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Abstract

Grigor’yan–Sun in [6] (with p = 2) and Sun in [10] (with p > 1) proved that if

sup
r�1

vol(B(x0, r))r
pσ

p−σ−1 (ln r)
p−1

p−σ−1 < ∞

then the only non-negative weak solution of �pu + uσ ≤ 0 on a complete Riemannian manifold is identically 0; moreover, the 
powers of r and ln r are sharp. In this note, we present a constructive approach to the sharpness, which is flexible enough to treat 
the sharpness for �pu + f (u, ∇u) ≤ 0. Our construction is based on a perturbation of the fundamental solution to the p-Laplace 
equation, and we believe that the ideas introduced here are applicable to other nonlinear differential inequalities on manifolds.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This article stems from an essential understanding of Grigor’yan–Sun’s work [6] (with p = 2) and Sun’s follow-up 
[10] (with p > 1) on how the volume condition

sup
r�1

μ(B(x0, r))r
−Q(ln r)−q < ∞ (1)
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(on a complete Riemannian manifold (M, g) with volume element dμ and x0-centered geodesic ball B(x0, r) of radius 
r > 0) ensures weakly

�pu + uσ ≤ 0, (2)

i.e.,

−
∫
M

|∇u|p−2(∇u,∇ψ)dμ +
∫
M

uσ ψ dμ ≤ 0 ∀ 0 ≤ ψ ∈ W
1,p
c (M),

where (·, ·) is the inner product in the tangent bundle TxM given by the Riemannian metric g, and W 1,p
c (M) is the 

p-Sobolev space of all W 1,p

loc (M) = {f ∈ L
p

loc(M) : |∇f | ∈ L
p

loc(M)} functions with compact support and

σ > p − 1 > 0 & �pu = div(|∇u|p−2∇u).

1.1. Grigor’yan–Sun’s result for �u + uσ ≤ 0

A great deal of attention (see e.g. [4,5,2,3] and their references) has been attracted over the last two decades to the 
non-negative weak solutions of (2) under p = 2. In particular, Grigor’yan–Sun established the following result.

Theorem 1.1. (See [6].) Assume that the inequality (1) with

Q = 2σ

σ − 1
& q = 1

σ − 1
(3)

is valid. Then any non-negative weak solution of (2) with p = 2 is identically equal to 0. Furthermore, the parameter 
pair (3) is sharp in the sense that if

either Q >
2σ

σ − 1
or Q = 2σ

σ − 1
& q >

1

σ − 1

then there exists a manifold obeying (1) where (2) with p = 2 has a positive solution.

1.2. Sun’s work on �pu + uσ ≤ 0

In addition to extending Theorem 1.1 to a semi-linear case [9], Sun in [10] extended Theorem 1.1 from the special 
case p = 2 to the general case p > 1 (whose setting on the Euclidean space is also of independent interest; see e.g. 
[1,7,8]).

Theorem 1.2. (See [10].) Assume that the inequality (1) with

Q = pσ

σ − p + 1
& q = p − 1

σ − p + 1
(4)

is valid. Then any non-negative weak solution of (2) is identically equal to 0. Furthermore, the parameter pair (4) is 
sharp in the sense that if

either Q >
pσ

σ − p + 1
or Q = pσ

σ − p + 1
& q >

p − 1

σ − p + 1

then there exists a manifold obeying (1) where (2) has a positive solution.

Quite remarkably, the sharpness arguments provided in [6,9,10] are based on an existence theory of some ODEs 
with polynomial non-linearity uσ and the eigenvalue theory of Laplace equations. But, there is no evidence showing 
that their arguments can be used to find out an explicit positive solution even locally, such as near the origin or infinity. 
In fact, there were somewhat unexpected difficulties in utilizing their methods to handle other relevant inequalities; 
see for example [11].
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1.3. Our approach to �p + f (u, ∇u) ≤ 0

In contrast to the foregoing approach, in Section 2 we will construct some explicit solutions of (2), which not only 
give the sharpness of Theorems 1.1–1.2 automatically, but also are applicable to the following inequality

