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Abstract

In this paper, we address the problem of determining the asymptotic behaviour of the solutions of the incompressible stationary 
Navier–Stokes system in the full space, with a forcing term whose asymptotic behaviour at infinity is homogeneous of degree −3. 
We identify the asymptotic behaviour at infinity of the solution. We prove that it is homogeneous and that the leading term in the 
expansion at infinity uniquely solves the homogeneous Navier–Stokes equations with a forcing term which involves an additional 
Dirac mass. This also applies to the case of an exterior domain.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the incompressible stationary Navier–Stokes equations with a forcing term in R3:

−�U + (U · ∇)U + ∇p = f, divU = 0 in R
3, lim|x|→∞U(x) = 0. (1.1)

The forcing f is given and the unknowns are the velocity field U and the scalar pressure p. Clearly p is uniquely (up 
to a constant) determined by f and U . For this reason, by solution we mean only the velocity field U . In other words, 
throughout this paper a solution of (1.1) is a vector field U such that there exists some p such that (1.1) is satisfied.

The aim of this paper is to determine the asymptotic behaviour of the solutions at infinity under reasonable as-
sumptions on the forcing f . Several authors investigated this problem.

In [1] the authors studied the existence and uniqueness of solutions under a smallness assumption in the critical 
space L3,∞. Moreover, that article found an explicit asymptotic behaviour of the solutions with a decay as O( 1

|x|2 )
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provided that P�−1f is bounded by C/(1 + |x|2), where P is the Leray projector. More precisely they showed the 
following expansion for the solution:

U(x) = P�−1f (x) + m(x) :
∫
R3

U ⊗ U + O

(
ln |x|
|x|3

)
as |x| → ∞ (1.2)

where m(x) is an explicit function homogeneous of degree −2 and smooth outside 0. Observe that P�−1 is a con-
volution operator whose kernel is a homogeneous function of degree −1. Therefore, if f is sufficiently decaying at 
infinity, the condition that |P�−1f | � C/(1 + |x|2) imposed in [1] holds true if and only if 

∫
R3 f = 0.

But since all terms in the expansion (1.2) are O( 1
|x|2 ), it excludes all solutions which are homogeneous of de-

gree −1. In particular it excludes the very important case of Landau solutions. The Landau solutions were introduced 
by Landau in [10] and they are given by the explicit formula

vc
1(x) = 2

c|x|2 − 2x1|x| + cx2
1

|x|(c|x| − x1)2
, vc

2(x) = 2
x2(cx1 − |x|)
|x|(c|x| − x1)2

, vc
3(x) = 2

x3(cx1 − |x|)
|x|(c|x| − x1)2

with pressure

p(x) = 4
cx1 − |x|

|x|(c|x| − x1)2
.

They verify (1.1) with forcing f = βδ where

β = 8πc

3(c2 − 1)

(
2 + 6c2 − 3c(c2 − 1) log

(
c + 1

c − 1

))

and δ is the Dirac mass in 0 (see [4]). It was even shown by Šverák [12] that all homogeneous solutions of (1.1) on 
R

3 \ {0} with vanishing forcing are the Landau solutions.
It appears then that the relevant asymptotic behaviour at infinity of the solutions of (1.1) with forcing sufficiently 

decaying at infinity should rather be of order O(1/|x|). And indeed, it was shown in [11] that small solutions of the 
stationary incompressible Navier–Stokes equations in an exterior domain of R3 behave like v(x) + o(1/|x|) where 
v is some unknown vector field homogeneous of degree −1. Moreover, Korolev and Šverák [9] observed that the 
asymptotic profile v must be a Landau solution. More precisely, they proved that if U is small and verifies (1.1) with 
f = 0 in the exterior of a ball with no boundary conditions required, then there exists a such that U = va + o(1/|x|)
as |x| → ∞.

Let us also mention the work [5] where the authors study the stationary Navier–Stokes flow around a rotating 
body. They obtain again that the asymptotic behaviour of the solution is given by a Landau solution when the speed 
of rotation of the body is sufficiently small. In [8], the authors prove that the asymptotic behaviour as |x| → ∞ of 
time-periodic solutions is also given by a Landau solution.

Since the relevant asymptotic behaviour at infinity is homogeneous of degree −1 and since the forcing correspond-
ing to a velocity homogeneous of degree −1 is homogeneous of degree −3, it makes sense to study the asymptotic 
behaviour of the solutions of (1.1) with a forcing whose asymptotic behaviour at infinity is homogeneous of degree −3.

Let α ∈ (0, 1) be fixed once and for all. We will assume in the rest of this paper that the forcing term is of the form

f = φf0 + f1 (1.3)

where

• f0 is homogeneous of degree −3, locally bounded on R3 \ {0};
• we have that |f1(x)| � C/(1 + |x|)3+α for some constant C;
• φ ∈ C∞(R3; [0, 1]) is a radial cut-off function such that φ(x) = 0 for |x| � 1/2 and φ(x) = 1 for |x| � 1.

