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Abstract

We investigate a quasilinear elliptic equation with variable growth in a bounded nonsmooth domain involving a signed Radon 
measure. We obtain an optimal global Calderón–Zygmund type estimate for such a measure data problem, by proving that the 
gradient of a very weak solution to the problem is as globally integrable as the first order maximal function of the associated 
measure, up to a correct power, under minimal regularity requirements on the nonlinearity, the variable exponent and the boundary 
of the domain.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

There have been considerable theoretical advances in partial differential equations (PDEs) with variable exponent 
growth in recent years. The study of these problems has also become an important research field, and it represents 
various phenomena in applied sciences: for instance, electrorheological fluids [46], elasticity [52], flows in porous 
media [4], image restoration [18], thermo-rheological fluids [3], and magnetostatics [17].

In this paper, we consider the Dirichlet problem with measure data:{−div a(Du,x) = μ in �,

u = 0 on ∂�,
(1.1)
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where � is a bounded domain of Rn, n ≥ 2, with nonsmooth boundary ∂�, and μ is a signed Radon measure on � with 
finite mass. We can assume, by extending μ by zero to Rn \ �, that μ is defined in Rn with |μ|(�) = |μ|(Rn) < ∞. 
The vector field a = a(ξ, x) : Rn ×R

n → R
n is differentiable in ξ and measurable in x, and it satisfies the following 

variable exponent growth and uniformly ellipticity conditions:

|ξ ||Dξ a(ξ, x)| + |a(ξ, x)| ≤ �|ξ |p(x)−1, (1.2)

λ|ξ |p(x)−2|η|2 ≤ 〈Dξ a(ξ, x)η, η
〉
, (1.3)

for almost every x ∈ R
n, every η ∈ R

n, every ξ ∈ R
n \ {0}, and appropriate constants λ, �. Here Dξ a(ξ, x) is the 

Jacobian matrix of a with respect to ξ , 〈·, ·〉 is the standard inner product in Rn, and p(·) is a given continuous function 
in � satisfying

2 − 1

n
< γ1 ≤ p(·) ≤ γ2 < ∞. (1.4)

Note that (1.2) implies that a(0, x) = 0 for x ∈R
n, and (1.3) yields the following monotonicity condition:

〈a(ξ1, x) − a(ξ2, x), ξ1 − ξ2〉 ≥
{

λ̃ |ξ1 − ξ2|p(x) if p(x) ≥ 2,

λ̃
(|ξ1|2 + |ξ2|2

) p(x)−2
2 |ξ1 − ξ2|2 if 1 < p(x) < 2

(1.5)

for all x, ξ1, ξ2 ∈R
n and for some constant λ̃ = λ̃(n, λ, γ1, γ2) > 0.

If γ1 > n, then μ belongs to the dual space of W 1,p(·)
0 (�) as a consequence of Morrey’s inequality and a duality 

argument, and so the existence and uniqueness of a weak solution u to (1.1) are well understood from the monotone 
operator theory, see for instance [49]. In this case, regularity estimates for (1.1) have been extensively studied, see for 
example [1,2,12,13,26,28,37]. For this reason, we only consider the case that γ1 ≤ n for which a solution u of (1.1)
in the distributional sense does not necessarily become a weak solution in W 1,p(·)

0 (�). In this respect, we need to 
consider a more general class of solutions below the duality exponent.

Definition 1.1. u ∈ W
1,1
0 (�) is a SOLA (Solution Obtained by Limits of Approximations) to the problem (1.1) under 

the assumptions (1.2)–(1.4) if the vector field a(Du, x) ∈ L1(�, Rn),ˆ

�

〈a(Du,x),Dϕ〉 dx =
ˆ

�

ϕ dμ

holds for all ϕ ∈ C∞
c (�), and moreover there exists a sequence of weak solutions {uh}h≥1 ∈ W

1,p(·)
0 (�) of the Dirich-

let problems{−div a(Duh, x) = μh in �,

uh = 0 on ∂�
(1.6)

such that

uh → u in W
1,max{1,p(·)−1}
0 (�) as h → ∞, (1.7)

where {μh} ∈ L∞(�) converges weakly to μ in the sense of measure and satisfies for each open set V ⊂R
n,

lim sup
h→∞

|μh|(V ) ≤ |μ|(V ), (1.8)

with μh defined in Rn by considering the zero extension to Rn.