�pu + f (u,∇u) ≤ 0, (5)

equivalently,

−
∫
M

|∇u|p−2(∇u,∇ψ)dμ +
∫
M

f (u,∇u)ψ dμ ≤ 0 ∀ 0 ≤ ψ ∈ W
1,p
c (M),

with more general non-linearity (cf. [12]) including

f (u,∇u) =
{

uσ1 |∇u|σ2;
eu − 1;
ln(1 + u);

see Theorems 3.1–3.2–3.3 in Section 3. Here, it is perhaps appropriate to mention that with general non-linearity 
f (u, ∇u) the sharpness argument in [6,10] seems unsuitable to be conducted.

Notation. In what follows, U ∼ V means that there is a constant c > 0 such that c−1V ≤ U ≤ cV.

2. Construction

In this section, the manifold M is taken to be (Rn, g) with the Riemannian metric:

g = dr2 + ψ2(r)dθ2,

where (r, θ) are the polar coordinates in Rn, and r 
→ ψ(r) is a smooth, positive, increasing function on the half line 
(0, ∞):

ψ(r) =
{

r for small enough r;(
rQ−1 lnq r

) 1
n−1 for large enough r.

(6)

In view of the desired construction, the geodesic ball Br = B(0, r) on M coincides with the Euclidean ball {x :
|x| ≤ r}. Letting S(r) = |∂Br | be the surface area of Br in M and ωn be the surface area of the unit ball in Rn, we use 
(6) to achieve

S(r) = ωnψ
n−1(r).

The Riemannian volume of the ball Br is

μ(Br) =
r∫

0

S(τ) dτ.

Since the solution to be constructed is radial, we can write u = u(r), thereby discovering that under the radial assump-
tion, the inequality (5) reduces to(

S|u′|p−2u′)′ + Sf (u,u′) ≤ 0, (7)

where S = S(·) is the surface area of Br . Note that

S(r) = ωnr
Q−1 lnq(r) ∀ r � 1 (8)

with

Q ≥ σp

σ − p + 1
& q ≥ p − 1

σ − p + 1
.

So, it is easy to see that the fundamental solution to
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(
S|u′|p−2u′)′ = 0

is

W(r) =
∞∫
r

(S(τ ))
− 1

p−1 dτ ∀ r > 0. (9)

The main observation here is that the nonlinear term S(r)Wσ(r) processes a stronger decay once σ , Q or q is suitably 
large. Thus it is hopeful to construct a positive solution to (7) when r � 1 by a perturbation of the fundamental 
solution (9).

A positive solution of (7) with f (u, u′) = uσ will be constructed according to the following three steps.

2.1. Step 1: solution near infinity

In what follows, we construct a positive solution to (7) with f (u, u′) = uσ near ∞ provided that

either Q >
σp

σ − p + 1
or Q = σp

σ − p + 1
& q >

p − 1

σ − p + 1

occurs. To this end, we perturb (9) (as the fundamental solution of the p-Laplace equation) in the following way. Let

Yε1,ε2(r) =
∞∫
r

(
r−ε1S(τ)

1 + lnε2(τ )

)− 1
p−1

dτ ∀ r � 1, (10)

where S = S(·) is in (8), and 0 < ε1 & ε2 < 1 will be determined later. Then, it is easy to check that Yε1,ε2 is 
well-defined for sufficiently small ε1 and ε2.

On the one hand, we have the following asymptotic property

Yε1,ε2(r) ∼ r
1+ ε1

p−1 ln
ε2

p−1 (r)S(r)
− 1

p−1 ∀ r � 1 (11)

which implies

S(r)Y σ
ε1,ε2

(r) ∼ S(r)
(
r

1+ ε1
p−1 ln

ε2
p−1 (r)S(r)

− 1
p−1

)σ ∀ r � 1.