The questions that we ask ourselves are the following. Under what additional hypothesis on f0 and f1 there exists 
a solution U of (1.1) such that |U(x)| � C/|x| for some constant C? When such a solution exists, how does it behave 
at infinity? In short, we give the following answers. If such a U exists then necessarily
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∫
S2

f0 = 0.

And vice versa, if the above condition is satisfied and if f0, f1 are sufficiently small then there exists a unique U
which is small and bounded like O(1/|x|). Moreover, we have the following asymptotic behaviour at infinity for the 
solution:

U(x) = U0(x) + O(|x|−1−α),

where U0 is the only small solution of the Navier–Stokes equation with forcing term f0 + (
∫
R3 f1)δ which is homo-

geneous of degree −1.
The precise results and the notation will be given in the next section. In Section 3 we prove a necessary condition 

for the existence of O(1/|x|) solutions. We show next in Section 4 the existence and uniqueness of homogeneous 
solutions. We prove our main result in Section 5. Finally, in Section 6 we extend our results to exterior domains.

2. Main results and notation

We introduce the following function space for a > 0:

Xa =
{
f ∈ L1

loc(R
3 \ {0}) ; |f (x)| � C

|x|a
}

with norm

‖f ‖Xa = sup
x∈R3\{0}

|x|a|f (x)|

We recall now some results on homogeneous distributions that can be found in the book of Hörmander [7, Sec-
tion 3.2]. Let v ∈ D ′(R3 \ {0}) be a distribution homogeneous of degree −3. There exists a constant S(v) such that 
the following relation holds true:

〈v,ϕ〉 = S(v)

∞∫
0

ϕ(r)

r
dr (2.1)

for all radial test functions ϕ ∈ C∞
0 (R3 \ {0}). We define the integral of v over the unit sphere to be the constant S(v):∫

S2

v ≡ S(v).

This definition is justified by the fact that the relation above holds true when v is a continuous function as a conse-
quence of the Fubini formula in polar coordinates.

The following result on extensions of homogeneous distributions is stated in [7, Theorem 3.2.4].

Proposition 2.1. (See [7].) Let g ∈ D ′(R3 \{0}) be homogeneous of degree −3. There exists a distribution h ∈ D ′(R3)

homogeneous of degree −3 such that h
∣∣
R3\{0}= g if and only if 

∫
S2 g = 0. Moreover, if in addition g is a locally 

bounded function and 
∫
S2 g = 0 then all such distributions h are given by

h = pv(g) + Cδ

where C is an arbitrary constant and the principal value of g is defined by

pv(g) ∈ D ′(R3) : 〈pv(g),ϕ〉 = lim
ε→0

∫
|x|>ε

gϕ ∀ϕ ∈ D(R3).
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In what follows we will work with integrals of functions that decay like 1/|x|3 at infinity or have local singularities 
at the origin like 1/|x|3. We define such integrals in the principal value sense:

pv
∫
R3

h = lim
ε→0

R→∞

∫
ε<|x|<R

h

provided of course that the limit exists.
We recall now the following well-known (and easy) lemma.

Lemma 2.2. (See [3].) Let X be a Banach space and B : X × X → X a bilinear map. Assume that for all x1, x2 ∈ X

one has

‖B(x1, x2)‖X � η‖x1‖X‖x2‖X.

Then for all y ∈ X satisfying 4η‖y‖X < 1, the equation

x = y + B(x, x),

has a solution x ∈ X satisfying and uniquely defined by the condition

‖x‖X � 2‖y‖X.

The proof of this lemma also shows that x = lim
k→∞xk where the approximate solutions xk are defined by x0 = y and 

xk = y + B(xk−1, xk−1). Moreover ‖xk‖X � 2‖y‖X for all k.
We denote by P the Leray projector, i.e. the L2 orthogonal projection on the subspace of divergence free vector 

fields. Applying P to (1.1) and inverting the laplacian we obtain the following equivalent formulation of (1.1) where 
there is no pressure:

U = P�−1 div(U ⊗ U) − P�−1f. (2.2)

In order to state our main theorem, we first need to establish a result of existence and uniqueness for homogeneous 
solutions.

Theorem 2.3. Let f0 ∈ X3 be homogeneous of degree −3. If the equations (1.1) on R3 \ {0} with forcing f0 admit a 
solution U0 such that U0 ∈ X1 and U0 is homogeneous of degree −1, then necessarily∫

S2

f0 = 0 (2.3)

and there exists a constant vector γ ∈ R
3 such that U0 verifies (1.1) on R3 with forcing pv(f0) + γ δ.

Conversely, assume that γ ∈ R
3 and f0 ∈ X3 is homogeneous of degree −3 and that (2.3) is satisfied. Then 

P�−1 pv(f0) is well-defined in the principal value sense and there exists ε1 such that if

‖f0‖L∞(S2) + |γ | < ε1

then there exists a unique solution U0 ∈ X1 of (2.2) on R3 with forcing pv(f0) +γ δ such that ‖U0‖X1 � ε1. Moreover, 
U0 is homogeneous of degree −1.

