(1−ρ)
0

≥ A
1−ρ
0

(
(1 − δ∗)

(
1 − Cβ

Dθ − C
− exp

(
Cγ (1 − ρ)

)
D1−σ

)
− Cν

D(1−ν)(1−ρ)

)
. (38)

We choose now D sufficiently large such that one has

• D ≥
(

3Cβ
2−δ
δ

+ C
)1/θ

which is equivalent to Cβ

Dθ−C
≤ 1

3
δ

2−δ

• D ≥
(

3 exp
(
Cγ (1 − ρ)

) 2−δ
δ

) 1
1−σ

which is equivalent to 
exp
(
Cγ (1−ρ)

)
D1−σ ≤ 1

3
δ

2−δ

• D ≥
(

3Cν

1−δ/2
2−δ
δ

) 1
(1−ν)(1−ρ)

which is equivalent to Cν
1

D(1−ν)(1−ρ) ≤ (1 − δ/2) 1
3

δ
2−δ

.

Inserting these estimates into (38) together with δ∗ = δ/2 one gets
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Fε (A0) ≥ A
1−ρ
0

((
1 − δ

2

)(
1 − 2

3

δ

2 − δ

)
−
(

1 − δ

2

)
1

3

δ

2 − δ

)

= A
1−ρ
0

(
1 − δ

2

)(
1 − δ

2 − δ

)
= (1 − δ)A

1−ρ
0 .

This proves the claim with Rδ = D. �
2.2. Excluding Lε → ∞

Before we can pass to the limit ε → 0 we have to exclude the case Lε → ∞ as ε → 0 in order to obtain Proposi-
tion 2.1 also for hε (instead of Hε). This will be done by some contradiction argument. We furthermore remark here 
that throughout this section we frequently use that we can bound

1∫
0

(x + ε)−a hε (x)dx ≤ L1−b
ε and

1∫
0

(x + ε)b hε (x)dx ≤ L1+a
ε (39)

due to the definition of Lε in (17).

2.2.1. Deriving a limit equation for Hε

We first show the following lemma, stating the convergence of a certain integral occurring later.

Lemma 2.8. Assume Lε → ∞ as ε → 0. Let Qε be given by

Qε (X) :=
1∫

0

hε (y)

Lε

Kε (y,LεX)dy.

Then there exists a (continuous) function Q such that Qε → Q locally uniformly up to a subsequence.

Proof. It suffices to show that both Qε as well as Q′
ε are uniformly bounded on each fixed interval [d,D] ⊂R+. One 

has using (39)

|Qε (X)| ≤ C2

1∫
0

hε (z)

Lε

(
(LεX + ε)−a (z + ε)b + (LεX + ε)b (z + ε)−a

)
dz

≤ C2

Lε

(LεX + ε)−a

1∫
0

(z + ε)b hε (z)dz + C2

Lε

(LεX + ε)b

1∫
0

(z + ε)−a hε (z)dz

≤ C2L
a
ε (LεX + ε)−a + C2L

−b
ε (LεX + ε)b

= C2

(
X + ε

Lε

)−a

+ C2

(
X + ε

Lε

)b

(40)

while the right hand side is clearly locally uniformly bounded under the given assumptions. Rewriting Qε one obtains

Qε (X) =
1∫

0

hε (z)

Lε

Kε (LεX, z)dz = Lγ
ε

1∫
0

hε (z)

Lε

K ε
Lε

(
X,

z

Lε

)
dz.

Furthermore from (11) one has∣∣∂yKε (y, z)
∣∣≤ C

(
(z + ε)−a + (z + ε)b

)
for all y ∈ [a,A]

and hence, similarly as before
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∣∣Q′
ε (X)

∣∣≤ CLγ
ε

1∫
0

hε (z)

Lε

[(
z + ε

Lε

)−a

+
(

z + ε

Lε

)b
]

dz

= CLγ−1+a
ε

1∫
0

(z + ε)−a hε (z)dz + CLγ−1−b
ε

1∫
0

(z + ε)b hε (z)dz ≤ C

where we used also γ = b − a. �
Lemma 2.9. Let ρ ∈ (max {0, b} ,1) and assume Lε → ∞ as ε → 0. Then there exists a measure H such that (up to 

a subsequence) Hε
∗
⇀ H and H satisfies

∂X (XH) + (ρ − 1)H − ∂X (Q(X)H (X)) + H (X)Q(X)

X
= 0 (41)

in the sense of distributions with Q (X) = limε→0
∫ 1

0
hε(y)
Lε

Kε (y,LεX)dy.

Proof. Transforming the equation

∂x

⎛
⎝ x∫

0

∞∫
x−y

Kε (y, z)

z
hε (y)hε (z)dzdy

⎞
⎠= ∂x (xhε (x)) + (ρ − 1)hε (x)

to the rescaled variables X = x
Lε

one obtains

1

Lε

∂X

⎛
⎜⎝

LεX∫
0

∞∫
LεX−y

Kε (y, z)

z
hε (y)hε (z)dzdy

⎞
⎟⎠= 1

Lε

∂X

(
LεX

H (X)

L
ρ
ε

)
+ (ρ − 1)

Hε (X)

L
ρ
ε

.

Testing with ψ ∈ C∞
c (R+) (in the rescaled X-variable), splitting the integral and interchanging the order of integration 

we can rewrite this as

∞∫
0

(X∂Xψ (X) − (ρ − 1)ψ (X))Hε (X)dX

= 1

L
ρ−γ
ε

∞∫
1

Lε

∞∫
1

Lε

K ε
Lε

(Y,Z)

Z
Hε (Y )Hε (Z)

[
ψ (Y + Z) − ψ (Y )

]
dZdY

+
∞∫

1
Lε

1∫
0

Kε (LεY, z)

z
hε (z)Hε (Y )

[
ψ

(
Y + z

Lε

)
− ψ (Y )

]
dzdY

+
1∫

0

∞∫
0

⎛
⎜⎜⎝

y
Lε

+Z∫
y

Lε

∂Xψ (X)dX

⎞
⎟⎟⎠ Kε (y,LεZ)

LεZ
hε (y)Hε (Z)dZdy

= (I ) + (II) + (III) .

In the following we assume that suppψ ⊂ [d,D] with d > 0 and D > 1. Furthermore we can assume that Lε > 1
is sufficiently large and that ε < 1 is sufficiently small (as we are assuming Lε → ∞ for ε → 0). We first show that 
(I ) → 0 as ε → 0:
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|(I )| ≤ C2

L
ρ−γ
ε

D∫
1

Lε

∞∫
1

Lε

(
Y + ε

Lε

)−a (
Z + ε

Lε

)b
Z

Hε (Y )Hε (Z) |ψ (Y + Z) − ψ (Y )|dZdY

+ C2

L
ρ−γ
ε

D∫
1

Lε

∞∫
1

Lε

(
Y + ε

Lε

)b (
Z + ε

Lε

)−a

Z
Hε (Y )Hε (Z) |ψ (Y + Z) − ψ (Y )|dZdY

≤ 2b̃C

L
ρ−γ
ε

D∫
1

Lε

∞∫
1

Lε

Y−aZb + YbZ−a

Z
Hε (Y )Hε (Z) |ψ (Y + Z) − ψ (Y )|dZdY

≤ C
∥∥ψ ′∥∥

L∞

L
ρ−γ−a
ε

D∫
1

Lε

1∫
1

Lε

(
Zb + Yb

)
Hε (Y )Hε (Z)dZdY + C ‖ψ‖L∞

L
ρ−γ
ε

·

⎡
⎢⎢⎣La

ε

D∫
1

Lε

Hε (Y )dY

∞∫
1

Zb−1Hε (Z)dZ +max
{
L−b

ε ,Db
} D∫

1
Lε

Hε (Y )dY

∞∫
1

Z−a−1Hε (Z)dZ

⎤
⎥⎥⎦

≤ CLγ+a−ρ
ε max

{
1,L−b

ε ,Db
} D∫

1
Lε

Hε (Y )dY

1∫
1

Lε

Hε (Z)dZ + CLγ−ρ
ε

[
La

εD
1−ρ + max

{
L−b

ε ,Db
}

D1−ρ
]

= CD1−ρLb−ρ
ε max

{
Db,L−b

ε

}
+ CD1−ρLb−ρ

ε + CD1−ρLb−a−ρ
ε max

{
L−b

ε ,Db
}

→ 0

as Lε → ∞ (i.e. for ε → 0 by assumption).
Next we show (II) → ∫∞

0 ∂Xψ (X)H (X)Q (X)dX. As Hε is a sequence of locally uniformly bounded (non-

negative Radon) measures there exists a (non-negative Radon) measure H such that Hε
∗
⇀ H in the sense of measures. 