Throughout the paper, we consider μh := μ ∗ φh, where φh is the usual mollifier, and then μh ∈ C∞(�) converges 
weakly to μ in the sense of measure satisfying (1.8) and the following uniform L1-estimate:

‖μh‖L1(�) ≤ |μ|(�). (1.9)

With such μh, there exists a SOLA u of (1.1) belonging to W 1,q(·)
0 (�) for all q(·) with

1 ≤ q(·) < min

{
n(p(·) − 1)

,p(·)
}

.

n − 1
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This existence follows from a priori Lq(·) estimate of the gradient of solutions for the regularized problem of 
p(·)-Laplace type and a proper approximation procedure, see [6,11] and the references therein. Moreover, the condi-
tion p(·) > 2 − 1

n
in (1.4) implies n(p(·)−1)

n−1 > 1, which ensures u ∈ W
1,1
0 (�). On the other hand, if p(·) ≤ 2 − 1

n
, then 

a solution does not belong to W 1,1
0 (�), and so a new concept of solutions is needed. We refer to [7,47] for details, 

and we will no longer treat the case p(·) ≤ 2 − 1
n

here. It is worthwhile to mention that the existence of a solution 
of (1.1) can also be obtained by introducing the notion of renormalized solutions, see [6,21] and the references given 
there.

The uniqueness of a SOLA remains still an open problem except when p(·) ≡ 2, see [44,48] for counterexamples. 
We also refer to [6–11,20,21,36,47] for a thorough discussion regarding the existence and uniqueness of measure data 
problems.

The aim of this paper is to establish a global Calderón–Zygmund type estimate for a SOLA u to the problem (1.1). 
More precisely, we want to prove that for all q > 0,

ˆ

�

|Du|q dx ≤ c

⎧⎨
⎩
ˆ

�

[M1(μ)(x)]
q

p(x)−1 dx + 1

⎫⎬
⎭ (1.10)

under optimal conditions on p(·), a and �. Here M1 is the fractional maximal function of order 1 for μ, defined as

M1(μ)(x) := sup
r>0

r|μ|(Br(x))

|Br(x)| for x ∈R
n,

where |Br(x)| is the n-dimensional Lebesgue measure of the open ball Br(x).
In [43], Phuc proved (1.10) for a renormalized solution u of (1.1) with the constant exponent, that is, p(·) ≡ p. We 

generalize this result for a SOLA u in the setting of the variable exponent case. Indeed, from the point of regularity, 
there is little difference between a SOLA and a renormalized solution, as both are based on the approximation argu-
ments. We would like to point out that Nguyen in [42] considered a problem to find a parabolic version of the result 
in [43] for the linear case.

The main difficulty in carrying out our result (1.10) is to establish comparison L1-estimates and higher integrability 
for the variable exponent case, see Section 3. Moreover, unlike the constant exponent case, the problem (1.1) has no 
normalization property, and so it needs a delicate analysis and a very careful computation to obtain the standard 
L1-estimates for measure data problems, see Remark 5.1 and Remark 5.2. The desired estimate (1.10) is obtained via 
the so-called maximal function technique, which has been previously used in [2,12,14,16,39,51]. A notable advantage 
of this approach is that it can completely avoid the use of explicit kernels and singular integrals. The basic tools 
in the maximal function technique are the maximal function, the Vitali covering lemma, and the integral identity 
formula

ˆ

�

M(|Du|)q dx = q

∞̂

0

λq−1 |{x ∈ � :M(|Du|)(x) > λ}| dλ,

where M is the Hardy–Littlewood maximal operator, see (2.6). For various regularity results for measure data prob-
lems, we refer to [5,11,24,25,29–32,38–41].

This paper is organized as follows. In Section 2, we introduce some notations, backgrounds, and assumptions on 
(p(·),a,�) to state the main theorem. In Section 3, we discuss comparison L1-estimates of the problem (1.1) and 
the relevant regularized equations. In Section 4, we verify the hypotheses of the Vitali covering lemma (Lemma 2.4). 
Finally, Section 5 is devoted to proving our main result by controlling the upper-level sets of M(|Du|) for a given 
SOLA u.
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2. Preliminaries and main results

2.1. Notations and main results

We start with notations, which will be used throughout the paper. Let us denote by Br(x) = {y ∈ R
n : |x − y| < r}

the open ball in Rn with center x and radius r > 0, B+
r (x) = Br(x) ∩{x ∈R

n : xn > 0}, Br ≡ Br(0), and B+
r ≡ B+

r (0). 
For f ∈ L1

loc(R
n), (f )U stands for the integral average of f over a bounded open set U ⊂R

n, that is,

(f )U ≡
 

U

f (x) dx = 1

|U |
ˆ

U

f (x) dx.