We are now able to state our main theorem:

Theorem 2.4. Let f be as in (1.3). If there is a solution U of (1.1) which belongs to X1, then (2.3) must hold true.
Conversely, assume that (2.3) holds true. There exists ε2 > 0 such that if

‖f0‖L∞(S2) + ‖f1‖X0∩X3+α
� ε2

then the equation (2.2) admits a unique small solution U ∈ X1. Moreover, this solution has the following asymptotic 
behaviour at infinity:

U(x) = U0(x) + O(|x|−1−α) as |x| → ∞
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where U0 is the only −1 homogeneous solution of the Navier–Stokes equation with forcing term pv(f0) + (pv
∫
R3 f )δ

obtained in Theorem 2.3.

3. A necessary condition

The aim of this section is to prove that if the asymptotic behaviour at infinity of the forcing is homogeneous of 
degree −3, then a necessary condition for the existence of O(1/|x|) solutions is that the asymptotic part of the forcing 
has vanishing integral on the unit sphere. More precisely, we prove the following result.

Proposition 3.1. Let R0 > 0 and U be a divergence free vector field defined on �0 = {x ; |x| > R0} such that |U(x)| �
C0/|x| for some constant C0. Let f0 and f1 be vector valued distributions such that f0 ∈ D ′(R3 \{0}) is homogeneous 
of degree −3 and f1 is a (vector valued) bounded Radon measure on �0. If there exists some p ∈ D ′(�0) such that

−�U + (U · ∇)U + ∇p = f0 + f1 in D ′(�0) (3.1)

then ∫
S2

f0 = 0.

Proof. Let us choose two radial functions ϕ1 and ϕ2 such that:

• ϕ1 ∈ C∞(R3; [0, 1]) such that ϕ1(x) = 0 for all |x| � R0 + 1 and ϕ1(x) = 1 for all |x| �R0 + 2.
• ϕ2 ∈ C∞

0 (R3; [0, 1]), ϕ2(x) = 1 for all |x| � 1 and ϕ2(x) = 0 for all |x| � 2.

We define ϕR(x) = ϕ2(x/R)ϕ1(x) and we observe that ϕR ∈ C∞
0 (Bc

R0
). We apply the curl operator to (3.1) and we 

multiply by the test vector field VR ≡ ϕR

⎛
⎝ 0

x3
−x2

⎞
⎠ to obtain that

−〈� curlU,VR〉 + 〈curl div(U ⊗ U),VR〉 = 〈curl(f0 + f1),VR〉
which implies that

−〈U, curl�VR〉 − 〈U ⊗ U,∇ curlVR〉 = 〈f0 + f1, curlVR〉. (3.2)

Let us denote

X =
⎛
⎝ 0

x3
−x2

⎞
⎠ and e1 =

⎛
⎝1

0
0

⎞
⎠ .

We have that

curl�VR = �(∇ϕR × X + ϕR curlX)

= �(∇ϕR × X − 2ϕRe1)

= ∇�ϕR × X + 2
3∑

i=1

∂i∇ϕR × ∂iX − 2�ϕRe1

= ∇�ϕR × X + 2∂1∇ϕR − 4�ϕRe1.

Observe next that

∇ϕR(x) = 1

R
∇ϕ2(x/R)ϕ1(x) + ϕ2(x/R)∇ϕ1(x) = 1

R
∇ϕ2(x/R) + ∇ϕ1(x) (3.3)

if R � R0 + 2. Therefore, if R � R0 + 2,
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curl�VR = 1

R3
∇�ϕ2(x/R) × X + 2

R2
∂1∇ϕ2(x/R) − 4

R2
�ϕ2(x/R)e1

+ ∇�ϕ1 × X + 2∂1∇ϕ1 − 4�ϕ1e1.

Clearly

|〈U,
1

R3
∇�ϕ2(x/R) × X〉|� C

R3

∫
|∇�ϕ2(x/R)| = C‖∇�ϕ2‖L1

and similarly

|〈U,
2

R2
∂1∇ϕ2(x/R) − 4

R2
�ϕ2(x/R)e1〉| � C‖∇2ϕ2/|x|‖L1 .

We infer that

〈U, curl�VR〉 = O(1) as R → ∞.

It can be shown in a similar fashion that

〈U ⊗ U,∇ curlVR〉 = O(1) as R → ∞.

We deduce from (3.2) that 〈f0 + f1, curlVR〉 must also be bounded as R → ∞. But

〈f0 + f1, curlVR〉 = 〈f0 + f1,−2ϕRe1 + ∇ϕR × X〉
= −2〈(f0)1, ϕ

R〉 − 2〈(f1)1, ϕ
R〉 + 〈f0,∇ϕR × X〉 + 〈f1,∇ϕR × X〉

≡ I1 + I2 + I3 + I4.

Recall that ∇ϕR can be expressed as in (3.3). By homogeneity, we observe that I3 does not depend on R. Because 
ϕR and ∇ϕR × X are uniformly bounded and because f1 is a bounded Radon measure, we have that I2 and I4 are 
bounded. We infer that I1 must be bounded as R → ∞. Since f0 is homogeneous of degree −3 and ϕR is radial, we 
have from (2.1) that

∫
R3

(f0)1ϕ
R =

∞∫
0

ϕR(r)

r
dr

∫
S2

(f0)1

But ϕR is nonnegative and ϕR(r) = 1 for all r ∈ [R0 + 2, R] so

∞∫
0

ϕR(r)

r
dr �

R∫
R0+2

ϕR(r)

r
dr �

R∫
R0+2

1

r
dr = ln(R) − ln(R0 + 2).

