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Abstract

In this paper we establish the existence of Lipschitz-continuous solutions to the Cauchy Dirichlet problem of evolutionary partial 
differential equations{

∂tu − divDf (Du) = 0 in �T ,

u = uo on ∂P�T .

The only assumptions needed are the convexity of the generating function f : Rn → R, and the classical bounded slope condition 
on the initial and the lateral boundary datum uo ∈ W1,∞(�). We emphasize that no growth conditions are assumed on f and that 
– an example which does not enter in the elliptic case – uo could be any Lipschitz initial and boundary datum, vanishing at the 
boundary ∂�, and the boundary may contain flat parts, for instance � could be a rectangle in Rn.
© 2015 Published by Elsevier Masson SAS.
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1. Introduction

Throughout the paper let � ⊂ R
n be a bounded, open and convex set and f : Rn → R be a convex integrand. We 

define the energy functional F : W 1,∞(�) → R by means of

F(v) :=
ˆ

�

f (Dv)dx. (1.1)

A by now classical result, following the pioneering paper by Haar [15] and then Hartman–Nirenberg [16], Stampacchia 
[32], Miranda [27], Hartman–Stampacchia [17], which can nowadays be retrieved from textbooks (cf. [14, Chapter 1]), 
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ensures to given boundary values Uo : ∂� → R satisfying the bounded slope condition the existence of a Lipschitz 
continuous minimizer u to the variational functional F with boundary values Uo. We refer to [8–11,22–25] for more 
recent research in the context of existence of Lipschitz solutions – bounded slope condition – classical Calculus 
of Variations. Surprisingly enough, a time dependent counterpart to this semi-classical theory is to our knowledge 
not known so far. Instead, many sophisticated techniques (such as Galerkin methods, monotone operators, nonlinear 
semigroup theory, etc.) lead to a huge variety of different existence results. However, the construction of Lipschitz 
continuous solutions to evolutionary equations related to general convex integrands f (without any further assumption 
on the growth of the integrand) does not fall into the range of these theories, and remained an open problem.

The aim of the present paper is to close this gap in the existence theory for parabolic equations. We present 
the corresponding parabolic analogue of the above mentioned elliptic existence result, i.e. the existence of a unique 
classical solution u ∈ L∞(�T ) ∩ C0([0, T ]; L2(�)) with Lipschitz continuous spatial gradient Du ∈ L∞(�T , Rn) to 
the following Cauchy–Dirichlet problem{

∂tu − divDf (Du) = 0, in �T ,

u = uo ∂P�T ,
(1.2)

will be established for any given Lipschitz continuous initial datum uo on �, whose restriction to the boundary ∂�

satisfies the bounded slope condition. Here, and in the following, the parabolic boundary of the space-time cylinder 
�T := � × (0, T ) is defined by

∂P�T := (
� × {0}) ∪ (∂� × (0, T )) .

Prominent examples of variational integrands which are included in this framework are the area integrand

f (ξ) =
√

1 + |ξ |2,
integrands with exponential growth, such as

f (ξ) = exp |ξ |2,
or Orlicz type functionals like

f (ξ) := |ξ | log(1 + |ξ |).
Any other convex function f (ξ) not necessarily depending on the modulus of ξ , without any growth assumption, 
enters in our theory.

1.1. The class of parabolic Lipschitz solutions

In the parabolic case the formulation of Lipschitz continuous variational solutions accesses certain classes of func-
tions, which can be interpreted as the parabolic analogue of the Lipschitz functions from the stationary case. In this 
circumstance we use the identification between the space of Lipschitz continuous functions C0,1(�) and the Sobolev 
space W 1,∞(�); see Proposition 2.1. Firstly, we define the class

K(�T ) := {
v ∈ L∞(�T ) ∩ C0([0, T ];L2(�)) : Dv ∈ L∞(�T ,Rn)

}
.

Next, for given L ∈ (0, ∞) the class K(L)(�T ) is defined by

K(L)(�T ) := {
v ∈ K(�T ) : ‖Dv‖L∞(�T ,Rn) ≤ L

}
.

In the sequel we write K(L) for L in the whole range (0, ∞], with the meaning that K(∞) := K . Now, given 
uo ∈ W 1,∞(�) and L such that ‖Duo‖L∞(�,Rn) ≤ L, the subclasses K(L)

uo
(�T ) then consist of those v ∈ K(L)(�T )

coinciding with uo on the lateral boundary ∂� × (0, T ). Observe that for a.e. t ∈ (0, T ) the restriction v(t) := v(·, t)
of v ∈ K(�T ) to the time slice � × {t} is of class W 1,∞(�). This allows to define the trace in the classical sense on 
these good times slices. Following an idea by Lichnewsky & Temam [20], that was first used in the context of the 
evolutionary parametric minimal surface equation, the natural formulation of (1.2) can be given in terms of variational 
solutions.
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Definition 1.1 (Variational Solutions). Assume that uo ∈ W 1,∞(�). A map u ∈ Kuo(�T ), with T ∈ (0, ∞), is called 
a variational solution on �T to the Cauchy–Dirichlet problem (1.2) if and only if the variational inequality¨

�T

f (Du)dxdt ≤
¨

�T

[
∂tv(v − u) + f (Dv)

]
dxdt

+ 1
2‖v(0) − uo‖2

L2(�)
− 1

2‖(v − u)(T )‖2
L2(�)

(1.3)

holds true for any v ∈ Kuo(�T ) with ∂tv ∈ L2(�T ). Finally, a map u ∈ Kuo(�∞) is termed a global variational 
solution (or variational solution on �∞) if u is a variational solution on �T for all T > 0. �
1.2. The main results

Our main result concerning the existence of Lipschitz (with respect to the spatial variable) solutions to the Cauchy–
Dirichlet problem is the following:

Theorem 1.2 (Existence of Lipschitz solutions). Let � ⊂ R
n be a bounded, open and convex set and suppose that 

f : � → R is a convex function, that uo ∈ W 1,∞(�) and that Uo := uo

∣∣
∂�

satisfies the bounded slope condition (see 
Definition 2.2 below) for some constant Q. Then, there exists a unique global variational solution u on �∞ in the 
sense of Definition 1.1, satisfying the following gradient bound:

‖Du‖L∞(�∞,Rn) ≤ max
{
Q,‖Duo‖L∞(�,Rn)

}
.

Moreover, if f is of class C1, then u is the weak solution to the Cauchy Dirichlet problem (1.2).

We emphasize that the variational solution is unique even if the integrand f is convex, but not strictly convex. This 
includes the case of the total variation, i.e. the integrand f (ξ) = |ξ | is included in the theorem (apart form the final 
assertion concerning the weak form of the parabolic equation).

The existence result is completed by the following assertions on regularity properties of variational solutions.

Theorem 1.3 (Regularity of variational solutions). Suppose that f : � →R is convex and that uo ∈ W 1,∞(�). Then, 
the variational solution in the sense of Definition 1.1 on �T , T ∈ (0, ∞], satisfies

∂tu ∈ L2(�T ) and u ∈ C0, 1
2
([0, τ ];L2(�)

) ∀ τ ∈ R∩ (0, T ].
Further, for the time derivative ∂tu there holds the quantitative L2-bound¨

�T

|∂tu|2 dxdt ≤ 2|�| sup
BL(0)

|f |,

where L ≥ ‖Du‖L∞(�T ,Rn). If f is of class C1, then u ∈ C0;1,1/2(�T ).

Finally, if the integrand f is more regular, then also variational solutions are more regular. For a short discussion 
on this subject we refer to §8.

We note that in general it is not possible to treat functionals depending on x and u within this context, because u(x)

and u(x + h) must be at the same time parabolic minimizers of the same functional; also u(x) + const, for different 
values of the constant, must have this property. This rules out general assumptions on the integrand. However in the 
elliptic case the treatment of some special cases has been possible; cf. [17,22]. We could then expect that similar 
results hold in the parabolic setting too.

1.3. The method of proof

The proof of the classical elliptic result (see for example [14]) is divided into three steps. The first step consists 
in minimizing the functional F in classes of Lipschitz functions coinciding with the given boundary values on ∂�
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and possessing a Lipschitz constant below a given fixed number L. This can be viewed as the solution of an obstacle 
problem, where the obstacle is given by a gradient constraint. In general the solutions u(L) of this gradient constrained 
obstacle problem are not minimizing among all Lipschitz functions (without the constraint). However, if Lipu(L) < L, 
then u(L) minimizes F . The proof of this fact is the content of the second step. In the third step, the bounded slope 
condition with a constant Q is used to ensure that the unique minimizers u(L), i.e. the minimizers to the gradient 
constrained obstacle problems with threshold L > Q, satisfy the gradient bound Lipu(L) ≤ Q and therefore are the 
unique minimizers among all Lipschitz functions satisfying the prescribed Dirichlet boundary condition.

Maybe, the purely nature of this variational approach was the reason why a corresponding parabolic analogue was 
not derived. This is quite surprising, since a variational formulation of parabolic problems as variational solutions, 
an idea going back to the work of Lichnewsky & Temam [20], was known in the literature since 1978. However, 
even with the notion of variational solutions at hands, the theories (time independent versus time dependent) do 
not seem to have common features. The missing link (connecting the theories) can be found in the formulation of a 
conjecture going back to De Giorgi [13] on the existence of global weak solutions to the Cauchy problem for nonlinear 
hyperbolic wave equations, and of Ilmanen’s proof of Brakke’s existence theorem for motion by mean curvature via 
elliptic regularization; see [18]. In the latter case solutions to Brakke’s mean curvature flow are constructed as limits 
of translative solutions of a variational problem involving the time variable as a further independent variable. De 
Giorgi suggested to establish the existence of solutions to nonlinear wave equations by means of limits of minimizers 
of convex variational integrals on Rn × (0, ∞). That this conjecture holds true for wave equations with super-critical 
nonlinearity of the type utt −�u = |u|q−2u at least up to subsequences was proved by Serra and Tilli in [30]. A related 
approach has been used in [4,5] to treat evolutionary problems with variational structure. Similar results form a more 
abstract point of view have been obtained in [1,2,26]; see also the references therein.