Using now Taylor’s formula for ψ one obtains

ψ

(
Y + z

Lε

)
− ψ (Y ) = ψ ′ (Y ) · z

Lε

+ z2

L2
ε

z∫
0

(z − t)ψ ′′
(

Y + t

Lε

)
dt.

Using this in (II) one gets

(II) =
∞∫

1
Lε

1∫
0

Kε (LεY, z)

z
hε (z)Hε (Y ) · z

Lε

ψ ′ (Y )dzdY

+
∞∫

1
Lε

1∫
0

Kε (LεY, z)

z
hε (z)Hε (Y ) · z2

L2
ε

z∫
0

(z − t)ψ ′′
(

Y + t

Lε

)
dtdzdY

= (II)a + (II)b .

We consider terms separately beginning with (II)b (and assuming Lε to be sufficiently large, i.e. 1
Lε

< d):

∣∣(II)b∣∣ ≤ 1

L2
ε

∞∫
1

1∫
0

z2hε (z)Kε (LεY, z)Hε (Y )

z∫
0

∣∣∣∣ψ ′′
(

Y + t

Lε

)∣∣∣∣dtdzdY
Lε
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≤ C
∥∥ψ ′′∥∥∞
L2

ε

D∫
d− 1

Lε

1∫
0

hε (z)Hε (Y )
[
(LεY + ε)−a (z + ε)b + (LεY + ε)b (z + ε)−a

]
dzdY

≤ CD1−ρ

L2
ε

[
(Lεd − 1 + ε)−a L1+a

ε + max
{
(LεD + ε)b , (Lεd − 1 + ε)b

}
L1−b

ε

]

= CD1−ρ

⎡
⎢⎢⎣
(
d − 1

Lε
+ ε

Lε

)−a

Lε

+
max

{(
D + ε

Lε

)b
,
(
d − 1

Lε
+ ε

Lε

)b}
Lε

⎤
⎥⎥⎦

→ 0

as ε → 0 (and Lε → ∞). On the other hand (using the symmetry of Kε)

(II)a =
∞∫

1
Lε

Hε (Y )ψ ′ (Y )

1∫
0

hε (z)

Lε

Kε (LεY, z)dzdY =
∞∫

1
Lε

Hε (Y )ψ ′ (Y )Qε (Y )dY.

Thus one obtains (II)a → ∫∞
0 H (Y)Q (Y )ψ ′ (Y )dY directly from Lemma 2.8. It remains to show that (III) →∫∞

0 H (Y)
Q(Y)

Y
ψ (Y )dY . We first rewrite (III) as

(III) =
∞∫

0

1∫
0

y
Lε

+Z∫
y

Lε

Kε (y,LεZ)

LεZ
hε (y)Hε (Z) ∂Xψ (X)dXdydZ

=
∞∫

0

1∫
0

Kε (y,LεZ)

LεZ
hε (y)Hε (Z)

[
ψ (Z) + ψ

(
Z + y

Lε

)
− ψ (Z) − ψ

(
y

Lε

)]
dydZ.

Due to suppψ ⊂ [d,D] we obtain for Lε sufficiently large (i.e. Lε ≥ 2
d

) that ψ
(

y
Lε

)
= 0 for all y ∈ [0,1]. Thus using 

also the definition of Qε we can rewrite (III) as

(III) =
∞∫

0

ψ (Z)Hε (Z)
Qε (Z)

Z
dZ +

∞∫
0

1∫
0

Kε (y,LεZ)

LεZ
hε (y)Hε (Z)

[
ψ

(
Z + y

Lε

)
− ψ (Z)

]
dydZ

=: (III)a + (III)b.

The integral (III)a converges (up to a subsequence) to 
∫∞

0 ψ (Z)H (Z)
Q(Z)

Z
dZ according to Lemma 2.8. It thus 

remains to show that (III)b converges to zero. To see this note that as ψ is smooth and compactly supported we have 
for y ∈ [0,1]:∣∣∣∣ψ

(
Z + y

Lε

)
− ψ (Z)

∣∣∣∣≤ C (ψ)
y

Lε

χ[
d− 1

Lε
,∞
) (Z) ≤ C (ψ)

Lε

χ[
d− 1

Lε
,∞
) (Z) .

Using this we can estimate

(III)b ≤ C (ψ)

Lε

∞∫
d−1/Lε

Hε (Z)
Qε (Z)

Z
dZ.

From the estimates on Qε in (40) we obtain that the integral on the right hand side is bounded uniformly in ε and thus 
for Lε → ∞ the right hand side converges to zero, concluding the proof. �
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2.2.2. Non-solvability of the limit equation
Lemma 2.10. For ρ ∈ (0,1) there exists no solution H to (41) satisfying the lower bound (20) and 

∫ R

0 H (X)dX ≤
R1−ρ for each R ≥ 0.

Proof. Assuming such a solution exists and rewriting (41) one has

∂X ((X − Q(X))H (X)) =
(

(1 − ρ) − Q(X)

X

)
H (X) .

Defining F (X) := (X − Q(X))H (X) this is equivalent to

∂XF (X) = (1 − ρ) − Q(X)
X

X − Q(X)
F (X) and thus F (X) = C · exp

⎛
⎝ X∫

A

(1 − ρ) − Q(Y)
Y

Y − Q(Y)
dY

⎞
⎠

for some constant C. Considering Q one can assume (up to passing to a subsequence of ε again denoted by ε) that 
either λε ≥ με or με ≥ λε for all ε, while both cases will be denoted as λ ≥ μ or μ ≥ λ either. One can then estimate 
(using the definition of λε and με):

0 ≤ Q(X) ≤ lim
ε→0

C2

1∫
0

hε (y)

Lε

(
(y + ε)−a (LεX + ε)b + (y + ε)b (LεX + ε)−a

)
dy

≤ lim
ε→0

C2

Lε

(
L1−b

ε (LεX + ε)b + La+1
ε (LεX + ε)−a

)
= lim

ε→0
C2

((
X + ε

Lε

)b

+
(

X + ε

Lε

)−a
)

= C2

(
Xb + X−a

)
.

On the other hand

Q(X) ≥ lim
ε→0

C1

1∫
0

hε (y)

Lε

(
(y + ε)−a (LεX + ε)b + (y + ε)b (LεX + ε)−a

)
dy

≥ lim
ε→0

C1

Lε

{
L1−b

ε (LεX + ε)b μ ≥ λ

L1+a
ε (LεX + ε)−a λ ≥ μ

= C1

{
Xb μ ≥ λ

X−a λ ≥ μ.

This shows in particular that for sufficiently large A one has Q (X) < X for all X ≥ A and F is well defined for 
X ≥ A. We claim now C > 0. To see this assume C ≤ 0. Then F ≤ 0 and as just shown X − Q (X) ≥ 0 for X ≥ A. 
As H (X) = F(X)

X−Q(X)
one has (using 

∫ R

0 HdX ≥ R1−ρ

2 for sufficiently large R due to Proposition 2.1 and 
∫ A

0 HdX ≤
A1−ρ ):

0 ≥
R∫

A

H (X)dX =
R∫

0

H (X)dX −
A∫

0

H (X)dX ≥ 1

2
R1−ρ − A1−ρ = R1−ρ

(
1

2
−
(

A

R

)1−ρ
)

> 0

for sufficiently large R and thus a contradiction. Therefore we have C > 0.
We choose now X0 < A such that Q (X0) = X0 and Q (X) < X for all X > X0 which is possible due to the lower 

and upper bound for Q. We get that X−Q(X)
X−X0

is bounded on [X0,∞) and thus we have X − Q (X) ≤ K (X − X0) for 
some K > 0. Furthermore as Q (Y ) ∼ Y for Y → X0 we obtain

− (1 − ρ) + Q(Y)

Y
= ρ − 1 + Q(Y)

Y
≥ ρ − δ > 0

on 
[
X0,X

]
for some X > X0 close to X0 and δ > 0. We then get
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A∫
X

(1 − ρ) − Q(Y)
Y

Y − Q(Y)
dY := C

(
X,A
)
< ∞.