We conclude that for 〈(f0)1, ϕR〉 to be bounded it is necessary to have that 
∫
S2(f0)1 = 0. The same argument can be 

applied to the other components of f0, so we finally deduce that∫
S2

f0 = 0

must hold true. This completes the proof of the proposition. �
4. Homogeneous solutions

In this section, we prove Theorem 2.3.
Assume first that there exists U0 ∈ X1 homogeneous of degree −1 and some pressure p0 such that

−�U0 + div(U0 ⊗ U0) + ∇p0 = f0 in R
3 \ {0}.

Proposition 3.1 immediately implies that (2.3) must hold true.
We prove now that there exists a constant vector γ ∈R

3 such that U0 verifies (1.1) on R3 with forcing pv(f0) +γ δ.
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Since |U0| � C/|x| we observe that U0 ∈ L1
loc(R

3). Therefore U0 defines a distribution of D ′(R3) which is homo-
geneous of degree −1. Taking the laplacian of this distribution implies that �U0 admits an extension to a distribution 
on the whole R3 which is homogeneous of degree −3. Similarly, U0 ⊗ U0 is bounded by C/|x|2 so it belongs to 
L1

loc(R
3) ⊂ D ′(R3) so div(U0 ⊗ U0) also admits an extension to a distribution on the whole R3 which is homoge-

neous of degree −3. Let us define f 0 as follows

−�U0 + div(U0 ⊗ U0) = f 0. (4.1)

We have that f 0 is a distribution on R3 which is homogeneous of degree −3. Clearly

curlf 0 = curl(−�U0 + div(U0 ⊗ U0)) = curlf0 in D ′(R3 \ {0})
so curlf 0 −curl pv(f0) is a distribution in D ′(R3), homogeneous of degree −4 and supported in the origin. Therefore, 
there exist three constant vectors A1, A2, A3 such that

curl(f 0 − pv(f0)) = A1∂1δ + A2∂2δ + A3∂3δ in D ′(R3). (4.2)

Because of the identity div curl = 0 we infer that

div(A1∂1δ + A2∂2δ + A3∂3δ) = 0

so
3∑

i,j=1

aij ∂ij δ = 0

where aij are the components of the matrix A whose columns are A1, A2, A3. Because the derivatives of the Dirac 
mass are linearly independent we infer that the matrix A must be skew-symmetric. Therefore there exists some vector 

γ =
⎛
⎝γ1

γ2
γ3

⎞
⎠ such that

A =
⎛
⎝ 0 γ3 −γ2

−γ3 0 γ1
γ2 −γ1 0

⎞
⎠ .

Then it can be easily checked that

A1∂1δ + A2∂2δ + A3∂3δ = curl(γ δ)

so we deduce from (4.2) that

curl(f 0 − pv(f0) − γ δ) = 0 in D ′(R3).

We infer that there exists some distribution p ∈ D ′(R3) such that

f 0 − pv(f0) − γ δ = ∇p

so equation (4.1) can be rewritten under the form

−�U0 + div(U0 ⊗ U0) = pv(f0) + γ δ + ∇p in D ′(R3).

This means that U0 verifies the Navier–Stokes equation on R3 with forcing pv(f0) + γ δ.
Assume now that 

∫
S2 f0 = 0. Then by Proposition 2.1 we have that pv(f0) is well defined and homogeneous of 

degree −3. It is not difficult to see that the Fourier transform of pv(f0) is a bounded function, so P�−1 pv(f0) can be 
easily defined in Fourier space. However, we need some estimates for P�−1 pv(f0) in the space X1 so we prefer to 
avoid using the Fourier transform and prove directly that P�−1 pv(f0) is well defined and estimate it in X1.

Let us recall that P�−1 is a convolution operator with kernel given by the following matrix (see [6]):

G(x) = − 1

8π

( I3

|x| + x ⊗ x

|x|3
)

(4.3)

where I3 is the identity matrix.
We prove next that the convolution G ∗ f0 is well defined.
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Lemma 4.1. The convolution G ∗ f0 is well defined in the principal value sense:

G ∗ f0(x) = pv
∫
R3

G(x − y)f0(y) dy

and we have the bound

‖G ∗ f0‖X1 � C‖f0‖X3 = C‖f0‖L∞(S2)

for some universal constant C.

Proof. The existence of G ∗ f0 in the principal value sense follows from the estimates below. We decompose

pv
∫
R3

G(x − y)f0(y)dy =
∫

|y|>2|x|
G(x − y)f0(y)dy +

∫
2|x|>|y|>|x|/2

G(x − y)f0(y)dy

+ pv
∫

|x|/2>|y|
G(x − y)f0(y)dy

=
∫

|y|>2|x|
G(x − y)f0(y)dy +

∫
2|x|>|y|>|x|/2

G(x − y)f0(y)dy

+
∫

|x|/2>|y|
(G(x − y) − G(x))f0(y)dy

≡ I1 + I2 + I3

where we used that f0 has vanishing mean on the unit sphere so

pv
∫

|x|/2>|y|
f0(y) dy = 0.

