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Abstract

We prove that every solution of the focusing energy-critical wave equation with the compactness property is global. We also give 
similar results for supercritical wave and Schrödinger equations.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this note we consider solutions with the compactness property for (mainly) the energy-critical wave equation in 
dimension N ∈ {3, 4, 5}. This is the equation{

∂2
t u − �u = |u| 4

N−2 u, t ∈ I, x ∈ R
N

(u, ∂tu)�t=0 = �u0 ∈ Ḣ 1 × L2,
(1.1)

where I is an interval (0 ∈ I ), u is real-valued, Ḣ 1 = Ḣ 1(RN) and L2 = L2(RN). For such solutions (u, ∂tu) ∈
C0(I, Ḣ 1 × L2), we denote the maximal interval of existence (T−(u), T+(u)) = Imax(u). We say that a solution has 
the compactness property if there exists λ(t) > 0, x(t) ∈ R

N , t ∈ Imax(u) such that
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K =
{(

λ
N−2

2 (t)u
(
t, λ(t)x + x(t)

)
, λ

N
2 (t)∂tu

(
t, λ(t)x + x(t)

)) : t ∈ Imax(�u0)
}

(1.2)

is precompact in Ḣ 1 × L2. Solutions with the compactness property have been extensively studied (see for instance 
[9,2,4,5] for equation (1.1)). The reason for these studies is that, if one considers solutions to (1.1) such that

sup
0<t<T+(u)

‖(u(t), ∂tu(t))‖Ḣ 1×L2 < ∞

and which do not scatter, there always exist tn → T+(u) such that, up to modulation, (u, ∂tu)(tn) weakly converges 
to (U(0), ∂tU(0)) in Ḣ 1 × L2, where U is a solution with the compactness property. This is Proposition 1.10 in [6], 
which, as is noted there, is valid for a wide class of dispersive equations (see also [14] for nonlinear Schrödinger 
equation in high space dimension). This clearly shows the crucial role played by solutions with the compactness 
property in the study of bounded solutions of dispersive equations, with no a priori size restriction. Note also that in 
the case of (1.1), a much more precise result (Theorem 1 in [6]) is valid.

In [2] we showed that, in the radial case, up to scaling and sign change, the only solution of (1.1) with the com-

pactness property is the “ground-state” W(x) =
(

1
1+|x|2/N(N−2)

)N−2
2

, which is the only non-zero radial solution in 

Ḣ 1(RN) (up to scaling and sign change) of the elliptic equation �u + |u| 4
N−2 u = 0. In the sequel, we will denote 

by � the set of non-zero solutions to this elliptic equation. In [6], Proposition 1.8, a), we showed (by a simple virial 
argument), that if u has the compactness property, then T−(u) = −∞, or T+(u) = +∞. In [9], the second and third 
authors showed that if T+(u) < ∞ and u has the compactness property, then there exists x+ ∈R

N such that if t ∈ Imax,

supp(u(t), ∂tu(t)) ⊂ {|x − x+| ≤ |T+(u) − t |}
and

lim
t→T+(u)

λ(t)

T+(u) − t
= 0.

In particular, the self-similar blow-up, given by λ(t) ≈ T+(u) − t , is excluded.
In [6], Proposition 1.8 b), we showed that, if u has the compactness property, then there exist two sequences {t±n }

in (T−(u), T+(u)), with limn→±∞ = T±(u) and two elements Q± of � and a vector �� with |��| < 1, such that, up to 
modulation, (u(t±n ), ∂tu(t±n )) → (Q±

�� (0), ∂tQ
±
�� (0)) strongly in Ḣ 1 × L2, where Q±

�� is the Lorentz transform of the 
solution Q±, given by

Q±
�� = Q±

⎛⎜⎝
⎛⎜⎝− t√

1 − |��|2
+ 1

|��|2

⎛⎜⎝ 1√
1 − |��|2

− 1

⎞⎟⎠ �� · x
⎞⎟⎠ �� + x

⎞⎟⎠ ,

so that Q±
�� (t, x) = Q±

�� (0, x − t ��), which are clearly solutions of (1.1) with the compactness property. In [5], we 
proved that the class of solutions with the compactness property is invariant under Lorentz transformation. In light 
of this result, we have (see [6,5]) the rigidity conjecture for solutions with the compactness property: 0 and Q��, 
Q ∈ �, |��| < 1, are the only solutions of (1.1) with the compactness property. In [5] we proved this conjecture, under 
a nondegeneracy assumption on Q+ (or Q−).

The main result in this note is an extension of the non-existence of self-similar solution with the compactness 
property in [9]. Namely:

Theorem 1. Let u be a solution of (1.1) with the compactness property. Then u is global.

Theorem 1 is proved in Section 2. We will also prove a similar result for supercritical nonlinear wave equation (see 
Section 3) and supercritical Schrödinger equation (see Section 4).

In all the article, we let �u = (u, ∂tu).
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2. Energy-critical case

In this section we prove Theorem 1. We recall that the energy:

E(�u) = 1

2

∫
RN

|∇u(t, x)|2 dx + 1

2

∫
RN

(∂tu(t, x))2 dx − N − 2

2N

∫
RN

|u(t, x)| 2N
N−2 dx (2.1)

is well-defined and independent of t . The proof relies on the following two propositions, which we will prove in 
Subsection 2.2 using a self-similar change of variables.

