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Abstract

This is the first part of our comprehensive study on the structure of doubly periodic solutions for the Chern–Simons–Higgs 
equation with a small coupling constant. We first classify the bubbling type of the blow-up point according to the limit equations. 
Assuming that all the blow-up points are away from the vortex points, we prove the non-coexistence of different bubbling types in 
a sequence of bubbling solutions. Secondly, for the CS type bubbling solutions, we obtain an existence result without the condition 
on the blow-up set as in [4]. This seems to be the first general existence result of the multi-bubbling CS type solutions which is 
obtained under nearly necessary conditions. Necessary and sufficient conditions are also discussed for the existence of bubbling 
solutions blowing up at vortex points.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the last decade, various Chern–Simons theories have been studied for their applications in different physics mod-
els, such as the relativistic Chern–Simons theory of superconductivity [11], Lozano–Marqueés–Moreno–Schaposnik 
model of bosonic sector of N = 2 super-symmetric Chern–Simons–Higgs theory [29], and Gudnason model of N = 2
super-symmetric Yang–Mills–Chern–Simons–Higgs theory [12], just to name a few. Those Chern–Simons systems, 
after a suitable ansatz, can be reduced to systems of elliptic partial differential equations with exponential nonlinear-
ities. Although these nonlinear differential equations pose many analytically challenging problems and attract lots of 
attentions, there are still many problems unsolved. For the recently mathematical developments, we refer the readers 
to [1,2,5–8,13–16,18,22,23,27,28,30,33,32,37] and the references therein.

Among those non-trivial equations, the simplest one is the Abelian Chern–Simons–Higgs model proposed by 
Jackiw–Weinberg [19] and Hong–Kim–Pac [17]. The Chern–Simons–Higgs Lagrangian density is given by

L = κ

4
εμνρFμνAρ + DμφDμφ − 1

κ2
|φ|2(1 − |φ|2)2,
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where Aμ, μ = 0, 1, 2, is the gauge field in R3, Fμν = ∂
∂μ Aν − ∂

∂ν Aμ is the curvature tensor, φ is the Higgs field in R3, 
Dμ = ∂

∂μ − iAμ, i = √−1, is the gauge covariant derivative associated with Aμ, εμνρ is the skew symmetric tensor 
with ε012 = 0 and the constant κ is the coupling constant. When the energy for the pair (φ, A) is saturated, in [19]
and [17], the authors independently derived the following Bogomol’nyi type equations

(D1 + iD2)φ = 0, (1.1)

and

F12 + 2

κ2
|φ|2(1 − |φ|2)2 = 0. (1.2)

Following Jaffe and Taubes [20], we can reduce (1.1) and (1.2) to a single elliptic equation as follows. Let 
p1, · · · , pN be a set of points in R2. We introduce a real valued function u and θ by φ = e

1
2 (u+iθ) and θ =

2 
∑N

j=1 arg(z − pj ), z = x1 + ix2 ∈ C. Then u satisfies

	u + 4

κ2
eu(1 − eu) = 4π

N∑
j=1

δpj
, in R

2, (1.3)

where δp(x) is the Dirac measure at p. The readers can find the details of the derivation of the above equations in [36,
38] and some recent developments of the related subjects in [3,9,24,31,35,36].

Starting with this paper, we will initiate a comprehensive study of the structure of doubly periodic solutions 
for (1.3). So we study the following equation{

	u + 1
ε2 eu(1 − eu) = 4π

∑N
j=1 δpj

, in 

u is doubly periodic on ∂,
(1.4)

where ε = κ
2 > 0 is a small parameter, and  is a flat torus in R2.

Problem (1.4) involves Dirac measures. To eliminate them from the equation, we introduce the Green function 
G(x, p) of −	 in  with singularity at p, subject to the doubly periodic boundary condition. That is, G(x, p) satisfies{−	G(x,p) = δp − 1

|| ,
∫


G(x,p)dx = 0,

G(x,p) is doubly periodic on ∂,

where || is the measure of . Let

u0(x) = −4π

N∑
j=1

G(x,pj ). (1.5)

Using this function u0, (1.4) is reduced to solving the following problem.{
	u + 1

ε2 eu+u0(1 − eu+u0) = 4Nπ
|| , in ,

u is doubly periodic on ∂.
(1.6)

Using the maximum principle, we can find that any solution uε of (1.6) satisfies uε + u0 < 0. On the other hand, 
integrating (1.6) leads to 

∫


euε+u0(1 − euε+u0) = 4Nπε2

|| , which implies either uε → −u0, or uε → −∞ almost 
everywhere in  as ε → 0. In [10], Choe and Kim proved that (1.6) may have a sequence of solution uε, satisfying 
the following conditions: there is a finite set {xε,1, · · · , xε,k}, xε,j ∈ , j = 1, · · · , k, such that as ε → 0,

uε(xε,j ) + ln
1

ε2
→ +∞, ∀ j = 1, · · · , k, (1.7)

and

uε(x) + ln
1
2

→ −∞, uniformly on any compact subset of  \ {q1, · · · , qk}, (1.8)

ε
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where qj = limε→+∞ xε,j . Moreover,

1

ε2
euε+u0(1 − euε+u0) →

k∑
j=1

Mjδqj
, Mj ≥ 8π,

in the sense of measure.
Solution satisfying (1.7) and (1.8) is called a blow up solution, or a bubbling solution, while qj is called a blow-up 

point of this bubbling solution. Let us define the local strength of a bubbling solution uε at qi as follows:

Mε,i = 1

ε2

∫
Bδ(xε,i )

euε+u0(1 − euε+u0), i = 1, · · · , k, (1.9)

where xε,i ∈ Bδ(qi) is a point such that uε(xε,i) = maxy∈Bδ(qi ) uε(y). Note that for any δ > δ1 > 0, it holds

1

ε2

∫
Bδ(xε,i )\Bδ1 (xε,i )

euε+u0(1 − euε+u0) → 0

as ε → 0. So limε→0 Mε,j does not depend on δ > 0.
At each blow-up point qj , after a suitable scaling, the solutions converge to an entire solution u to either

	u + |x|2meu = 0, in R
2,

∫
R2

|x|2meu = Mj =: lim
ε→0

Mε,j , (1.10)

or

	u + |x|2meu(1 − |x|2meu) = 0, in R
2,

∫
R2

|x|2meu(1 − |x|2meu) = Mj =: lim
ε→0

Mε,j , (1.11)

where m = 0 if qi is not a vortex point, while m = #{pj : pj = qi} if qi is a vortex point. So we find that the type of 
the blow-up point qi is determined by the local strength Mε,i .

A blow-up point qj is called the mean field type, or MF type, if the limit equation is (1.10), while it is called 
Chern–Simons type, or CS type, if the limit equation is (1.11). All the entire solutions of (1.10) have been classified 
in [34]. But for m 	= 0, (1.10) has non-radial solutions and this phenomenon makes the bubbling behaviors of solutions 
for (1.6) as ε → 0 more complicated. For (1.11), however, the classification has been done only for m = 0, and for 
radial solution if m > 0. Indeed, for any solution u of (1.11) with eu ∈ L1(R2), the question of radial symmetry has 
remained an open problem for many years.

In this paper, we will consider the following issues:

(i) Do the MF type blow-up point and the CS type blow-up point co-exist in a sequence of bubbling solutions?
(ii) What are the necessary and sufficient conditions for the set {q1, · · · , qk} to be a blow-up set of a sequence of 

bubbling solutions?

In a forthcoming paper, we will consider another two important issues.

(iii) Local uniqueness: Suppose un,i , i = 1, 2, are two sequences of blow-up solutions and they blow up at the same 
set {q1, · · · , qk}. Is un,1 = un,2 for large n?

(iv) The exact number of solutions for (1.6).

For problem (i), we have the following result.

Theorem 1.1. Suppose that uε is a sequence of bubbling solutions for (1.6), whose blow-up set is {q1, · · · , qk} as 
ε → 0. If qi /∈ {p1, · · · , pN }, i = 1, · · · , k, then Mε,i = 4πN

k
+ o(1), i = 1, · · · , k. Moreover, all the qi are of mean 

field type if N = 2k, while all the qj are of Chern–Simon type if N > 2k.
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The key step in the proof of Theorem 1.1 is to prove that each blow-up point qj of uε , j = 1, · · · , k, must be simple. 
Since the type of the bubble at qj is determined by the local strength Mε,j , a consequence of the simple blow-up is 
that the local strength at each qj must be compatible, which implies the non-coexistence of different type of bubbles.

Now we discuss the existence of CS type multi-bubbling solutions for (1.6). Set q = (q1, · · · , qk), qj , ∈ . We 
assume that qj /∈ {p1, · · · , pN }, j = 1, · · · , k. Following [5,6], we can prove by using a Pohozaev identity that if 
{q1, · · · , qk} is a blow-up set of a sequence of bubbling solutions, then q must satisfy

∂u0(x)

∂xh

∣∣
x=qj

= −
∑

l 	=j, 1≤l≤k

Ml

∂G(ql, x)

∂xh

∣∣
x=qj

, h = 1,2, j = 1, · · · , k,

where Mi = limε→0 Mε,i . See Lemma 2.2. By Theorem 1.1, q must satisfy

∇u0(qj ) + 4πN

k

∑
i 	=j, 1≤i≤k

∇qj
G(qi, qj ) = 0 (1.12)

for j = 1, · · · , k. It is easy to check that any q satisfying (1.12) must be a critical point of the function Gk(x) defined 
as follows.