In this paper we present a purely variational approach that utilizes the method of elliptic regularization. More 
precisely we consider variational functionals

Fε(v) :=
¨

�T

e−t/ε
[

1
2 |∂tv|2 + 1

ε
f (Dv)

]
dxdt

on classes of functions v : �T → R defined on the whole space-time cylinder �T satisfying the boundary condition 
v = uo on the parabolic boundary ∂P�T , while on � × {T } no boundary values are prescribed. Note, that Fε(v)

is strictly convex on the class of functions satisfying the initial condition v(0) = uo. As can easily be seen, there are 
close ties between our functional Fε and the functionals defined in the works of De Giorgi and Ilmanen. The heuristics 
behind the approximation of solutions via elliptic regularization can most easily be explained by formally computing 
the Euler–Lagrange equation associated to Fε. The computation shows that minimizers uε of Fε formally fulfill the 
elliptic equation

−ε∂ttuε + ∂tuε − divDf (Duε) = 0 in �T .

Therefore it is natural to expect, that minimizers uε converge (possible after passing to a subsequence) to a solution 
of the Cauchy–Dirichlet problem (1.2). This indicates a possible strategy for a proof of Theorem 1.2. Since we are 
interested in Lipschitz solutions, the method has to be adjusted. In a first step, one would like to construct variational 
solutions satisfying a gradient constraint. Here we use the method of elliptic regularization. We minimize Fε in 
the class K(L)

uo
(�T ), provided this class is non-empty. This is for example fulfilled if L is chosen large enough, 

i.e. L ≥ ‖Duo‖L∞(�), in which case the time independent extension of uo to the whole cylinder �T is admissible. 
Since solutions to obstacle problems in general will not solve the Euler–Lagrange equation, the heuristics from above 
has to be carried out on the level of minimizers. This can be achieved by proving certain energy bounds ensuring the 
sub-convergence of the sequence of minimizers uε to some limit function u(L). Using the minimality of uε by direct 
comparison arguments allows to establish that u(L) is a solution of the gradient constrained problem.

The second step consists – as in the elliptic case – in the observation that a variational solution u(L) whose L∞-norm 
of the spatial gradient is strictly less than the threshold L, actually solves the unconstrained problem in the sense of 
Definition 1.1. This follows by a direct comparison argument. With this respect, it is natural to seek for geomet-
ric conditions guaranteeing an a priori gradient bound. It is exactly this point where the classical bounded slope 
condition enters the theory. Utilizing a comparison principle for variational solutions it is possible to show that the 
constrained minimizers u(L) in K(L)

uo
(�T ) with L > Q, where Q is the constant from the bounded slope condition, 
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satisfy the gradient bound ‖Du(L)‖L∞(�T ,Rn) ≤ Q. Together with the previous observation, this proves that u(L) is 
the desired variational solution. In case of a differentiable integrand f one can pass to the Euler–Lagrange equation. 
Suitable Poincaré type inequalities (in the interior, the lateral boundary, the initial time, and the intersection of the 
latter two) which can be retrieved for instance from [6,7], imply that the variational solution belongs to a certain 
parabolic Morrey-space. A classical result of Da Prato then yields that u ∈ C0;1, 1

2 (�T ), i.e. the solution is Lipschitz-
continuous with respect to the parabolic metric. Higher regularity can be shown by standard arguments (the parabolic 
De Giorgi–Nash–Moser theory and bootstrap arguments), provided f is higher regular.

2. Notations and preliminaries

2.1. Notations

For p ∈ [1, ∞], n ∈ N and an open set � ⊂ R
n, the spaces Lp (�), W 1,p (�) and W 1,p

0 (�) denote the usual 
Lebesgue and Sobolev spaces, respectively. Moreover, for T ∈ (0,∞], by �T we denote the space-time cylinder 
� × (0, T ). Further, for a set A the characteristic function of A shall be denoted by χA. Throughout the paper we 
often use the identification of the class of Lipschitz continuous functions C0,1(�) with the space W 1,∞(�). For later 
usage we recall the definition of the Lipschitz constant of a continuous function u on �:

[u]0,1;� := sup
x �=y,x,y∈�

|u(x) − u(y)|
|x − y| < ∞.

The connection between the spaces C0,1(�) and W 1,∞(�) is given in the following result:

Proposition 2.1. Let � ⊂R
n be a domain. A map u ∈ L∞

loc(�) admits a weak derivative Du ∈ L∞(�, Rn) if and only 
if u is Lipschitz continuous on � with respect to the inner metric d�. In this case the (optimal) Lipschitz constant 
[u]0,1;� is given by ‖Du‖L∞(�,Rn). �

In the case of a convex domain � the inner metric is the Euclidean distance, i.e. in this case we have d�(x, y) ≡
|x − y| for any x, y ∈ �. For a nonconvex set d� is the minimal distance inside the set.

2.2. Bounded slope condition

As in the case of stationary minimization problems the bounded slope condition plays a fundamental role, since 
its validity guarantees suitable affine comparison functions. These affine functions can be used in the comparison 
principle, yielding pointwise estimates from above and below. The precise definition is as follows:

Definition 2.2. We say that a function U : ∂� → R satisfies the bounded slope condition with constant Q > 0 if for 
any xo ∈ ∂� there exist two affine functions w−

xo
and w+

xo
with [w−

xo
]0,1 ≤ Q and [w+

xo
]0,1 ≤ Q such that

w−
xo

(x) ≤ U(x) ≤ w+
xo

(x), for any x ∈ ∂�

and w−
xo

(xo) = U(xo) = w+
xo

(xo) holds true. �
If � is a uniformly convex, bounded C2-domain and v ∈ C2(Rn), then v

∣∣
∂�

satisfies the bounded slope condition; 
for more details see [14,27]. A completely different example, which has no correspondence in the elliptic case and 
which is covered in this context, is a Lipschitz initial boundary datum uo defined on a rectangle in Rn vanishing at the 
boundary; i.e. the boundary of our set can contain flat pieces.

The following Lemma shows that, given a Lipschitz continuous function whose restriction to the boundary satisfies 
the bounded slope condition, we can tilt the affine functions from the bounded slope condition in such a way that, on 
the one hand the bounded slope condition holds true with a larger constant, and on the other hand the function itself 
is squeezed on the whole domain between two affine functions.
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Lemma 2.3. Let uo : � → R with [uo]0,1 ≤ Q1 such that U := uo

∣∣
∂�

satisfies the bounded slope condition with 
constant Qo. Then for any boundary point xo ∈ ∂� there exist two affine functions w−

xo
and w+

xo
with [w−

xo
]0,1 ≤

max{Qo, Q1} and [w+
xo

]0,1 ≤ max{Qo, Q1} such that

w−
xo

(x) ≤ uo(x) ≤ w+
xo

(x), for any x ∈ �

and w−
xo

(xo) = U(xo) = w+
xo

(xo) holds true.

Proof. Consider u : � →R with [u]0,1 ≤ Q1 such that U := u
∣∣
∂�

satisfies the bounded slope condition with constant 
Qo. Let w+

xo
denote an affine function – which exists since U satisfies the bounded slope condition – coinciding with 

U at xo with [w+
xo

]0,1 ≤ Q and U(x) ≤ w+
xo

(x), for any x ∈ ∂�. Without loss of generality we can assume xo = 0 and 
U(xo) = 0. Further, we can assume � ⊂R

n−1 ×R+ and that w+
xo

takes the form w+
xo

(x) = Qxn for some |Q| ≤ Qo. 
Now, consider x ≡ (x′, xn) ∈ � and denote by (x′, yn) ∈ ∂� the unique point in the boundary ∂� with 0 ≤ yn < xn. 
Then, we have

u(x) ≤ u(x′, xn) − U(x′, yn) + w+
xo

(x′, yn)

≤ Q1(xn − yn) + Qyn

≤ Q1(xn − yn) + Qoyn

≤ max{Qo,Q1}xn.

We now define the affine function w̃+
xo

(x) := max{Qo, Q1}xn. The previous estimate implies that u(x) ≤ w̃+
xo

(x) for 
any x ∈ �. Moreover, we have U(xo) = 0 = w̃+

xo
(xo) and u ≤ w+

xo
≤ w̃+

xo
on ∂�, i.e. U satisfies the bounded slope 

condition for the larger constant max{Qo, Q1}. �
2.3. Mollification in time

In the definition of variational solutions we are not going to assume any condition on their derivative with respect to 
time. Therefore, in general we are not allowed to use them as comparison maps in the variational inequality (1.3) and 
a suitable mollification procedure in time is thus needed. To this end, for X a separable Banach space, an initial datum 
vo ∈ X and 1 ≤ r ≤ ∞, let v ∈ Lr(0, T ; X) and define the mollification in time of v for h ∈ (0, T ] and t ∈ [0, T ] by 
means of

[v]h(t) := e− t
h vo + 1

h

tˆ

0

e
s−t
h v(s)ds. (2.1)

In the applications we are going to use for instance X = Lr(�, RN) and the related parabolic space Lr(0, T ;
Lr(�, RN)). One of the features of the mollification in time is that [v]h solves the ordinary differential equation

∂t [v]h = 1
h

(
v − [v]h

)
(2.2)

with initial condition [v]h(0) = vo. Note that, since [v]h solves the ordinary differential equation (2.2) above, then 
clearly any common membership of both v and its regularization [v]h to a Banach space is passed also to the time 
derivative of [v]h. This fact will be exploited in §5.3 in deriving the uniform a priori bounds for the sequence of 
Fε-minimizers uε which later on imply in particular that the variational solution u possesses a time derivative in 
L2(�T ).

The basic properties of the mollification in time are summarized in the following lemma (cf. [19, Lemma 2.2] and 
[3, Appendix B] for the proofs).

Lemma 2.4. Suppose X is a separable Banach space and vo ∈ X. If v ∈ Lr(0, T ; X) for some r ≥ 1, then also 
[v]h ∈ Lr(0, T ; X), and [v]h → v in Lr (0, T ;X) as h ↓ 0 if r < ∞. Further, for any to ∈ (0, T ] there holds

‖[v]h‖Lr(0,to;X) ≤ ‖v‖Lr(0,to;X) +
[

h
r

(
1 − e− tor

h

)] 1
r ‖vo‖X .
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In the case r = ∞, the bracket [. . .]1/r in the preceding inequality has to be interpreted as 1. Moreover, ∂t[v]h ∈
Lr (0, T ;X) with

∂t [v]h = 1
h

(
v − [v]h

)
.