Then, by the formula of S(r) in (8) we obtain

S(r)Y σ
ε1,ε2

(r) ∼ r
σp

p−1 (1− σ−p+1
σp

Q)−1+ σε1
p−1

(
ln r

)−q
σ−p+1

p−1 + σε2
p−1 ∀ r � 1. (12)

On the other hand, by the construction (10) we have

Y ′
ε1,ε2

= −(r−ε1S)
− 1

p−1 (1 + lnε2(r))
1

p−1 ,

and thus

(S|Y ′
ε1,ε2

|p−2Y ′
ε1,ε2

)′ = −(rε1(1 + lnε2(r)))′. (13)

In what follows, we will carefully choose the parameters ε1 and ε2, such that Yε1,ε2 is a solution to the inequality (7)
with f (u, u′) = uσ . Differently speaking, if the last-mentioned conditions on the parameter pair (Q, q) are satisfied, 
then there exist ε1 and ε2 such that (12) is overwhelmed by (13) as r goes to infinity.

Condition (i): Q > σp
σ−p+1 . Taking

u = Yε1,ε2 with ε1 = p

(
σ − p + 1

σp
Q − 1

)
> 0 = ε2,

and using (12) we achieve

S(r)u(r)σ ∼ r−1(ln r)
− q(σ−p+1)

p−1 ∀ r � 1.
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By (13), we have

(S|u′|p−2u′)′ = −(2rε1)′ = −2ε1r
−1+ε1 � −r−1(ln r)

− q(σ−p+1)
p−1 ∀ r � 1.

Thus (7) is satisfied when r is large enough.

Condition (ii): Q = σp
σ−p+1 & q >

p−1
σ−p+1 . Under this assumption, we employ u = Yε1,ε2 with

ε1 = 0; σε2

p − 1
= q(σ − p + 1)

p − 1
− 1,

thereby getting via (12)

S(r)u(r)σ ∼ 1

r ln r
∀ r � 1.

On the other hand, by (13) we have

(S|u′|p−1u′)′ = −(
1 + lnε2 r

)′ = − ε2

r ln1−ε2 r
� − 1

r ln r
∀ r � 1,

whence seeing that (7) is satisfied for large r .

In conclusion, we have established the following assertion.

Lemma 2.1. Assume that

either Q >
σp

σ − p + 1
or Q = σp

σ − p + 1
& q >

p − 1

σ − p + 1

is true. Then there exists a positive solution Y of (7) on (r0, ∞) provided that r0 is sufficiently large. Furthermore, this 
Y may have the following property:

Y > 0 > Y ′. (14)

The key-point here is that we give explicitly this positive solution, rather than just the existence of a solution 
being offered in [6,10,9], whose arguments depend on the particular structure of the inequality, i.e., the polynomial 
non-linearity. Thus it is difficult to carry out their arguments over other nonlinear models – at this point – the explicit 
solution constructed in Lemma 2.1 is more flexible.

2.2. Step 2: solution near origin

In the meantime, we are required to construct a positive solution to (7) near the origin. In what follows, we always 
denote by Y the solution constructed in Lemma 2.1. Consider (7) with a parameter on the second term, that is:(

S|u′|p−2u′)′ + λρSf (u,u′) ≤ 0. (15)

Let

uρ(r) := cρ

ρ∫
r

(
1 − e−x/ρ

) 1
p−1 dx ∀ r ∈ [0, ρ) (16)

where cρ is a normalized constant to make uρ(0) = 1. Without loss of generality, we may assume

sup
|x|,|y|≤2

f (x, y) = C.