In what follows, we denote by c a universal constant that can be explicitly computed in terms of known quantities 
such as n, λ, �, γ1, γ2, q and a modulus of continuity ω(·), which will be explained below.

We recall here a brief overview of variable exponent Lebesgue and Sobolev spaces. Let a function p(·) satisfy (1.4). 
The variable exponent Lebesgue spaces Lp(·)(�) are defined by

Lp(·)(�) :=
⎧⎨
⎩f : � →R : f is measurable and

ˆ

�

|f (x)|p(x) dx < ∞
⎫⎬
⎭

with the Luxemberg norm

‖f ‖Lp(·)(�) := inf

⎧⎨
⎩λ > 0 :

ˆ

�

∣∣∣∣f (x)

λ

∣∣∣∣p(x)

dx ≤ 1

⎫⎬
⎭ ,

and the variable exponent Sobolev spaces W 1,p(·)(�) are defined by

W 1,p(·)(�) :=
{
f ∈ Lp(·)(�) : Df ∈ Lp(·)(�,Rn)

}
equipped with the norm

‖f ‖W 1,p(·)(�) := ‖f ‖Lp(·)(�) + ‖Df ‖Lp(·)(�,Rn) .

We denote by W 1,p(·)
0 (�) the closure of C∞

c (�) in W 1,p(·)(�) and W−1,p′(·)(�) the dual space of W 1,p(·)
0 (�). They 

are all separable reflexive Banach spaces.
We next introduce the log-Hölder continuity condition which is the correct condition for regularly varying expo-

nents. Given a function p(·) satisfying (1.4), we say that p(·) is log-Hölder continuous in � if there exists a constant 
L > 0 such that for all x, y ∈ � with |x − y| ≤ 1

2 ,

|p(x) − p(y)| ≤ L

− log |x − y| .

We remark that p(·) is log-Hölder continuous in � if and only if p(·) has a modulus of continuity, that is, there exists 
a nondecreasing concave function ω : [0, ∞) → [0, ∞) with ω(0) = 0 and

|p(x) − p(y)| ≤ ω (|x − y|) for x, y ∈ �,

and moreover

sup
0<r≤ 1

2

ω(r) log

(
1

r

)
≤ L̃

for some constant L̃ > 0. The log-Hölder continuity plays a crucial role in a systematic analysis of variable exponent 
Lebesgue and Sobolev spaces and PDEs with variable exponents; see the monographs [19,23].

We now introduce the main regularity assumptions on p(·), a and �.
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Assumptions. Let R > 0 and δ ∈ (0, 18 ).

(AP) A function p(·) has a modulus of continuity ω : [0, ∞) → [0, ∞), and it satisfies that

sup
0<r≤R

ω(r) log

(
1

r

)
≤ δ. (2.1)

(AA) For a bounded open set U ⊂R
n, write

θ (a,U) (x) := sup
ξ∈Rn\{0}

∣∣∣∣∣ a(ξ, x)

|ξ |p(x)−1
−
(

a(ξ, ·)
|ξ |p(·)−1

)
U

∣∣∣∣∣ . (2.2)

Then, the vector field a satisfies

sup
0<r≤R

sup
y∈Rn

 

Br(y)

θ (a,Br(y)) (x) dx ≤ δ. (2.3)

(A�) The domain � is (δ, R)-Reifenberg flat, that is, for each x0 ∈ ∂� and each r ∈ (0, R], there exists a coordinate 
system {y1, · · · , yn} such that in this new coordinate system, the origin is x0 and

Br ∩ {yn > δr} ⊂ Br ∩ � ⊂ Br ∩ {yn > −δr}. (2.4)

We say (p(·), a, �) is (δ, R)-vanishing if (AP), (AA) and (A�) hold.

We are ready to state our main result.