Proposition 2.1. Let u be a solution of (1.1) with p = N+2
N−2 such that

T+(�u0) = 1, T−(�u0) = −∞, (2.2)

suppu ⊂ {|x| ≤ 1 − t} (2.3)

sup
t<1

‖∇u(t)‖2
L2 + ‖∂tu(t)‖2

L2 = M0 < ∞. (2.4)

Then

lim sup
T →−∞

1

log(2 − T )

1

N

0∫
T

1

2 − t

∫
RN

|u(t, x)| 2N
N−2 dx dt < E(�u0). (2.5)

In the next proposition, we denote by P(�u) the momentum

P(�u(t)) =
∫
RN

∇u∂tudx ∈ R
N,

which is independent of time for a solution u of (1.1).

Proposition 2.2. Let u be a solution with the compactness property such that P(�u0) = 0 and T+(u) < ∞, T−(u) =
−∞. Then

lim
t→−∞

λ(t)

t
= 0.

2.1. Proof of the main result

We first assume Propositions 2.1 and 2.2 and prove Theorem 1. We argue by contradiction. Let u be a solution of 
(1.1) such that T+(u) < ∞. Translating in time, we can assume T+(u) = 1. By [6], T−(u) = −∞. As in the beginning 
of Subsection 4.1 in [5], we can use the Lorentz transform on u and assume that P(�u0) = 0. Using a by now standard 
argument (see [9]), this implies

lim
t→−∞

x(t)

t
= 0. (2.6)

Let

Z(t) = −
∫
RN

x · ∇u∂tu − N − 2

2

∫
RN

u∂tu, Z̃(t) = −
∫
RN

x · ∇u∂tu − N

2

∫
RN

u∂tu.

Then

Z′(t) =
∫
RN

(∂tu)2, Z̃′(t) =
∫
RN

(
|∇u|2 − |u| 2N

N−2

)
. (2.7)

Using Proposition 2.2, (2.6) and the precompactness of K , one gets



1678 T. Duyckaerts et al. / Ann. I. H. Poincaré – AN 33 (2016) 1675–1690
lim
t→−∞

1

t
Z(t) = lim

t→−∞
1

t
Z̃(t) = 0.

Integrating (2.7), we deduce:

lim
t→−∞

1

t

0∫
t

∫
RN

(∂tu)2 dx dt = 0 (2.8)

lim
t→−∞

1

t

0∫
t

∫
RN

|∇u(t, x)|2 − |u(t, x)| 2N
N−2 dx dt = 0. (2.9)

Combining (2.8) and (2.9) with the identity

1

N

∫
RN

|u| 2N
N−2 = E(�u0) − 1

2

⎛⎜⎝ ∫
RN

|∇u|2 −
∫
RN

|u| 2N
N−2

⎞⎟⎠− 1

2

∫
RN

(∂tu)2,

we obtain

lim
t→−∞

1

N t

0∫
t

∫
RN

|u(t, x)| 2N
N−2 dx dt = E(�u0). (2.10)

By [9], we have suppu ⊂ {|x| ≤ 1 − t}. Thus u satisfies the assumptions of Proposition 2.1, and (2.10) contradicts the 
conclusion (2.5) of Proposition 2.1, in view of the following elementary claim, proved in the Appendix A:

Claim 2.3. Let g : [0, +∞) → R, bounded and continuous, such that

lim
T →+∞

1

T

T∫
0

g(t) dt = � ∈R. (2.11)

Then:

lim
T →+∞

1

log(2 + T )

T∫
0

g(t)

2 + t
dt = �. (2.12)

2.2. Self-similar variables

We complete here the proof of Theorem 1 by proving Propositions 2.1 and 2.2. As in [9, Section 6], we use a 
self-similar change of variables and a Lyapunov functional in the new variables (see [7] for the introduction of this 
change of variable for heat equations and [13] for semilinear wave equations). The main novelty of the proofs is that 
we also use this change of variables for negative times (and indeed, as t → −∞), whereas it was only applied close 
to the blow-up time in [9].

We start with a few preliminary lemmas that are essentially contained in [9, Section 6]. Let u be as in Proposi-
tion 2.1. Let:

y = x

2 − t
, s = − log(2 − t) (2.13)

w(s, y) = (2 − t)
N−2

2 u(t, x) = e− s(N−2)
2 u(2 − e−s , e−sy) (2.14)

(these are exactly the changes of variables and unknown functions in [9] with δ = 1).
Then w(s, y) is defined for s < 0 and

suppw ⊂
{
|y| ≤ 1 − es ≤ 1

}
. (2.15)
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Furthermore w solves, for s < 0, the equation

∂2
s w = 1

ρ
div (ρ∇w − ρ(y · ∇w)y) − N(N − 2)

4
w + |w| 4

N−2 w − 2y · ∇∂sw − (N − 1)∂sw, (2.16)

where ρ = (1 −|y|2)−1/2. We start with a few lemmas, that are essentially contained in [9, Section 6]. In all the proof, 
C is a large positive constant that may change from line to line and depends on the constant M0 defined in (2.4). We 
denote by B1 the unit ball of RN .