Gk(x) = 2πN

k

∑
i 	=j,1≤i, j≤k

G(xi, xj ) +
k∑

j=1

u0(xj ), x = (x1, · · · , xk), xj ∈ . (1.13)

We remark that (1.12) holds no matter whether the blow-up point is MF type, or CS type.
Our second result in this paper is the sufficient counterpart of the above result for the CS type bubbling solutions.

Theorem 1.2. Suppose that N > 2k. If q satisfies (1.12), deg(DGk(q), 0) 	= 0 and qj /∈ {p1, · · · , pN }, then for ε > 0
small, (1.6) has a CS type bubbling solution uε, blowing up at {q1, · · · , qk} as ε → 0.

If N = 2k, MF type bubbling solutions are constructed in [25] under an extra sign condition on a quantity D. In 
a forthcoming paper, we will prove that this sign condition on D is necessary for the existence. This shows that not 
all the non-degenerate critical points of Gk(q) can generate a MF type bubbling solution for (1.6). This is a striking 
difference between the MF type bubbling solutions and the CS type bubbling solutions.

In view of Theorem 1.1 and (1.12), all the conditions in Theorem 1.2, except the non-degeneracy condition 
deg(DGk(q), 0) 	= 0, are necessary. If k = 1, Theorem 1.2 was proved in [26]. By Theorem 1.1, the strength of 
the bubble at qj is close to 4πN

k
. In the construction of the bubbling solutions in Theorem 1.2, if we take the strength 

of the bubble at qj exactly 4πN
k

as in [4], then the following condition needs to be imposed:

u0(qj ) + 4π

k

(
γ (qj , qj ) +

∑
i 	=j, 1≤i≤k

G(qi, qj )
)

is independent of j, (1.14)

where γ (y, x) is the regular part of the Green function G(y, x). See [4] for a similar construction of bubbling solutions 
in R2. Let us point out that (1.14) comes from the uniqueness of entire solutions of the limit problem in R2. It seems 
that (1.12) and (1.14) can not hold true simultaneously for most of the configuration {p1, · · · , pN }. The question 
whether (1.14) is really needed for the existence of doubly periodic bubbling solutions has puzzled us for long time. 
We realize now that fortunately (1.11) has a solution for all Mj > 8π if m = 0. Therefore we can choose the strength 
Mε,i at each point qi suitably close to 4πN

k
so that the balance condition away from the blow-up set in the construction 

of an approximate solution for (1.6) can be matched and thus obtain the existence result without condition (1.14). Let 
us point out that by doing so, the condition “

∑
k 	=j ln |pj −pk| is independent of j” used in [4] is not needed to obtain 

the existence result there. In fact, the following result can be proved by using the same method as in Section 3.

Theorem 1.3. For any pij ∈ {p1, · · · , pN }, j = 1, · · · , k, such that the weight of each pij is one, (1.3) has a non-
topological solution uκ in R2 for κ > 0 small, satisfying

4

κ2
euκ (1 − euκ ) → β

k

k∑
j=1

δpij

as κ → 0 provided β > 16πk.
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The readers can compare Theorem 1.3 with Theorem 3.2 obtained in section 3.
In this paper, we also discuss the necessary and sufficient conditions for the existence of bubbling solutions whose 

blow-up set contains vortex points. Let

qi ∈ {p1, · · · ,pN }, i = 1, · · · t, qj /∈ {p1, · · · ,pN }, j = t + 1, · · ·k, (1.15)

where 0 < t ≤ k is an integer. Define

G∗
k(x) = 2πN − 2πt

k

∑
i 	=j,t+1≤i, j≤k

G(xi, xj )

+ 4πN + 4π(k − t)

k

t∑
i=1

k∑
j=t+1

G(qi, xj ) +
k∑

j=t+1

u0(xj ).

(1.16)

Then, we have

Theorem 1.4. Suppose the weight mi of the vortex qi is one for i = 1, · · · , t , and limε→0 Mε,i > 16π , i = 1, · · · , t . 
Let uε be a solution of (1.6) whose blow-up set is given in (1.15). Then Mε,i = 4πN+4π(k−t)

k
+ o(1), i = 1, · · · , t , 

Mε,i = 4πN−4πt
k

+ o(1), i = t + 1, · · · , k, and each qj is CS type. Moreover, DG∗
k = 0 at (qt+1, · · · , qk). Conversely, 

if q = (qt+1, · · · , qk) satisfies DG∗
k(q) = 0, deg(DG∗

k(q), 0) 	= 0 and k < 1
3 (N − t), then for ε > 0 small, (1.6) has a 

solution uε whose blow-up set is given by (1.15) as ε → 0.

When a blow-up point qj is a vortex point, the asymptotic behavior of uε as ε → 0 near qj becomes more com-
plicated. For example, the simple blow-up property of the solution near a blow-up point may not hold true in general. 
This complication will cause the problem of non-coexistence of bubbles more difficult to study. Theorem 1.4 only 
gives a result for the non-coexistence of bubbles if the weight of the vortex point is one. On the other hand, in the 
construction of bubbling solutions whose blow-up set contains some vortex points, what we really need is the non-
degeneracy of the radial solution of the corresponding limit problem at vortex point. This non-degeneracy condition 
is proved in [4] if the weight of the vortex point is one. But it is still an open problem if the weight of the vortex point 
is bigger than one.

This paper is organized as follows. In section 2, we will discuss the simple blow-up problem for the bubbling 
solutions and thus prove Theorem 1.1 and the necessary part of Theorem 1.4. Theorem 1.2 and the sufficient part of 
Theorem 1.4 are proved in section 3.

2. Non-coexistence of different bubbles

In the section, we will study the non-coexistence of different bubbles for the bubbling solutions uε of (1.6), and 
prove Theorem 1.1 and the necessary part in Theorem 1.4.

Lemma 2.1. Let uε be a bubbling solution of (1.6) satisfying (1.7) and (1.8). Then for any small θ > 0,

uε(x) − 1

||
∫


uε →
k∑

i=1

MiG(qi, x), in C1( \ ∪k
i=1Bθ(qi)), (2.1)

as ε → 0, where Mi = limε→0 Mε,i .

Proof. From (1.8), we find that for any θ ∈ (0, δ),

1

ε2
euε+u0(1 − euε+u0) = o(1), in  \ ∪k

i=1Bθ(qi). (2.2)

So,

1

ε2

∫
euε+u0(1 − euε+u0) = Mε,i + o(1) = Mi + o(1), i = 1, · · · , k. (2.3)
Bθ (qi )
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As a result,

uε(x) − 1

||
∫


uε = 1

ε2

∫


G(y, x)euε+u0(1 − euε+u0) dy

=
k∑

i=1

MiG(qi, x) + 1

ε2

k∑
i=1

∫
Bδ(qi )

(
G(y,x) − G(qi, x)

)
euε+u0(1 − euε+u0) dy + o(1)

=
k∑

i=1

MiG(qi, x) + o(1),

(2.4)

uniformly in  \ ∪k
i=1Bθ(qi) as ε → 0.

Similarly, we can prove that

Duε(x) →
k∑

i=1

MiDG(qi, x), (2.5)

uniformly in  \ ∪k
i=1Bθ(qi) as ε → 0. �

Lemma 2.2. Let uε be a bubbling solution of (1.6) whose blow-up set is {q1, · · · , qk}, qj /∈ {p1, · · · , pN }, j = 1, · · · , k. 
Then

∂u0(x)

∂xl

∣∣
x=qj

= −
∑

t 	=j, 1≤t≤k

Mt

∂G(qt , x)

∂xl

∣∣
x=qj

, l = 1,2, j = 1, · · · , k. (2.6)

Proof. For j = 1, · · · , k, let

ūε(x) = uε − πN |x − qj |2
|| .