Using the definition of F we can then write H as

H = C

X − Q(X)
exp

⎛
⎝−

A∫
X

(1 − ρ) − Q(Y)
Y

Y − Q(Y)
dY

⎞
⎠

≥ C

K (X − X0)
exp

⎛
⎜⎝−

X∫
X

(1 − ρ) − Q(Y)
Y

Y − Q(Y)
dY −

A∫
X

(1 − ρ) − Q(Y)
Y

Y − Q(Y)
dY

⎞
⎟⎠

≥ C

K (X − X0)
exp
(−C
(
X,A
))

exp

⎛
⎜⎝(ρ − δ)

X∫
X

1

K (Y − X0)
dY

⎞
⎟⎠

= C

K
exp
(−C
(
X,A
)) (

X − X0
) ρ−δ

K
1

(X − X0)
1+ ρ−δ

K

= C
(
A,X,X0,K

) 1

(X − X0)
1+α

with α = ρ−δ
K

> 0, contradicting the local integrability of H . �
This shows that Lε has to be bounded and thus by scale invariance we obtain from Proposition 2.1 also the lower 

bound for hε , i.e. we have

Proposition 2.11. For any δ > 0 there exists Rδ > 0 such that

R∫
0

hε(x) dx ≥ (1 − δ)R1−ρ for all R ≥ Rδ. (42)

2.3. Exponential decay at the origin

We will show in this section that hε decays exponentially near zero in an averaged sense, a property that will be 
crucial when passing to the limit ε → 0.

Lemma 2.12. There exist constants C and c independent of ε such that

D∫
0

hε (y)dy ≤ CD1−ρ exp
(−c (D + ε)−a

)

for any D ∈ (0,1] and all ε > 0.

Proof. Let δ = 1
2 , then due to Proposition 2.11 there exists R∗ > 0 such that 

∫ B2R∗
0 hε (z)dz ≥ (B2R∗)1−ρ

2 for any 

B2 ≥ 1. On the other hand one has 
∫ B1R∗

0 hε (z)dz ≤ (B1R∗)1−ρ for any B1 ≥ 0. Thus one has

B2R∗∫
B1R∗

hε (z)dz =
B2R∗∫
0

hε (z)dz −
B1R∗∫
0

hε (z)dz ≥ (B2R∗)1−ρ

2
− (B1R∗)1−ρ ≥ 1

for sufficiently large B2 (depending on B1). Thus one can estimate
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R∫
0

∞∫
R−y

Kε (y, z)

z
hε (y)hε (z)dzdy

≥ C1

R∫
0

B2R∗∫
B1R∗

(y + ε)−a (z + ε)b + (y + ε)b (z + ε)−a

z
hε (y)hε (z)dzdy

≥ C1

(R + ε)a

R∫
0

hε (y)dy

B2R∗∫
B1R∗

(z + ε)b

z
hε (z)dz

≥ C

(R + ε)a

R∫
0

hε (y)dy (B2R∗)b−1

B2R∗∫
B1R∗

hε (z)dz ≥ C

(R + ε)a
(B2R∗)b−1

R∫
0

hε (y)dy.

Using this and taking χ(−∞,R] (restricted to [0,∞)) by some approximation argument as test function in the equation 
(1 − ρ)hε (x) − ∂x (xhε (x)) + ∂xIε [hε] (x) = 0 we obtain

0 = (1 − ρ)

R∫
0

hε (x)dx − Rhε (R) +
R∫

0

∞∫
R−y

Kε (y, z)

z
hε (y)hε (z)dzdy

≥ (1 − ρ)

R∫
0

hε (x)dx − Rhε (R) + C

(R + ε)a
(B2R∗)b−1

R∫
0

hε (x)dx.

Thus one has

(1 − ρ)

R∫
0

hε (x)dx + C (B2R∗)b−1

(R + ε)a

R∫
0

hε (x)dx ≤ Rhε (R) = R∂R

R∫
0

hε (x)dx

or equivalently

∂R

⎛
⎝ R∫

0

hε (x)dx

⎞
⎠≥
(

1 − ρ

R
+ C (B2R∗)b−1

R (R + ε)a

) R∫
0

hε (x)dx ≥
(

1 − ρ

R
+ C (B2R∗)b−1

(R + ε)a

) R∫
0

hε (x)dx,

where we used 1
R(R+ε)a

≥ 1
(R+ε)a

for R ∈ [D,1]. Integrating this inequality over [D,1] and using 
∫ 1

0 hεdx ≤ 1 as well 
as (1 + ε)−a ≤ 1 gives

D∫
0

hε (x)dx ≤ exp

(
C (B2R∗)b−1

a

)
D1−ρ exp

(
−C (B2R∗)b−1

a
(D + ε)−a

)
. �

Lemma 2.13. For D ≤ 1 and any α ∈R one has the following estimate

D∫
0

(x + ε)α hε (x)dx ≤ CD1−ρ (D + ε)α exp
(−c (D + ε)−a

)
if α ≥ 0

D∫
0

(x + ε)α hε (x)dx ≤ C̃D1−ρ exp
(
− c

2
(D + ε)−a

)
if α < 0.
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Proof. The case α ≥ 0 follows immediately from Lemma 2.12. The case α < 0 follows from Lemma 2.12 using a 
dyadic decomposition as in Lemma A.1. �

As {hε}ε>0 is a locally bounded sequence of non-negative Radon measures one can extract a subsequence (again 

denoted by ε) such that hε
∗
⇀ h in the sense of measures and h is non-trivial due to Proposition 2.11. As a direct 

consequence of Lemma 2.13 one obtains:

Lemma 2.14. For D ≤ 1 and α ∈ R one has

D∫
0

xαh (x)dx ≤ C̃D1−ρ exp
(
− c

2
D−a
)

if α < 0

D∫
0

xαh (x)dx ≤ CD1+α−ρ exp
(−cD−a

)
if α ≥ 0.

Proof. This follows from Lemma 2.13. �
As a consequence of Lemma 2.14 together with Lemma A.1 we obtain

Corollary 2.15. For any α ∈ R and D > 0 each limit h satisfies

1.
∫∞

0 xαh (x)dx < ∞ if α < ρ − 1,

2.
∫ D

0 xαh (x)dx < C (D).

Remark 2.16. We obtain corresponding results for hε and h with xα replaced by (x + ε)α .

2.4. Passing to the limit ε → 0

In this section we will finally conclude the proof of existence of a solution to (5) as stated in Theorem 1.1 by 
passing to the limit ε → 0 in (18). Before doing this we first show that I [h] is locally integrable:

Lemma 2.17. For h as given above one has I [h] ∈ L1
loc ([0,∞)).

Proof. Let D > 0. Then one has

D∫
0

I [h] (x)dx =
D∫

0

x∫
0

∞∫
x−y

K (y, z)

z
h (y)h (z)dzdydx

≤ C

D∫
0

D∫
0

∞∫
0

(
y−azb−1 + ybz−a−1

)
h(y)h (z)dzdydx

≤ C

D∫
0

D∫
0

(
y−a + yb

)
h(y)dydx ≤ C (D)

where Corollary 2.15 was used. One similarly gets 
∫
N

I [h] dx = 0 for bounded null sets N ⊂ [0,∞). �
To show that h is a (weak) self-similar solution it only remains to pass to the limit in the weak form of the equation

∂xIε[hε] = ∂x (xhε) + (ρ − 1)hε.
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Thus let ϕ ∈ C∞
c ([0,∞)). Then the weak form reads as

∞∫
0

∂xϕ (x)

x∫
0

∞∫
x−y

Kε (y, z)

z
hε (y)hε (z)dzdydx =

∞∫
0

∂xϕ (x) xhε (x)dx + (1 − ρ)

∞∫
0

ϕ (x)hε (x)dx.

One can easily pass to the limit in the right hand side. To prove Theorem 1.1 it thus remains to show that one can also 
take the limit in the left hand side of this equation. This will be done in the following Proposition.

Proposition 2.18. For any ϕ ∈ C∞
c ([0,∞)) one has

∞∫
0

∂xϕ (x)

x∫
0

∞∫
x−y

Kε (y, z)

z
hε (z)hε (y)dzdydx −→

∞∫
0

∂xϕ (x)

x∫
0

∞∫
x−y

K (y, z)

z
h (z)h (y)dzdydx

as ε → 0.

Proof. Taking the difference of the two integrals and rewriting one obtains∣∣∣∣∣∣
∞∫

0

∂xϕ (x)

⎛
⎝ x∫

0

∞∫
x−y

K (y, z)

z
h (y)h (z) − Kε (y, z)

z
hε (y)hε (z)dydz

⎞
⎠dx

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

∞∫
0

∂xϕ (x)

⎛
⎝ x∫

0

∞∫
x−y

K (y, z) − Kε (y, z)

z
h (y)h (z)dzdy

⎞
⎠dx

∣∣∣∣∣∣
+
∣∣∣∣∣∣

∞∫
0

∂xϕ (x)

⎛
⎝ x∫

0

∞∫
x−y

Kε (y, z)

z
h (y) (h (z) − hε (z))dzdy

⎞
⎠dx

∣∣∣∣∣∣
+
∣∣∣∣∣∣

∞∫
0

∂xϕ (x)

⎛
⎝ x∫

0

∞∫
x−y

Kε (y, z)

z
hε (z) (h (y) − hε (y))dzdy

⎞
⎠dx

∣∣∣∣∣∣=: (I ) + (II) + (III) .