Theorem 2.1. Assume that (1.2)–(1.4) hold and let 0 < q < ∞ and γ1 ≤ n. Then there exists a small constant δ =
δ(n, λ, �, γ1, γ2, q) > 0 such that the following holds: if (p(·), a, �) is (δ, R)-vanishing for some R ∈ (0, 1), then for 
any SOLA u of the problem (1.1) there exists a constant c = c(n, λ, �, γ1, γ2, ω(·), q, R, �) > 0 such that

‖Du‖Lq(�) ≤ cKs

{∥∥∥M1(μ)
1

p(·)−1

∥∥∥
Lq(�)

+ 1

}
(2.5)

for every constant s with 0 < s ≤ 1
2

(
n

n−1 − 1
γ1−1

)
< 1 depending only on n and γ1, where

Ks :=
(

|μ|(�) + |μ|(�)
1

(γ1−1)(1−s) + 1

)n+1

.

Remark 2.2. We point out that the term Ks in the estimate (2.5) reflects a deficiency of the normalization property of 
the problem (1.1) from the presence of variable exponent p(·). On the other hand, in the constant exponent case, that 
is, p(·) ≡ p, we can derive a more clean estimate than (2.5) by employing the normalization property. We would also 
like to note that the constant c goes to +∞ when s ↘ 0, as we will see later in Remark 5.1 and Remark 5.2.

2.2. Preliminary lemmas

As we will see later in our proof of the main result, it is important to introduce here some analytic and geometric 
properties. We first begin with the Hardy–Littlewood maximal function. For f ∈ L1

loc(R
n), we define

Mf (y) =M(f )(y) := sup
r>0

 

Br(y)

|f (x)| dx (2.6)

and

MUf := M(χUf )
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if f is not defined outside a bounded open set U ⊂R
n. Here χU is the characteristic function of U . For simplicity, we 

drop the index U if U = �. We will use the following weak (1, 1) estimates and strong (p, p) estimates:

|{x ∈ � :Mf (x) > α}| ≤ c(n)

α

ˆ

�

|f | dx for all α > 0, (2.7)

and for 1 < p < ∞,

‖Mf ‖Lp(�) ≤ c(n,p)‖f ‖Lp(�) . (2.8)

We also use an interior and an exterior measure density condition of the Reifenberg flat domains, which can be 
found in [14].

Lemma 2.3. If � is (δ, R)-Reifenberg flat, then we have

sup
0<r≤R

sup
y∈�

|Br(y)|
|� ∩ Br(y)| ≤

(
2

1 − δ

)n

≤
(

16

7

)n

, (2.9)

and

inf
0<r≤R

inf
y∈∂�

|�c ∩ Br(y)|
|Br(y)| ≥

(
1 − δ

2

)n

≥
(

7

16

)n

. (2.10)

The next lemma is a Vitali type covering lemma, which is a reformulation of Calderón–Zygmund decomposition.

Lemma 2.4. (See [14].) Suppose � is (δ, R)-Reifenberg flat with 0 < R0 ≤ R. Let C ⊂ D ⊂ � be measurable sets 
and 0 < ε < 1 such that

(i) |C| ≤
(

1
1000

)n

ε|BR0 |, and

(ii) for y ∈ � and r0 ∈ (0, R0
1000 ], if |C ∩ Br0(y)| ≥ ε|Br0(y)|, then Br0(y) ∩ � ⊂ D.

Then

|C| ≤
(

10

1 − δ

)n

ε|D| ≤
(

80

7

)n

ε|D|.

For a more detailed discussion on Reifenberg flat domains, we refer to [14,33,34,45,50] and the references therein.
We end this section with the following standard measure theory.

Lemma 2.5. (See [15].) Let f be a measurable function in a bounded open set � ⊂ R
n. Let θ > 0 and N > 1 be 

constants. Then, for 0 < q < ∞,

f ∈ Lq(�) ⇐⇒ S :=
∑
k≥1

Nqk
∣∣∣{x ∈ � : |f (x)| > θNk

}∣∣∣< ∞ (2.11)

with the estimate

c−1θqS ≤
ˆ

�

|f |q dx ≤ cθq (|�| + S) , (2.12)

where the constant c = c(N, q) > 0.

3. Comparison estimates in L1 for regular problems

In this section, we assume that μ in the equation (1.1) is regular, which means that

μ ∈ L1(�) ∩ W−1,p′(·)(�). (3.1)
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Then we derive comparison L1-estimates for the gradient of the weak solution u to (1.1) in localized boundary and 
interior regions. Note that by the assumption (3.1), this weak solution u is well defined, that is, there exists a unique 
u ∈ W

1,p(·)
0 (�) satisfyingˆ

�

〈a(Du,x),Dϕ〉 dx =
ˆ

�

μϕ dx for all ϕ ∈ W
1,p(·)
0 (�). (3.2)

We denote, for a measurable set E ⊂ R
n,

|μ|(E) :=
ˆ

E

|μ(x)| dx.