Clearly, we have

0 ≤ uρ, |u′
ρ | ≤ 1 ∀ ρ � 1,
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and thus

λρSf (uρ,u′
ρ) ≤ CλρS. (17)

Furthermore, we get(
S|u′

ρ |p−2u′
ρ

)′ = −cp−1
ρ

(
S(1 − e−r/ρ)

)′

= −c
p−1
ρ

ρ
Se−r/ρ − cp−1

ρ S′(1 − e−r/ρ)

≤ −c
p−1
ρ

ρ
Se−r/ρ. (18)

Here we have used the non-decreasing property of S(r). If

λρ = c
p−1
ρ

Ceρ
,

then form (17) and (18) it follows that uρ in (16) satisfies the inequality (15) on [0, ρ). By the construction, we see

lim
ρ→∞ cρ = lim

ρ→∞

⎛
⎝ ρ∫

0

(
1 − e−x/ρ

) 1
p−1 dx

⎞
⎠

−1

= 0,

whence

lim
ρ→∞u′

ρ(r) = − lim
ρ→∞ cρ(1 − e−r/ρ)

1
p−1 = 0.

Moreover, an application of the L’Hospital rule derives that for any given r > 0,

lim
ρ→∞uρ(r) = lim

ρ→∞
uρ(r)

uρ(0)
= lim

ρ→∞

∫ ρ

r

(
1 − e−x/ρ

) 1
p−1 dx∫ ρ

0

(
1 − e−x/ρ

) 1
p−1 dx

= 1.

In conclusion, we have demonstrated the following fact.

Lemma 2.2. Assume that S ∈ C1
loc([0, ∞)) is positive and non-decreasing. Then, for a fixed ρ � 1 there is a small 

number λρ , such that the inequality (15) has a positive solution u on [0, ρ). Furthermore, such a solution u enjoys the 
following property:

lim
ρ→∞u′

ρ(r) = 0 = lim
ρ→∞(uρ(r) − 1) ∀ r ∈ (0,∞). (19)

2.3. Step 3: solution from infinity to origin

It remains to glue the above two solutions Y and uρ together, whence producing a constructive solution to (7). In 
doing so, we decide to borrow the gluing technique in [6]. Fix R0 > r0 and then choose ρ > R0 to be such that

u′
ρ

uρ

(R0) >
Y ′

Y
(R0).

This choice is possible since

Y ′

Y
(R0) < 0

(
from (14)

)
& lim

ρ→∞
u′

ρ

uρ

(R0) = 0
(
from (19)

)
.

Then it follows that(
Y

u

)′
(R0) = Y ′uρ − Yu′

ρ

u2
(R0) < 0 & lim

r→ρ+
Y(r)

u (r)
= ∞,
ρ ρ ρ
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and consequently, Y
uρ

has a local minimum m at some point η ∈ (R0, ρ). This in turns derives

(
Y

uρ

)′
(η) = 0,

whence

Y(η) = muρ(η) & Y ′(η) = mu′
ρ(η). (20)

Upon defining a new function:

v(r) =
{

muρ(r) for r ∈ [0, η);
Y(r) for r ∈ [η,∞),

(21)

we use (20) to get that v belongs to C1(M) (the class of continuously differential functions on M) and even W 1,p

loc (M). 
In view of the construction, we have{

�pu + λρ

mσ−p+1 uσ ≤ 0 in B(x0, η);
�pu + uσ ≤ 0 in M\B(x0, η),

(22)

thereby gaining that v enjoys

�pv + ωvσ ≤ 0 with ω = min{1, λρ/mσ−p+1}.
In fact, we have established the following assertion.

Lemma 2.3. The function u = ω
1

σ−p+1 v is a positive solution to (5) on M = (
R

n, dr2 + ψ2(r) dθ2
)
.

3. Application

Three lemmas discovered as above will be applied to treat some �p-based inequalities with more general non-
linearity. Here it is worth mentioning that all inequalities discussed below will be understood weakly.

3.1. Application 1

Firstly, let us consider the inequality

�pu + uσ1 |∇u|σ2 ≤ 0. (23)

Inequality (23) arises naturally from many contexts, for example, the uniqueness of bounded nonnegative p-superhar-
monic function: �pu ≤ 0 on a geodesically complete non-compact connected Riemannian manifold M . If

v = ln(1 + u),

then v is non-negative and satisfies the following inequality

e(p−1)v
(
�pv + (p − 1)|∇v|p) ≤ 0

which is equivalent to

�pv + (p − 1)|∇v|p ≤ 0.