We bound now each of these terms. Observe first that

|I1| =

∣∣∣∣∣∣∣
∫

|y|>2|x|
G(x − y)f0(y)dy

∣∣∣∣∣∣∣
�

∫
|y|>2|x|

C‖f0‖L∞(S2)

|x − y||y|3 dy

� C‖f0‖L∞(S2)

∫
|y|>2|x|

1

|y|4 dy �
C‖f0‖L∞(S2)

|x| .

Next

|I2| =

∣∣∣∣∣∣∣
∫

2|x|>|y|>|x|/2

G(x − y)f0(y)dy

∣∣∣∣∣∣∣
�

∫
2|x|>|y|>|x|/2

C‖f0‖L∞(S2)

|x − y||y|3 dy

�
C‖f0‖L∞(S2)

|x|3
∫

1

|x − y|dy �
C‖f0‖L∞(S2)

|x| .
|x−y|<3|x|
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We estimate now I3. By the mean value theorem we have that G(x−y) −G(x) = y ·∇G(ξ) for some ξ ∈ [x, x−y]. 
If |y| < |x|/2 then we can bound

|G(x − y) − G(x)| � |y| sup
ξ∈[x,x−y]

|∇G(ξ)| � C|y| sup
ξ∈[x,x−y]

1

|ξ |2 � C
|y|
|x|2 .

Therefore

|I3| =

∣∣∣∣∣∣∣
∫

|x|/2>|y|
(G(x − y) − G(x))f0(y)dy

∣∣∣∣∣∣∣ �
C‖f0‖L∞(S2)

|x|2
∫

|x|/2>|y|

1

|y|2 dy �
C‖f0‖L∞(S2)

|x| .

Putting together the above estimates completes the proof of the lemma. �
Once this lemma is proved, it is not difficult to finish the proof of Theorem 2.3. Indeed, we have that G ∗δ = G ∈ X1

so G ∗ (pv(f0) + γ δ) ∈ X1. Therefore P�−1(pv(f0) + γ δ) is well defined, belongs to X1 and we have the estimate

‖P�−1(pv(f0) + γ δ)‖X1 � C‖f0‖L∞(S2) + C|γ |. (4.4)

To show the existence and the uniqueness of a small solution U0 it suffices to appeal to the following result from 
[1, Theorems 2.2 and 3.1]:

Theorem 4.2. (See [1].) There exists an absolute constant ε0 > 0 with the following property. If f is such that 
P�−1f ∈ X1 and

‖P�−1f ‖X1 < ε0

then there exists a unique solution U ∈ X1 of (2.2) such that

‖U‖X1 � 2‖P�−1f ‖X1 .

Because of (4.4), we can apply the above theorem and deduce that if ‖f0‖L∞(S2) + |γ | is sufficiently small, then 
there exists a unique small solution U0 of (2.2) with forcing pv(f0) + γ δ. Moreover, we have that

‖U0‖X1 � C‖f0‖L∞(S2) + C|γ |. (4.5)

It remains to show that U0 is homogeneous of degree −1. This follows from a standard scaling argument. By 
homogeneity, pv(f0) + γ δ is invariant through the scaling f �→ λ3f (λx). Moreover, the X1 norm of P�−1f is also 
invariant through this scaling. But if U0 solves the Navier–Stokes equations with forcing f then U0,λ(x) = λU0(λx)

also solves the Navier–Stokes equations with forcing λ3f (λx). By uniqueness of solutions, we must have that U0,λ =
U0 for all λ > 0. Therefore the solution U0 must be homogeneous of degree −1.

5. Asymptotic behaviour for general solutions

In this section we prove Theorem 2.4.
The necessity of the condition (2.3) for the existence of U ∈ X1 is a consequence of Proposition 3.1.
We assume now that the condition (2.3) is verified. It can be proved exactly like in Lemma 4.1 that P�−1(φf0) =

G ∗ (φf0) is well defined and belongs to X1 and that

‖P�−1(φf0)‖X1 � C‖f0‖L∞(S2)

for some universal constant C. Since f1 ∈ X0 ∩ X3+α , we know from [1, relation (3.1)] that P�−1f1 ∈ X1 and

‖P�−1f1‖X1 � C‖f1‖X0∩X3+α
.

We infer that P�−1f ∈ X1 and

‖P�−1f ‖X1 � C(‖f0‖L∞(S2) + ‖f1‖X0∩X3+α
) � Cε2.

Let us recall now the following result, see [1, Lemma 3.6]:
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Lemma 5.1. Let U1 ∈ X1+β and U2 ∈ X1+γ with β, γ � 0 and β+γ < 1. We have that P�−1 div(U1 ⊗U2) ∈ X1+γ+β

and

‖P�−1 div(U1 ⊗ U2)‖X1+γ+β
� C‖U1‖X1+β

‖U2‖X1+γ
.