Throughout this section we assume that (p(·), a, �) is (δ, R)-vanishing.

3.1. Boundary comparisons

Let 0 < r ≤ R0
8 for small R0 > 0, to be selected later. Assume that the following geometric setting:

B+
8r ⊂ �8r ⊂ B8r ∩ {xn > −16δr}, (3.3)

where �8r := � ∩ B8r .
Let w ∈ u + W

1,p(·)
0 (�8r ) be the weak solution of{

div a(Dw,x) = 0 in �8r ,

w = u on ∂�8r .
(3.4)

In order to get the comparison result between the equations (1.1) and (3.4), it is helpful to define a new measure ν by

ν(E) = |μ|(E) + |E ∩ �| (3.5)

for a measurable set E ⊂R
n, see Remark 3.2 for details. Hereafter in this subsection, we write

p0 := p(0), p1 := inf
x∈�8r

p(x), p2 := sup
x∈�8r

p(x), and χ{p0<2} :=
{

0 if p0 ≥ 2,

1 if p0 < 2.

Lemma 3.1. Suppose that R0 > 0 satisfies

R0 ≤ min

{
R

2
,

1

ν(�) + 1
,

1´
�

|Du| dx + 1

}
. (3.6)

Let 0 < r ≤ R0
8 and assume that �8r satisfies (3.3). If w ∈ u + W

1,p(·)
0 (�8r ) is the weak solution of (3.4), then there 

exists a constant c = c(n, λ, γ1, γ2) > 0 such that

 

�8r

|Du − Dw| dx ≤ c

⎧⎪⎨
⎪⎩
[
ν(�8r )

rn−1

] 1
p0−1 + χ{p0<2}

[
ν(�8r )

rn−1

]⎛⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p0
⎫⎪⎬
⎪⎭ .

Proof. Since it has already been proved in the case p1 ≥ 2, see [11, Lemma 3.1], we only focus on the case p1 < 2.
Step 1. Dimensionless estimates We first consider the case that 8r = 1. We then claim that 

�1

|Du − Dw| dx ≤ c, (3.7)

under the assumption that

|μ|(�1) + |μ|(�1)

⎛
⎜⎝ˆ

�1

|Du| dx

⎞
⎟⎠

2−p1

≤ c, (3.8)

where the constants c depend on n, λ, γ1, and γ2. We will transfer back to the general case in Step 2.
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Let us denote �+
1 = {x ∈ �1 : p(x) ≥ 2}, �−

1 = {x ∈ �1 : p(x) < 2}, C±
k = {x ∈ �±

1 : k < |u(x) − w(x)| ≤ k + 1}, 
and D±

k = {x ∈ �±
1 : |u(x) − w(x)| ≤ k} for k ∈ N ∪ {0}. We define the truncation operators

Tk(t) := max {−k,min{k, t}} , �k(t) := T1 (t − Tk(t)) for t ∈R. (3.9)

Since u and w are the weak solutions of (1.1) and (3.4), respectively, it follows that

ˆ

�1

〈a(Du,x) − a(Dw,x),Dϕ〉 dx =
ˆ

�1

μϕ dx (3.10)

for all ϕ ∈ W
1,p(·)
0 (�1).

First, substituting the test function ϕ = Tk(u − w) in (3.10), and using (1.5) and (3.8), we obtain

λ̃

ˆ

D+
k

|Du − Dw|p(x) dx ≤
ˆ

�1

〈a(Du,x) − a(Dw,x),Du − Dw〉 dx ≤ k|μ|(�1) ≤ ck.

Then, for k ∈ N, we have

ˆ

D+
k

|Du − Dw| dx ≤
ˆ

D+
k

(|Du − Dw| + 1)p(x) dx ≤ c(k + 1). (3.11)

Similarly, it follows that, for k ∈ N,

ˆ

C+
k

|Du − Dw|p(x) dx ≤ c

by putting the test function ϕ = �k(u − w) in (3.10). Since p(x) ≥ 2 for x ∈ C+
k , it follows from Hölder’s inequality 

that

ˆ

C+
k

|Du − Dw| dx ≤ |C+
k | 1

2

⎛
⎜⎜⎝
ˆ

C+
k

(|Du − Dw| + 1)p(x) dx

⎞
⎟⎟⎠

1
2

≤ c|C+
k | 1

2 .