If additionally also ∂tv ∈ Lr(0, T ; X), then

∂t [v]h = 1
h

tˆ

0

e
s−t
h ∂sv(s)ds

and

‖∂t [v]h‖Lp(0,T ;X) ≤ ‖∂tv‖Lp(0,T ;X) .

Finally, if v ∈ C0([0, T ]; X), then also [v]h ∈ C0([0, T ]; X), [v]h(0) = vo and [v]h → v in L∞([0, T ]; X) as 
h ↓ 0. �

In the following we want to show that the time mollification of the f -energy satisfies f ([v]h) ≤ [f (v)]h on [0, T ]
and [f (v)]h → f (v) in L1(0, T ) as h ↓ 0 if v and vo are chosen properly. The first estimate will be used frequently 
throughout the paper, while the convergence is only needed to show that the variational solution u is also a variational 
solution on any subcylinder �τ ⊂ �T .

Lemma 2.5. Let T > 0 and f : Rn → R be convex. Suppose further that v ∈ K(�T ) and vo ∈ W 1,∞(�). Then, 
[v]h ∈ K(�T ) with

‖D[v]h‖L∞ ≤ max
{‖Dvo‖L∞,‖Dv‖L∞

}
,

f (D[v]h) ∈ L1(�T ) and

f (D[v]h) ≤ [f (Dv)]h on �T .

Moreover, in the limit h ↓ 0 we have

f (D[v]h) → f (Dv) in L1(�T ).

Here, [v]h and [f (Dv)]h are defined according to (2.1) with vo and f (Dvo) as initial datum.

Proof. The first assertion is a direct consequence of the definition of the mollification, since for t ∈ (0, T ) we have

‖D[v]h(t)‖L∞ ≤ e− t
h ‖Dvo‖L∞ + 1

h

tˆ

0

e
s−t
h ‖Dv(s)‖L∞ds

≤ max
{‖Dvo‖L∞ ,‖Dv‖L∞

} =: R.

In turn, this implies f (D[v]h) ∈ L1(�T ). Observing that

1

h

(
1−e− t

h

)
tˆ

0

e
s−t
h ds ≡ 1,

usage of the convexity of f gives the estimate

f
(
D[v]h

) ≤ e− t
h f (Dvo) +

(
1 + e− t

h

)
f

(
1

h(1+e− t
h )

tˆ

0

e
s−t
h Dv(s)ds

)

≤ e− t
h f (Dvo) + 1

h

tˆ

0

e
s−t
h f (Dv(s))ds

= [
f (Dv)

]
h
.
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Since D[v]h is strongly convergent in Lq(�T , RN) for any q ∈ [1, ∞) to Dv as h ↓ 0, we can extract a not relabeled 
subsequence such that D[v]h → Dv pointwise almost everywhere on �T . Therefore, the continuity of f implies the 
pointwise almost everywhere convergence f (D[v]h) → f (Dv). Taking into account that |f (D[v]h)| ≤ supBR(0) |f |, 
the dominated convergence theorem implies the strong convergence f (D[v]h) → f (Dv) in L1(�T ) for the chosen 
subsequence. Note that the limit does not depend on the subsequence. Therefore, we can repeat the argument starting 
with an arbitrary subsequence, proving that the convergence holds for the whole sequence. �
3. Gradient constrained obstacle problems

In this section we consider variational solutions satisfying a gradient constraint of the type |Du| ≤ L on �T for 
some constant L > 0. This can be achieved in a fairly general setting, in particular without assuming the bounded 
slope condition. Therefore, we will work with weaker assumptions throughout this section. We consider a bounded 
open set � ⊂R

n, a convex integrand f : Rn →R and some initial datum uo satisfying uo ∈ W 1,∞(�).

Definition 3.1 (Variational solutions, gradient constraint). Let L > 0 and uo ∈ W 1,∞(�) such that L ≥
‖Duo‖L∞(�,Rn). A map u ∈ K

(L)
uo

(�T ) with T ∈ (0, ∞) is called variational solution (of the gradient constrained 
obstacle problem) in K(L)

uo
(�T ) if and only if the variational inequality

¨

�T

f (Du)dxdt ≤
¨

�T

[
∂tv(v − u) + f (Dv)

]
dxdt

+ 1
2‖v(0) − uo‖2

L2(�)
− 1

2‖(v − u)(T )‖2
L2(�)

(3.1)

holds true for any v ∈ K
(L)
uo

(�T ) with ∂tv ∈ L2(�T ). Furthermore, if T = ∞, a measurable map u : �∞ → R is 
termed global variational solution of the gradient constrained obstacle problem if and only if its restriction to any 
finite cylinder �T with T ∈ (0, ∞) is a variational solution in K(L)

uo
(�T ). �

Observe that the time independent extension of uo to �T , i.e. the map ūo(x, t) := uo(x) for (x, t) ∈ �T , belongs 
to the class K(L)

uo
(�T ) and satisfies ∂t ūo ≡ 0. Hence, the class of admissible testing functions in (3.1) is non-empty. 

In the sequel we establish in a first step, that variational solutions of the gradient constrained problem in the sense 
of the preceding definition on the cylinder �T with T ∈ (0, ∞), also solve the variational inequality (3.1) on any 
smaller subcylinder �τ ⊂ �T with τ ∈ (0, T ). Note that the following lemmata also apply to variational solutions of 
the unconstrained problem in the sense of Definition 1.1. The precise statement is as follows:

Lemma 3.2 (Localization in time). Let L ∈ (0, ∞], � ⊂ R
n be a bounded, open set, f : Rn → R a convex integrand 

and uo ∈ W 1,∞(�) with ‖Duo‖L∞(�,Rn) ≤ L, if L ∈ R, or ‖Duo‖L∞(�,Rn) < ∞, if L = ∞, respectively. Suppose 
that u ∈ K

(L)
uo

(�T ) is a variational solution in K(L)
uo

(�T ) in the sense of Definition 3.1 (respectively Definition 1.1 in 
the case L = ∞) on some cylinder �T with T ∈ (0, ∞). Then, u is also a variational solution in K(L)

uo
(�τ ) on any 

smaller cylinder �τ with τ ∈ (0, T ).

Proof. For θ ∈ (0, τ) we consider the cut-off function

ξθ (t) := χ[0,τ−θ](t) + τ−t
θ

χ(τ−θ,τ ](t).

For v ∈ K
(L)
uo

(�τ ) satisfying ∂tv ∈ L2(�τ ) we define a function vθ : �T →R by

vθ := ξθv + (1 − ξθ ) [u]h ,

where [u]h is defined according to (2.1) with uo and u instead of vo and v, respectively and ξθv has been extended 
from �τ to �T by 0. Since vθ ∈ K

(L)
uo

(�T ) and ∂tvθ ∈ L2(�T ) we are allowed to choose vθ as comparison map in 
(3.1). This yields
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¨

�T

f (Du)dxdt ≤
¨

�T

[
∂tvθ (vθ − u) + f (Dvθ )

]
dxdt

+ 1
2‖v(0) − uo‖2

L2 − 1
2‖([u]h − u)(T )‖2

L2 . (3.2)

In the following we want to pass to the limit θ ↓ 0. Therefore, we have a look at the first two terms on the right-hand 
side of the previous inequality. The first one can be rewritten to¨

�T

∂tvθ (vθ − u)dxdt

=
¨

�×(0,τ−θ)

∂t v(v − u)dxdt +
¨

�×(τ,T )

∂t [u]h([u]h − u)dxdt

+
¨

�×(τ−θ,τ )

ξ ′
θ ξθ

∣∣v − [u]h
∣∣2dxdt +

¨

�×(τ−θ,τ )

ξ ′
θ ([u]h − u)(v − [u]h)dxdt

+
¨

�×(τ−θ,τ )

[
ξθ∂tv + (1 − ξθ )∂t [u]h

][
ξθ (v − u) + (1 − ξθ )([u]h − u)

]
dxdt

=: Iθ + IIθ + IIIθ + IVθ + Vθ ,

where the meaning of the terms Iθ–Vθ is obvious in this context. Note that the properties of the appearing functions 
imply

lim
θ↓0

Iθ =
¨

�×(0,τ )

∂t v(v − u)dxdt, lim
θ↓0

IIIθ = − 1
2‖(v − [u]h) (τ )‖2

L2,

and

lim
θ↓0

Vθ = 0, lim sup
θ↓0

IVθ ≤ ∥∥([u]h − u
)(

v − [u]h
)
(τ )

∥∥
L1 ,

so that

lim sup
θ↓0

¨

�T

∂tvθ (vθ − u)dxdt

≤
¨

�×(0,τ )

∂t v(v − u)dxdt +
¨

�×(τ,T )

∂t [u]h
([u]h − u

)
dxdt

− 1
2‖(v − [u]h) (τ )‖2

L2 + ∥∥([u]h − u
)(

v − [u]h
)
(τ )

∥∥
L1 .

The second term appearing on the right-hand side of the minimality condition (3.2) is given by¨

�T

f (Dvθ )dxdt =
¨

�×(τ−θ,τ )

f
(
ξθDv + (1 − ξθ )D[u]h

)
dxdt

+
¨

�×(0,τ−θ)

f (Dv)dxdt +
¨

�×(τ,T )

f
(
D[u]h

)
dxdt.

Using the convexity of f , it is clear that the second term of the previous equality tends to 0 as θ ↓ 0, so that

lim
θ↓0

¨

�T

f (Dvθ )dxdt =
¨

�×(0,τ )

f (Dv)dxdt +
¨

�×(τ,T )

f
(
D[u]h

)
dxdt.

Therefore, after passing to the limit θ ↓ 0, the variational inequality (3.2) implies
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¨

�τ

f (Du)dxdt ≤
¨

�τ

[
∂tv(v − u) + f (Dv)

]
dxdt

+ 1
2‖v(0) − uo‖2

L2 − 1
2

∥∥(v − [u]h)(τ )
∥∥2

L2

+
¨

�×(τ,T )

[
∂t [u]h

([u]h − u
)
dx + f (D[u]h) − f (Du)

]
dxdt

− 1
2

∥∥([u]h − u
)
(T )

∥∥2
L2 + ∥∥([u]h − u

)(
v − [u]h

)
(τ )

∥∥
L1 .