Lemma 2.4. For s < 0, t = 2 − e−s , we have∫
B1

|w(s, y)| 2N
N−2 dy =

∫
RN

|u(t, x)| 2N
N−2 dx,

∫
B1

|∇yw(s, y)|2 dy =
∫
RN

|∇xu(t, x)|2 dx (2.17)

∫
B1

|w(s, y)|2 dy

(1 − |y|2)2
≤ C,

∫
B1

|∂sw(s, y)|2 dy ≤ C (2.18)

∫
B1

(
|∇yw(s, y)|2 + |∂sw(s, y)|2 + |w(s, y)| 2N

N−2 + |w(s, y)|2
) dy

(1 − |y|2)1/2
≤ Ce|s|/2 (2.19)

∫
B1

(
|∇yw(s, y)|2 + |∂sw(s, y)|2 + |w(s, y)| 2N

N−2 + |w(s, y)|2
)

log
1

(1 − |y|2) dy ≤ C|s|. (2.20)

Proof. The identities (2.17) follow directly from the change of variable y = x
2−t

.
The first inequality in (2.18) is a consequence of the condition (2.15) on the support of w, of (2.17) and of Hardy’s 

inequality (see e.g. [1]).
To obtain the second bound in (2.18), we write

∂sw = −N − 2

2
w − y · ∇w + e− N

2 s∂tu(2 − e−s , e−sy), (2.21)

and the desired bound follows from (2.17), the first inequality in (2.18) and the identity∫ (
e− N

2 s∂tu(2 − e−s , e−sy)
)2

dy =
∫

(∂tu(t, x))2 dx.

The estimates (2.19) and (2.20) follow from (2.17) and (2.18) and the fact that, on the support of w, 1 − |y|2 ≥
1 − |y| ≥ es . �
Lemma 2.5. Let for s < 0, y ∈ B1,

ẽ(s, y) = 1

2

(
(∂sw)2 + |∇w|2 − (y · ∇w)2

)
+ N(N − 2)

8
w2 − N − 2

2N
|w| 2N

N−2 ,

and

Ẽ(s) =
∫
B1

ẽ(s, y)

(1 − |y|2)1/2
dy.

Then, if s1 < s2 < 0,

Ẽ(s2) − Ẽ(s1) =
s2∫

s1

∫
B1

(∂sw)2

(1 − |y|2)3/2
dy ds (2.22)

1

2

∫ (
∂sw w − 1 + N

2
w2

) dy

(1 − |y|2)1/2

∣∣∣∣∣
s2

s1
B1
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= −
s2∫

s1

Ẽ(s) ds + 1

N

s2∫
s1

∫
B1

|w| 2N
N−2

(1 − |y|2)1/2
dy ds

+
s2∫

s1

∫
B1

(
(∂sw)2 + ∂swy · ∇w + |y|2∂sw w

1 − |y|2
)

dy

(1 − |y|2)1/2
ds (2.23)

∫
B1

ẽ(s, y)(− log(1 − |y|2)) dy

∣∣∣∣∣
s2

s1

+
s2∫

s1

∫
B1

(
2 + log(1 − |y|2)

)
y · ∇w∂sw dy ds

−
s2∫

s1

∫
B1

log(1 − |y|2)(∂sw)2 dy ds − 2

s2∫
s1

∫
B1

(∂sw)2 dy ds = −2

s2∫
s1

∫
B1

(∂sw)2

1 − |y|2 dy ds. (2.24)

The proof is by direct computations. See [13] for (2.22) and (2.23). The identity (2.24) is the first identity in the 
proof of Lemma 6.4 in [9].

Lemma 2.6.

lim
s

<−→ 0
Ẽ(s) = E(�u0).

Proof. This is contained in Proposition 6.2 (iii) of [9]. We give the proof for completeness. Since |y| ≤ 1 − es on the 
support of w, we have, by (2.17) and Hardy’s inequality 

∫ 1
|y|2 |f |2 ≤ ∫ |∇f |2,

lim
s

<−→ 0

∫
(y · ∇w)2 dy

(1 − |y|2)1/2
+

∫
|w|2 dy

(1 − |y|2)1/2
= 0 (2.25)

and

lim
s

<−→ 0

∫ ∣∣∣∣ |∇w|2
(1 − |y|2)1/2

− |∇w|2
∣∣∣∣ dy = lim

s
<−→ 0

∫ ∣∣∣∣∣ |w| 2N
N−2

(1 − |y|2)1/2
− |w| 2N

N−2

∣∣∣∣∣ dy = 0, (2.26)

which implies

lim
s

<−→ 0

[∫ ( |∇w|2
2

− N − 2

2N
|w| 2N

N−2

)
dy

(1 − |y|2)1/2

−
∫ ( |∇u(2 − e−s , x)|2

2
− N − 2

2N
|u(2 − e−s , x)| 2N

N−2

)
dx

]
= 0. (2.27)

Furthermore (using (2.21) and (2.25)),

lim
s

<−→ 0

[∫
(∂sw)2

2

dy

(1 − |y|2)1/2
−

∫
(∂tu(2 − e−s , x))2

2
dx

]
= 0. (2.28)

Combining (2.25), (2.27) and (2.28) we obtain the conclusion of the lemma. �
The next lemma is the analog of Lemma 6.4 of [9]:

Lemma 2.7.

∀σ < 0,

0∫
σ

∫
B1

(∂sw)2

1 − |y|2 dy ds ≤ C|σ |.
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Proof. We use the identity (2.24) with s1 = σ , s2
<−→0.

In the left-hand side of (2.24), the terms with ẽ are bounded by C|σ | according to (2.20) in Lemma 2.4. The term 
with log(1 −|y|2)(∂sw)2 has the good sign and can be ignored. The term with 

∫∫
(∂sw)2 is bounded by C|σ | according 

to (2.18). Furthermore,∣∣∣∣∣∣∣
0∫

σ

∫
B1

(2 + log(1 − |y|2))y · ∇w∂sw dy dσ

∣∣∣∣∣∣∣
≤

√√√√√ 0∫
σ

∫
B1

(∂sw)2 dy

1 − |y|2 ds

√√√√√ 0∫
σ

∫
B1

(1 − |y|2) (2 + log(1 − |y|2))2 |∇w|2 dy ds

≤ C

√√√√√ 0∫
σ

∫
B1

(∂sw)2 dy

1 − |y|2 dσ
√|σ |,

by (2.17). This term can be absorbed by the inequality ab ≤ ε
2a2 + 1

2ε
b2. �

Proof of Proposition 2.1. The proof is divided into 4 steps.