From the definition of C+
k , we find

|C+
k | =

ˆ

C+
k

1 dx ≤
ˆ

C+
k

( |u − w|
k

) n
n−1

dx = k− n
n−1

ˆ

C+
k

|u − w| n
n−1 dx.

Therefore, we have

ˆ

C+
k

|Du − Dw| dx ≤ ck
− n

2(n−1)

⎛
⎜⎜⎝
ˆ

C+
k

|u − w| n
n−1 dx

⎞
⎟⎟⎠

1
2

. (3.12)

Then, by (3.11), (3.12), Hölder’s inequality and Sobolev’s inequality, we discover that for k0 ∈ N,
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ˆ

�+
1

|Du − Dw| dx =
ˆ

D+
k0

|Du − Dw| dx +
∞∑

k=k0

ˆ

C+
k

|Du − Dw| dx

≤ c(k0 + 1) + c

∞∑
k=k0

k
− n

2(n−1)

⎛
⎜⎜⎝
ˆ

C+
k

|u − w| n
n−1 dx

⎞
⎟⎟⎠

1
2

≤ c(k0 + 1) + c

⎡
⎣ ∞∑

k=k0

k− n
n−1

⎤
⎦

1
2

⎛
⎜⎜⎝

∞∑
k=k0

ˆ

C+
k

|u − w| n
n−1 dx

⎞
⎟⎟⎠

1
2

≤ c(k0 + 1) + cH(k0)

⎛
⎜⎝ˆ

�1

|Du − Dw| dx

⎞
⎟⎠

n
2(n−1)

,

(3.13)

where H(k0) :=
[∑∞

k=k0
k− n

n−1

] 1
2
.

For obtaining a comparison estimate in �−
1 , we now substitute the test function ϕ = �k(u − w) in (3.10) and 

use (1.5), to find that
ˆ

C−
k

(
|Du|2 + |Dw|2

) p(x)−2
2 |Du − Dw|2 dx ≤ c|μ|(�1). (3.14)

On the other hand, from the fact that p1 ≥ γ1 > 2 − 1
n

, we can determine γ = γ (n, γ1) ∈ (0, 1) such that p1 ≥ γ1 >

2 − γ
n

, and so

n(p1 − 1)

n − γ
≥ n(γ1 − 1)

n − γ
> 1. (3.15)

From Hölder’s inequality and (3.14), we see that for k ∈N ∪ {0},
ˆ

C−
k

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du − Dw|2

) 1
p1

dx ≤ c [|μ|(�1)]
1

p1 |C−
k |

p1−1
p1 .

For k ∈ N, it follows from the definition of C−
k that

ˆ

C−
k

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du − Dw|2

) 1
p1

dx ≤ c [|μ|(�1)]
1

p1

⎛
⎜⎜⎝
ˆ

C−
k

( |u − w|
k

) n
n−γ

dx

⎞
⎟⎟⎠

p1−1
p1

≤ c [|μ|(�1)]
1

p1
1

k
n(p1−1)

p1(n−γ )

⎛
⎜⎜⎝
ˆ

C−
k

|u − w| n
n−γ dx

⎞
⎟⎟⎠

p1−1
p1

.

On the other hand, for k = 0, we have that

ˆ

C−

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du − Dw|2

) 1
p1

dx ≤ c [|μ|(�1)]
1

p1 |B1|
γ2−1
γ1 ≤ c [|μ|(�1)]

1
p1 .
0
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From the two estimates above, Hölder’s inequality, Sobolev’s inequality, and (3.15), we discover that

I :=
ˆ

�−
1

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du − Dw|2

) 1
p1

dx

=
ˆ

C−
0

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du − Dw|2

) 1
p1

dx

+
∞∑

k=1

ˆ

C−
k

((
|Du|2 + |Dw|2

) p(x)−2
2 |Du − Dw|2

) 1
p1

dx

≤ c [|μ|(�1)]
1

p1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
k=1

1

k
n(p1−1)

p1(n−γ )

⎛
⎜⎜⎝
ˆ

C−
k

|u − w| n
n−γ dx

⎞
⎟⎟⎠

p1−1
p1

+ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ c [|μ|(�1)]
1

p1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[ ∞∑

k=1

1

k
n(p1−1)

n−γ

] 1
p1

⎛
⎜⎜⎝

∞∑
k=1

ˆ

C−
k

|u − w| n
n−γ dx

⎞
⎟⎟⎠

p1−1
p1

+ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ c [|μ|(�1)]
1

p1

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ˆ

�1

|Du − Dw| dx

⎞
⎟⎠

n(p1−1)

p1(n−γ )

+ 1

⎫⎪⎪⎬
⎪⎪⎭ .