Then

	ūε + 1

ε2
h(x)eūε+u0(1 − h(x)eūε+u0) = 0, (2.7)

where h(x) = e
πN |x−qj |2

|| . For l = 1, 2, we have the following Pohozaev identity for ūε:∫
∂Br (qj )

〈ν,Dūε〉Dlūε − 1

2

∫
∂Br (qj )

|Dūε|2νl

= − 1

ε2

∫
∂Br (qj )

(
euε+u0 − 1

2
e2(uε+u0)

)
νl + 1

ε2

∫
Br(qj )

euε+u0(1 − euε+u0)
(
Dlu0 + Dlh(x)

h(x)

)
,

(2.8)

where ν is the outward unit normal of ∂Br(qj ).
By (1.8), noting that Dh(qj ) = 0, we can prove that

RHS of (2.8) → MjDlu0(qj ). (2.9)

Using (2.1), we find

ūε = 1

||
∫


uε +
k∑

t=1

MtG(qt , x) − Nπ |x − qj |2
|| + oε(1)

:= F(x, q) + o (1), x ∈ ∂B (q ),

(2.10)
ε r j
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and

	F(x,q) = 0, x ∈ Br(qj ) \ {qj }. (2.11)

So, for any small θ > 0,

LHS of (2.8) =
∫

∂Br (qj )

〈ν,DF(x, q)〉DlF(x, q) − 1

2

∫
∂Br (qj )

|DF(x, q)|2νl + oε(1)

=
∫

∂Bθ (qj )

〈ν,DF(x, q)〉DlF(x, q) − 1

2

∫
∂Bθ (qj )

|DF(x, q)|2νl + oε(1)

=
∫

∂Bθ (qj )

〈ν,D

k∑
t=1

MtG(qt , x)〉Dl

k∑
t=1

MtG(qt , x) − 1

2

∫
∂Bθ (qj )

|D
k∑

t=1

MtG(qt , x)|2νl + oθ (1) + oε(1)

= −Mj

∑
t 	=j, 1≤t≤k

MtDlG(qt , qj ) + oθ (1) + oε(1),

(2.12)

which, together with (2.9), gives (2.6). �
Our next result shows that if the weight m = #{pj : pj = p} of a vortex point p is large, then p can not be a 

blow-up point. This is due to the energy constraint. In fact we have

Proposition 2.3. Suppose that the weight mj of the vortex point pj satisfies 2(mj + 1) > N . Then, pj can not be a 
blow-up point of a bubbling solution uε of (1.6).

Proof. We argue by contradiction. Suppose that a vortex point p, whose weight is m, is a blow-up point of a sequence 
of bubbling solution uε of (1.6). Let

ūε(x) = uε − πN |x − p|2
|| .

Then

	ūε + 1

ε2
h(x)eūε+u0(1 − h(x)eūε+u0) = 0, (2.13)

where h(x) = e
πN |x−q|2

|| .
We have the following Pohozaev identity in a small disk Br(p) for (2.13):

1

2

∫
∂Br (p)

〈x − p,ν〉|Dūε|2 −
∫

∂Br (p)

〈x − p,Dūε〉〈ν,Dūε〉

= − 1

ε2

2∑
i=1

∫
Br (p)

(∂((xi − pi)h(x)eu0)

∂xi

eūε − 1

2

∂((xi − pi)h
2(x)e2u0)

∂xi

e2ūε

)

+ 1

ε2

∫
∂Br (p)

〈x − p,ν〉
(
eu0+uε − 1

2
e2(u0+uε)

)
,

(2.14)

where ν is the outward unit normal of ∂Br(p).
From (1.8), we see

1

ε2

∫
〈x − p,ν〉

(
eu0+uε − 1

2
e2(u0+uε)

)
= oε(1). (2.15)
∂Br (p)
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Recall that the function F(x, q) is defined in (2.10). Using (2.11), we find

1

2

∫
∂Br (p)

〈x − p,ν〉|Duε|2 −
∫

∂Br (p)

〈x − p,Duε〉〈ν,Duε〉

= 1

2

∫
∂Br (p)

〈x − p,ν〉|DF(x,p)|2 −
∫

∂Br (p)

〈x − p,DF(x,p)〉〈ν,DF(x,p)〉 + oε(1)

= 1

2

∫
∂Bθ (p)

〈x − p,ν〉|DF(x,p)|2 −
∫

∂Bθ (p)

〈x − p,DF(x,p)〉〈ν,DF(x,p)〉 + oε(1)

= −M2
j

4π
+ oθ (1) + oε(1).

(2.16)

Write eu0 = |x −p|2mg(x). Then g(x) is a smooth function satisfying 0 < g1 ≤ g(x) ≤ g2 < +∞ in Br(p) if r > 0
is small. So, we have

2∑
i=1

∂[(xi − pi)h(x)eu0 ]
∂xi

= (2m + 2)h(x)eu0 +
2∑

i=1

(xi − pi)|x − p|2m ∂[g(x)h(x)]
∂xi

and
2∑

i=1

∂[(xi − pi)h
2(x)e2u0 ]

∂xi

= (4m + 2)h2(x)e2u0 +
2∑

i=1

(xi − pi)|x − p|4m ∂[g2(x)h2(x)]
∂xi

.

By Proposition 4.1 in [10], there exists a constant c > 0, such that uε + u0 ≤ −c. So, we find

1

ε2

∫


e2(uε+u0) ≤ 1

ε2

∫


euε+u0 ≤ C

ε2

∫


euε+u0(1 − euε+u0) ≤ C′, (2.17)

which implies

− 1

ε2

2∑
i=1

∫
Br (p)

∂((xi − pi)h(x)eu0)

∂xi

eūε

= −2m + 2

ε2

∫
Br (p)

eu0+uε + O
( 1

ε2

∫
Br (p)

|x − p|eu0+uε

)

= −2m + 2

ε2

∫
Br (p)

eu0+uε + or(1),

(2.18)

and

1

2ε2

2∑
i=1

∫
Br (p)

∂((xi − pi)h
2(x)e2u0)

∂xi

e2ūε = 2m + 1

ε2

∫
Br (p)

e2(u0+uε) + or(1). (2.19)

So we obtain from (2.14)–(2.19) that

M2
j

4π
= 2m + 2

ε2

∫
Br(p)

eu0+uε − 2m + 1

ε2

∫
Br (p)

e2(u0+uε) + or(1) + oε(1)

≥ 2m + 2

ε2

∫
Br(p)

eu0+uε
(
1 − eu0+uε

) + or(1) + oε(1)

= 2(m + 1)Mj + or(1) + oε(1),

(2.20)

which implies Mj ≥ 8π(m + 1). This is a contradiction to Mj ≤ 4Nπ and the assumption 2(m + 1) > N . �
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Now we discuss the local behavior of a bubbling solution near a blow-up point qj /∈ {p1, · · · , pN }. We will prove 
that qj must be simple. That is, the bubbling solution uε is controlled by a single bubble near qj . Define

βε,j = max
Bδ(qj )

uε. (2.21)

Let xε,j ∈ Bδ(qj ) be a point satisfying

uε(xε,j ) = max
Bδ(qj )

uε. (2.22)

Then, xε,j → qj as ε → 0.

Lemma 2.4. We have

βε,j ≤ C < +∞. (2.23)

Proof. Suppose that there exists εn → 0, such that βn = βεn,j → +∞. Let

ūn(x) = un

( εn

eβn
x + xn

) − max
Bδ(qj )

un,

where xn = xεn,j . Then, ūn ≤ 0 in Bδeβn

εn

(0). It is easy to see that ūn satisfies

−	ūn = 1

eβn
eūn+u0(xn+εne−βnx) − e2(ūn+u0(xn+εne−βnx)) − 4πNπε2

n

e2βn || . (2.24)

Since ūn ≤ 0 in Bδeβn

εn

(0), we may assume that ūn → u in C1
loc(R

2), and u satisfies

−	u + e2u0(qj )e2u = 0, in R
2, (2.25)

and u ≤ 0. But (2.25) has no non-positive solution. This is a contradiction. �
It follows from Lemma 2.4 that there are two different cases: (i) βε,j → −∞; (ii) βε,j ≥ C > −∞. In case (i), 

by (1.7), 1
ε2 eβε,j → +∞. Let

ũε,j (x) = uε

( ε

e
1
2 βε,j

x + xε,j

) − max
Bδ(qj )

uε. (2.26)

Then,

−	ũε,j = eũε,j +u0(xε,j +εe
− 1

2 βε,j x) − eβε,j e2(ũε,j +u0(xε,j +εe
−βε,j x)) − 4πNπε2

eβε,j || . (2.27)

Lemma 2.5. Suppose that βε,j → −∞ as ε → 0. Then ũε,j (x) → uj in C1
loc(R

2) and uj satisfies{−	uj = eu0(qj )euj , in R
2,∫

R2 euj < +∞, uj (0) = 0.
(2.28)

Moreover,

1

ε2

∫
B

Rεe
− 1

2 βε,j
(xε,j )

euε+u0(1 − euε+u0) = 8π + oR(1) + oε(1), (2.29)

where oε(1) → 0 as ε → 0 and oR(1) → 0 as R → +∞.

Proof. Since ũε,j (x) ≤ 0, ũε,j (0) = 0, and ũε,j satisfies (2.27), we can assume that ũε,j (x) → uj in C1
loc(R

2). 
From (2.27), we find that uj satisfies (2.28). From 

∫
R2 eu0(qj )euj = 8π , we obtain (2.29). �



1338 C.-S. Lin, S. Yan / Ann. I. H. Poincaré – AN 34 (2017) 1329–1354
Lemma 2.6. Suppose that βε,j ≥ C > −∞ as ε → 0. Then ũε,j (x) → uj in C1
loc(R

2) and uj satisfies{−	uj = eu0(qj )euj − eβj +2u0(qj )e2uj , in R
2,∫

R2

(
euj − eβj +u0(qj )e2uj

)
< +∞, uj (0) = 0,

(2.30)

where βj = limε→0 βε,j . Moreover, if ε > 0 is small and R > 0 is large,

lim
ε→0

1

ε2

∫
B

Rεe
− 1

2 βε,j
(xε,j )

euε+u0(1 − euε+u0) > 8π. (2.31)

Proof. The proof is similar to that of Lemma 2.5. �
Lemma 2.7. For R > 0 large and y satisfying δ ≥ |y − xε,j | > Rεe− 1

2 βε,j , it holds

1

ε2

∫
B 1

2 |y−xε,j |(y)

euε+u0(1 − euε+u0) = oR(1) + oε(1), (2.32)

where oR(1) → 0 as R → +∞.