Step 1. We prove (see Lemma 6.5 of [9])

∀σ < 0,

0∫
σ

∫
B1

|w(σ,y)| 2N
N−2

(1 − |y|2)1/2
dy ds ≤ C|σ |. (2.29)

We use the identity (2.23) with s1 = σ , s2
<−→0. We have, for j = 1, 2,∣∣∣∣∣∣∣

∫
B1

(∂sw w)(sj , y)
dy

(1 − |y|2)1/2

∣∣∣∣∣∣∣ ≤
√√√√∫

B1

(∂sw)2(sj , y) dy

√√√√∫
B1

|w|2(sj , y)
dy

1 − |y|2 ≤ C

by (2.18). Using again (2.18),∫
B1

w2(sj , y)
dy

(1 − |y|2)1/2
≤ C.

By Lemma 2.6 and since Ẽ is nondecreasing:

0∫
σ

Ẽ(s) ds ≤ |σ |E(�u0)

In the last line of (2.23), the first term is ≥ 0 and can be dropped. Moreover,∣∣∣∣∣∣∣
0∫

σ

∫
B1

∂swy · ∇w
dy

(1 − |y|2)1/2
ds

∣∣∣∣∣∣∣ ≤ C|σ |

by Cauchy–Schwarz, (2.17) and Lemma 2.7. Also∣∣∣∣∣∣∣
0∫

σ

∫
B1

|y|2∂sw w

(1 − |y|2)1/2
dyds

∣∣∣∣∣∣∣ ≤ C|σ |,

by Cauchy–Schwarz and (2.18). Combining the preceding estimates, we obtain the conclusion (2.29) of Step 1.
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Step 2. We prove

∀σ < 0, −C ≤ Ẽ(σ ) ≤ E(�u0) (2.30)
0∫

−∞

∫
B1

(∂sw)2

(1 − |y|2)3/2
dy ds < ∞. (2.31)

The inequality (2.31) follows immediately from (2.30) and the identity (2.22).
The bound from above in (2.30) follows again from (2.22) and Lemma 2.6.
By Step 1, there exists a sequence sn → −∞ such that

∀n,

∫
B1

|w(sn, y)| 2N
N−2

(1 − |y|2)1/2
dy ≤ C,

where the constant C is the same than in (2.29). Using the definition of Ẽ, we deduce

∀n, Ẽ(sn) ≥ −C
N − 2

2N

and the conclusion follows using the monotonicity of the energy.

Step 3. We prove

∀σ < 0,

0∫
σ

⎛⎜⎝∫
B1

|w(s, y)| 2N
N−2

N(1 − |y|2)1/2
dy − Ẽ(s)

⎞⎟⎠ ds ≤ C|σ |1/2. (2.32)

If −1 < σ < 0, (2.32) follows immediately from (2.29) and the boundedness of Ẽ.
We next assume σ ≤ −1. We use again (2.23) with s1 = σ , s2

<−→0.
The terms on the first line of (2.23) are bounded, according to (2.18) in Lemma 2.4.
The second line of (2.23) is exactly the left-hand side of (2.32). We are left with bounding the third line of (2.23). 

We have:

0∫
σ

∫
B1

(∂sw)2

(1 − |y|2)1/2
dyds ≤ C

by Step 2.∣∣∣∣∣∣∣
0∫

σ

∫
B1

∂swy · ∇w

(1 − |y|2)1/2
dyds

∣∣∣∣∣∣∣ ≤

√√√√√ 0∫
σ

∫
B1

(∂sw)2

1 − |y|2 dyds

√√√√√ 0∫
σ

∫
B1

|y · ∇w|2 dy ds ≤ C
√|σ |

by Step 2 and (2.17).∣∣∣∣∣∣∣
0∫

σ

∫
B1

∂sw w|y|2
(1 − |y|2)3/2

dy ds

∣∣∣∣∣∣∣ ≤

√√√√√ 0∫
σ

∫
B1

(∂sw)2

(1 − |y|2)3/2
dy ds

√√√√√ 0∫
σ

∫
B1

w2

(1 − |y|2)3/2
dy ds ≤ C

√|σ |

by Step 2 and (2.18). This concludes Step 3.

Step 4: conclusion of the proof. We first prove by contradiction that Ẽ(−1) < E(�u0). If not, we see from the identity 
(2.22) and Lemma 2.6 that 

∫ |∂sw(s, y)|2 dy = 0 for almost every s ∈ (−1, 0). Thus w is independent of s ∈ (−1, 0), 
and since suppw ⊂ {|y| ≤ 1 − es}, w = 0 for s ∈ (−1, 0). Thus u ≡ 0, contradicting the assumption T+(u) = 1. By 
Step 3, we obtain, for σ ≤ −2,
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−1∫
σ

⎛⎜⎝∫
B1

|w(s, y)| 2N
N−2

N(1 − |y|2)1/2
dy − Ẽ(−1)

⎞⎟⎠ ds ≤ C|σ |1/2.

Going back to the variables (t, x), we deduce, for σ ≤ −2,

2−e∫
2−e−σ

⎛⎜⎝ ∫
RN

|u(t, x)| 2N
N−2

N
(

1 − |x|2
(2−t)2

)1/2
dx − Ẽ(−1)

⎞⎟⎠ dt

2 − t
≤ C|σ |1/2.