We estimate the three terms separately and take D > 0 such that suppϕ ⊂ [0,D]. Then due to Lebesgue’s Theorem 
(using also Corollary 2.15 and Lemma A.1) we obtain

(I ) ≤
∞∫

0

|∂xϕ (x)|
⎛
⎝ x∫

0

∞∫
x−y

|K (y, z) − Kε (y, z)|
z

h (y)h (z)dzdy

⎞
⎠dx → 0 as ε → 0.

To estimate the other two terms we will need some cutoff functions. Let M, N ∈ N and ζN
1 , ζN

2 , ξM
1 , ξM

2 ∈
C∞ ([0,∞)) such that

ζN
1 = 0 on

[
0,

1

N

]
∪ [N + 1,∞) , ζN

1 = 1 on

[
2

N
,N

]
, 0 ≤ ζN

1 ≤ 1, ζN
2 := 1 − ζN

1 ,

ξM
1 = 0 on

[
0,

1

M

]
, ξM

1 = 1 on

[
2

M
,∞
)

, 0 ≤ ξM
1 ≤ 1, ξM

2 := 1 − ξM
1 .

Defining Ki,N
ε (y, z) := Kε (y, z) · ζN

i (z) for i = 1, 2 one obtains using also Fubini’s Theorem:

(II) ≤
∣∣∣∣∣∣

∞∫
0

∞∫
0

K1,N
ε (y, z)

z
h (y) (h (z) − hε (z))

y+z∫
y

∂xϕ (x)dxdydz

∣∣∣∣∣∣
+
∣∣∣∣∣∣

∞∫ ∞∫
K2,N

ε (y, z)

z
h (y) (h (z) − hε (z))

y+z∫
∂xϕ (x)dxdydz

∣∣∣∣∣∣=: (II)a + (II)b .
0 0 y
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We consider again terms separately and without loss of generality we assume ε < 1. Then using Corollary 2.15 and 
Lemma A.1 we obtain

(II)b ≤ C ‖∂xϕ‖∞

2
N∫

0

D∫
0

[
(y + ε)−a (z + ε)b + (y + ε)b (z + ε)−a

]
h(y) (h (z) + hε (z))dydz

+ C ‖ϕ‖∞

∞∫
N

D∫
0

(y + ε)−a (z + ε)b + (y + ε)b (z + ε)−a

z
h (y) (h (z) + hε (z))dydz

≤ ‖∂xϕ‖∞ C (D)

2
N∫

0

(
(z + ε)b + (z + ε)−a

)
(h (z) + hε (z))dz

+ C (D)‖ϕ‖∞

∞∫
N

(
2b̃zb−1 + z−a−1

)
(h (z) + hε (z))dz

≤ ‖∂xϕ‖∞ C (D)

[
1

N1−ρ

(
2

N
+ ε

)b̃

+ 1

N1−ρ

]
+ C (D)‖ϕ‖∞

[
Nb−ρ + N−a−ρ

]
−→ 0, (43)

for N → ∞. Furthermore one has

(II)a =
∣∣∣∣∣∣

∞∫
0

(h (z) − hε (z))ψN
ε (z)dz

∣∣∣∣∣∣ (44)

with ψN
ε (z) := ∫ D

0
K

1,N
ε (y,z)

z
h (y)

[
ϕ (y + z) − ϕ (y)

]
dy. We claim that ψN

ε → ψN strongly in C ([0,∞)) with 

ψN (z) := ∫ D

0
K(y,z)

z
h (y) ζN

1 (z)
[
ϕ (y + z) − ϕ (y)

]
dy. Note that by construction we have suppψN

ε ⊂
[

1
N

,N + 1
]

for all ε > 0. To show (uniform) convergence we have to use a cutoff also in y, i.e. one can estimate

∣∣∣ψN (z) − ψN
ε (z)

∣∣∣ ≤
∣∣∣∣∣∣

D∫
0

K (y, z) − Kε (y, z)

z
ζN

1 (z) ξM
1 (y)h (y)

[
ϕ (y + z) − ϕ (y)

]
dy

∣∣∣∣∣∣
+
∣∣∣∣∣∣

D∫
0

K (y, z) − Kε (y, z)

z
ζN

1 (z) ξM
2 (y)h (y)

[
ϕ (y + z) − ϕ (y)

]
dy

∣∣∣∣∣∣
=: (II)a,1 + (II)a,2 .

Using similar arguments as in (43) we get

(II)a,2 ≤ C (N,ϕ)

[
1

M1+b̃−ρ
+ 1

M1−ρ

]
−→ 0 (45)

for M → ∞ and N fixed. As K is continuous on 
[

1
M

,D
]

×
[

1
N

,N + 1
]

for M, N ∈ N fixed, one has Kε → K

uniformly on 
[

1
M

,D
]
×
[

1
N

,N + 1
]

for ε → 0. Thus we get (II)a,1 → 0 for ε → 0 (with M , N fixed). Together with 

(45) this shows that ψN
ε → ψN strongly. Thus one can pass to the limit in (44) to obtain together with (43): (II) → 0

as ε → 0.
In a similar way we can show that (III) → 0 for ε → 0. �
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3. Regularity and large-mass behaviour

In this section we will finish the proof of Theorem 1.1 by showing that the measure h solving (5) obtained in 
Section 2.4 has a continuous density. Furthermore we will also show that this density satisfies h (x) ∼ (1 − ρ)x−ρ for 
x → ∞, i.e. h has the expected pointwise decay behaviour at infinity.

3.1. Continuity of the self-similar solution

Lemma 3.1. The solution h of (5) obtained in Section 2.4 is locally bounded, i.e. h ∈ L∞
loc ((0,∞)).

Proof. We first show that I [h] ∈ L∞
loc ([0,∞)). To see this let D > 0 and x ∈ [0,D]. Using (10) and Corollary 2.15

we can estimate

|I [h] (x)| ≤ C

x∫
0

∞∫
x−y

(
y−azb−1 + ybz−a−1

)
h(z)h (y)dzdy ≤ C

D∫
0

(
y−a + yb

)
h(y)dy ≤ C (D) .

Next we show xh (x) ∈ L∞
loc ([0,∞)) from which the claim directly follows. As h solves (5) in the sense of distribu-

tions it holds
∞∫

0

xh (x) ∂xϕ (x)dx =
∞∫

0

I [h] (x) ∂xϕ (x)dx − (1 − ρ)

∞∫
0

ϕ (x)h (x)dx (46)

for all ϕ ∈ C∞
c ([0,∞)). Let now R > 0 and ϕ ∈ C∞

c ([0,∞)) being such that suppϕ ⊂ [0,R]. Defining � (x) :=
− 
∫∞
x

ϕ (y)dy it holds supp� ⊂ [0,R] and ∂x� = ϕ. Substituting ϕ by � in (46) we can estimate∣∣∣∣∣∣
∞∫

0

xh (x)ϕ (x)dx

∣∣∣∣∣∣=
∣∣∣∣∣∣

∞∫
0

h(x) ∂x�(x)dx

∣∣∣∣∣∣≤
∣∣∣∣∣∣

∞∫
0

I [h] (x) ∂x�(x)dx

∣∣∣∣∣∣+ (1 − ρ)

∣∣∣∣∣∣
∞∫

0

�(x)h (x)dx

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

∞∫
0

I [h] (x)ϕ (x)dx

∣∣∣∣∣∣+ (1 − ρ)

R∫
0

R∫
x

|ϕ (y)|dyh (x)dx

≤ ‖I [h]‖L∞([0,R]) ‖ϕ‖L1([0,R]) + (1 − ρ)R1−ρ ‖ϕ‖L1([0,R]) ≤ C (R)‖ϕ‖L1([0,R]) .

Thus we have xh (x) ∈ (L1 ([0,R])
)′ ∼= L∞ ([0,R]). As R > 0 was arbitrary this shows xh (x) ∈ L∞

loc ([0,∞)). �
Lemma 3.2. For h being the solution obtained in Section 2.4 the expression I [h] is continuous in [0,∞).