Proof. It is obvious that (2.32) holds if |y −xεn,j | ≥ c′ > 0. We argue by contradiction. Suppose that there are εn → 0, 

Rn → +∞ and xn with |xn − xεn,j | > Rnεne
− 1

2 βεn,j , |xn − xεn,j | → 0, satisfying

1

ε2
n

∫
B 1

2 |xn−xε,j |(xn)

euεn+u0(1 − euεn+u0) ≥ c0 > 0. (2.33)

Let u∗
n(x) = uεn(δnx + xεn,j ), δn = |xn − xεn,j |. Then, u∗

n satisfies

	u∗
n + δ2

n

ε2
n

eu∗
n+u∗

0 (1 − eu∗
n+u∗

0 ) = 4Nπδ2
n

|| , (2.34)

where u∗
0(x) = u0(δnx + xεn,j ). Then, we can do the blow-up analysis for the sequence u∗

n as in [10] and prove that 
there is a finite set S∗ = {z1, · · · , zl}, such that

δ2
n

ε2
n

eu∗
n+u∗

0 (1 − eu∗
n+u∗

0 ) →
l∑

j=1

m∗
j δzj

, m∗
j ≥ 8π, (2.35)

in the sense of measure. By (2.33), S∗ contains at least two points. Moreover, using the Pohozaev identity as in 
Lemma 2.2, we can prove that zj satisfies

∑
i 	=j

m∗
j (zj − zi)

|zj − zi |2 = 0, j = 1, · · · , l. (2.36)

It is easy to see that (2.36) can not hold true for zj with |zj | = maxi |zi |. So the lemma is proved. �
Next, we will prove the following result, which shows that the blow up must be simple.

Proposition 2.8. Suppose that qj /∈ {p1, · · · , pN }. Let δ > 0 be a small constant. Then there exists a constant C > 0, 
such that

∣∣uε(x) − uε(xε,j ) − uε,j

(e
1
2 βε,j

(x − xε,j )
)∣∣ ≤ C, ∀ x ∈ Bδ(xε,j ), (2.37)
ε
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where uε,j is the solution of{
	u + eu0(xε,j )eu(1 − eβε,j +u0(xε,j )eu) = 0, in R

2;∫
R2 eu0(xε,j )eu(1 − eβε,j +u0(xε,j )eu) = Mε,j , limε→0 Mε,j > 8π,

(2.38)

if βε,j ≥ −c0 > −∞; while uε,j is the solution of{
	u + eu0(xε,j )eu = 0, in R

2;∫
R2 eu0(xε,j )eu = 8π, u(0) = 0,

(2.39)

if βε,j → −∞.

Estimate (2.37) is proved in [21] for equation 	u + V (x)eu = 0 by using a moving plane method. But it seems 
that the moving plane method used in [21] does not work for (2.24). Here, we will give a more direct proof of 
Proposition 2.8. We first prove some lemmas. Recall that

ũε,j (x) = uε

(
εe− 1

2 βε,j x + xε,j

) − max
Bδ(qj )

uε.

Lemma 2.9. For any small θ > 0, there exists a constant C > 0, such that

ũε,j (x) ≤ −(4 − θ) ln |x| + C, ∀ x ∈ B
δe

1
2 βε,j

ε

(0) \ B1(0).

Proof. It follows from (2.27) that

ũε,j (x) − 1

|ε|
∫
ε

ũε,j =
∫
ε

Gε(y, x)
(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy, (2.40)

where Gε(y, x) is the Green function in ε = {
y : εe− 1

2 βε,j y + xε,j ∈ 
}

subject to the doubly periodic boundary 

condition, and ũ0(x) = u0
(
εe− 1

2 βε,j x + xε,j

)
.

From ũε,j (0) = 0, we obtain from (2.40)

− 1

|ε|
∫
ε

ũε,j (x) =
∫
ε

Gε(y,0)
(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy. (2.41)

In view of (2.17), we obtain from (2.40) and (2.41) that

ũε,j (x) = 1

2π

∫
ε

ln
|y|

|y − x|
(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy + O(1). (2.42)

From (2.29) and (2.31), for any θ ′ > 0, we can find a large R > 0, such that

1

2π

∫
BR(0)

(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
≥ 4 − θ ′. (2.43)

Suppose now |x| ≥ 2R. Note that we have

eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0) = e−βε,j euε+u0(1 − euε+u0) > 0.

So for any set S, in which ln |y|
|y−x| ≤ C, we find∫

ln
|y|

|y − x|
(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy ≤ C′. (2.44)
S
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It is easy to see for R ≤ |y| ≤ 1
2 |x|, |y|

|y−x| ≤ 1. If y ∈ ε \ (
B |x|

2
(0) ∪ B |x|

2
(x)

)
, we can check |y|

|y−x| ≤ C. So, we 
obtain from (2.42)

ũε,j (x) ≤ 1

2π

∫
BR(0)

ln
|y|

|y − x|
(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy

+ 1

2π

∫
B |x|

2
(x)

ln
|y|

|y − x|
(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy + C.

(2.45)

Let σ > 0 be a small constant. Noting ũε ≤ 0 in Bσ (x) ⊂ B
δe

1
2 βε,j

ε

(0), using (2.32), we find

∫
B |x|

2
(x)

ln
|y|

|y − x|
(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy

≤ C

∫
Bσ (x)

ln
|y|

|y − x| + ln
C|x|
σ

∫
B |x|

2
(x)\Bσ (x)

(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy

= (oσ (1) + oε(1) + oR(1)) ln |x|.

(2.46)

Combining (2.45) and (2.46), we are led to

ũε,j (x) ≤ 1

2π

∫
BR(0)

ln
|y|

|y − x|
(
eũε,j +ũ0 − eβε,j e2(ũε,j +ũ0)

)
dy + (oσ (1) + oε(1) + oR(1)) ln |x| + C. (2.47)

For any y ∈ BR(0), if |x| >> R,

ln
|y|

|y − x| = ln
1

|x| + o|x|(1),

which, together with (2.47) and (2.43), gives

ũε,j (x) ≤ (4 − θ) ln
1

|x| + C. � (2.48)

Lemma 2.10. For any � > 0 large, we have

1

ε2

∫
B

�εe
− 1

2 βε,j
(xε,j )

euε+u0
(
1 − euε+u0

) = Mε,j + O(�−2+θ ),

where θ > 0 is any small fixed constant.

Proof. It follows from Lemma 2.9 that

Mε,j = 1

ε2

∫
Bδ(xε,j )

euε+u0
(
1 − euε+u0

)

= 1

ε2

∫
B

�εe
− 1

2 βε,j
(xε,j )

euε+u0
(
1 − euε+u0

) + O
( ∫
B

δε−1e
1
2 βε,j

(0)\B�(0)

1

|y|4−θ

)

= 1

ε2

∫
B

�εe
− 1

2 βε,j
(xε,j )

euε+u0
(
1 − euε+u0

) + O(�−2+θ ). �
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Lemma 2.11. We have

uε(x) − uε(xε,j ) = Mε,j

2π
ln

1

| e
1
2 βε,j

ε
(x − xε,j )|

+ O(1), ∀ x ∈ Bδ(xε,j ) \ B
Rεe

− 1
2 βε,j

(xε,j ). (2.49)

Proof. For any x ∈ Bδ(xε,j ), by Lemma 2.9, it holds

uε(x) − uε(xε,j ) = 1

ε2

∫


(
G(y,x) − G(y,xε,j )

)
euε+u0

(
1 − euε+u0

)
dy

= 1

2πε2

∫
B2δ(xε,j )

ln
|y − xε,j |
|y − x| euε+u0

(
1 − euε+u0

)
dy + O(1)

= 1

2π

∫
B

2δe
1
2 βε,j
ε

(0)

ln
|y|

|y − x̄ε|e
ũε+ũ0

(
1 − eβε,j eũε+ũ0

)
dy + O(1)

= 1

2π

∫
B

2δe
1
2 βε,j
ε

(0)

ln
1

|y − x̄ε|e
ũε+ũ0

(
1 − eβε,j eũε+ũ0

)
dy + O(1),

(2.50)

where x̄ε = e
1
2 βε,j

ε
(x − xε,j ).

Let σ > 0 be a small fixed constant. Then∣∣∣ ∫
B

2δe
1
2 βε,j
ε

(0)\Bσ |x̄ε |(0)

ln
1

|y − x̄ε|e
ũε+ũ0

(
1 − eβε,j eũε+ũ0

)
dy

∣∣∣

≤ C

∫
B

2δe
1
2 βε,j
ε

(0)\Bσ |x̄ε |(0)

| ln |y − x̄ε||
( 1

|y|4−θ
+ 1

|y|2(4−θ)

)
≤ C

|x̄ε|2−2θ
.