The factor p − 1 could be removed by changing v to cv. Following [11] we introduce the parameter pair:

Q = pσ1 + σ2

σ1 + σ2 − p + 1
& q = p − 1

σ1 + σ2 − p + 1
. (24)
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Theorem 3.1. Assume that the inequality (1) for (24) is valid. Then any non-negative weak solution to (23) is identi-
cally equal to 0 [11]. Furthermore, the parameter pair (24) is sharp in the sense that if

either Q >
pσ1 + σ2

σ1 + σ2 − p + 1
or Q = pσ1 + σ2

σ1 + σ2 − p + 1
& q >

p − 1

σ1 + σ2 − p + 1

then there exists a manifold obeying (1) where (23) has a positive solution.

Proof. The first part of Theorem 3.1 has been verified in [11]. But [11] contains only a partial result on the sharpness 
of the parameter pair (24). Here, with the aid of the explicit solutions presented in Lemmas 2.1–2.2–2.3, we are able 
to completely settle this issue.

As a matter of fact, under the radial assumption, the inequality (23) becomes to

(
S|u′|p−2u′)′ + Suσ1 |u′|σ2 ≤ 0, (25)

where S = S(·) is the surface area of Br . In view of (11) we have

SYσ1
ε1,ε2

|Y ′
ε1,ε2

|σ1 ∼ rμ1 lnμ2 r ∀ r � 1,

where⎧⎨
⎩μ1 = pσ1+σ2

p−1

(
1 − Q

σ1+σ2−p+1
pσ1+σ2

)
+ ε1(σ1+σ2)

p−1 − 1;
μ2 = −q

σ1+σ2−p+1
p−1 + ε2(σ1+σ2)

p−1 .

We distinguish two cases as seen below.

Case 1: Q > pσ1+σ2
σ1+σ2−p+1 . Under this situation, we can choose ε1 > 0 such that μ1 = −1. From choosing ε2 = 0

and using (13) (for Lemma 2.1) it follows that u = Yε1,0 satisfies

{
Suσ1 |u′|σ2 ∼ r−1 lnμ2 r

(S|u′|p−2u′)′ = −2ε1r
−1+ε1

∀ r � 1,

which infers that u is a solution to (25) for sufficiently large r .

Case 2: Q = pσ1+σ2
σ1+σ2−p+1 & q >

p−1
σ1+σ2−p+1 . Under this situation, we can choose ε2 > 0 such that μ2 = −1. From 

letting ε1 = 0 it follows that u = Y0,ε2 satisfies

{
Suσ1 |u′|σ2 ∼ r−1 ln−1 r

(S|u′|p−2u′)′ = −(1 + lnε2 r)′ = − ε2
r ln1−ε2 r

∀ r � 1,

which again infers that u is a solution to (25) for sufficiently large r .
On the other hand, since

0 ≤ uσ1
ρ , |u′

ρ |σ2 ≤ 1,

we can similarly verify that the function uρ constructed in (16) for Lemma 2.2 is a solution to (25).
Finally, an application of Lemma 2.3 derives that the desired positive solution to (25) is obtained by gluing u and 

uρ together. �
Remark 1. Our method can be used to effectively handle more general models such as

div
(
A(x)|∇u|p−2∇u

) + V (x)uσ1 |∇u|σ2 ≤ 0,

where A(x) and V (x) are two potential functions with polynomial growth or decay.
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3.2. Application 2

Next, we deal with the following inequality

�pu + euσ − 1 ≤ 0. (26)

The non-linearity eu − 1 naturally appears in [13]. Here we address the existence of a non-negative solution to the 
inequality (26), thereby discovering the following sharp result.

Theorem 3.2. Assume that the inequality (1) holds for (4). Then any non-negative weak solution to (26) is identically 
equal to 0. Furthermore, the parameter pair (4) is sharp in the sense that if

either Q >
pσ

σ − p + 1
or Q = pσ

σ − p + 1
& q >

p − 1

σ − p + 1

then there exists a manifold obeying (1) where (26) has a positive solution.