Proof. We first show continuity at x = 0, i.e. I [h] (x) → 0 as x → 0. Using (10) and Corollary 2.15 we directly 
obtain

I [h] (x) =
x∫

0

∞∫
x−y

K (y, z)

z
h (y)h (z)dzdy ≤ C

x∫
0

(
y−a + yb

)
h(y)dy −→ 0 as x −→ 0.

Next we show continuity on (0,∞). Let 0 < x1 < x2 < ∞ and fix r, R > 0 such that 0 < r < x1 < x2 < R and let 
0 < δ < r/2. Rewriting the expression I [h] (x2) we obtain

|I [h] (x2) − I [h] (x1)| =
∣∣∣∣∣∣

x2∫
0

∞∫
x2−y

K (y, z)

z
h (y)h (z)dzdy −

x1∫
0

∞∫
x1−y

K (y, z)

z
h (y)h (z)dzdy

∣∣∣∣∣∣
=
∣∣∣∣∣∣

x1∫ ∞∫
(· · ·)dzdy +

x2∫
x

∞∫
(· · ·)dzdy −

x1∫ x2−y∫
(· · ·)dzdy −

x1∫ ∞∫
(· · ·)dzdy

∣∣∣∣∣∣

0 x2−y 1 x2−y 0 x1−y 0 x2−y
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≤
∣∣∣∣∣∣

x2∫
x1

∞∫
0

(· · ·)dzdy

∣∣∣∣∣∣+ C

∣∣∣∣∣∣
x1∫

0

x2−y∫
x1−y

(· · ·)dzdy

∣∣∣∣∣∣=: (I ) + (II) .

Estimating the two terms separately we first obtain together with (10)

(I ) ≤ C

x2∫
x1

(
y−a + yb

)
h(y)dy ≤ C ‖h‖L∞([r,R])

(
r−a + max

{
rb,Rb

})
|x2 − x1| −→ 0 as |x2 − x1| → 0.

To estimate (II) we split the first integral in parts that are close and far to 0 and x1 respectively, to obtain

(II) ≤ C

x1∫
0

x2−y∫
x1−y

(
y−azb−1 + ybz−a−1

)
h(z)h (y)dzdy

= C

⎛
⎜⎝

δ∫
0

∞∫
0

(· · ·)dzdy +
x1−δ∫
δ

x2−y∫
x1−y

(· · ·)dzdy +
x1∫

x1−δ

∞∫
0

(· · ·)dzdy

⎞
⎟⎠ .

Using now Lemma 2.14 as well as Corollary 2.15 we obtain for sufficiently small δ < 1 that

(II) ≤ C

(
δ1−ρ + ‖h‖2

L∞([δ,R])

(
δb−a−1 + max

{
Rb, δb

}
δ−a−1

)
R |x2 − x1|

+
(( r

2

)−a + max

{
xb

1 ,
( r

2

)b})‖h‖L∞([ r
2 ,x1
]) δ
)

≤ C

(
δ1−ρ +

(
r−a + max

{
Rb,
( r

2

)b})‖h‖L∞([ r
2 ,R
]) δ
)

+ C (r,R, δ) |x2 − x1|

≤ C (r,R)
(
δ1−ρ + δ

)
+ C (r,R, δ) |x2 − x1| .

Thus choosing first δ small and then |x2 − x1| small the right hand side can be made arbitrarily small, showing the 
continuity of I [h]. �

As a consequence we can now show the continuity of h on [0,∞) as well as pointwise exponential decay near 
x = 0.

Lemma 3.3. The solution h is continuous on [0,∞) and there exists α0 ∈ R and β > 0 such that |h(x)| ≤
Cxα0 exp

(−βx−a
)

for all x ∈ [0,1].

Proof. We first show continuity on (0,∞). As h solves (5) we have ∂x (I [h] (x) − xh (x)) = − (1 − ρ)h (x) in the 
sense of distributions. Furthermore h ∈ L∞

loc ((0,∞)) according to Lemma 3.1. Thus I [h] (x) − xh (x) is of bounded 
variation and for some x0 > 0 and a.e. x ∈ (0,∞) it holds

xh (x) = I [h] (x) + (1 − ρ)

x∫
x0

h(y)dy − I [h] (x0) + x0h(x0) . (47)

As the right hand side is continuous we obtain that xh (x) and thus also h is continuous on (0,∞).
We now show that h is bounded on [0,1] which will allow us to take x0 = 0 in (47). Rearranging (5) we obtain that 

h satisfies ∂xh (x) = 1
x
∂xI [h] (x) − ρ

h(x)
x

in the sense of distributions. Taking as test function (after approximation) 
the characteristic function of [z,1] and using the continuity of h and I [h] we obtain for z ∈ (0,1):

h(z) = 1

z
I [h] (z) +

1∫
I [h] (x)

x2
dx + ρ

1∫
h(x)

x
dx − h(1) − I [h] (1) . (48)
z z
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From Corollary 2.15 we obtain directly 
∫ 1
z

h(x)
x

dx ≤ ∫ 1
0

h(x)
x

dx ≤ C. Furthermore considering I [h] we obtain due to 
Lemma 2.14 and Corollary 2.15 for x ∈ (0,1)

I [h] (x) ≤ C

x∫
0

(
y−a + yb

)
h(y)dy ≤ Cx1−ρ exp

(−c̃x−a
)
. (49)

This shows that both 1
z
I [h] (z) and 

∫ 1
z

I [h](x)

x2 dx are bounded for all z ∈ (0,1). Thus we obtain from (48) that also h
is bounded in (0,1) and we can take x0 = 0 in (47) to get xh (x) = I [h] (x) + (1 − ρ)

∫ x

0 h (y)dy for all x ∈ [0,1]. 
Finally combining this with Lemma 2.14 and (49) we also obtain |h(x)| ≤ Cxα0 exp

(−βx−a
)

for suitable constants 
α0 ∈R and β > 0. �
3.2. Large-mass behaviour

We first prove some moment estimate that will be used several times in the following and which is a consequence 
of Corollary 2.15 and Lemma A.1.

Lemma 3.4. Let r0 > 0 be a constant and α < ρ − 1. There exists a constant C > 0 such that the solution h of (5)
obtained in Section 2.4 satisfies

∞∫
r

xαh (x)dx ≤ C (r0 + r)1+α−ρ for all r > 0.

Proof. For r ≤ 1 we use that due to Corollary 2.15 we have 
∫∞
r

xαh (x)dx ≤ ∫∞
0 xαh (x)dx ≤ Ĉ. Thus it suffices 

to take C ≥ Ĉ (r0 + 1)ρ−1−α . On the other hand for r ≥ 1 we use that due to Lemma A.1 we have 
∫∞
r

xαh (x)dx ≤
C̃r1+α−ρ . Taking C ≥ C̃ (r0 + 1)ρ−1−α we then obtain the claim using C (r0 + r)1+α−ρ ≥ C (r0 + 1)1+α−ρ r1+α−ρ ≥
C̃r1+α−ρ . �

Before proving that h has the expected pointwise decay behaviour for large cluster sizes, let us recall that h also 
satisfies the lower bound obtained in Proposition 2.11, as this property is preserved under the limit procedure in 
Section 2.4, i.e.

Remark 3.5. For each δ > 0 the solution h satisfies 
∫ R

0 h (x)dx ≥ (1 − δ)R1−ρ for all R ≥ Rδ .

Proposition 3.6. The solution h of (5) obtained in Section 2.4 satisfies h (x) ∼ (1 − ρ)x−ρ as x → ∞.

Proof. We have to show that h(R)
(1−ρ)R−ρ − 1 → 0 as R → ∞. We can estimate this expression in the following way:

∣∣∣∣ h(R)

(1 − ρ)R−ρ
− 1

∣∣∣∣≤
∣∣∣∣∣ h(R)

(1 − ρ)R−ρ
− Rh(R)

(1 − ρ)
∫ R

0 h(x)dx

∣∣∣∣∣+
∣∣∣∣∣ Rh(R)

(1 − ρ)
∫ R

0 h(x)dx
− 1

∣∣∣∣∣
≤ Rh(R)

(1 − ρ)
∫ R

0 h(x)dx

∣∣∣∣∣∣1 − Rρ−1

R∫
0

h(x)dx

∣∣∣∣∣∣+ ω (R)

≤ δ (ω (R) + 1) + |ω (R)|
for all R ≥ Rδ , where we used the lower bound on h from Remark 3.5 and we denoted ω (R) := Rh(R)

(1−ρ)
∫ R

0 h(x)dx
− 1. 