Dropping the factor 1(
1− |x|2

(2−t)2

)1/2 ≥ 1, we obtain

2−e∫
T

⎛⎜⎝ ∫
RN

1

N
|u(t, x)| 2N

N−2 dx − Ẽ(−1)

⎞⎟⎠ dt

2 − t
≤ C| log(2 − T )|1/2,

where T = 2 − e−σ ≤ 2 − e2. Dividing by 1
log(2−T )

and using that Ẽ(−1) < E(�u0) we obtain the desired conclusion 
(2.5). �
Proof of Proposition 2.2. The proof is close to the end of Section 6 of [9]. Using the same self-similar change of 
variables as in the preceding proof, we construct, assuming that the conclusion of Proposition 2.2 is not true, a nonzero 
solution to a singular elliptic equation, yielding a contradiction with a result of [9].

We can assume, without loss of generality, that T+(u) = 1 and thus |x| ≤ 1 − t on the support of u. By finite speed 
of propagation

lim sup
t→−∞

λ(t)

|t | < ∞.

Furthermore, since P(�u0) = 0, we have

lim
t→−∞

x(t)

t
= 0 (2.33)

(see [9] for the detailed proofs of these properties).
We argue by contradiction, assuming that there exists a sequence of times τn → −∞ such that

lim
n→∞

λ(τn)

|τn| = � ∈ (0,+∞). (2.34)

The solution u satisfies the assumptions of Proposition 2.1. We introduce as above the self-similar variables y and s
(see (2.13)) and define w by (2.14).

Step 1: compactness. Let σn = − log(2 − τn). Let

wn(s) = w(σn + s), s < −σn.

In this step we prove that there exists (after extraction of a subsequence) a small s0 > 0 and w∗ ∈ C0([0, s0], Ḣ 1) such 
that ∂sw∗ ∈ C0([0, s0], L2) and

lim
n→∞ sup

0≤s≤s0

∥∥(wn(s) − w∗(s), ∂swn(s) − ∂sw∗(s)
)∥∥

Ḣ 1×L2 = 0. (2.35)

Indeed, let

vn(τ, z) = (2 − τn)
N−2

2 u
(
τn + (2 − τn)τ, (2 − τn)z

)
un(τ, z) = λ(τn)

N−2
2 u

(
τn + λ(τn)τ, λ(τn)z + x(τn)

)
.

By the precompactness of K , (un(0), ∂τ un(0)) has (after extraction of a subsequence) a limit in Ḣ 1 × L2 as n goes to 
infinity. Noting that
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vn(τ, z) =
(

2 − τn

λ(τn)

)N−2
2

un

(
2 − τn

λ(τn)
τ,

2 − τn

λ(τn)
z − x(τn)

λ(τn)

)
,

and combining with (2.33) and (2.34), we see that (vn(0), ∂τ vn(0)) has a limit in Ḣ 1 × L2 as n goes to infinity. We 
denote by (v0, v1) this limit, and by v∗ the solution of (1.1) with initial data (v0, v1) at t = 0.

Fix τ0 ∈ [0, T+(v)), and let s0 be such that s0 = − log(1 − τ0). By standard perturbation theory for equation (1.1),

lim
n→∞ sup

0≤τ≤τ0

∥∥(vn(τ ) − v∗(τ ), ∂τ vn(τ ) − ∂τ v∗(τ )
)∥∥

Ḣ 1×L2 = 0. (2.36)

Next, notice that

wn(s, y) = e− N−2
2 svn(1 − e−s , e−sy),

and thus, by (2.36),

lim
n→∞ sup

0≤s≤s0

∥∥wn(s) − w∗(s)
∥∥

Ḣ 1 = 0, (2.37)

where

w∗(s, y) = e− N−2
2 sv∗(1 − e−s , e−sy). (2.38)

By (2.21), ∂swn = −N−2
2 wn − y · ∇wn + e− N

2 (s+σn)∂tu(2 − e−(σn+s), e−(σn+s)y), and thus

∂swn = −N − 2

2
wn − y · ∇wn + e− N

2 s∂τ vn(1 − e−s , e−sy). (2.39)

Since |y| ≤ 1 on the support of wn (see (2.15)), we deduce from (2.37)

lim
n→∞

(
sup

0≤s≤s0

∥∥wn(s) − w∗(s)
∥∥

L2 + sup
0≤s≤s0

∥∥y · ∇wn(s) − y · ∇w∗(s)
∥∥

L2

)
= 0.

In view of (2.36), (2.39), and the equality

∂sw∗(s, y) = −N − 2

2
w∗ − y · ∇w∗ + e− N

2 s∂τ v∗(1 − e−s , e−sy),

we obtain

lim
n→∞ sup

0≤s≤s0

∥∥∂swn(s) − ∂sw∗(s)
∥∥

Ḣ 1 = 0,

which concludes Step 1.