Therefore the application X1 × X1 � (U1, U2) �→ P�−1 div(U1 ⊗ U2) ∈ X1 is bilinear and continuous. Applying 
Lemma 2.2 we deduce that if ε2 is sufficiently small, then there exists a unique solution U of (2.2) which is small 
in X1. We know from the proof of Lemma 2.2 that the solution U is obtained as the limit of the approximate solutions 
defined by

U0 = −P�−1f, Uk+1 = P�−1 div(Uk ⊗ Uk) − P�−1f.

Moreover, we have that ‖Uk‖X1 � Cε2 for all k.
Let U0 be the only −1 homogeneous solution of the Navier–Stokes equation with forcing term pv(f0) +(pv

∫
R3 f )δ

as obtained in Theorem 2.3. Let us define v = U − U0. To complete the proof of Theorem 2.4 we need to show that 
v ∈ X1+α . We have that v solves the following equation:

v = P�−1 div(v ⊗ v + v ⊗ U0 + U0 ⊗ v) − P�−1f2

where

f2 = (φ − 1)f0 + f1 − (

∫
R3

f1)δ.

We used above that 
∫
S2 f0 = 0 and that φ is radial to deduce that pv

∫
R3 φf0 = 0 so 

∫
R3 f1 = pv

∫
R3 f . Because U

is the limit of the approximate solutions Uk, we have that v is the limit of the approximate solutions vk = Uk − U0
which solve

v0 = −P�−1f2, vk+1 = P�−1 div(vk ⊗ vk + vk ⊗ U0 + U0 ⊗ vk) − P�−1f2.

We have that

‖vk‖X1 � Cε2 ∀k. (5.1)

Indeed, we observed above that ‖Uk‖X1 � Cε2 for all k and we also know from the proof of Theorem 2.3 that 
‖U0‖X1 � Cε2 (see relation (4.5)).

We will show by induction that there exists some small ε3 such that if ε2 is small enough then vk ∈ X1+α for all k
and

‖vk‖X1+α
� ε3. (5.2)

The first step is to prove this bound for k = 0.

Lemma 5.2. We have that

‖P�−1f2‖X1+α
� C(‖f0‖L∞(S2) + ‖f1‖X3+α

).

Proof. Recall that P�−1 is a convolution operator with the kernel G defined in (4.3). We write

P�−1(φf0 + f1)(x) =
∫
R3

G(x − y) · (φ(y)f0(y) + f1(y))dy

= pv
∫
R3

G(x − y)f0(y)dy + G(x) ·
∫
R3

f1 + pv
∫
R3

G(x − y) · (φ − 1)(y)f0(y)dy

+
∫

3

(G(x − y) − G(x)) · f1(y)dy
R
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= G ∗ (f0 +
∫
R3

f1δ)(x) +
∫

|y|�1

(G(x − y) − G(x)) · (φ − 1)(y)f0(y)dy

+
∫
R3

(G(x − y) − G(x)) · f1(y)dy

We deduce that

|P�−1(f2)(x)| �

∣∣∣∣∣∣∣
∫

|y|�1

(G(x − y) − G(x)) · (φ − 1)f0(y)dy

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∫
R3

(G(x − y) − G(x)) · f1(y)dy

∣∣∣∣∣∣∣
�

∣∣∣∣∣∣∣
∫

|y|�min(|x|/2,1)

(G(x − y) − G(x)) · (φ − 1)f0(y)dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

|x|/2�|y|�1

(G(x − y) − G(x)) · (φ − 1)f0(y)dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

|y|�|x|/2

(G(x − y) − G(x)) · f1(y)dy

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∫

|y|�|x|/2

(G(x − y) − G(x)) · f1(y)dy

∣∣∣∣∣∣∣
≡ I1 + I2 + I3 + I4,

where we assume that I2 = 0 if |x| > 2. We estimate now each of these terms. First

I1 �
∫

|y|�min(|x|/2,1)

|G(x − y) − G(x)||(φ − 1)f0(y)|dy

� C‖f0‖L∞(S2)

∫
|y|�min(|x|/2,1)

|∇G(ζ(x, y)) · y|
|y|3 dy

where ζ(x, y) is between x and x − y, so 1/|ζ |2 � C/|x|2

� C‖f0‖L∞(S2)

∫
|y|�min(|x|/2,1)

1

|x|2|y|2 dy

�
C‖f0‖L∞(S2)

|x|2 min(|x|/2,1)

�
C‖f0‖L∞(S2)

|x|1+α

Next, if |x| � 2 then we can bound I2 exactly as in Lemma 4.1 to obtain that

|I2| �
C‖f0‖L∞(S2)

|x| �
C‖f0‖L∞(S2)

|x|1+α
.

We can estimate I3 as follows:

I3 �
∫

|y|�|x|/2

|G(x − y) − G(x)||f1(y)|dy

� C‖f1‖X3+α

∫
|y|�|x|/2

|∇G(ζ) · y|
|y|3+α

dy
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where ζ(x, y) is between x and x − y, so 1/|ζ |2 � C/|x|2

�
C‖f1‖X3+α

|x|2
∫

|y|�|x|/2

1

|y|2+α
dy

�
C‖f1‖X3+α

|x|1+α
.