Thus it suffices to show that ω (R) → 0 as R → ∞. Furthermore we assume δ < 1/2 and R ≥ 2 in the following. 
Using (47) with x0 = 0, i.e. Rh (R) = (1 − ρ)

∫ R

0 h (x)dx + I [h] (R) we can rewrite ω (R) to obtain

|ω (R)| =
∣∣∣∣∣ I [h] (R)

(1 − ρ)
∫ R

h (x)dx

∣∣∣∣∣≤ I [h] (R)

(1 − ρ) (1 − δ)R1−ρ
≤ 2

1 − ρ
Rρ−1I [h] (R) .
0
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Thus it suffices to show I [h] (R) ≤ CRν with ν < 1 − ρ to finish the proof. This will be done in the following and it 
turns out that we have to consider the two cases b < 0 and b ≥ 0 separately, where the latter will be more complicated 
and require more work. We have using Lemma 3.4 that

I [h] (R) =
R∫

0

∞∫
R−y

K (y, z)

z
h (y)h (z)dzdy =

R/2∫
0

∞∫
R−y

(· · ·)dzdy +
R∫

R/2

∞∫
R−y

(· · ·)dzdy

≤ C

R/2∫
0

∞∫
R/2

(
y−azb−1 + ybz−a−1

)
h(y)h (z)dzdy + C

R∫
R/2

∞∫
0

y−azb−1h(y)h (z)dzdy

+ C

R∫
R/2

∞∫
R−y

ybz−a−1h(y)h (z)dzdy

≤ C

R/2∫
0

(
y−aRb−ρybR−a−ρ

)
h(y)dy + C

R∫
R/2

y−ah (y)dy + C

R∫
R/2

yb h (y)

(2 + (R − y))a+ρ
dy

≤ CR1−ρ
[
Rb−ρ + R−a−ρ+max{0,b} + R−a

]
+ C

R∫
R/2

yb h (y)

(2 + (R − y))a+ρ
dy.

Note that due to our assumptions we have b − ρ, −a − ρ + max {0, b}, −a < 0 it suffices to consider only the integral 
expression on the right-hand side. Here we have to consider the two cases b < 0 and b ≥ 0 and we start with b < 0
which is the easier one. It holds

C

R∫
R/2

yb h (y)

(2 + (R − y))a+ρ
dy ≤ CR1−ρRb

and as we assume b < 0 the claim then follows as before.
Consider now the case b ≥ 0: By splitting the integral in equidistant pieces we can estimate

C

R∫
R/2

yb h (y)

(2 + (R − y))a+ρ
dy ≤ CRb

R∫
R/2

h(y)

(2 + (R − y))a+ρ
dy

≤ CRb

�R�∑
k=
⌊

R
2

⌋
+1

k∫
k−1

h(y)

(2 + (R − y))a+ρ
dy ≤ CRb

�R�∑
k=
⌊

R
2

⌋
+1

ak

(2 + (R − k))a+ρ
.

Here we use �x� := max {(−∞, x] ∩Z} and �x� := min {[x,∞) ∩Z}. Furthermore for k ∈ N we denote by ak :=∫ k

k−1 h (x)dx. As shown in Lemma 3.7 it holds ak ≤ C0k
−ρ for b ≥ 0 and thus using this and estimating the sum by 

an integral we obtain

C

R∫
R/2

yb h (y)

(2 + (R − y))a+ρ
dy ≤ CRb

�R�∑
k=
⌊

R
2

⌋
+1

k−ρ

(2 + (R − k))a+ρ
≤ CRb−ρ

�R�+1∫
⌊

R
2

⌋
+1

(2 + (R − x))−ρ dx

= C

1 − ρ
Rb−ρ

[(
1 + R −

⌊
R

2

⌋)1−ρ

− (1 + R − �R�)1−ρ

]
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≤ CRb−ρ

(
1 + R −

⌊
R

2

⌋)1−ρ

≤ CR1−ρRb−ρ.

As b − ρ < 0 we can argue as before and this finishes the proof. �
It thus remains only to prove the following Lemma.

Lemma 3.7. Assume b ≥ 0. For R ≥ 1 we define aR := ∫ R

R−1 h (x)dx. There exists a constant C0 > 0 such that 
aR ≤ C0R

−ρ holds for all R ≥ 1.

Remark 3.8. This result also holds for b < 0 but as we can estimate directly in this case as seen above we do not need 
this here.

Proof of Lemma 3.7. Note first that it suffices to prove the claim only for R ∈ N. To see this assume that an ≤ C̃0n
−ρ

for all n ∈N and let R ∈ [1,∞) \Z. We can then estimate

aR =
R∫

R−1

h(y)dy ≤
�R�∫

�R�−1

h(y)dy =
�R�∫

�R�−1

h(y)dy +
�R�∫

�R�
h(y)dy ≤ C̃0

(�R�−ρ + �R�−ρ
)

≤ C̃0R
−ρ

((�R�
R

)−ρ

+
(�R�

R

)−ρ
)

≤ C̃0
(
2ρ + 1

)
R−ρ.

Here we used that �R�
R

≥ 1
2 for R ≥ 1. Thus choosing C0 = C̃0 (2ρ + 1) the claim holds for general R ≥ 1.

We now prove the claim for an with n ∈ N by induction. By choosing C̃0 sufficiently large, i.e. 
∫ 1

0 h (x)dx ≤ C̃0, 
the claim already holds for n = 1 and we can assume n > 1 in the following. Taking Eq. (47) with x0 = 0, dividing by 
x and integrating from n − 1 to n we obtain

an =
n∫

n−1

h(x)dx = (1 − ρ)

n∫
n−1

1

x

x∫
0

h(y)dydx +
n∫

n−1

1

x

x∫
0

∞∫
x−y

K (y, z)

z
h (y)h (z)dzdydx

≤ (1 − ρ)

n∫
n−1

x−ρdx + C

n∫
n−1

1

x

x∫
0

∞∫
x−y

(
y−azb−1 + ybz−a−1

)
h(y)h (z)dzdydx

≤ (1 − ρ) (n − 1)−ρ + C

n − 1

n∫
n−1

x∫
0

y−ah (y)

(2 + (x − y))ρ−b
dydx + C

n − 1

n∫
n−1

x∫
0

ybh (y)

(2 + (x − y))a+ρ
dydx

=: (I ) + (II) + (III) , (50)

where we used Lemma 3.4 in the last step. We estimate the three terms separately:

(I ) ≤ (1 − ρ)n−ρ

(
1 − 1

n

)−ρ

≤ 2ρ (1 − ρ)n−ρ, (51)

where we used n ≥ 2. Furthermore using Corollary 2.15 we have

(II) ≤ C

n − 1

n∫
n−1

⎛
⎝ 1∫

0

y−ah (y)

(2 + (x − y))ρ−b
dy +

x∫
1

y−ah (y)

(2 + (x − y))ρ−b
dy

⎞
⎠≤ C

n − 1

n∫
n−1

1 + x1−ρdx

≤ C (
1 + n1−ρ

)
≤ Cn−ρ, (52)
n − 1
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using n ≥ 2 and ρ < 1 in the last step. The third term cannot be estimated directly as b ≥ 0 and will require some 
iteration argument. Choosing 0 < δ < a such that δ + ρ < 1 we first of all get

(III) ≤ C

n − 1

n∫
n−1

x∫
0

ybh (y)

(1 + n − y)a+ρ
dydx ≤ C

n − 1

n∑
k=1

k∫
k−1

ybh (y)

(1 + (n − y))δ+ρ
dy

≤ C

n − 1

n∑
k=1

kb

(1 + (n − k))δ+ρ
ak. (53)

Summarising (50)–(53) we have shown so far that there exists a constant C1 > 0 that does not depend on n such that

an ≤ C1n
−ρ + C1

n − 1

n∑
k=1

kb

(1 + (n − k))δ+ρ
ak = C1n

−ρ + C1

n − 1

n−1∑
k=1

kb

(1 + (n − k))δ+ρ
ak + C1

nb

n − 1
an.

As b < 1 there exists N0 ∈ N such that C1
nb

n−1 < 1
2 for all n ≥ N0 (i.e. N0 > (2C1)

1
1−b + 1 suffices). Thus for n ≥ N0

we get

an ≤ 2C1n
−ρ + 2C1

n − 1

n−1∑
k=1

kb

(1 + (n − k))δ+ρ
ak. (54)

Choosing now C̃0 sufficiently large such that 
∫ N0

0 h (y)dy ≤ C̃0N
−ρ
0 we immediately have an ≤ C̃0n

−ρ for all n ≤ N0. 
We now finish the proof by induction, i.e. we show an ≤ C̃0n

−ρ for all n ∈ N. The constant C̃0 depends on N0 that 
will be both fixed below.