From Lemmas 2.4 and 2.5 we know that ∂t [u]h([u]h−u) ≤ 0 and the convergences [u]h → u in L∞(0, T ; L2(�, RN))

and f (D[u]h) → f (Du) in L1(�T ) as h ↓ 0. Therefore, passing to the limit h ↓ 0 in the last inequality, we conclude 
that u satisfies the variational inequality (1.3) on the subcylinder �τ . Since v was arbitrary, u is therefore a variational 
solution on the subcylinder �τ . �

As application of the localization in time principle from Lemma 3.2 we establish that variational solutions fulfill 
the initial condition u (0) = uo in the strong L2(�)-sense. The precise statement is as follows:

Lemma 3.3. Let L ∈ (0, ∞], � ⊂ R
n a bounded open set, f : Rn → R a convex integrand and an initial datum 

uo ∈ W 1,∞(�) with ‖Duo‖L∞(�,Rn) ≤ L, if L ∈ R, or ‖Duo‖L∞(�,Rn) < ∞, if L = ∞, respectively. Then, any 
variational solution u in K(L)

uo
(�T ) in the sense of Definition 3.1 (respectively Definition 1.1 if L = ∞) on some 

cylinder �T with T ∈ (0, ∞] satisfies

lim
t↓0

‖u (t) − uo‖2
L2(�)

= 0.

Proof. From Lemma 3.2 we know that u fulfills the variational inequality (3.1) on any subcylinder �τ for τ ∈ (0, T ). 
Moreover, for the time-independent extension ūo(x, t) := uo(x) of uo we have that ūo ∈ K

(L)
uo

(�τ ) and ∂t ūo ∈ L2(�τ ). 
Therefore, choosing v = ūo as comparison function in (3.1) yields

¨

�τ

f (Du)dxdt + 1
2‖u (τ) − uo‖2

L2(�)
≤
¨

�τ

f (Duo)dxdt = τ

ˆ

�

f (Duo)dx < ∞.

Since M := max{‖Du‖L∞(�τ ), ‖Duo‖L∞(�)} < ∞ (note in the case L < ∞ we have M ≤ L), this implies

‖u(τ) − uo‖2
L2(�

≤ 4τ |�| sup
BM(0)

|f | ∀ τ ∈ (0, T ).

This proves the claim of the lemma. �
Next, we will establish that any variational solution u to the constrained problem admits a time derivative ∂tu in a 

weak sense and that it belongs to L2(�T ). Note, since the case L = ∞ is included in Lemma 3.4, the first assertion in 
Theorem 1.3 follows as a byproduct.

Lemma 3.4. Let L ∈ (0, ∞], � a bounded open subset of Rn, f : Rn → R a convex integrand and an initial datum 
uo ∈ W 1,∞(�) with ‖Duo‖L∞(�,Rn) ≤ L, if L ∈ R, or ‖Duo‖L∞(�,Rn) < ∞, if L = ∞, respectively. Suppose that 
u is a variational solution in K(L)

uo
(�T ) in the sense of Definition 3.1 or Definition 1.1 in the case L = ∞ on some 

cylinder �T with T ∈ (0, ∞]. Then, we have ∂tu ∈ L2(�T ) together with the estimate
¨

�T

|∂tu|2dxdt ≤ 2|�| sup
BM(0)

f,

where M ≥ max{‖Du‖L∞(�T ), ‖Duo‖L∞(�)}. In particular, if L < ∞ the previous estimate holds with M = L.
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Proof. From Lemma 3.2 we know that u is also a variational solution on any subcylinder �τ for τ ∈ R ∩ (0, T ]. 
We define [u]h according to (2.1) with (vo, v) replaced by (uo, u). Then, [u]h ∈ K

(L)
uo

(�τ ) and ∂t [u]h ∈ L2(�τ ). 
Therefore, we are allowed to test the variational inequality (3.1) on �τ with the comparison map v = [u]h. Using also 
Lemma 2.5 and the fact that 1

2‖([u]h − u)(τ)‖2
L2(�)

≥ 0, this implies

−
¨

�τ

∂t [u]h
([u]h − u

)
dxdt ≤

¨

�τ

[
f

(
D[u]h

) − f (Du)
]
dxdt

≤
¨

�τ

[[f (Du)]h − f (Du)
]
dxdt

= −h

¨

�τ

∂t [f (Du)]hdxdt

= h

[ˆ
�

f (Duo)dx −
ˆ

�×{τ }
[f (Du)]hdx

]
,

where [f (Du)]h is defined according to (2.1) with vo and v replaced by f (Duo) and f (Du), respectively. We now 
choose M ≥ max{‖Du‖L∞(�T ), ‖Duo‖L∞(�)}. Observe that in the case L < ∞, the choice M = L is possible. Ex-
ploiting the fact that [u]h − u = −h∂t [u]h by Lemma 2.4, this yields the uniform bound¨

�τ

∣∣∂t [u]h
∣∣2dxdt ≤ 2|�| sup

BM(0)

|f | ∀h ∈ (0, τ ],

such that the time derivative ∂tu exists with ∂tu ∈ L2(�τ ) for all τ ∈ (0, T ] together with the quantitative estimate¨

�τ

|∂tu|2dxdt ≤ 2|�| sup
BM(0)

|f | ∀ τ ∈ (0, T ].

Therefore, if T < ∞, setting τ = T , or otherwise, if T = ∞, letting τ → ∞, shows the claim that ∂tu ∈ L2(�T )

together with the asserted estimate. �
4. Parabolic minimizers and the comparison principle

Observe, that the assertion of Lemma 3.4, i.e. the fact that variational solutions admit a time derivative ∂tu ∈
L2(�T ), allows an integration by parts in the first term on the right-hand side of the variational inequality (3.1). The 
integration by parts shows that¨

�T

f (Du)dxdt ≤
¨

�T

[
∂tu(v − u) + f (Dv)

]
dxdt

holds true for any v ∈ K
(L)
uo

(�T ) with ∂tv ∈ L2(�T ). This motivates the following definition:

Definition 4.1 (Parabolic minimizer). Let L ∈ (0, ∞]. A map u ∈ K(L)(�T ) with T ∈ (0, ∞) and ∂tu ∈ L2(�T ) is 
called parabolic minimizer (of the gradient constrained obstacle problem in the case L < ∞) in K(L)(�T ) if and only 
if the variational inequality¨

�T

f (Du)dxdt ≤
¨

�T

[
∂tu(v − u) + f (Dv)

]
dxdt (4.1)

holds true for any v ∈ K
(L)
u (�T ). Further, if T = ∞, a measurable map u : �∞ → R is termed global parabolic 

minimizer (of the gradient constraint obstacle problem) if and only if its restriction to any finite cylinder �T with 
T ∈ (0, ∞) is a parabolic minimizer in K(L)(�T ). �



366 V. Bögelein et al. / Ann. I. H. Poincaré – AN 34 (2017) 355–379
We note that the notion of parabolic minimizers to vector valued integrands with quadratic growth has its origin in 
a paper by Wieser [33].

Remark 4.2 (Localization in space). In the proof of the main Theorem 1.2 it is crucial, that a localization principle 
with respect to space holds true. By this we mean that any parabolic minimizer of the gradient constrained obstacle 
problem in �T , with � convex, in the sense of Definition 4.1 is also a parabolic minimizer of the gradient constrained 
problem on any smaller subcylinder �′ × (0, T ), with �′ a convex, open subset of �. The proof of this basic fact is 
elementary and could be skipped. For completeness reasons we however include the argument, which is based on the 
identification of the spaces W 1,∞(�) and C0,1(�) as explained in Proposition 2.1. Recall that w ∈ W 1,∞(�) with 
‖Dw‖L∞(�,Rn) ≤ L has a Lipschitz continuous representative, still denoted by w, with [w]0,1;� ≤ L.

Suppose, L ∈ (0, ∞) and u ∈ K(L)(�T ) with ∂tu ∈ L2(�T ) is a parabolic minimizer in the sense of Defini-
tion 4.1. Consider v ∈ K

(L)
u (�′

T ). Observe that v = u on the lateral boundary ∂�′ × (0, T ). Define the comparison 
map ṽ : �T → R by

ṽ :=
{

v on �′ × (0, T )

u on (� \ �′) × (0, T )

Clearly, this construction provides us with a map ṽ ∈ L∞(�T ) ∩ C0([0, T ]; L2(�)) such that ∂t ṽ ∈ L2(�T ). Further, 
for a.e. t ∈ (0, T ) we have

|ṽ(x, t) − ṽ(y, t)| ≤ L|x − y|
whenever x, y ∈ �′ or x, y ∈ � \ �′. In the case that x ∈ �′ and y ∈ � \ �′ we find z ∈ ∂�′ ∩ [x, y], which allows 
for the estimate (note that v(z, t) = ṽ(z, t) = u(z, t))

|ṽ(x, t) − ṽ(y, t)| ≤ |ṽ(x, t) − ṽ(z, t)| + |ṽ(z, t) − ṽ(y, t)|
= |v(x, t) − v(z, t)| + |u(z, t) − u(y, t)|
≤ L|x − z| + L|z − y| = L|x − y|,

establishing [ṽ(t)]0,1;� ≤ L. Observing that ṽ = u on ∂� × (0, T ), we have shown that ṽ ∈ K
(L)
u (�T ) and therefore 

ṽ is admissible in the minimality condition (4.1). Since ṽ = u on (� \ �′) × (0, T ), the minimality condition can be 
re-written as¨

�′
T

f (Du)dxdt ≤
¨

�′
T

[
∂tu(v − u) + f (Dv)

]
dxdt,

proving that u is a parabolic minimizer in the sense of Definition 4.1 on the subcylinder �′
T .

The localization principle in space will be applied to parabolic minimizers u on �T with a bounded, convex open 
set � and its translate uy(x, t) := u(x + y, t) on �y × (0, T ) with �y := {

x − y ∈ R
n : x ∈ �

}
on the intersection (

� ∩ �y

) × (0, T ). Observe, that the convexity assumptions are clearly fulfilled in this special case. �
In the next lemma we are concerned with the comparison principle for parabolic minimizers.