(2.51)

But

1

2π

∫
Bσ |x̄ε |(0)

ln
1

|y − x̄ε|e
ũε+ũ0

(
1 − eβε,j eũε+ũ0

)
dy

= 1

2π

∫
Bσ |x̄ε |(0)

eũε+ũ0
(
1 − eβε,j eũε+ũ0

)
dy ln

1

|x̄ε| + O(1)

(2.52)

since | ln |x̄ε |
|y−x̄ε | | ≤ C for y ∈ Bσ |x̄ε |(0). So the result follows from (2.50)–(2.52) and Lemma 2.10. �

Before we prove Proposition 2.8, we will use Lemma 2.11 to improve the estimates in Lemma 2.1.

Lemma 2.12. For any δ0 > 0,

uε(x) = 1

||
∫


uε +
k∑

j=1

Mε,jG(xε,j , x) + O
(
εe− 1

2 βε,j
)
, in C1( \ ∪k

j=1Bδ0(xε,j )).

Proof. Fix δ ∈ (0, δ0). It follows from Lemma 2.11 that

uε(x) = βε,j + Mε,j

2π
ln

ε
1 β

+ O(1), x ∈ ∂Bδ(xε,j ). (2.53)

e 2 ε,j
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Using Lemma 2.1, we find

1

||
∫


uε = uε(x) + O(1), x ∈ ∂Bδ(xε,j ), (2.54)

which, together with (2.53), gives

1

||
∫


uε = βε,j + Mε,j

2π
ln

ε

e
1
2 βε,j

+ O(1). (2.55)

It is easy to deduce from Lemma 2.1 and (2.55) that

uε(x) = βε,j + Mε,j

2π
ln

ε

e
1
2 βε,j

+ O(1), x ∈  \ ∪k
j=1Bδ(xε,j ). (2.56)

As a result

1

ε2
euε+u0(1 − euε+u0) = O

(( ε

e
1
2 βε,j

)Mε,j
2π

−2
)
, x ∈  \ ∪k

j=1Bδ(xε,j ). (2.57)

Similar to (2.4), using Lemma 2.9 and (2.57), we obtain

uε(x) − 1

||
∫


uε

=
k∑

j=1

Mε,jG(xε,j , x) + O
( 1

ε2

∫
Bδ(xε,j )

|y − xε,j |euε + ( ε

e
1
2 βε,j

)Mε,j
2π

−2
)

=
k∑

j=1

Mε,jG(xε,j , x) + O
(
εe− 1

2 βε,j
)
.

(2.58)

The estimate for Duε is similar. �
Proof of Proposition 2.8. If the limit problem is given by (2.38), then Proposition 2.8 follows from Lemma 2.11.

Suppose now that the limit problem is given by (2.39). We use the Pohozaev identity (2.14) with p replaced by xε,j . 
By Lemma 2.12, we find

LHS of (2.14) = −M2
ε,j

4π
+ O

(
εe− 1

2 βε,j
)
. (2.59)

Using Lemma 2.9, we can deduce

RHS of (2.14) = −2Mε,j + O
(
εe− 1

2 βε,j
)
. (2.60)

From

−M2
ε,j

4π
= −2Mε,j + O

(
εe− 1

2 βε,j
)
, (2.61)

we obtain Mε,j = 8π + O
(
εe− 1

2 βε,j
)
. So the result follows from Lemma 2.11. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. It follows from Proposition 2.8 and Lemma 2.1 that for each j ,

uε(xε,j ) + uε,j

(e
1
2 βε,j

ε
δe1

) = 1

||
∫

uε + O(1), j = 1, · · · , k, (2.62)
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where e1 = (1, 0). So, we obtain

uε(xε,j ) + uε,j

(e
1
2 βε,j

ε
δe1

) = uε(xε,i ) + uε,i

(e
1
2 βε,i

ε
δe1

) + O(1), for all i, j. (2.63)

Note that if βε,j ≥ c0 > −∞, then

uε(xε,j ) + uε,j

(e
1
2 βε,j

ε
δe1

) = Mε,j

2π
ln ε + O(1); (2.64)

while if βε,j → −∞, then Mε,j = 8π + o(1), and

uε(xε,j ) + uε,j

(e
1
2 βε,j

ε
δe1

) = βε,j + 4 ln
ε

e
1
2 βε,j

+ O(1) = 4 ln ε − βε,j + O(1). (2.65)

Note that the relation

Mε,i

2π
ln ε = 4 ln ε − βε,j + O(1)

can not be true, if Mε,i

2π
> 4 and βε,j → −∞. So, we have proved that either βε,j ≥ c0 > −∞ for all j , or βε,j → −∞

for all j . In the first case, we obtain from (2.63) and (2.64) that Mi = Mj > 8π . In the second case, Mj = 8π , 
j = 1, 2, · · · , k. �

Before we close this section, let us briefly discuss the bubbling solutions, whose blow-up set contains some vortex 
points.

Proposition 2.13. Suppose that the blow-up set of a bubbling solution uε contains a vortex point pj , whose weight 
is 1, and the following relation holds

lim
ε→0

1

ε2

∫
Bδ(pj )

euε+u0(1 − euε+u0) > 16π, (2.66)

where δ > 0 is a small constant. Then

uε(x) = Mε,j

2π
ln

ε

|x − xε,j | − 2 ln ε + O(1), ∀ x ∈ Bδ(xε,j ) \ BεR(xε,j ). (2.67)

Proof. Without loss of generality, we assume that pj = 0.
Step 1. We claim that |xε,j | ≤ Cε. Suppose we have (up to a subsequence) that ε−1|xε,j | → +∞. Define u∗∗

ε (x) =
uε(δεx) + 2 ln δε , where δε = |xε,j |. Then u∗∗

ε satisfies

	u∗∗
ε + δ2

ε

ε2
eu∗∗

ε +u∗
0 (1 − eu∗∗

ε +u∗
0 ) = 4Nπδ2

ε

|| , (2.68)

where u∗
0(x) = u0(δεx) − 2 ln δε . We can do the blow-up analysis for the sequence u∗∗

ε and prove that there is a 
non-empty finite set S∗ = {z1, · · · , zl}, such that

δ2
ε

ε2
eu∗∗

ε +u∗
0 (1 − eu∗∗

ε +u∗
0 ) →

l∑
j=1

m∗
j δzj

, m∗
j ≥ 8π, (2.69)

in the sense of measure.
Suppose that 0 ∈ S∗. Then l ≥ 2. We assume that z1 = 0 and use the Pohozaev identity to find that zj satisfies

(m∗
1

2π
− 2

) zj

|zj |2 +
∑ m∗

j (zj − zi)

2π |zj − zi |2 = 0, j = 2, · · · , l. (2.70)

i 	=j
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Since 
m∗

1
2π

− 2 > 0, (2.70) can not hold true for zj with |zj | = maxi |zi |. So 0 /∈ S∗. Using the Pohozaev identity again, 
we find that zj satisfies

2zj

|zj |2 =
∑
i 	=j

m∗
j (zj − zi)

2π |zj − zi |2 , j = 1, · · · , l. (2.71)

From (2.71), we find l ≥ 2. Let us assume that |z1| = maxi |zi |. By dividing (2.71) with |z1|, we can assume that 
|z1| = 1. By rotating suitably, we can make z1 = (1, 0). Let zj = (r cos θ, r sin θ), j > 1. Then |zj − z1|2 = 1 + r2 −
2r cos θ and the x1 component of z1 − zj is 1 − r cos θ . Define f (r, θ) = 1−r cos θ

1+r2−2r cos θ
. We claim minB1(0) f (r, θ) = 1

2

and f (r, θ) > 1
2 if r < 1. Assume this at the moment, then from (2.71), we obtain

2 =
l∑

j=2

m∗
j (z1 − zj )x1

2π |z1 − zj |2 ≥
l∑

j=2

m∗
j

4π
> 2, (2.72)

if l ≥ 3, which is a contradiction. But if l = 2 and |z2| < 1, then the first inequality in (2.72) must be strict and we 
obtain a contradiction. From |z2| = 1 and (2.71), we find z1 = −z2. So (2.72) can not hold true since one of m∗

j > 8π

due to (2.66). So we have proved |xε| ≤ Cε. To prove minB1(0) f (r, θ) = 1
2 , we first know that f (r, θ) is smooth in 

B1(0) \ {(1, 0)}. But as r → 1 and θ → 0,

f (r, θ) = 1 − r + θ2

2 + O(θ3 + (1 − r)θ2)

(1 − r)2 + θ2 + O(θ3 + (1 − r)θ2)
≥

(1−r)2

2 + θ2

2 + O(θ3 + (1 − r)θ2)

(1 − r)2 + θ2 + O(θ3 + (1 − r)θ2)
≥ 1

2
.

On the other hand, fr(r, θ) = (1+r2) cos θ−2r

(1+r2−2r cos θ)2 if r < 1, which implies that the minimum of f (r, θ) can only be at-

tained at r = 0 or r = 1. But for r = 1 and θ 	= 0, it is easy to see that f (1, θ) = 1
2 , and f (0, θ) = 1. So we find 

minB1(0) f (r, θ) = 1
2 .