Step 2: elliptic equation. We prove that w∗ is independent of s, not identically 0, and satisfies

suppw∗ ⊂ B1 (2.40)
1

ρ
div (ρ∇w∗ − ρ(y · ∇w∗)y) − N(N − 2)

4
w∗ + |w∗| 4

N−2 w∗ = 0 (2.41)∫
B1

|w∗|2
(1 − |y|2)2

dy < ∞ (2.42)

∫
B1

|w∗| 2N
N−2

(1 − |y|2)1/2
dy < ∞ (2.43)

∫ |∇w∗|2 − (y · ∇w∗)2

(1 − |y|2)1/2
dy < ∞. (2.44)

This contradicts Proposition 6.10 in [9], concluding the proof of Proposition 2.2.
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The condition (2.40) of the support follows immediately from (2.35) and the corresponding condition (2.15) on the 
support of w. By (2.31),

lim
n→∞

s0∫
0

∫
B1

(∂swn)
2 dy ds = 0,

which proves, combining with (2.35), that ∂sw∗ is almost everywhere zero, and thus that w∗ is independent of s.
Assume that w∗ ≡ 0. Then v∗ ≡ 0, and the small data theory for (1.1), together with (2.36) implies that u is global, 

a contradiction. Thus w∗ is not identically 0.
The bound (2.42) follows from (2.40), Hardy’s inequality and the fact that w∗ is in Ḣ 1(RN).
We next prove (2.43). Using the identity (2.23) with s1 = σn and s2 = σn + s0 we get, combining with (2.17), 

(2.18), Lemma 2.7 and the fact that Ẽ is nondecreasing

lim sup
n→∞

s0∫
0

∫
B1

|wn| 2N
N−2

(1 − |y|2)1/2
dy ds = M < ∞ (2.45)

(see Step 1 of the proof of Proposition 2.1, p. 1681, for similar arguments). By (2.35) and the Sobolev inequality, and 
since w∗ is independent of time we deduce that for all ε > 0,∫

|y|≤1−ε

|w∗| 2N
N−2

(1 − |y|2)1/2
dy ≤ M/s0,

and (2.43) follows.
It remains to prove (2.44). By the definition of Ẽ,

1

2

s0∫
0

∫
B1

|∇wn(s, y)|2 − (y · ∇wn(s, y))2

(1 − |y|2)1/2
dy ds ≤

σn+s0∫
σn

Ẽ(s) ds + N − 2

2N

s0∫
0

∫
B1

|wn(s, y)| 2N
N−2

(1 − |y|2)1/2
dy ds.

Combining with (2.45), Lemma 2.6 and the monotonicity of Ẽ, we obtain

lim sup
n→∞

s0∫
0

∫
B1

|∇wn(s, y)|2 − (y · ∇wn(s, y))2

(1 − |y|2)1/2
dy ds ≤ s0E(�u0) + N − 2

2N
M,

which yields (2.44) with a similar argument as before. �
3. Energy-supercritical wave equation

In this section, we let N ≥ 3, p > N+2
N−2 and consider the supercritical focusing wave equation:{

∂2
t u − �u = |u|p−1u, t ∈ I, x ∈ R

N

(u, ∂tu)�t=0 = �u0 ∈ Ḣ sc × Ḣ sc−1,
(3.1)

where sc = N
2 − 2

p−1 > 1, I is an interval containing 0, and the unknown function u is again real-valued.
We assume furthermore that p is an odd integer, or that p is large enough (p > N/2 is sufficient), so that 

the equation (3.1) is locally well-posed: for any �u0 ∈ Ḣ sc × Ḣ sc−1, there exists an unique solution �u = (u, ∂tu) ∈
C0

(
Imax(�u0), Ḣ

sc × Ḣ sc−1
)

defined on a maximal interval of existence Imax(u) = (T−(�u0), T+(�u0)) and that satisfies 
(3.1) in the Duhamel sense.

We say that a solution u of (3.1) has the compactness property when there exist λ(t) > 0, x(t) ∈ R
N , defined for 

t ∈ Imax(�u0) and such that

K =
{(

λ(t)
2

p−1 u (t, λ(t)y + x(t)) , λ(t)
2

p−1 −1
∂tu (t, λ(t)y + x(t))

)
; t ∈ Imax(�u0)

}
(3.2)

has compact closure in Ḣ sc × Ḣ sc−1. In this section we prove:



1686 T. Duyckaerts et al. / Ann. I. H. Poincaré – AN 33 (2016) 1675–1690
Proposition 3.1. Let p be as above, and u a solution of (3.1) with the compactness property. Then u is global.

We conjecture that when p > N+2
N−2 , the only solution of (3.1) with the compactness property is 0. This would imply, 

in particular, that any solution of (3.1) which is bounded in the critical space Ḣ sc × Ḣ sc−1 scatters. This conjecture 
was settled in space dimension 3 for radial solutions in [3]. We refer to [10,12] for the corresponding defocusing 
equation.

The proof relies on classical monotonicity formulas. Note that Proposition 3.1 excludes in particular self-similar 
blow-up, generalizing [3, Proposition 2.2] with a simpler proof.

Proof of Proposition 3.1. We let u be a solution of (3.1) with the compactness property, Imax(�u0) = (T−, T+) the 
maximal interval of existence of u, and λ(t), x(t), t ∈ (T−, T+) such that K defined by (3.2) has compact closure in 
Ḣ sc × Ḣ sc−1. We argue by contradiction, assuming that T− is finite.

Step 1. Condition on the support.
We prove that there exists x− ∈R

N such that

suppu ⊂
{
|x − x−| ≤ |T− − t |

}
. (3.3)

The proof is quite standard. We give it for the sake of completeness. By the local Cauchy theory for (3.1),

lim
t

>−→ T−
λ(t) = 0.

By finite speed of propagation, x(t) is bounded on (T−, T+). Let {τn}n be a sequence of times in (T−, T+) such that 
{τn}n goes to T−, and x(τn) has a limit x− ∈ R

N as n goes to infinity.
We fix t ∈ (T−, 0]. Let ε be a small positive number. Let χ ∈ C∞

0 (RN) be such that χ(x) = 1 if |x| ≥ 1 and 
χ(x) = 0 if |x| ≤ 1

2 . By the precompactness of K , we can find R > 0 such that

∀n,

∥∥∥∥(u(τn)χ

( · − x(τn)

λ(τn)R

)
, ∂tu(τn)χ

( · − x(τn)

λ(τn)R

))∥∥∥∥
Ḣ sc×Ḣ sc−1

< ε. (3.4)

Let ũn be the solution of (3.1) with initial data(
u(τn)χ

( · − x(τn)

λ(τn)R

)
, ∂tu(τn)χ

( · − x(τn)

λ(τn)R

))
.