Lemma 4.3 (Comparison principle). Let L ∈ (0, ∞] and suppose that � ⊂ R
n is a bounded open set, f : Rn → R

a convex integrand and u, ũ ∈ K(L)(�T ) with ∂tu, ∂t ũ ∈ L2(�T ) parabolic minimizers in the sense of Definition 4.1
on �T for some T ∈ (0, ∞]. Suppose further that u ≤ ũ on ∂P�T . Then, we have

u ≤ ũ a.e. in �T .

Proof. Let τ ∈ R ∩ (0, T ]. We define v := min{u, ũ} and w := max{u, ũ} on �τ and v := u, w := ũ on � × (τ, T ). 
We note that v ∈ K

(L)
u (�T ) and w ∈ K

(L)

ũ
(�T ). This ensures that v is admissible as comparison function in the 

variational inequality (3.1) on �τ for u and w is admissible in the variational inequality for ũ. Adding the two 
resulting inequalities and using that v(0) = uo and w(0) = ũo, we obtain
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¨

�τ

[
f (Du) + f (Dũ)

]
dxdt

≤
¨

�τ

[
f (Dv) + f (Dw) + ∂tu(v − u) + ∂t ũ(w − ũ)

]
dxdt. (4.2)

We now consider the terms on the right-hand side of (4.2). From the definition of v and w we have¨

�τ

[
f (Dv) + f (Dw)

]
dxdt =

¨

�τ

[
f (Du) + f (Dũ)

]
dxdt.

Again, from the definition of v and w, we observe that v − u = −(u − ũ)+ and w − ũ = (u − ũ)+, so that

∂tu(v − u) + ∂t ũ(w − ũ) = −∂t (u − ũ)(u − ũ)+
= −∂t (u − ũ)+(u − ũ)+ = − 1

2∂t (u − ũ)2+,

implying that¨

�τ

[
∂tu(v − u) + ∂t ũ(w − ũ)

]
dxdt = − 1

2

¨

�τ

∂t (u − ũ)2+dxdt

= − 1
2

ˆ

�×{τ }
(u − ũ)2+dx.

Joining the preceding estimates with (4.2), we find thatˆ

�×{τ }
(u − ũ)2+dx ≤ 0.

Since τ ∈R ∩ (0, T ] was arbitrary, this proves the claim that u ≤ ũ a.e. in �T . �
The preceding comparison principle can be used to establish the following maximum principle.

Lemma 4.4 (Maximum principle). Let L ∈ (0, ∞] and suppose that � ⊂ R
n is open and bounded, f : Rn → R

convex and let u, ũ ∈ K(L)(�T ) with ∂tu, ∂t ũ ∈ L2(�T ) be parabolic minimizers in the sense of Definition 4.1 on �T

for some T ∈ (0, ∞]. Then, we have

sup
�T

(u − ũ) = sup
∂P�T

(u − ũ).

Proof. For (x, t) ∈ ∂P�T we have

u(x, t) = ũ(x, t) + u(x, t) − ũ(x, t) ≤ ũ(x, t) + sup
∂P�T

(u − ũ).

Moreover, both u and ũ + sup∂P�T
(u − ũ) are parabolic minimizers on �T . Therefore, Lemma 4.3 yields that

u ≤ ũ + sup
∂P�T

(u − ũ) on �T ,

which is the same as

sup
�T

(u − ũ) ≤ sup
∂P�T

(u − ũ).

Since the reversed inequality holds trivially, this proves the claim. �
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5. Elliptic regularization

In this section we show, how the method of elliptic regularization can be used to establish the existence of a 
variational solution to the gradient constrained obstacle problem in the sense of Definition 3.1. Let T ∈ (0, ∞). For 
ε ∈ (0, 1] we consider convex variational integrals of the form

Fε(v) :=
¨

�T

e− t
ε

[
1
2 |∂tv|2 + 1

ε
f (Dv)

]
dxdt.

In the following, for given uo ∈ W 1,∞(�) with ‖Duo‖L∞(�,Rn) ≤ L we look for a minimizer of the functional Fε

within the function space

K̂(L)
uo

(�T ) := {
v ∈ K(L)

uo
(�T ) : ∂tv ∈ L2(�T ), v(0) = uo

}
.

Keep in mind, that functions v ∈ K̂
(L)
uo

(�T ) belong to the space C0, 1
2 ([0, T ]; L2(�)), due to the L2-bound 

‖∂tv‖L2(�T ) < ∞, and therefore the initial condition v(0) = uo holds in the strong L2(�)-sense. Observe that the 
time independent extension of uo to the cylinder �T , i.e. the map ūo(x, t) := uo(x) for (x, t) ∈ �T , belongs to the 
class K̂(L)

uo
(�T ), so that this class is non-empty. Moreover, observe that

Fε(ūo) =
ˆ

�

f (Duo)dx

T̂

0

1
ε
e− t

ε dt

= (
1 − e− T

ε
)ˆ

�

f (Duo)dx ≤ (
1 − e− T

ε
)|�| sup

BL(0)

|f |.

Furthermore, mappings v ∈ K̂
(L)
uo

(�T ) admit the following bound on the time derivative (note that ‖Dv‖L∞(�T ,Rn) ≤
L):

e− T
ε

¨

�T

1
2 |∂tv|2dxdt ≤ Fε(v) − 1

ε

¨

�T

e− t
ε f (Dv)dxdt

≤ Fε(v) + (
1 − e− T

ε
)|�| sup

BL(0)

|f |. (5.1)

Taking an arbitrary point xo ∈ ∂�, we have for a.e. t ∈ (0, T ) and x ∈ � that

|v(x, t)| ≤ |v(x, t) − v(xo, t)| + |uo(xo)| ≤ ‖uo‖L∞(�) + Ldiam(�),

so that

‖v‖L∞(�T ) + ‖Dv‖L∞(�T ,Rn) ≤ ‖uo‖L∞(�) + L
(
1 + diam(�)

)
(5.2)

holds true for any v ∈ K̂
(L)
uo

(�T ). Finally, for any 0 ≤ t1 < t2 ≤ T we have

‖v(t2) − v(t1)‖2
L2(�)

≤ (t2 − t1)‖∂tv‖2
L2(�T )

, (5.3)

which together with (5.2) yields that v is a 1
2 -Hölder-continuous map from [0, T ] to L2(�), i.e. v ∈ C0, 1

2 ([0, T ];
L2(�)) holds true for any v ∈ K̂

(L)
uo

(�T ).

5.1. Existence of approximations

In this section we establish the existence of minimizers to the energy functionals Fε.

Lemma 5.1. For any ε ∈ (0, 1], the functional Fε admits a unique minimizer uε in the class K̂(L)
uo

(�T ).
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Proof. From (5.1) we obtain the lower bound

Fε(v) ≥ −(
1 − e− T

ε
)|�| sup

BL(0)

|f |,

for the Fε-energy of maps v ∈ K̂
(L)
uo

(�T ). We now consider a minimizing sequence uj ∈ K̂
(L)
uo

(�T ), j ∈N, i.e.

lim
j→∞Fε(uj ) = inf

v∈K̂
(L)
uo (�T )

Fε(v) ≤ Fε(ūo) ≤ (
1 − e− T

ε
)|�| sup

BL(0)

|f |.

Hence, we can assume without loss of generality that Fε(uj ) ≤ |�| supBL(0) |f | for any j ∈ N. Applying (5.1) to the 
minimizing sequence uj we find that

e− T
ε

¨

�T

1
2 |∂tuj |2dxdt ≤ (

2 − e− T
ε
)|�| sup

BL(0)

|f |

holds true for any j ∈ N. The preceding inequality immediately implies the following uniform bound for the time 
derivative:

sup
j∈N

¨

�T

|∂tuj |2dxdt ≤ 4e
T
ε |�| sup

BL(0)

|f |. (5.4)

From (5.2) we derive the uniform L∞–W 1,∞ bound

sup
j∈N

[
‖uj‖L∞(�T ) + ‖Duj‖L∞(�T )

]
≤ ‖uo‖L∞(�) + L

(
1 + diam(�)

)
. (5.5)

Thus, there exists a map uε, which we will denote for simplicity by u throughout the proof, satisfying

u ∈
⋂
q≥1

Lq(0, T ;W 1,p(�)) with ∂tu ∈ L2(�T )

and a subsequence of 
(
uj

)
j∈N (still denoted this way) such that⎧⎪⎨⎪⎩

uj ⇀ u weakly in Lq(�T ) for any q ≥ 1,

Duj ⇀ Du weakly in Lq(�T ,Rn) for any q ≥ 1,

∂tuj ⇀ ∂tu weakly in L2(�T ).

Observe that by lower-semicontinuity we have that for any q ≥ 1 there holds(
−−
¨

�T

|Du|qdxdt

) 1
q ≤ lim inf

j→∞

(
−−
¨

�T

|Duj |qdxdt

) 1
q ≤ L, (5.6)

so that ‖Du‖L∞(�T ,Rn) ≤ L. Turning our attention to the initial condition, we first observe from (5.3) and (5.4) that

‖uj (t2) − uj (t1)‖2
L2(�)

≤ 4e
T
ε |�| sup

BL(0)

|f |(t2 − t1)

holds true for any 0 ≤ t1 < t2 ≤ T . Recalling that uj (0) = uo, the last estimate with t1 = 0 and the weak convergence 
uj ⇀ u in L2(�T ) imply

1
h

hˆ

0

‖u(t) − uo‖2
L2(�)

dt ≤ lim inf
j→∞

1
h

hˆ

0

‖uj (t) − uo‖2
L2(�)

dt ≤ 4e
T
ε |�| sup

BL(0)

|f |h.