Step 2. As in Lemma 2.7, we claim that for R > 0 large and y satisfying |y − xε,j | > Rε, it holds

1

ε2

∫
B 1

2 |y−xε,j |(y)

euε+u0(1 − euε+u0) = oR(1) + oε(1), (2.73)

where oR(1) → 0 as R → +∞.
In fact, similar to Lemma 2.4, we can prove that uε + 2 ln ε ≤ C < +∞. If (2.73) was not true, by doing the 

blow-up analysis for uε + 2 ln ε ≤ C < +∞, we would find that uε + 2 ln ε has a blow-up set {0, z2, · · · , zl} with zj

satisfying (2.70). This is a contradiction.
Step 3. From Steps 1 and 2, we can prove (2.67) in the same way as in Lemma 2.11. �

Proof of the necessary part of Theorem 1.4. By Proposition 2.13, we find

Mε,i = Mε,1 + o(1), i = 1, · · · , t; Mε,i = Mε,t+1 + o(1), i = t + 1, · · · , k,

and

Mε,t+1 = Mε,1 − 4π + o(1), Mε,1 + · · · + Mε,k = 4Nπ.

So the first claim follows. The second claim can be proved by using the Pohozaev identity. �
3. Existence of bubbling solutions

In this section, we will prove Theorem 1.2 and the existence part of Theorem 1.4. More precisely, we will prove 
the following theorems.

Theorem 3.1. Suppose that k is a positive integer with k < N
2 . Let q = (q1, · · · , qk) with qj /∈ {p1, · · ·pN }, j =

1, · · · , k. Assume that q satisfies (1.12) and deg(DGk(q), 0) 	= 0. Then there is an ε0 > 0, such that for any ε ∈ (0, ε0), 
(1.6) has a solution uε , satisfying
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1

ε2
euε+u0

(
1 − euε+u0

) → 4πN

k

k∑
j=1

δqj

as ε → 0.

Theorem 3.2. Let {q1, · · · , qt , qt+1, · · · , qk} satisfy (1.15). Suppose that k and t satisfy k < 1
3 (N − t) and the weight 

mi of each vortex point qi is one. Assume that q = (qt+1, · · · , qk) satisfies DG∗
k(q) = 0 and deg(DG∗

k(q), 0) 	= 0. 
Then there is an ε0 > 0, such that for any ε ∈ (0, ε0), (1.6) has a solution uε , satisfying

1

ε2
euε+u0

(
1 − euε+u0

) → 4πN + 4π(k − t)

k

t∑
i=1

δqi
+ 4πN − 4πt

k

k∑
j=t+1

δqj

as ε → 0.

Let us point out that in Theorem 3.2, {qt+1, · · · , qk} = ∅ is allowed. Early results on the existence of single bubbling 
solutions of CS type can be found in [10,24,26]. To prove Theorems 3.2 and 3.1, it is essential to construct a good 
approximate solution for (1.6) without (1.14). This will be carried out in details in section 3.1. Once this is done, we 
can use a reduction argument to finish the proof. This part is quite standard, so we just sketch it. We refer to [24–26]
for the details.

In the following, we only give the proof of Theorem 3.2, since the proof of Theorem 3.1 is very similar.

3.1. The approximate solutions

Without loss of generality, we assume that || = 1. Firstly, we construct an approximate solution.
We want to construct an approximate solution for (1.6), whose blow-up set is

{q1, · · · , qt , xε,t+1, · · ·xε,k}, (3.1)

where xε,j is close to qj , j = t + 1, · · · , k, and qj is a vortex point, j = 1, · · · , t .
For bubble at xε,j , we consider{

	V + eV (1 − eV ) = 0, V is radial, in R
2;∫

R2 eV (1 − eV ) = Mε,j ,
(3.2)

where Mε,j is a constant satisfying Mε,j > 8π . By Theorem 2.1 of [4], (3.2) has a solution Vε,j (|x|), which has the 
following expansion:

Vε,j (|x|) = −Mε,j

2π
ln |x| + Iε,j + O

( 1

|x|2
)
, as |x| → +∞, (3.3)

where Iε,j is a constant, which depends on Mε,j smoothly, and

V ′
ε,j (|x|) = − Mε,j

2π |x| + O
( 1

|x|2
)
, as |x| → +∞. (3.4)

The solution Vε,j (|x|) forms the major part of the bubble near a regular point qj .
For bubble at the vortex point qi , we need to consider{

	V + |x|2eV (1 − |x|2eV ) = 0, V is radial, in R
2;∫

R2 |x|2eV (1 − |x|2eV ) = Mε,i .
(3.5)

By Theorem 2.1 of [4], if Mε,i > 16π , (3.2) has a solution Vε,j (|x|), which has the same expansions as in (3.3)
and (3.4).

We will construct an approximate solution for (1.6) whose blow-up set is given by (3.1). For simplicity of the 
notations, we denote xε,j = qj , j = 1, · · · , t . For j = t + 1, · · · , k, we let Vε,j be the solution of (3.2). We define the 
approximate solution for (1.6) near xε,j as follows.



1346 C.-S. Lin, S. Yan / Ann. I. H. Poincaré – AN 34 (2017) 1329–1354
ϕε,j (x) = Vε,j

( |x − xε,j |
ε

) + Mε,j

(
γ (x, xε,j ) − γ (xε,j , xε,j )

)
+

∑
i 	=j, 1≤i≤k

Mε,i

(
G(x,xε,i) − G(xε,i , xε,j )

) − u0(xε,j ), j = t + 1, · · · , k.
(3.6)

For j = 1, · · · , t , we let Vε,j be the solution of (3.5). We define the approximate solution for (1.6) near xε,j by

ϕε,j (x) = Vε,j

( |x − xε,j |
ε

) + 2 ln
1

ε
+ Mε,j

(
γ (x, xε,j ) − γ (xε,j , xε,j )

)
+

∑
i 	=j, 1≤i≤k

Mε,i

(
G(x,xε,i) − G(xε,i , xε,j )

) − uj (xε,j ), j = 1, · · · , t,
(3.7)

where uj (x) = u0(x) − 2 ln |x − xε,j |.
For x ∈  \ {

xε,1, · · · , xε,k

}
, we define the approximate solution as

ϕε,0(x) =
k∑

i=1

Mε,iG(x, xε,i) + Lε, (3.8)

where Lε is a very negative constant, which is to be determined later.
To glue all the ϕε,j together to form an approximate solution for (1.6), we need to make ϕε,j = ϕε,0 on ∂Bδ(xε,j )

up to a small term. By (3.3), we let Mε,j satisfy the following equations:

−Mε,j γ (xε,j , xε,j ) −
∑

i 	=j, 1≤i≤k

Mε,iG(xε,j , xε,i)

− Mε,j

2π
ln

1

ε
+ Iε,j − u0(xε,j ) = Lε, j = t + 1, · · · , k,

(3.9)

and

−Mε,j γ (xε,j , xε,j ) −
∑

i 	=j,1≤i≤k

Mε,iG(xε,j , xε,i)

−
(Mε,j

2π
− 2

)
ln

1

ε
+ Iε,j − uj (xε,j ) = Lε, j = 1, · · · , t.

(3.10)

Therefore, for j = t + 1, · · · , k,

Mε,j − Mε,t+1

+ 2π

| ln ε|
(
Mε,j γ (xε,j , xε,j ) − Mε,t+1γ (xε,t+1, xε,t+1) − Iε,j + Iε,t+1

)

+ 2π

| ln ε|
( ∑

i 	=j,1≤i≤k

Mε,iG(xε,j , xε,i) −
k∑

i 	=t+1,1≤i≤k

Mε,iG(xε,t+1, xε,i)
)

= 2π

| ln ε|
(
u0(xε,t+1) − u0(xε,j )

)
, j = t + 1, · · · , k.

(3.11)

Similarly,

Mε,j − Mε,1

+ 2π

| ln ε|
(
Mε,j γ (xε,j , xε,j ) − Mε,1γ (xε,1, xε,1) − Iε,j + Iε,1

)

+ 2π

| ln ε|
( ∑

i 	=j, 1≤i≤k

Mε,iG(xε,j , xε,i) −
k∑

i=2

Mε,iG(xε,1, xε,i)
)

= 2π (
u1(xε,1) − uj (xε,j )

)
, j = 1, · · · , t.

(3.12)
| ln ε|
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On the other hand, it is easy to find

Mε,j − Mε,1 + 4π

+ 2π

| ln ε|
(
Mε,j γ (xε,j , xε,j ) − Mε,1γ (xε,1, xε,1) − Iε,j + Iε,1

)

+ 2π

| ln ε|
( ∑

i 	=j,1≤i≤k

Mε,iG(xε,j , xε,i) −
k∑

i=2

Mε,iG(xε,1, xε,i)
)

= 2π

| ln ε|
(
u1(xε,1) − u0(xε,j )

)
, j = t + 1, · · · , k.