Finally

I4 �
∫

|y|�|x|/2

|G(x − y) − G(x)||f1(y)|dy

�
∫

|x|/2�|y|�2|x|
|G(x − y)| |f1(y)|dy +

∫
|y|�2|x|

|G(x − y)| |f1(y)|dy +
∫

|y|�|x|/2

|G(x)||f1(y)|dy

� C‖f1‖X3+α

⎛
⎜⎝ 1

|x|3+α

∫
|x|/2�|y|�2|x|

1

|x − y| dy +
∫

|y|�2|x|

1

|y|4+α
dy + 1

|x|
∫

|y|�|x|/2

1

|y|3+α
dy

⎞
⎟⎠

�
C‖f1‖X3+α

|x|1+α
.

This completes the proof of the lemma. �
We now go back to the proof of relation (5.2). From Lemma 5.2 we deduce that

‖v0‖X1+α
� Cε2.

We impose the condition Cε2 � ε3 so that (5.2) is verified for k = 0. Suppose that we have proved (5.2) for vk , we 
want to prove it for vk+1. We use relation (5.1) and Lemma 5.1 to estimate

‖vk+1‖X1+α
� C(‖vk‖X1+α

‖vk‖X1 + ‖vk‖X1+α
‖U0‖X1) + ‖v0‖X1+α

� Cε2‖vk‖X1+α
+ Cε2

� Cε2(1 + ε3).

Clearly if ε2 is sufficiently small then we can choose some ε3 such that Cε2(1 + ε3) � ε3. For such a choice of ε2
and ε3, relation (5.2) holds true for all k. Therefore it must hold true for the limit v. So v ∈ X1+α and this completes 
the proof of Theorem 2.4.

6. The exterior domain case

In this section, we prove the following extension of Theorem 2.4 to exterior domains.

Theorem 6.1. Let R > 0 and consider f , U and p be defined for |x| > R. Assume that U ∈ X1 and f = f0 + f1 with 
f0 ∈ X3 homogeneous of degree −3 and f1 ∈ X3+α . We assume moreover that

−�U + (U · ∇)U + ∇p = f, divU = 0 in {|x| > R},
that condition (2.3) holds true and that∫

|x|=R1

U · x = 0 (6.1)

for all R1 > R. There exists ε > 0 such that, if

‖f0‖X3 + ‖f1‖X3+α
+ ‖U‖X1 � ε
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then there exists some small constant vector m0 such that U admits the following asymptotic behaviour:

U(x) = U0(x) + O

(
1

|x|1+α

)
as |x| → ∞

where U0 is the only −1 homogeneous solution of the Navier–Stokes equation with forcing term pv(f0) +m0δ obtained 
in Theorem 2.3. Moreover, we can express m0 under the following form

m0 =
∫

|x|>R1

f1 +
∫

|x|=R1

[−∂νU + (U · ν)U + pν] ∀R1 > R (6.2)

where ν = x/|x|.

Remark 6.2. The condition (6.1) is natural. It is automatically satisfied if U verifies the Navier–Stokes equations 
together with homogeneous Dirichlet boundary conditions in an exterior domain �. This can be easily checked by 
integrating the relation divU = 0 on � ∩ {|x| < R1}. Moreover, a similar integration by parts shows that the integral 
in (6.1) is proportional to R1 so it suffices to assume (6.1) for only one R1.

To prove Theorem 6.1, we proceed as in [9]. We extend U to the whole space, we study the additional forcing term 
that appears and we apply Theorem 2.4.

Let � = {|x| > R}. First, let us observe that U and p are more regular than stated:

Lemma 6.3. We have that (U, p) ∈ W
2,q

loc (�) × W
1,q

loc (�) for any 1 < q < ∞.

Proof of the lemma. The proof follows from the following interior regularity result for the stationary Stokes equation 
proved in [13]:

Theorem 6.4. (See [13].) Let � be a domain in R3, and B1 ⊂ B2 be concentric balls of radii R and 2R, strictly 
contained in �. Let 1 < q < ∞, and f ∈ W

−1,q

loc (�). If (U, p) ∈ W
1,q

loc (�) × L
q

loc(�) is a pair of solutions of the 
stationary Stokes system with forcing term f in � (without any boundary condition), then

‖U‖W 1,q (B1)
+ inf

c∈R‖p − c‖Lq(B1) � C(‖U‖L1(B2\B1)
+ ‖f ‖W−1,q (B2)

).

This theorem implies the following regularity result: if U ∈ L1
loc(�) verifies the Stokes equation in � with forcing f ∈

W
−1,q

loc (�), then U ∈ W
1,q

loc (�). Indeed, we can approximate U by using cut-off and convolution with an approximation 
of the identity. The regularized velocity verifies the Stokes equation on a sub-domain of � (where the cut-off function 
is 1), so by Theorem 6.4 it will be bounded in W 1,q

loc of that sub-domain. So its limit U will also belong to W 1,q

loc of that 

sub-domain. Since the sub-domain can be an arbitrary bounded sub-domain of �, we infer that U ∈ W
1,q

loc (�).