For n ≤ N0 the claim holds by the choice of C̃0. Assuming now that ak ≤ C̃0k
−ρ holds for all k ≤ n we have due 

to (54)

an+1 ≤ 2C1 (n + 1)−ρ + 2C1

n

n∑
k=1

kb

(2 + n − k)δ+ρ
ak ≤ 2C1 (n + 1)−ρ + 2C1C̃0

n

n∑
k=1

kb−ρ

(2 + n − k)δ+ρ

≤ 2C1 (n + 1)−ρ + 2C1C̃0

n

n−1∑
k=0

(2 + k)−δ−ρ ≤ 2C1 (n + 1)−ρ + 2C1C̃0

n

n−1∫
−1

(2 + x)−δ−ρ

≤ 2C1 (n + 1)−ρ + 2C1C̃0

1 − δ − ρ

(
(n + 1)1−δ−ρ

n
− 1

)
≤
(

2C1 + C̃0
4C1

1 − δ − ρ
(1 + n)−δ

)
(n + 1)−ρ .

(55)

We fix now first N0 ∈ N such that N0 > max

{
(2C1)

1
1−b + 1,

(
8C1

1−δ−ρ

)1/δ − 1

}
, which in particular gives

4C1
1−δ−ρ

(1 + n)−δ < 1
2 for all n ≥ N0. Then we fix C̃0 > max

{
4C1,N

ρ
0

∫ N0
0 h(y)dy

}
, which in particular ensures 

that 2C1 <
C̃0
2 . Using this in (55) we finally obtain

an+1 ≤
(

C̃0

2
+ C̃0

2

)
(n + 1)−ρ = C̃0 (n + 1)−ρ ,

finishing the proof. �
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Appendix A. Moment estimates

Lemma A.1. Let h ∈Xρ and α ∈R. Then one has the following estimates

1.
∫ D

0 xαh (x)dx ≤ C ‖h‖D1−ρ+α for all D > 0 if ρ − 1 < α,
2.
∫∞
D

xαh (x)dx ≤ C ‖h‖D1−ρ+α for all D > 0 if α < ρ − 1,

where ‖h‖ is defined in (13).

Proof.

1. The case α ≥ 0 is clear by definition of Xρ . For α ∈ (ρ − 1,0) one has, using a dyadic decomposition, that

D∫
0

xαh (x)dx =
∞∑

n=0

2−nD∫
2−(n+1)D

xαh (x)dx ≤
∞∑

n=0

2−α(n+1)Dα

2−nD∫
2−(n+1)D

h (x)dx

≤ ‖h‖
∞∑

n=0

2−α(n+1)Dα
(
2−nD

)1−ρ = 2−α ‖h‖D1+α−ρ

∞∑
n=0

(
21+α−ρ

)−n

= C (α,ρ)‖h‖D1+α−ρ.

2. This follows similarly using again a dyadic decomposition. �
Appendix B. Dual problems

B.1. Existence results

In this section we show the existence of solutions to some dual problems arising in the proof of the lower bounds. 
Throughout this section we will use the following notation: Mfin will denote the space of finite measures, Mfin+ is the 
space on non-negative finite measures. Furthermore Cn

b denotes the space of bounded n-times differentiable functions 
with bounded derivatives. Let ω ∈ (0,1), A ∈ R and consider the equation

∂tf (x, t) − P

∞∫
0

1

y1+ω

[
f (x + y) − f (x)

]
dy = 0 (B.1)

together with initial value f (x,0) = δ (· − A).

Proposition B.1. There exists a (weak) solution f ∈ C
(
[0, T ] ,Mfin+

)
of (B.1) with initial value f0 = δ (· − A). Fur-

thermore this f satisfies suppf (·, t) ⊂ (−∞,A] and 
∫
R

f (·, t)dx = 1 for all t ∈ [0, T ].

Proof (Sketch). First we consider the regularized equation

∂tf (x, t) = P

∞∫
0

1

y1+ω + ν

[
f (x + y, t) − f (x, t)

]
dy

f (·,0) = δ (· − A) (B.2)
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with ν > 0. In the second step we will pass to the limit ν → 0. We can reformulate (B.2) as the following fixed-point 
problem:

f ν (x, t) = δ (x − A) e
−P
∫∞

0
1

y1+ω+ν
dy +

t∫
0

e
−(t−s)

∫∞
0

1
y1+ω+ν

dy

∞∫
0

1

y1+ω + ν
f (x + y)dyds. (B.3)

It is straightforward, applying the contraction mapping theorem, to obtain a solution f ∈ C
(
[0, T ] ,Mfin+

)
for any 

T > 0. Furthermore, one obtains 
∫
R

f ν (x, t)dx = 1 for all t > 0 and ν > 0 (by integrating the equation, see below). 
In addition f ν satisfies Eq. (B.2) in weak form, i.e.

∫
R

f ν (x, t)ψ (x)dx = ψ (A) +
t∫

0

∫
R

∞∫
0

1

y1+ω + ν
f ν (x, s)

[
ψ (x − y) − ψ (x)

]
dydxds (B.4)

for all ψ ∈ Cb (R) and for 0 < ω̃ < ω taking ψ (x) = |x|
1+|x|1−ω̃ and using |ψ (x − y) − ψ (x)| ≤ C min

{
|y|ω̃ , |y|

}
we 

obtain (by approximation)

∫
R

f ν (x, t)ψ (x)dx ≤ |A|ω̃ +
t∫

0

∫
R

∞∫
0

|ψ (x − y) − ψ (x)|
y1+ω + ν

f ν (x, s)dydxds

≤ |A|ω̃ + C

t∫
0

∫
R

∞∫
0

min
{
|y|ω̃ , |y|

}
y1+ω + ν

f ν (x, s)dydxds ≤ C (T ,ω, ω̃,A) .

Thus 
∫
R

|x|
1+|x|1−ω̃ f ν (x, t)dx is uniformly bounded (i.e. independent of ν and t ).

Using this and that {f ν}ν>0 is uniformly bounded by 1, we can extract a subsequence {f νn}n∈N (denoted in the 
following as {f n}n∈N) such that f n (·, tk) converges in the sense of measures to some f (·, tk) for all k ∈ N, where 
{tk}k∈N = [0, T ] ∩Q.

We next show that f n is equicontinuous in t as a distribution, i.e. from (B.4) we obtain for any ψ ∈ C1
c (R):∣∣∣∣∣∣

∫
R

(
f n (x, t) − f n (x, s)

)
ψ (x)dx

∣∣∣∣∣∣=
∣∣∣∣∣∣

t∫
s

∫
R

f n (x, r)

∞∫
0

1

y1+ω + ν

[
ψ (x − y) − ψ (x)

]
dydxdr

∣∣∣∣∣∣
≤

t∫
s

∫
R

f n (x, r)

⎡
⎣ 1∫

0

∥∥ψ ′∥∥
L∞ y

y1+ω + ν
dy +

∞∫
1

2‖ψ‖L∞

y1+ω + ν
dy

⎤
⎦dxdr

≤ C (ψ) |t − s| ,
where C (ψ) is a constant independent of ν but depending on ψ and ψ ′. Using the equicontinuity of f n (as a distri-
bution) one can show that f n converges to some limit f (in the sense of distributions) for all t ∈ [0, T ].

Using furthermore the uniform boundedness of 
∫
R

|x|ω̃ f n (x, t)dx one can show that f n converges already in the 
sense of measures by approximating and cutting the test function for large values of |x|.

Using similar arguments we can also show that for the limit f n ⇀ f we have f ∈ C
(
[0, T ] ,Mfin+

)
and taking the 

limit n → ∞ in (B.4), f satisfies

∫
R

f (x, t)ψ (x)dx = ψ (A) +
t∫

0

∫
R

∞∫
0

1

y1+ω
f (x, s)

[
ψ (x − y) − ψ (x)

]
dydxds (B.5)

for each ψ ∈ C1
b (R) and all t ∈ [0, T ].

From the construction of f using the contraction mapping principle we immediately get suppf (·, t) ⊂ (−∞,A]
for all t ∈ [0, T ]. To see 

∫
R

f (·, t)dx = 1 for all t ∈ [0, T ] we integrate Eq. (B.1) over R and use Fubini’s theorem to 
obtain ∂t

∫
R

G (·, t)dx = 0. Thus together with the initial condition the claim follows. �
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Remark B.2. The analogous result holds true if f0 = −δ (· − A).

As a direct consequence of Proposition B.1 we also obtain smooth solutions for smoothed initial data. Therefore 
for κ > 0 we denote in the following by ϕκ a non-negative, symmetric standard mollifier with suppϕκ ⊂ [−κ, κ].