By the small data theory, this solution is global and

∀τ, ‖(ũn(τ ), ∂t ũn(τ ))‖Ḣ sc×Ḣ sc−1 ≤ 2ε.

Combining with finite speed of propagation and Sobolev inequality, we obtain:

‖u(t)‖Lpc ({|x−x(τn)|≥2λ(τn)R+|t−τn|) ≤ Cε,

where pc = (p−1)N
2 . Letting n → ∞, we obtain

‖u(t)‖Lpc ({|x−x−|≥|t−T−|}) ≤ Cε.

Since ε is arbitrary, we deduce (3.3).

Step 2. Monotonicity formula and end of the proof.
By Step 1, �u(t) ∈ Ḣ 1 × L2 for all t ∈ (T−, T+) and, letting

y(t) =
∫
RN

u2, (3.5)

we obtain with equation (3.1) that y is twice differentiable on (T−, T+) and
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y′(t) = 2
∫
RN

u∂tu (3.6)

y′′(t) = 2
∫
RN

(∂tu)2 − 2
∫

|∇u|2 + 2
∫

|u|p+1. (3.7)

Furthermore, the energy E(�u(t)) defined in (2.1) is well-defined and conserved with the flow. Since u is bounded in 
Ḣ sc × Ḣ sc−1, the condition (3.3) on the support of u implies

lim
t

>−→ T−
E(�u(t)) = 0 and lim

t
>−→ T−

y(t) = lim
t

>−→ T−
y′(t) = 0. (3.8)

By the conservation of the energy

∀t ∈ (T−, T+), E(�u(t)) = 0, (3.9)

and we can rewrite (3.7) as

y′′(t) = (p + 3)

∫
(∂tu)2 + (p − 1)

∫
|∇u|2 > 0. (3.10)

Combining with the limit of y′(t) in (3.8) we deduce

∀t ∈ (T−, T+), y′(t) > 0. (3.11)

We first exclude the case T+ < ∞. In this case, similar arguments than above yield

lim
t

<−→ T+
y′(t) = 0, (3.12)

contradicting the strict convexity (3.10) of y and the fact that limt→T− y′(t) = 0.
Thus we must have T+ = +∞. By (3.6) and (3.10),

y′(t)2 ≤ 4

p + 3
y′′(t)y′(t). (3.13)

Since y′(t) > 0 for all t > T−, it is straightforward that y−(p−1)/4 is strictly decreasing and strictly concave, contra-
dicting T+ = +∞. �
4. Nonlinear Schrödinger equation

In this section we consider the energy-supercritical nonlinear Schrödinger equation{
i∂tu + �u + ι|u|p−1u = 0, t ∈ I, x ∈ R

N

u�t=0 = u0 ∈ Ḣ sc (RN),
(4.1)

where I is a real interval containing 0. Here N ≥ 3, p > N+2
N−2 , ι ∈ {±1} and sc = N

2 − 2
p−1 > 1. We assume again 

that p is an odd integer, or that p is large enough (say p > N/2), so that the equation is locally well-posed in Ḣ sc . 
A solution u of (4.1) with the compactness property is by definition a solution with maximal interval of existence 
(T−, T+) such that there exists λ(t) > 0, x(t) ∈ R

N , defined for t ∈ (T−, T+), such that

K =
{
λ(t)

2
p−1 u

(
t, λ(t)y + x(t)

)
, t ∈ (T−, T+)

}
(4.2)

has compact closure in Ḣ sc . In this section we prove:

Proposition 4.1. Let p be as above, and u a solution of (4.1) with the compactness property. Then u is global.
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The proof of Proposition 4.1 is based on differentiation of the localized L2 norm as in the energy-critical case 
p = N+2

N−2 (see case 1 in the proof of Proposition 5.3 in [8]), with an additional iteration of the argument (see Step 2 
below).

As in the case of the wave equation, we conjecture that the only solution of (4.1) with the compactness property 
with p > N+2

N−2 is 0. This was proved in the defocusing case ι = −1 in dimension N ≥ 5 in [11]. The proof in [11] that 
a solution with the compactness property is global, relying on energy conservation, is specific to the defocusing case.

We will need the following claim:

Claim 4.2. There exists a constant C > 0 such that for all f ∈ Ḣ sc (RN), for all R > 0,

∫
|x|≤R

|f (x)|2 dx ≤ CR2sc‖f ‖2
Ḣ sc

,

∫
|x|≤R

|∇f (x)|2 dx ≤ C‖f ‖
2
sc

Ḣ sc

⎛⎜⎝ ∫
|x|≤2R

|f (x)|2 dx

⎞⎟⎠
1− 1

sc

.

Proof. It is sufficient to prove both inequalities for R = 1. The general case follows by scaling.
The first inequality with R = 1 is elementary. The second one is an immediate consequence of the interpolation 

inequality

‖g‖Ḣ 1 ≤ C‖g‖
1
sc

Ḣ sc
‖g‖1− 1

sc

L2

applied to g = ϕf , where ϕ ∈ C∞
0 (RN), ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2. �

Proof of Proposition 4.1. We argue by contradiction. Let u be a solution of (4.1) with the compactness property, 
and λ(t), x(t) such that K defined by (4.2) has compact closure in Ḣ sc . Assume that the maximal forward time of 
existence T+ of u is finite.