Going back to the proof of the lemma we observe that f ∈ W
−1,q

loc (�) and div(U ⊗ U) ∈ W
−1,q

loc (�) for any 
1 < q < ∞. Since we have

−�U + ∇p = f − div(U ⊗ U)

divU = 0

in �, we can apply the above mentioned regularity result to obtain that U ∈ W
1,q

loc (�) for any 1 < q < ∞. Then we 
can derive these equations and we get:

−�(∂jU) + ∇(∂jp) = ∂jf + div(∂j (U ⊗ U))

div(∂jU) = 0

for any j ∈ {1, 2, 3}. Again ∂jf ∈ W
−1,q

loc (�) for any 1 < q < ∞. Moreover, since U ∈ L∞
loc(�) ∩ W

1,q

loc (�), we have 

that ∂j (U ⊗ U) = ∂jU ⊗ U + U ⊗ ∂jU ∈ L
q

(�) for any 1 < q < ∞. So div∂j (U ⊗ U) ∈ W
−1,q

(�) for any 
loc loc
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1 < q < ∞. Reapplying the same regularity result implies that U ∈ W
2,q

loc (�) for any 1 < q < ∞. From the equation 

we also get that ∇p ∈ L
q

loc(�) so p ∈ W
1,q

loc (�) for any 1 < q < ∞. This completes the proof of the lemma. �
Let R < R0 < R1 and consider a radial cut-off function η ∈ C∞(R3, [0, 1]) such that η = 0 on B(0, R0) and η = 1

on B(0, R1)
c . We define the following extension of the solution (U, p):

Ũ = U, p̃ = p on B(0,R1)
c

Ũ = ηU + v, p̃ = ηp on B(0,R1)

where we extended ηU and ηp with zero values for |x| � R. The vector field v is constructed in such a manner as to 
ensure that Ũ ∈ L∞ ∩ X1 and div Ũ = 0 everywhere. Therefore v must verify the following problem:

divv = −U · ∇η in B(0,R1)

v = 0 on ∂B(0,R1)
(6.3)

This problem has many solutions, and a way to find one with good estimates is given by the Bogovskiı̆ operators, 
see [2]. In particular, we have the following result:

Theorem 6.5. (See [2].) Let g ∈ W
k,q

0 (B) where B is a ball and k ∈ N, 1 < q < ∞. Assume that 
∫
B

g = 0. Then there 

exists a solution V ∈ W
k+1,q

0 (B) of the equation divV = g, with the following estimate:

‖V ‖Wk+1,q (B) � C(q, k,B)‖g‖Wk,q (B).

We have that∫
B(0,R1)

U · ∇η =
∫

S(0,R1)

U · ν η −
∫

B(0,R1)

η divU =
∫

S(0,R1)

U · ν = 0

where we used (6.1). Moreover, because U ∈ W
2,q

loc (�) for any 1 < q < ∞ we have that U · ∇η ∈ W 2,q for any 

1 < q < ∞. Using Theorem 6.5 we infer that there exists v ∈ W
3,q

0 (B(0, R1)) for all 1 < q < ∞ a solution of (6.3). 
We extend v to the whole space R3 by setting v = 0 for |x| > R1 so that v ∈ W 3,q(R3).

We observe now that the extension (Ũ, ̃p) verifies the following stationary Navier–Stokes equation in the whole 
space:

−�Ũ + (Ũ · ∇)Ũ + ∇p̃ = ηf + F, div Ũ = 0 (6.4)

where

F = −�v − �ηU − 2∇U · ∇η + div(ηU ⊗ v + ηv ⊗ U + v ⊗ v + η2U ⊗ U) − η div(U ⊗ U) + p∇η

is compactly supported in B(0, R1).
Given that U ∈ W

2,q

loc , p ∈ W
1,q

loc and v ∈ W 3,q for all 1 < q < ∞, one can use Sobolev embeddings to deduce 

that F is bounded. From the estimates of Theorems 6.4 and 6.5 we know that the W 2,q

loc norms of U and the W 3,q

norm of v can be bounded in terms of the L∞
loc norms of U and f . Because these norms are assumed to be small, we 

conclude that F is bounded, small and compactly supported. Moreover, Ũ is also small in X1. We can therefore apply 
Theorem 2.4 to (6.4) to deduce that Ũ has the following asymptotic behaviour:

Ũ = U0 + O
( 1

|x|1+α

)
where U0 is the only −1 homogeneous solution of the Navier–Stokes equation with forcing term pv(f0) + m0δ

obtained in Theorem 2.3 and

m0 =
∫

3

ηf1 +
∫

3

F.
R R
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It remains to prove relation (6.2). We integrate relation (6.4) on the ball B(0, R1) and use the Stokes formula to 
obtain that∫

B(0,R1)

(ηf1 + F) =
∫

B(0,R1)

div(−∇Ũ + Ũ ⊗ Ũ + p̃I3) =
∫

S(0,R1)

[−∂νU + (U · ν)U + pν]

Since F is compactly supported in B(0, R1) we have that∫
B(0,R1)

F =
∫
R3

F

so relation (6.2) follows immediately.
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