Proposition B.3. Let f0 := δ (· − A). Then there exists a solution f ∈ C1 ([0, T ] ,C∞ (R)) to (B.1) with initial datum 
f0 ∗ ϕκ = ϕκ (· − A).

Proof. This follows directly by convolution in x from Proposition B.1. �
Proposition B.4. There exists a strong solution f ∈ C1 ([0, T ] ,C∞ (R)) to (B.1) with initial datum f0 :=
χ(−∞,A] ∗ ϕκ .

Proof. Let G be the solution given by Proposition B.3 for G0 := δ (· − A) ∗ ϕκ . Then f (x, t) := ∫∞
x

G (y, t)dy

solves (B.1) with the desired initial condition. �
In the same way as in the proofs of Proposition B.4 and Proposition B.4 we obtain the following existence result:

Proposition B.5. Let ε > 0, L > 0 and λ1, λ2 > 0 be two constants (depending on some parameters). Then there exists 
a weak solution G ∈ C

(
[0, T ] ,Mfin+

)
and a strong solution W ∈ C ([0, T ] ,C∞) of the equation

∂tW (ξ, t) −
1∫

0

hε (z)

z

[
λ1 (z + ε)−a + λ2 (z + ε)b

][
W
(
ξ + z

L
, t
)

− W (ξ, t)
]

dz = 0 (B.6)

together with initial condition G (·,0) = δ (· − A) and W (·,0) = χ(−∞,A] ∗ ϕκ .

Remark B.6. The measure G has the same properties as the measure f in Proposition B.1.

Remark B.7. By convolution we also obtain a strong solution G ∈ C ([0, T ] ,C∞) of (B.6) with initial condition 
G (·,0) = δ (· − A) ∗ ϕκ .

For further use we denote the integral kernels occurring in Proposition B.1 and Proposition B.5 by

Nω (z) := z−1−ω and Nε (z) := hε (z)

z

[
λ1 (z + ε)−a + λ2 (z + ε)b

]
. (B.7)

Proposition B.8. Let n ∈ N, R ∈ R and Ni : (0,∞) → R≥0 either of the form Nωi
for some ωi ∈ (0,1) or Nε

given by (B.7) (and then continued by 0 to (0,∞)) for i = 1, . . . n. Let N :=∑n
i=1 Ni . Then there exists a solution 

f ∈ C1 ([0, T ] ,C∞ (R)) to the equation

∂tf (x, t) =
∞∫

0

N (z)
[
f (x + z) − f (x)

]
dz (B.8)

either with initial datum f0 = χ(−∞,R] ∗n ϕκ or f0 = δ (· − R)∗n ϕκ , where ∗n denotes the n-fold convolution with ϕκ .

Proof. It suffices to consider the case n = 2 (otherwise argue by induction). Then by Proposition B.3 and Propo-
sition B.4 there exist solutions f i to Eq. (B.8) with N replaced by Ni and initial datum f 1

0 = δ (·) ∗ ϕκ and 
f 2

0 = χ(−∞,R] ∗ ϕκ (or f 2
0 = δ (· − R) ∗ ϕκ ). A straightforward computation shows that the convolution f := f 1 ∗ f 2

satisfies (B.8) together with the correct initial condition. �
Remark B.9. Let Gκ and fκ be the solutions given by Proposition B.8 with initial condition Gκ (·,0) = δ (· − A)∗n ϕκ

and f (·,0) = χ(−∞,A] ∗n ϕκ . Then from the construction in the proof of Proposition B.8 and Proposition B.1 we 
obtain:
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1. Gκ ≥ 0 on R (in the sense of measures) and 0 ≤ fκ ≤ 1 for all t ∈ [0, T ],
2. suppGκ (·, t), suppfκ (·, t) ⊂ (−∞,A + nκ] for all t ∈ [0, T ],
3.
∫
R

G (·, t)dx = 1 for all t ∈ [0, T ],
4. fκ is non-increasing.

B.2. Integral estimates for subsolutions

In this section we will always assume that the integral kernel N is given as the sum of kernels of the form Nωi
or 

Nε and we will prove some integral estimates that are frequently used.

Lemma B.10. Let ω ∈ (0,1) and G the solution of

∂tG(x, t) = P

∞∫
0

Nω (z) [G(x + z) − G(x)] dz

G(·,0) = δ (· − A) ∗ ϕκ = ϕκ (x − A) (B.9)

given by Proposition B.3, where P is a constant. Then for any μ ∈ (0,1) one has

A−D∫
−∞

G(x, t)dx ≤ C
( κ

D

)μ + C
P t

Dω
for all D > 0.

Proof. By shifting with A we can assume A = 0. Let Z > 0. Then testing Eq. (B.9) with eZ(x−κ) (note that this is 
possible as suppG ⊂ (−∞, κ]) one obtains

∂t

∫
R

G(x, t) eZ(x−κ)dx = P

∫
R

∞∫
0

Nω (y)
[
G(x + y) − G(x)

]
eZ(x−κ)dydx

= P

∞∫
0

Nω (y)
(

e−Zy − 1
)

dy

∫
R

G(x, t) eZ(x−κ)dy =: Mω (Z)

∫
R

G(x, t) eZ(x−κ)dx.

Furthermore∫
R

Gκ (x,0) eZ(x−κ)dx =
∫
R

ϕκ (x) eZ(x−κ)dx.

Thus we obtain 
∫
R

G (x, t) eZ(x−κ)dx = ∫
R

ϕκ (x) eZ(x−κ)dx exp (−t |Mω (Z)|). Estimating Mω (Z) we obtain

|Mω (Z)| ≤ P

∞∫
0

1 − e−Zy

y1+ω
dy = −P

ω

∞∫
0

(
1 − e−Zy

) ∂

∂y

(
y−ω
)

dy

= PZ

ω

∞∫
0

e−Zy

yω
dy = PZω

ω

∞∫
0

y−ωe−ydy = P
� (1 − ω)

ω
Zω

= CPZω.

Using that G = 0 on (κ,∞) we get

κ∫
G(x, t)

(
1 − eZ(x−κ)

)
dx
−∞
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=
∫
R

G(x, t)dx −
∫
R

G(x, t) eZ(x−κ)dx = 1 −
∫
R

ϕκ (x) eZ(x−κ)dx exp (−t |Mω (Z)|)

≤
⎡
⎣
⎛
⎝1 −

∫
R

ϕκ (x) eZ(x−κ)dx

⎞
⎠+
∫
R

ϕκ (x) eZ(x−κ)dx |Mω (Z)| t
⎤
⎦ .

As suppϕ ⊂ [−κ, κ] we can estimate e−2Zκ ≤ ∫
R

ϕκ (x) eZ(x−κ)dx ≤ 1. Then choosing Z = 1
D

and using also the 
estimate for Mω we obtain

−D∫
−∞

G(x, t)dx ≤
−D∫

−∞
G(x, t)

1 − e
x−κ
D

1 − e−1− κ
D

dx ≤
κ∫

−∞
(· · ·)dx

≤ 1

1 − e−1− κ
D

[(
1 − e− 2κ

D

)
+ CP t

1

Dω

]
≤ C
( κ

D

)μ + C
P t

Dω
. �

We now consider the situation of Proposition B.8 where the integral kernel is given as the sum of different kernels

Lemma B.11. In the situation of Proposition B.8 with n = 2 one has

A−D∫
−∞

G(x, t)dx ≤
A−D/2∫
−∞

G1 (x, t)dx +
−D/2∫
−∞

G2 (x, t)dx

for all D > 0.

Proof. We consider again only the case A = 0, while the general result follows by shifting. One has

−D∫
−∞

G(x, t)dx =
∫
R

∫
R

χ(−∞,−D] (x + y)G1 (x, t)G2 (y, t)dxdy

=
∫
R

−D−y∫
−∞

G1 (x, t)G2 (y, t)dxdy

=
∞∫

− D
2

−D−y∫
−∞

G1 (x, t)G2 (y, t)dxdy +
− D

2∫
−∞

−D−y∫
−∞

G1 (x, t)G2 (y, t)dxdy

≤
− D

2∫
−∞

G1 (x, t)dx

∫
R

G2 (y, t)dy +
− D

2∫
−∞

G2 (y, t)dy

∫
R

G1 (x, t)dx

≤
−D/2∫
−∞

G1 (x, t)dx +
−D/2∫
−∞

G2 (x, t)dx

where in the last step we used that Gi is normalized for i = 1, 2. �
Remark B.12. By induction we can prove the corresponding estimate for n > 2 with D/2 replaced by D/2n−1 and κ
replaced by nκ (and of course summing over all Gi , i = 1, . . . , n on the right hand side).
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