This, however, yields

lim
h↓0

1
h

hˆ
‖u(t) − uo‖2

L2(�)
dt = 0,
0
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so that u(0) = uo in the usual L2-sense. Finally, the limit map u fulfills on the lateral boundary ∂P�T the condition 
that u(t) = uo for almost every t ∈ (0, T ) in the sense of traces in W 1,q(�), for any q ≥ 1. On the other hand, since 
u(t) ∈ W 1,∞(�) for a.e. t ∈ (0, T ), for those good time slices u(t) can be uniquely extended to �, which means that 
u(t) admits a trace in the usual sense. This trace has of course to coincide with the trace of uo, proving that u(t) = uo

on ∂� for a.e. t . All together we conclude that u ∈ K̂
(L)
uo

(�T ), and it remains to prove that u is indeed the unique 
minimizer of Fε in the class K̂(L)

uo
(�T ). This, however, follows by means of lower semicontinuity arguments for the 

functional Fε with respect to the convergences above, i.e. by establishing

Fε(u) ≤ lim inf
j→∞ Fε(uj ) = lim

j→∞Fε(uj ) = inf
v∈K̂

(L)
uo (�T )

Fε(v). (5.7)

Using the weak convergence ∂tuj ⇀ ∂tu in L2(�T ) we conclude that¨

�T

e− t
ε |∂tu|2dxdt ≤ lim inf

j→∞

¨

�T

e− t
ε |∂tuj |2dxdt.

Here, we used [14, Thm. 4.3]. The argument concerning the integral involving the spatial gradient Dv is more in-
volved, however. Since f is convex on Rn, there exists a Borel-vectorfield λ : Rn → R

n, bounded on compact subsets 
of Rn, such that

f (w) ≥ f (ξ) + λ(ξ) · (w − ξ) ∀w,ξ ∈R
n.

Therefore, we have¨

�T

e− t
ε f

(
Duj

)
dxdt ≥

¨

�T

e− t
ε
[
f

(
Du

) + λ(Du) · (Duj − Du
)]

dxdt.

Turning to the second term on the right-hand side of the preceding inequality, we observe that �T � (x, t) �→
e− t

ε λ(Du(x, t)) ∈ R
n is bounded and measurable. Therefore, by the weak convergence Duj ⇀ Du in Lq(�T , Rn)

for any q ≥ 1 we infer

lim
j→∞

¨

�T

e− t
ε λ(Du) · (Duj − Du

)
dxdt = 0.

But this implies

lim inf
j→∞

¨

�T

e− t
ε f

(
Duj

)
dxdt ≥

¨

�T

e− t
ε f

(
Du

)
dxdt,

eventually proving the first inequality in (5.7). This proves that u is a minimizer of Fε in the class K̂(L)
uo

(�T ). The 
uniqueness of u follows, because the term involving the time derivative ensures the strict convexity of the func-
tional Fε . �
5.2. The minimality condition revisited

In this section we rewrite the minimality condition of the approximations uε in a form, which is more useful 
in the derivation of uniform bounds for the time derivative and in the limit procedure ε ↓ 0. For fixed ε ∈ (0, 1]
consider testing functions ϕ ∈ L∞(�T ) with Dϕ ∈ L∞(�T , Rn) and ∂tϕ ∈ L2(�T ), vanishing on the lateral boundary 
∂� × (0, T ), and satisfying

sup
�T

∣∣Duε + Dϕ
∣∣ ≤ L. (5.8)

Moreover, let ξ ∈ W 1,∞(0, T ) with 0 ≤ ξ ≤ 1, and δ ∈ (0, e− T
ε ]. Further, define σ(t) := δe

t
ε ξ(t) as well as

ϕ̃ε,δ(x, t) := σ(t)ϕ(x, t) ≡ δe
t
ε ξ(t)ϕ(x, t), (x, t) ∈ �T ,

while assuming either ξ(0) = 0 or ϕ(0) = 0. Then, set
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vε,δ(x, t) := uε(x, t) + ϕ̃ε,δ(x, t) ≡ uε(x, t) + δe
t
ε ξ(t)ϕ(x, t)

and observe that vε,δ ∈ L∞(�T ), Dvε,δ ∈ L∞(�T , Rn) and ∂tvε,δ ∈ L2(�T ). Further, vε,δ = uo on the parabolic 
boundary ∂P�T . To conclude vε,δ ∈ K̂

(L)
uo

(�T ), i.e. that it is an admissible comparison map in the minimality condi-
tion for uε , it remains to show that sup�T

|Dvε,δ| ≤ L. But, this follows from the fact that vε,δ is a convex combination 
of uε and uε +ϕ on every fixed time slice t ∈ [0, T ], the assumption (5.8) and the fact that 0 ≤ σ(t) ≤ 1 by the choice 
of δ above. The minimality of uε thus shows that

Fε(uε) ≤ Fε(vε,δ),

which by the convexity of f can be rewritten to

δ
ε

¨

�T

ξ(t)f (Duε)dxdt ≤
¨

�T

e− t
ε

[
1
2δ2

∣∣∂t

(
e

t
ε ξϕ

)∣∣2 + δ∂tuε∂t

(
e

t
ε ξϕ

)]
dxdt

+ δ
ε

¨

�T

ξ(t)f (Duε + Dϕ)dxdt.

Multiplying both sides of the previous inequality by ε/δ and letting δ ↓ 0, yields¨

�T

ξ(t)f (Duε)dxdt ≤
¨

�T

ξ(t)f (Duε + Dϕ)dxdt +
¨

�T

ξ∂tuεϕdxdt

+ ε

¨

�T

[
ξ ′∂tuεϕ + ξ∂tuε∂tϕ

]
dxdt (5.9)

for any ϕ ∈ L∞(�T ) with Dϕ ∈ L∞(�T , Rn) and ∂tϕ ∈ L2(�T ), vanishing on the lateral boundary ∂� × (0, T ), 
satisfying (5.8), and for any ξ ∈ W 1,∞((0, T )) with 0 ≤ ξ ≤ 1, and such that either ξ(0) = 0 or ϕ(0) = 0.

5.3. A uniform estimate for the time derivative

In this section we shall establish a uniform L2-bound for the time derivative of Fε-minimizers uε ∈ K̂
(L)
uo

(�T ). 
This estimate together with the bound

sup
0<ε≤1

[
‖uε‖L∞(�T ) + ‖Duε‖L∞(�T ,Rn)

]
≤ ‖uo‖L∞(�) + L

(
1 + diam(�)

)
(5.10)

allows the extraction of a converging subsequence in the limit ε ↓ 0. Note that (5.10) follows from (5.2). To this end, 
define [uε]h according to (2.1) with uo and uε instead of vo and v, respectively. We can use the definition with r = q

and X = W 1,q (�), since uε ∈ Lq(0, T ; W 1,q
uo

(�)) and uo ∈ W 1,q (�) for any choice of q ≥ 1. By means of Lemma 2.4

we conclude that [uε]h ∈ Lq(0, T ; W 1,q
uo

(�)) with ∂t [uε]h ∈ L2(�T ) and ∂t [uε]h = 1
h
(uε − [uε]h). The last identity 

implies even more, as the right-hand side is an element of the space Lq(0, T ; W 1,q

0 (�)) whose time derivative is an 
element of L2(�T ). Moreover, since [uε]h (0) = uo it follows that ∂t [uε]h (0) = 1

h
(uo − [uε]h (0)) = 0. Further, from 

(2.1) we conclude that

∥∥D[uε]h(t)
∥∥

Lq(�)
≤ e− t

h ‖Duo‖Lq(�) + 1
h

tˆ

0

e
s−t
h ‖Duε(s)‖Lq(�) dt

≤ L|�| 1
q

[
e− t

h + 1
h

tˆ

0

e
s−t
h ds

]
= L|�| 1

q ,

establishing that[
−−
¨ ∣∣D[uε]h

∣∣qdxdt

] 1
q ≤ L ∀q ≥ 1.
�T
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But this implies ‖D[uε]h‖L∞(�T ,Rn) ≤ L, and we conclude that∥∥D
(
uε − h∂t [uε]h

)∥∥
L∞(�T ,Rn)

= ∥∥D[uε]h
∥∥

L∞(�T ,Rn)
≤ L.

In other words, we are allowed to take ϕ = −h∂t [uε]h as testing function in (5.9) (note that ϕ(0) = 0), which for any 
ξ ∈ W 1,∞(0, T ) with 0 ≤ ξ ≤ 1 implies

h

¨

�T

[
(ξ + εξ ′)∂tuε∂t [uε]h + εξ∂tuε∂tt [uε]h

]
dxdt

≤
¨

�T

ξ(t)
[
f (D[uε]h) − f (Duε)

]
dxdt

≤
¨

�T

ξ(t)
[[f (Duε)]h − f (Duε)

]
dxdt

= −h

¨

�T

ξ(t)∂t

[
f (Duε)

]
h
dxdt,

by means of Lemma 2.5, where 
[
f (uε)

]
h

is defined according to (2.1) with vo and v replaced by f (Duo) and f (Duε), 
respectively. The second term on the left-hand side of the previous inequality can be estimated further as follows

∂tuε∂tt [uε]h = ∂t [uε]h∂tt [uε]h + (
∂tuε − ∂t [uε]h

)
∂tt [uε]h

= 1
2∂t

∣∣∂t [uε]h
∣∣2 + 1

h

∣∣∂t [uε]h − ∂tuε

∣∣2

≥ 1
2∂t

∣∣∂t [uε]h
∣∣2

.

Inserting this estimate in the inequality above and dividing by h > 0, we get¨

�T

[
(ξ + εξ ′)∂tuε∂t [uε]h + ε

2ξ∂t

∣∣∂t [uε]h
∣∣2

]
dxdt

≤ −
¨

�T

ξ(t)∂t

[
f (Duε)

]
h
dxdt. (5.11)

We choose ξ ≡ 1 in (5.11) to obtain by means of Fubini’s theorem¨

�T

∂tuε∂t [uε]hdxdt ≤ −
¨

�T

∂t

[
f (Duε)

]
h
dxdt − ε

2

¨

�T

∂t

∣∣∂t [uε]h
∣∣2dxdt

=
ˆ

�

[
f (Duε)

]
h
(0)dx −

ˆ

�

[
f (Duε)

]
h
(T )dx

+ ε
2

ˆ

�

(∣∣∂t [uε]h
∣∣2

(0) − ∣∣∂t [uε]h
∣∣2

(T )
)

dx

≤ 2|�| sup
BL(0)

|f |.