Let ϕ ∈ C∞
0 (RN) be a nonnegative function such that ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2. Let, for R > 0,

VR(t) =
∫

|u(t, x)|2ϕ
( x

R

)
dx. (4.3)

Then VR is differentiable and

V ′
R(t) = 2

R
Im

∫
∇ϕ

( x

R

)
u(t, x) · ∇u(t, x) dx. (4.4)

Step 1. We prove that for all R > 0

lim
t

<−→ T+
VR(t) = 0. (4.5)

First note that by the local Cauchy theory for (4.1) and the compactness of the closure of K in Ḣ sc , one has

lim
t

<−→ T+
λ(t) = 0. (4.6)

Let

v(t, ·) = λ(t)
2

p−1 u (t, λ(t) · +x(t)) ∈ K.

Then

VR(t) = λ(t)2sc

∫
ϕ

(
λ(t)y + x(t)

R

)
|v(t, y)|2 dy =

= λ(t)2sc

∫
|y|≤εR/λ(t)

. . .

︸ ︷︷ ︸
+λ(t)2sc

∫
|y|≥εR/λ(t)

. . .

︸ ︷︷ ︸

Aε(t) Bε(t)
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By Hölder’s inequality and Sobolev’s embedding, using that v is bounded in Ḣ sc ,

Aε(t) ≤ Cλ(t)2sc

⎛⎜⎝ ∫
|y|≤εR/λ(t)

dy

⎞⎟⎠
pc−2
pc

‖v(t)‖2
Lpc ≤ Cλ(t)2sc

⎛⎜⎝ ∫
|y|≤εR/λ(t)

dy

⎞⎟⎠
pc−2
pc

≤ C(εR)2sc

where pc = N(p−1)
2 , so that Ḣ sc is embedded into Lpc . Thus Aε(t) is small (uniformly in t ) when ε is small.

Using Hölder’s inequality again, we obtain

Bε(t) ≤ λ2sc

(∫ ∣∣∣ϕ(
λ(t)y + x(t)

R

)∣∣∣ pc
pc−2

dy

) pc−2
pc

⎛⎜⎝ ∫
|y|≥Rε/λ(t)

|v(t, y)|pc dy

⎞⎟⎠
2
p c

≤
(∫

|ϕ(x/R)| pc
pc−2 dx

) pc−2
pc

⎛⎜⎝ ∫
|y|≥Rε/λ(t)

|v(t, y)|pc dy

⎞⎟⎠
2

pc

.

Using (4.6) and the fact that v(t) stays in a compact subset of Ḣ sc , we obtain lim
t

<−→ T+
Bε(t) = 0, and (4.5) follows.

Step 2. We conclude the proof, showing that there exists β < 0 such that

∀t ∈ [0, T+), ∀R > 0, |VR(t)| ≤ CRβ. (4.7)

Indeed, if (4.7) holds, letting R → ∞ at time t = 0, we obtain u0 = 0, a contradiction.
We prove (4.7) as a consequence of the following implication (for α ∈R).(

∃C > 0, ∀t ∈ [0, T+), ∀R > 0, |VR(t)| ≤ CRα
)

=⇒
(
∃C > 0, ∀t ∈ [0, T+), ∀R > 0, |VR(t)| ≤ CR

α−1− α
2sc

)
. (4.8)

By Claim 4.2 the first line of (4.8) holds with α = 2sc . Thus (4.8) implies (4.7).
To prove (4.8), notice that by (4.4), Cauchy–Schwarz inequality and Claim 4.2,

|V ′
R(t)| ≤ C

R

⎛⎜⎝ ∫
|x|≤2R

|u(t, x)|2dx

⎞⎟⎠
1
2
⎛⎜⎝ ∫

|x|≤2R

|∇u(t, x)|2dx

⎞⎟⎠
1
2

≤ C

R

⎛⎜⎝ ∫
|x|≤4R

|u(t, x)|2 dx

⎞⎟⎠
1− 1

2sc

‖u(t)‖
1
sc

Ḣ sc
.

Using that u is bounded in Ḣ sc , we deduce

|V ′
R(t)| ≤ C

R
V4R(t)

1− 1
2sc .

Integrating between t and T+ and using Step 1, we obtain

|VR(t)| ≤ C

R

T+∫
t

V4R(τ)
1− 1

2sc dτ,

which implies (4.8), concluding the proof. �
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Appendix A. Proof of the Claim 2.3

Let H(t) = 1
2+t

∫ t

0 g(s)ds. By (2.11), and since g is bounded,

H(t) = 1

t

t∫
0

g(s) ds + O

(
1

t

)
−→

t→+∞ �. (A.1)

Furthermore, integrating by parts and using that g((t) = d
dt

((2 + t)H(t)), we obtain

1

log(2 + T )

T∫
0

g(t)

2 + t
dt = 1

log(2 + T )

⎛⎝ T∫
0

H(t) dt + H(T ) − H(0)

⎞⎠ .

By (A.1), limT →+∞ 1
log(2+T )

(H(T ) − H(0)) = 0. Moreover, by the change of variable s = log(2 + t),

1

log(2 + T )

T∫
0

H(t)

2 + t
dt = 1

log(2 + T )

log(2+T )∫
0

H
(
es − 2

)
ds.

By Cesàro mean, we deduce from (A.1) that the preceding goes to � as T → ∞ and thus

lim
T →∞

1

log(2 + T )

T∫
0

H(t)

2 + t
dt = �,

which concludes the proof.
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