(3.13)

Furthermore, we take

Mε,1 + · · · + Mε,k = 4πN. (3.14)

Noting that Iε,j depends on Mε,j smoothly, we can solve (3.11)–(3.14) to find

Mε,j = 4πN + 4π(k − t)

k
+ O

( 1

| ln ε|
)
, j = 1, · · · , t, (3.15)

and

Mε,j = 4πN − 4πt

k
+ O

( 1

| ln ε|
)
, j = t + 1, · · · , k. (3.16)

It is easy to check that the constant Lε determined by (3.9) is very negative.
We are now ready to construct an approximate solution for (1.6). Let χ(t) ∈ C∞(R1) be a function satisfying χ = 1

in [0, d], χ = 0 in [2d, +∞), and 0 ≤ χ ≤ 1, where d > 0 is a small constant. Define

ϕε,x =
k∑

j=1

χ(|x − xε,j |)ϕε,j + (
1 −

k∑
j=1

χ(|x − xε,j |)
)
ϕε,0. (3.17)

Using (3.14), we see that for x ∈ Bd(xε,j ), j = t + 1, · · · , k,

	ϕε,x − 4πN = 1

ε2
eVε,j

( |x−xε,j |
ε

)(
eVε,j

( |x−xε,j |
ε

)
− 1

)
. (3.18)

On the other hand, from (3.6),

ϕε,x(x) + u0(x) = Vε,j

( |x − xε,j |
ε

) + O
(|x − xε,j |

)
, (3.19)

which implies

1

ε2
eVε,j

( |x−xε,j |
ε

)(
eVε,j

( |x−xε,j |
ε

)
− 1

)
= 1

ε2
eϕε,x(x)+u0(x)

(
eϕε,x(x)+u0(x) − 1

)
+ O

( |x − xε,j |
ε2

eVε,j

( |x−xε,j |
ε

))
, x ∈ Bd(xε,j ).

(3.20)

Combining (3.18) and (3.20), we are led to

	ϕε,x − 4πN = 1

ε2
eϕε,x(x)+u0(x)

(
eϕε,x(x)+u0(x) − 1

)
+ O

( |x − xε,j |
ε2

eVε,j
( |x−xε,j |

ε

))
, x ∈ Bd(xε,j ), j = t + 1, · · · , k.

(3.21)

On the other hand, for x ∈ B2d(xε,j ) \ Bd(xε,j ), from (3.3) and (3.9), we obtain

ϕε,j − ϕε,0 = Vε,j

( |x − xε,j |
ε

) − Mε,j

2π
ln

1

|x − xε,j | − Mε,j γ (xε,j , xε,j )

−
∑

Mε,iG(xε,i , xε,j ) − u0(xε,j ) − Lε = O(ε2),
(3.22)
i 	=j, 1≤i≤k
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and from (3.4), we also obtain

Dϕε,j − Dϕε,0 = O(ε2). (3.23)

Therefore,

	ϕε,x − 4πN = 	ϕε,j − 4πN + O(ε2)

= 1

ε2
eϕε,x(x)+u0(x)

(
eϕε,x(x)+u0(x) − 1

)
+ O

( |x − xε,j |
ε2

eVε,j
( |x−xε,j |

ε

))
, x ∈ B2d(xε,j ) \ Bd(xε,j ), j = t + 1, · · · , k.

(3.24)

Similarly, we have

	ϕε,x − 4πN = 1

ε2

|x − xε,j |2
ε2

eVε,j

( |x−xε,j |
ε

)( |x − xε,j |2
ε2

eVε,j

( |x−xε,j |
ε

)
− 1

)
= 1

ε2
eϕε,x(x)+u0(x)

(
eϕε,x(x)+u0(x) − 1

)

+ |x − xε,j |
ε2

O
( |x − xε,j |2

ε2
eVε,j

( |x−xε,j |
ε

))
, x ∈ B2d(xε,j ) \ Bd(xε,j ), j = 1, · · · , t,

(3.25)

and

	ϕε,x − 4πN

= 1

ε2
eϕε,x(x)+u0(x)

(
eϕε,x(x)+u0(x) − 1

)

+ |x − xε,j |
ε2

O
( |x − xε,j |2

ε2
eVε,j

( |x−xε,j |
ε

))
, x ∈ Bd(xε,j ), j = 1, · · · , t.

(3.26)

Moreover, using (3.14), we obtain

	ϕε,x − 4πN = 0

= 1

ε2
eϕε,x(x)+u0(x)

(
eϕε,x(x)+u0(x) − 1

)
+ O(ε2), x ∈  \ ∪k

m=1B2d(xε,m).
(3.27)

3.2. The reduction

Our objective is to find a solution for (1.6) near ϕε,x. Let uε = ϕε,x + ωε be a solution of (1.6). Then ωε satisfies

Lεωε := 	ωε − fε(x)ωε = gε(x,ωε), (3.28)

where

fε(x) = 1

ε2

t∑
i=1

χ(|x − xε,i |)
(

2
|x − xε,i |4

ε4
e2Vε,i

( |x−xε,i |
ε

)
− |x − xε,i |2

ε2
eVε,i

( |x−xε,i |
ε

))

+ 1

ε2

k∑
i=t+1

χ(|x − xε,i |)
(

2e2Vε,i

( |x−xε,i |
ε

)
− eVε,i

( |x−xε,i |
ε

))
,

(3.29)

and

gε(x, t) = −fε(x)t + 1

ε2

(
e2(ϕε,x+u0+t) − eϕε,x+u0+t

) − 	ϕε,x + 4πN. (3.30)

Let us introduce two function spaces Xα,ε and Yα,ε . Define

ρ(x) = (1 + |x|)1+ α
2 , ρ̂(x) = 1

(1 + |x|)(ln(2 + |x|))1+ α
2
,

where α > 0 is a fixed small constant.
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Let ′ = ∪k
i=1Bd(xε,i). We say a function ξ is in Xα,ε if

‖ξ‖2
Xα,ε

=
k∑

i=1

(‖	ξ̃iρ‖2
L2(B2d/ε)

+ ‖ξ̃i ρ̂‖2
L2(B2d/ε)

) + ‖	ξ‖2
L2(\′) + ‖ξ‖2

L2(\′) < +∞, (3.31)

where ξ̃i (y) = ξ(εy + xε,i), Bt = Bt(0). On the other hand, we say ξ ∈ Yα,ε if

‖ξ‖2
Yα,ε

= ε4
k∑

i=1

‖ξ̃iρ‖2
L2(B2d/ε)

+ ‖ξ‖2
L2(\′) < +∞. (3.32)

Define

Zε,i,h = −	
(
χ(|x − xε,i |)∂Vε,i

( x−xε,i

ε

)
∂xh

)
+ 1

ε2
eVε,i

( x−xε,i
ε

)
χ(|x − xε,i |)∂Vε,i

( x−xε,i

ε

)
∂xh

, (3.33)

for h = 1, 2, i = t + 1, · · · , k,

Eε = {
ω : ω ∈ Xα,ε,,

∫


Zε,i,hω = 0, h = 1,2, i = t + 1, · · · , k
}
, (3.34)

and

Fε = {
ω : ω ∈ Yα,ε,

∫


χ(|x − xε,i |)∂Vε,i

( x−xε,i

ε

)
∂xh

ω = 0, h = 1,2, i = t + 1, · · · , k
}
. (3.35)

We define the following projection operator from Yα,ε to Fε:

Qεu = u −
k∑

i=t+1

2∑
h=1

cihZε,i,h, (3.36)

where the constants cih are chosen in such a way that Qεu ∈ Fε . Then it is easy to check that

‖Qεu‖Yα,ε ≤ C‖u‖Yα,ε . (3.37)

We have

Proposition 3.3. There is an ε0 > 0, such that for each ε ∈ (0, ε0] and (xε,t+1, · · · , xε,k) near q, there exists ωε ∈ Eε , 
satisfying

Qε

(
Lεωε − gε(x,ωε)

) = 0. (3.38)

Moreover, ωε is a C1 map of (xε,t+1, · · · , xε,k) in Xα,ε , and

‖ωε‖L∞() + ‖ωε‖Xα,ε ≤ Cε ln
1

ε
. (3.39)

Proof. By Theorem A.1, (3.38) can be rewritten as

ω = Bεω =: (QεLε)
−1Qεgε(x,ω),

and

‖Bεω‖L∞() + ‖Bεω‖Xα,ε ≤ C ln
1

ε
‖gε(x,ω)‖Yα,ε .

Fix a small constant θ > 0. Let

Sε = {
ω : ω ∈ Eε, ‖ω‖L∞() + ‖ω‖Xα,ε, ≤ ε1−θ

}
.