In the last inequality we also used the facts ∂t [uε]h(0) = 0, |∂t [uε]h|2(T ) ≥ 0 and the obvious upper bounds for 
|[f (Duε)]h(0)| and |[f (Duε)]h(T )|. Taking into account that ∂t [uε]h → ∂tuε in L2(�T ) due to Lemma 2.4, the last 
inequality therefore implies the following uniform bound on the time derivative¨

�T

|∂tuε|2dxdt ≤ 2|�| sup
BL(0)

|f |. (5.12)

Moreover, due to (5.3) and the bound this implies
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‖uε(t2) − uε(t1)‖L2(�) ≤
(

2|�| sup
BL(0)

|f |
) 1

2 √|t2 − t1| (5.13)

for any t1, t2 ∈ [0, T ]. In other words, (5.13) implies that the family (uε)ε∈(0,1] of minimizers is also uniformly 

bounded in C0, 1
2 ([0, T ]; L2(�)).

6. Existence of solutions to the gradient constrained problem

In this section we establish the existence of variational solutions to the gradient constrained problem in the sense 
of Definition 3.1. More precisely, we show:

Theorem 6.1 (Existence to the gradient constrained problem). Let L > 0 and � be a bounded, open set in Rn. 
Further, suppose that f : � → R is a convex function and that uo ∈ W 1,∞(�) with ‖Duo‖L∞(�,Rn) ≤ L. Then, for 
any T ∈ (0, ∞] there exists a unique variational solution u on �T in the class K(L)

uo
(�T ) in the sense of Definition 3.1.

Proof. First, we assume T < ∞. For any ε ∈ (0, 1] we denote by uε the unique Fε-minimizer from Lemma 5.1 on �T . 
In the following we will perform the limit procedure ε ↓ 0 in the sequence (uε)ε>0. By means of the estimates (5.10), 
(5.12), and (5.13) the sequence (uε)ε>0 is uniformly bounded in the spaces L∞(�T ) and C0, 1

2 ([0, T ]; L2(�)), the 
sequence of spatial gradients (Duε)ε>0 is uniformly bounded in L∞(�T , Rn), and the sequence of the corresponding 
time derivatives (∂tuε)ε>0 is uniformly bounded in the space L2(�T ). Therefore, there exists a map

u ∈
⋂
q≥1

Lq(0, T ;W 1,p(�)) with ∂tu ∈ L2(�T )

and a subsequence of uε (still denoted this way) such that⎧⎪⎨⎪⎩
uε ⇀ u weakly in Lq(�T ) for any q ≥ 1,

Duε ⇀ Du weakly in Lq(�T ,Rn) for any q ≥ 1,

∂tuε ⇀ ∂tu weakly in L2(�T ).

Moreover, from above convergences and the compactness result in [31] we infer the existence of a further (not rela-
beled) subsequence such that

uε → u strongly in L2(�T ).

Note that the above convergences together with the fact that uε(0) = uo for any ε ∈ (0, 1] imply by a similar argument 
as in the proof of Lemma 5.1 that u ∈ C0, 1

2 ([0, T ]; L2(�)) with u(0) = uo. Moreover, the argument from Lemma 5.1
leading to the validity of the boundary condition on the lateral boundary ∂� × (0, T ) also applies in the context 
here, eventually proving the boundary condition u = u0 on ∂P�T . By lower semicontinuity with respect to weak 
L2-convergence and the uniform bound (5.12) it holds that¨

�T

|∂tu|2dxdt ≤ lim inf
ε↓0

¨

�T

|∂tuε|2dxdt ≤ 2|�| sup
BL(0)

|f |.

Moreover, the lower semicontinuity of the Lq -norm with respect to weak convergence and the fact that
‖Duε‖L∞(�T ,Rn) ≤ L, lead as in the proof of (5.6) to the assertion that also ‖Du‖L∞(�T ,Rn) ≤ L holds true.

Next, turning to the lower semicontinuity of the integral related to the integrand f , we observe that, thanks to the 
convexity of f , there exists a Borel-vectorfield λ : Rn →R

n, bounded on compact subsets of Rn, such that

f (w) ≥ f (ξ) + λ(ξ) · (w − ξ) ∀w,ξ ∈ R
n.

Therefore, we have¨

�T

f
(
Duε

)
dxdt ≥

¨

�T

[
f

(
Du

) + λ(Du) · (Duε − Du
)]

dxdt.
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The second term on the right-hand side of the preceding inequality vanishes in the limit ε ↓ 0, since �T � (x, t) �→
λ(Du(x, t)) ∈ R

n is bounded and measurable and Duε ⇀ Du in Lq(�T ) for any q ≥ 1. That is,

lim
j→∞

¨

�T

λ(Du) · (Duε − Du
)
dxdt = 0.

Inserting this above, we arrive at

lim inf
j→∞

¨

�T

f
(
Duε

)
dxdt ≥

¨

�T

f
(
Du

)
dxdt. (6.1)

Note that∣∣∣∣¨
�T

f
(
Du

)
dxdt

∣∣∣∣ ≤ T |�| sup
BL(0)

|f |.

For u to be a variational solution as in Definition 3.1 it just remains to show, that u satisfies the minimality condition 
(3.1). To this end, consider v ∈ L∞(�T ) with Dv ∈ L∞(�T , Rn) and ∂tv ∈ L2(�T ), such that v = uo on the lateral 
boundary and

‖Dv‖L∞(�T ) ≤ L.

For fixed θ ∈ (0, T/2) let

ξθ (t) := t
θ
χ[0,θ](t) + χ(θ,T −θ)(t) + T −t

θ
χ[T −θ,T ](t)

denote a cut-off function with respect to time. Now, fix ε ∈ (0, 1] and consider ϕ = v − uε . The properties of v and uε

imply that ϕ ∈ L∞(�T ) with Dϕ ∈ L∞(�T , Rn) and ∂tϕ ∈ L2(�T , RN). Observe that uε + ϕ fulfills the assumption 
(5.8). Further, observe that ϕ vanishes on the lateral boundary and that ξθ(0) = 0. Therefore, both ϕ and ξ = ξθ are 
admissible in the inequality (5.9). Adding 

˜
�T

f (Duε)dxdt on both sides shows¨

�T

f (Duε)dxdt

≤
¨

�T

(1 − ξθ )f (Duε)dxdt +
¨

�T

ξθ∂tuε (v − uε)dxdt

+
¨

�T

ξθf (Dv)dxdt + ε

¨

�T

[
ξ ′
θ ∂tuε(v − uε) + ξθ∂tuε∂t (v − uε)

]
dxdt.

In the following, we first pass to the limit ε ↓ 0 and then let θ ↓ 0. Due to the strong convergence uε → u in L2(�T )

and the weak convergence ∂tuε ⇀ ∂tu in L2(�T ), the second integral on the right-hand side converges. Moreover, 
due to the uniform L2-bounds of ∂tuε and uε from (5.12) and (5.10), we know that the last integral on the right-hand 
side vanishes in the limit ε ↓ 0. Finally, for the first integral on the right-hand side we use the facts that 1 − ξθ (t) =
0 for t ∈ (θ, T − θ) and ‖Duε‖∞ ≤ L. Therefore, using these facts and the lower semicontinuity of the integral ˜

�T
f (Dv)dxdt with respect to the weak convergences form (6.1) yields¨

�T

f (Du)dxdt ≤
¨

�T

ξθ∂tu (v − u)dxdt +
¨

�T

ξθf (Dv)dxdt + 2θ |�| sup
BL(0)

|f |.

For the first term on the right-hand side we compute¨

�T

ξθ∂tu (v − u)dxdt =
¨

�T

ξθ∂tv (v − u)dxdt

+ 1
2θ

¨

�×(0,θ)

|v − u|2dxdt − 1
2θ

¨

�×(T −θ,T )

|v − u|2 dxdt,
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so that¨

�T

f (Du)dxdt ≤
¨

�T

ξθ

[
∂tv(v − u) + f (Dv)

]
dxdt + 2θ |�| sup

BL(0)

|f |

+ 1
2θ

¨

�×(0,θ)

|v − u|2dxdt − 1
2θ

¨

�×(T −θ,T )

|v − u|2dxdt,

where θ ∈ (0, T/2) is arbitrary. We may therefore pass to the limit θ ↓ 0, with the result that¨

�T

f (Du)dxdt ≤
¨

�T

[
∂tv(v − u) + f (Dv)

]
dxdt

+ 1
2‖v(0) − uo‖2

L2(�)
− 1

2‖(v − u)(T )‖2
L2(�)

holds true for any v ∈ L∞(�T ) with Dv ∈ L∞(�T , Rn) and ∂tv ∈ L2(�T ), coinciding with uo on the lateral boundary 
and such that ‖Dv‖L∞(�T ) ≤ L, i.e. u is indeed a variational solution on �T as in Definition 3.1. This finishes the 
proof of Theorem 6.1 in the case T < ∞. In order to construct a global variational solution on �∞ we consider 
0 < T1 < T2 < ∞ and denote by u1 and u2 the unique variational solutions on �T1 and �T2 , respectively. By means of 
the localizing principle from Lemma 3.2 it follows that u2 is also a variational solution on �T1 which by Lemma 4.3
coincides with u1 on �T1 . Therefore, taking a sequence 0 < T1 < T2 < . . . with limi→∞ Ti = ∞ this allows for a 
construction of a unique global variational solution. �
7. Existence of solutions to the unconstrained problem (Proof of Theorem 1.2)

In this section we will complete the proof of Theorem 1.2. At this point, the main difficulty is to remove the gradient 
constraint from the variational solutions to the gradient constrained obstacle problem constructed in Theorem 6.1.

7.1. Affine functions

The following lemma ensures that time independent affine functions are variational solutions with respect to their 
own lateral boundary values.

Lemma 7.1. Let � ⊂R
n be open and bounded and f : Rn → R convex. Then, any affine function w(x, t) := a + ξ · x

independent of time with a ∈ R and ξ ∈R
n is a variational solution in the sense of Definition 1.1 with boundary data 

uo = w on the parabolic boundary.