Proof. The non-linearity f (u, ∇u) = euσ − 1 is stronger than uσ in the sense that for all non-negative ψ ∈ Lσ
loc(M)

with compact support one has∫
M

(euσ − 1)ψdμ ≥
∫
M

uσ ψdμ

Thus the non-existence of a non-negative solution can be readily obtained. To be more precise, if u is a non-negative 
solution to (26), then u solves �pu + uσ ≤ 0 in the weak sense as well, and hence u ≡ 0 in view of Theorem 1.2 and 
the conclusion follows.

The sharpness of parameter pair (4) follows directly from the above construction since the previously-constructed 
solution u is bounded with

lim
r→∞u(r) = 0,

which implies

f (u,u′) ∼ uσ & f (u(r), u′(r)) ∼ uσ (r) ∀ r � 1.

To be more precise, according to 0 ≤ uρ ≤ 1 and (15), there exists a solution u to

�puρ + λρe−1(euσ
ρ − 1) ≤ 0.

Then, via Lemma 2.3 we can merge uρ and Y (cf. (21) & (22)) to produce a solution u of

�pu + ωe−1(euσ − 1) ≤ 0 with ω = min{1, λρ/mσ−p+1}. (27)

It is easy to deduce that ‖u‖L∞(M) ≤ m. Upon selecting θ ∈ (0, 1) such that

θσ−p+1e(mθ)σ ≤ ωe−1,

setting v = θu, and using (27) we obtain

�pv + evσ − 1 = θp−1�pu + eθσ uσ − 1

≤ θp−1�pu + e(θm)σ θσ uσ

= θp−1(�pu + e(θm)σ θσ−p+1uσ
)

≤ θp−1(�pu + ωe−1uσ
)

≤ θp−1(�pu + ωe−1(euσ − 1)
)

≤ 0,

thereby reaching the desired result. �
Remark 2. Interestingly and importantly, (26) with σ = 1 may be regarded as the limit (σ → ∞) case or the strongest 
variant of (2).
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3.3. Application 3

Finally, we take the following inequality into account

�pu + ln(1 + uσ ) ≤ 0. (28)

Note that ln(1 + u) is the inverse function of eu − 1. So (28) may be viewed as the inverse form of (26) (cf. [12]). 
Upon touching the existence of a non-negative solution of the inequality (28), we obtain the following result.

Theorem 3.3. Assume that the inequality (1) holds for (4). Then any bounded non-negative weak solution to (28) is 
identically equal to 0. Furthermore, the parameter pair (4) is sharp in the sense that if

either Q >
pσ

σ − p + 1
or Q = pσ

σ − p + 1
& q >

p − 1

σ − p + 1

then there exists a manifold obeying (1) where (28) has a positive solution.

Proof. It suffices to show that if there is a non-negative solution to (28) satisfying

‖u‖L∞(M) ≤ N for any given N > 0,

then u ≡ 0. To this end, let us first take a look at the inequality

�pu + (eNσ )−1uσ ≤ 0. (29)

It is easy to see that if u solves (28) with ‖u‖L∞(M) ≤ N , then it also solves (29). Since

(eNσ )−1uσ ≤ ln(1 + uσ ),

without loss of generality we may assume that u is a non-trivial non-negative solution to (29). Then

v = (eNσ )
− 1

σ−p+1 u

solves (2), which leads to u ≡ 0 via the first part of Theorem 1.2.
The sharpness of the pair (Q, q) follows from Lemmas 2.1–2.2–2.3 since we have constructed a positive solution 

to (5) with f (u, ∇u) = uσ , which solves (28) as well thanks to

ln(1 + uσ ) ≤ eσ . �
Remark 3. Unfortunately, the boundedness assumption on u is needed in our argument for Theorem 3.3. Because 
(29) with σ = 1 may be treated as the weakest variant of (2), it is natural to conjecture that all solutions to (28) are 
bounded; see also [12] for a kind of treatment over Rn.
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