We will prove that Bε is a contraction map from Sε to Sε .
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To prove that Bε maps Sε to Sε , we use the definition of gε(x, ω) in (3.30) to obtain

‖gε(x,ω)‖Yα,ε ≤ Cε, (3.40)

which gives

‖Bεω‖L∞() + ‖Bεω‖Xα,ε ≤ C ln
1

ε
‖gε(x,ω)‖Yα,ε ≤ Cε ln

1

ε
≤ ε1−θ . (3.41)

So, Bε maps Sε to Sε .
To show that Bε is a contraction map, for any ω, η ∈ Sε , we note

‖Bε(ω) − Bε(η)‖L∞() + ‖Bε(ω) − Bε(η)‖Xα,ε ≤ C ln
1

ε
‖gε(x,ω) − gε(x, η)‖Yα,ε . (3.42)

On the other hand, it is easy to check that

‖gε(x,ω) − gε(x, η)‖Yα,ε ≤ Cε1−θ‖ω − η‖Xα,ε ,

which, together with (3.42), gives

‖Bε(ω) − Bε(η)‖L∞() + ‖Bε(ω) − Bε(η)‖Xα,ε ≤ 1

2
‖ω − η‖Xα,ε . (3.43)

So, we have proved that Bε is a contraction map.
By the contraction mapping theorem, there is a unique ωε ∈ Sε , such that ωε = Bεωε . Moreover, it follows 

from (3.41) that

‖ωε‖L∞() + ‖ωε‖Xα,ε = ‖Bεωε‖L∞() + ‖Bεωε‖Xα,ε ≤ Cε ln
1

ε
.

From the uniqueness, it is standard to prove ωε is a C1 map of (xε,t+1, · · · , xε,k) in Xα,ε . �
3.3. Existence of bubbling solutions

By Proposition 3.3, there is ωε ∈ Sε , satisfying

Lεωε − gε(x,ωε) =
k∑

i=t+1

2∑
h=1

cε,i,hZε,i,h, (3.44)

for some constants cε,i,h. If t = k, Proposition 3.3 gives the existence of a solution for (1.6), whose blow-up set 
consists of vortex points only. In the case t < k, we need to choose (xε,t+1, · · · , xε,k) in Xα,ε suitably, such that the 
corresponding cε,i,h are zero. So, ϕε,x + ωε is a true solution of (1.6). It is well known now that we just need to make 
(xε,t+1, · · · , xε,k) satisfy the following equations.

∫


(
Lεωε − gε(x,ωε)

)
χ(|x − xε,j |)∂Vε,j

( x−xε,j

ε

)
∂xl

= 0, l = 1,2, j = t + 1, · · · , k. (3.45)

Proof of Theorem 3.2. We just need to solve (3.45). Similar to the calculations in [24], it is not difficult to show that 
there is a constant aj 	= 0, such that

∫


(
Lεωε − gε(x,ωε)

)
χ(|x − xε,j |)∂Vε,j

( x−xε,j

ε

)
∂xl

= aj

(
Dlu0(xε,j ) +

∑
Mε,iDlG(xε,i , xε,j )

) + O(ε), j = t + 1, · · · , k.

(3.46)
i 	=j
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So, by (3.15) and (3.16), we find that (3.45) is equivalent to

Dlu0(xε,j ) + 4πN + 4π(k − t)

k

t∑
i=1

DlG(xε,i , xε,j )

+ 4πN − 4πt

k

∑
i 	=j

DlG(xε,i , xε,j ) = o(1), l = 1,2, j = t + 1, · · · , k.

(3.47)

By the assumption deg(DG∗
k(q), 0) 	= 0, (3.47) has a solution (xε,t+1, · · · , xε,k) near q if ε > 0 is small. Thus the 

theorem follows. �
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Appendix A. A linear equation

Consider the following linear operator Lε defined in (3.28). In this appendix, we will prove the following result.

Theorem A.1. Suppose that wε ∈ Eε and hε ∈ Fε satisfy

Lεwε = hε +
k∑

i=t+1

2∑
h=1

cihZε,i,h, (A.1)

for some constants cih. Then there is a constant C > 0, independent of ε, such that

‖wε‖L∞() + ‖wε‖Xα,ε ≤ C
(
ln

1

ε

)‖hε‖Yα,ε . (A.2)

Moreover, QεLε is an isomorphism from Eε to Fε .

Proof. To prove (A.2), we argue by contradiction. Suppose that there are εn → 0, wn ∈ Eεn , hn ∈ Fεn , satisfying

Lεnwn = hn +
k∑

i=t+1

2∑
h=1

cihZεn,i,h, (A.3)

‖wn‖L∞() + ‖wn‖Xα,εn
= 1, (A.4)

and

‖hn‖Yα,εn
= o

( 1

| ln εn|
)
. (A.5)

Step 1. We claim

|cih| ≤ Cε2
n| ln εn|. (A.6)

This can be proved by solving a linear system of cih, which is obtained by multiplying (A.3) by χ(|x −
xε,j |) ∂Vε,j

( x−xε,j
ε

)
∂xjl

and integrating this relation on .
Step 2. For any R > 0, we have

max
x∈B (x )

|wn(x)| → 0, i = t + 1, · · · , k. (A.7)

εR ε,i
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Define w̃n(y) = wn(εny + xεn,i). Then |w̃n| ≤ 1. Moreover, w̃n satisfies

	w̃n − ε2fε(εny + xεn,i)w̃n = ε2
nhn(εny + xεn,i) + ε2

n

k∑
l=t+1

2∑
h=1

clhZεn,t,h(εny + xεn,i).

Using Step 1 and wn ∈ Eεn , we can prove that w̃n → 0 uniformly in any compact subset of R2.
Step 3. We claim that there is a constant b0, such that for any small c′ > 0,

wn(x) = b0 + o(1), ∀ x ∈  \ ∪k
i=1Bc′(qi). (A.8)

Since |wn| ≤ 1, we find that wn → w0 on any compact subset of  \{q1 · · · , qk} and 	w0 = 0. As a result, w0 = b0
for some constant b0.

Step 4. Let w∗
n,i(r) =

∫ 2π

0 wn(r, θ) dθ , r = |x − xε,i |. We claim

w∗
n,i(r) = o(1), r ≤ d, i = 1, · · · , k. (A.9)

Note that w∗
n,i(r) satisfies the equation

	ωε + 1

ε2
fε,i(x)ωε = h∗

n,i(r), r = |x − xε,i | ≤ d, (A.10)

where h∗
n,i(r) =

∫ 2π

0 hn(r, θ) dθ

fε,i(x) =

⎧⎪⎨
⎪⎩

χ(|x − xε,i |)
(

2 |x−xε,i |4
ε4 e2Vε,i

( |x−xε,i |
ε

)
− |x−xε,i |2

ε2 eVε,i
( |x−xε,i |

ε

))
, 1 ≤ i ≤ t;

χ(|x − xε,i |)
(

2e2Vε,i

( |x−xε,i |
ε

)
− eVε,i

( |x−xε,i |
ε

))
, t + 1 ≤ i ≤ k.

(A.11)

For i = 1, · · · , k, let ψn,i(r), r = |x − xεn,i |, be the solution of

−	v = 1

ε2
n

fε,i(x)v (A.12)

satisfying ψn,i(0) = 1. Then, ψn,i(r) = −Mi ln |x−xεn,i |
εn

+ O(1) for some Mi > 0, if |x − xε,i | ≥ εR, where R > 0 is 
a large constant. See Remark 2.5 and Lemma 2.2 in [4]. On the other hand, (A.12) has another solution which is given 
by φn,i(r) = ψn,i(r) 

∫ r

0
1

sψ2
n,i (s)

ds. Note that φn,i(r) ∼ ln r as r → 0. So we have the following relation

w∗
n,i(r) = w∗

n,i(0)ψn,i(r) + Un,i(r), (A.13)

where

Un,i(r) = ψn,i(r)

r∫
0

sφn,i(s)h
∗
n,i (s) ds − φn,i(r)

r∫
0

sψn,i(s)h
∗
n,i (s) ds. (A.14)

It is easy to show that

|Un,i(r)| ≤ C ln(1 + r

εn

)‖hn‖Yα,ε . (A.15)

Integrating (A.1) over , we find

k∑
i=1

w∗
n,i(0)

∫


1

ε2
fε,i(x)ψn,i(r) = O

(‖hn‖Yα,εn
+ ε2

n| ln εn|
)
. (A.16)

Noting that | ∫


1
ε2 fε,i(x)ψn,i(r)| ≥ c′ > 0 and all 

∫


fε,i(x)ψn,i(r) have the same sign, we obtain from (A.16)

|w∗
n,i(0)| = o

( 1

| ln εn|
)
, (A.17)

which, together with (A.13) and (A.15), gives (A.9).
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Step 5. It follows from Step 4, the constant b0 in (A.8) must be zero.
Step 6. Let x∗

n be a maximum point of wn. Then from Steps 2 and 5, we have

x∗
n → qj , ε−1|x∗

n − xεn,j | → +∞, (A.18)

for some j = 1, · · · , k.
It is easy to check that ‖wn‖L∞() → C0 > 0. Otherwise, we can deduce from (A.3) and (A.5) that ‖wn‖Xα,εn

→ 0. 
This will contradict (A.4).

Let sn = |x∗
n − xεn,j | and w̄n = wn(snx + xεn,j ). Then w̄n

(
s−1
n (x∗

n − xεn,j

) = ‖wn‖L∞() and w̄n → w̄0 in any 
compact subset of R2 \ {0}. In view of (A.18), w̄0 satisfies 	w̄0 = 0. Thus, w̄0 = C0 > 0. In particular,

wn(x) ≥ 1

2
C0, sn ≤ |x − xεn,j | ≤ 2sn.

This is a contradiction to (A.9). So we complete the proof of Theorem A.1. �
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