Proof. Let w(x, t) := a + ξ · x be an affine function independent of time with a ∈ R and ξ ∈ R
n. Observe, that 

Dw ≡ ξ and ‖Dw‖L∞(�T ,Rn) = |ξ |. Consider v ∈ Kw(�T ) with ∂tv ∈ L2(�T ). Then, for ϕ := v − w we have that 
ϕ ∈ K0(�T ). Since f is convex, we find λ ∈R

n such that f (ξ + η) ≥ f (ξ) + λ · η for any η ∈R
n. We apply this with 

η = Dϕ(x, t) and obtain that

f (ξ + Dϕ(x, t)) ≥ f (ξ) + λ · Dϕ(x, t) ∀(x, t) ∈ �T .

Integrating this over �T we end up with¨

�T

f (Dw + Dϕ)dxdt ≥ |�T |f (Dw) +
¨

�T

λ · Dϕ dxdt =
¨

�T

f (Dw)dxdt.

In the last identity we used an integration by parts via the Gauss–Green theorem. Assuming that ∂tϕ ∈ L2(�T ) we 
can utilize the identity¨

�T

∂t (w + ϕ)ϕ dxdt = 1
2‖ϕ(T )‖2

L2(�)
− 1

2‖ϕ(0)‖2
L2(�)

.

Therefore, we end up with
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¨

�T

f (Dw)dxdt ≤
¨

�T

[
∂t (w + ϕ)ϕ + f (Dw + Dϕ)

]
dxdt

+ 1
2‖ϕ(0)‖2

L2(�)
− 1

2‖ϕ(T )‖2
L2(�)

.

Since ϕ = v − w we conclude that (3.1) holds for any v ∈ Kw(�T ) with ∂tv ∈ L2(�T ) coinciding with w on the 
lateral boundary. This proves that affine functions are variational solutions of the unconstrained problem. �
7.2. A quantitative Lipschitz bound

We consider a variational solution u with initial and boundary datum uo ∈ W 1,∞(�) such that ‖Duo‖L∞(�,Rn) ≤
Q and, moreover, such that the restriction of uo to the boundary ∂� satisfies the bounded slope condition for the 
same parameter Q. We fix xo ∈ ∂�. Taking the affine functions w±

xo
from the bounded slope condition, we have that 

w−
xo

≤ uo ≤ w+
xo

, so that the maximum principle from Lemma 4.4 implies the estimate

w−
xo

(x) ≤ u(x, t) ≤ w+
xo

(x) ∀ (x, t) ∈ �T ,

so that

|u(x, t) − uo(xo)| ≤ Q|x − xo| ∀ (x, t) ∈ �T .

Since xo ∈ ∂� was arbitrary, this implies that

|u(x, t) − uo(xo)|
|x − xo| ≤ Q ∀xo ∈ ∂�, (x, t) ∈ �T . (7.1)

Next, we consider points x1, x2 ∈ � with x1 �= x2 and t ∈ (0, T ). We let y := x2 − x1 and define

uy(x, t) := u(x + y, t) for (x, t) ∈ �̃T := {(x − y, t) ∈R
n+1 : (x, t) ∈ �T }.

Then, uy is a parabolic minimizer in K(L)(�̃T ) on �̃T in the sense of Definition 4.1. From Remark 4.2 we know 
that both, u and uy are parabolic minimizers in K(L)((� ∩ �̃)T ) on (� ∩ �̃)T := (� ∩ �̃) × (0, T ). Applying the 
maximum principle from Lemma 4.4 we conclude that there exists (xo, to) ∈ ∂P ((� ∩ �̃)T ) such that

|u(x1, t) − uy(x1, t)| ≤ |u(xo, to) − uy(xo, to)|.
This, together with the definition of uy yields

|u(x1, t) − u(x2, t)| = |u(x1, t) − u(x1 + y, t)| = |u(x1, t) − uy(x1, t)|
≤ |u(xo, to) − uy(xo, to)| = |u(xo, to) − u(xo + y, to)|.

Since either one of the points xo and xo + y belongs to ∂�, or to = 0, we can now use (7.1), respectively the fact that 
‖Duo‖L∞ ≤ Q to further estimate

|u(x1, t) − u(x2, t)|
|x1 − x2| ≤ |u(xo, to) − u(xo + y, to)|

|y| ≤ Q.

Since x1, x2 ∈ � with x1 �= x2 are arbitrary, this implies that

‖Du‖L∞(�T ,Rn) ≤ Q.

7.3. Removing the gradient constraint

In this section we indicate how the gradient constraint hypothesis ‖Du‖L∞(�,Rn) ≤ L < ∞ for a variational solu-

tion u of the gradient constrained obstacle problem in K(L)
uo

(�T ) can be removed. Therefore, we let Q > 0 as in §7.2
and choose L > Q. Then, we have that the strict inequality

‖Du‖L∞(�T ,Rn) ≤ Q < L

holds true. In the following we will establish that the variational inequality (3.1) satisfied by u actually holds for any 
comparison map w ∈ K

(∞)
uo

(�T ) with ∂tw ∈ L2(�T ). We start with the observation that ∂tu ∈ L2(�T ) by Lemma 3.4
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and u(0) = uo in the L2(�)-sense. Therefore, as observed in §4, u is a parabolic minimizer in K(L)
uo

(�T ) in the 
sense of Definition 4.1. Consider w ∈ K

(∞)
uo

(�T ), i.e. w ∈ L∞(�T ) with Dw ∈ L∞(�T , Rn), coinciding with uo on 
∂� × (0, T ) and such that ∂tw ∈ L2(�T ). As testing function in (4.1) we choose

v := u + s(w − u) for 0 < s � 1.

Observe that this choice is allowed, since ∂tv ∈ L2(�T ) and ‖Dv‖L∞(�T ) < L for s > 0 small enough. Moreover, 
v = uo on the lateral boundary. From (3.1) and the convexity of f we infer¨

�T

f (Du)dxdt ≤
¨

�T

[
s∂tu(w − u) + f

(
(1 − s)Du + sDw

)]
dxdt

≤
¨

�T

[
s∂tu(w − u) + (1 − s)f (Du) + sf (Dw)

]
dxdt.

We re-absorb the second term of the right-hand side in the left-hand side and divide the result by s > 0. This leads to 
the inequality¨

�T

f (Du)dxdt ≤
¨

�T

[
∂tu(w − u) + f (Dw)

]
dxdt

=
¨

�T

[
∂tw(w − u) − 1

2∂t |w − u|2 + f (Dw)
]
dxdt

=
¨

�T

[
∂tw(w − u) + f (Dw)

]
dxdt

+ 1
2‖w(0) − uo‖2

L2(�)
− 1

2‖(w − u)(T )‖2
L2(�)

,

i.e. the variational inequality (3.1) holds true for any comparison function w ∈ K
(∞)
uo

(�T ) satisfying ∂tw ∈ L2(�T )

and therefore u is a variational solution of the unconstrained problem in the sense of Definition 1.1. This finishes the 
proof of Theorem 1.2.

8. Regularity (Proof of Theorem 1.3)

The first assertion in Theorem 1.3 already follows from Lemma 3.4. Therefore, it remains to show that the varia-
tional solution u is Lipschitz continuous with respect to the parabolic metric, i.e. u ∈ C0;1,1/2(�T ), if f is of class C1.

A first consequence, which holds true in case of differentiable integrands, is the validity of the associ-
ated Euler–Lagrange equation. More precisely, variational solutions u (recall the gradient bound ‖Du‖L∞(�T ) ≤
max{Q, ‖Duo‖L∞(�)} =: M) are weak solutions of the associated parabolic equation, i.e. we have

¨

�T

[
uϕt − Df (Du) · Dϕ

]
dxdt = 0 ∀ϕ ∈ C∞

0 (�T ).

Using the Poincaré inequality for solutions to parabolic equations (cf. [7, Lemma 3.1]) we obtain

−−
¨

Q�(zo)

|u − (u)zo;�|2dxdt ≤ C(n)�2
[

−−
¨

Q�(zo)

|Du|2dxdt + sup
BM(0)

|Df |2
]

≤ C�2,

for any parabolic cylinder Q�(zo) := B�(xo) × (to − �2, to + ρ2) ⊂ �T with zo = (xo, to) ∈ �T . We note that � is 
convex by assumption, and therefore � is a Lipschitz domain. This allows to employ the methods from [6] to deduce 
similar versions of the above Poincaré inequality for parabolic cylinders with center (xo, to) ∈ ∂P�T . At this stage, 
the parabolic version of Campanato’s characterization of Hölder continuity (with respect to the parabolic metric) by 
Da Prato [12] implies the Lipschitz continuity of u with respect to the parabolic metric, i.e. u ∈ C0;1,1/2(�T ).
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Higher regularity can for instance be established, if the integrand f : Rn → R is of class C2(Rn) and strictly convex 
in the sense that for every R ∈ (0, ∞) there exists 0 < λR ≤ �R such that

λR|w|2 ≤
〈
D2f (ξ)w,w

〉
≤ �R|w|2 ∀w ∈ R

n, ξ ∈ BR(0)

holds true. Under this assumption the standard difference quotient method implies D2u ∈ L2
loc(�T , Rn×n) with the 

following quantitative Caccioppoli-type estimate

sup
to− 1

4 �2<t<to

ˆ

B�/2(xo)

|Du|2dx +
¨

Q�/2(zo)

|D2u|2dxdt ≤ C�−2
¨

Q�(zo)

|Du|2dxdt,

for a constant C = C(n, �M/λM) ≥ 1. Eventually, this gives by differentiating the equation for any α ∈ {1, . . . , n}
that there holds¨

�T

[
Dαuϕt − 〈

D2f (Du)DDαu,Dϕ
〉]

dxdt = 0 ∀ϕ ∈ C∞
0 (�T ),

i.e. the partial derivatives w := Dαu solve a linear parabolic equation with measurable coefficients a(x, t) :=
D2f (Du(x, t)) which are symmetric, bounded and coercive with constants λM and �M . The classical parabolic 
De Giorgi & Nash & Moser theory for linear parabolic equations [28,29] therefore implies that Dαu ∈ C

0;β,β/2
loc (�T )

for some Hölder exponent β ∈ (0, 1) depending on the same parameters as the constant C from the Caccioppoli in-
equality. Higher regularity follows by standard bootstrap arguments (using the classical Schauder theory for parabolic 
equations in divergence form, cf. [21, Chapter IV]), provided the integrand f is regular enough.
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