(3.16)

For x ∈ �−
1 , we use Young’s inequality to find that

|Du − Dw| =
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du − Dw|

(
|Du|2 + |Dw|2

) 2−p(x)
4

≤
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du − Dw|

(
|Du|2 + |Dw|2 + 1

) 2−p1
4

≤ c
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du − Dw||Du − Dw| 2−p1

2

+ c
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du − Dw|

(
|Du|2 + 1

) 2−p1
4

≤ 1

2
|Du − Dw| + c

((
|Du|2 + |Dw|2

) p(x)−2
4 |Du − Dw|

) 2
p1

+ c
(
|Du|2 + |Dw|2

) p(x)−2
4 |Du − Dw| (|Du| + 1)

2−p1
2 .

Then it follows from Hölder’s inequality, (3.16), (3.8), and Young’s inequality that
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ˆ

�−
1

|Du − Dw| dx ≤ cI + cI
p1
2

⎛
⎜⎝ˆ

�1

|Du| + 1 dx

⎞
⎟⎠

2−p1
2

≤ c + c

⎛
⎜⎝ˆ

�1

|Du − Dw| dx

⎞
⎟⎠

n(p1−1)

p1(n−γ )

+ c

⎛
⎜⎝ˆ

�1

|Du − Dw| dx

⎞
⎟⎠

n(p1−1)

2(n−γ )

≤ c + c

⎛
⎜⎝ˆ

�1

|Du − Dw| dx

⎞
⎟⎠

n(p1−1)

p1(n−γ )

.

(3.17)

Combining (3.13) with (3.17), we have

ˆ

�1

|Du − Dw| dx ≤ c + ck0 + c

⎛
⎜⎝ˆ

�1

|Du − Dw| dx

⎞
⎟⎠

n(p1−1)

p1(n−γ )

+ cH(k0)

⎛
⎜⎝ˆ

�1

|Du − Dw| dx

⎞
⎟⎠

n
2(n−1)

.

Recall that n(p1−1)
p1(n−γ )

<
p1(n−1)
p1(n−γ )

< 1. We then use Young’s inequality to find

ˆ

�1

|Du − Dw| dx ≤ c + ck0 + cH(k0)

⎛
⎜⎝ˆ

�1

|Du − Dw| dx

⎞
⎟⎠

n
2(n−1)

.

For n > 2, we know 0 < n
2(n−1)

< 1. Then there holds

ˆ

�1

|Du − Dw| dx ≤ c (3.18)

from Young’s inequality and by taking k0 = 1. For n = 2, we select k0 > 1 sufficiently large in order to satisfy that 
0 < cH(k0) < 1. Then the desired estimate (3.18) follows, and the claim (3.7) is now proved.

Step 2. Scaling and Normalization Let us define

ũ(y) = u(8ry)

8Ar
, w̃(y) = w(8ry)

8Ar
, μ̃(y) = 8rμ(8ry)

Ap0−1
, p̃(y) := p(8ry),

and

ã(ξ, y) = a(Aξ,8ry)

Ap0−1
(3.19)

for y ∈ �1, ξ ∈ R
n and for some positive constant A, being determined below. We readily check that ũ and w̃ are the 

weak solutions of

−div ã(Dũ, y) = μ̃ in �̃1 := �̃ ∩ B1, (3.20)

where �̃ := {y ∈R
n : 8ry ∈ �}, and{−div ã(Dw̃, y) = 0 in �̃1

w̃ = ũ on ∂�̃1,
(3.21)

respectively. Moreover, we see that p1 ≤ p̃(y) ≤ p2 for y ∈ �1.
We next claim that ã satisfies the corresponding growth condition (1.2) and uniformly ellipticity (1.3).
Indeed, if we set
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A :=
[

ν(�8r )

rn−1

] 1
p0−1 + χ{p0<2}

[
ν(�8r )

rn−1

]⎛⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p0

, (3.22)

and denote ξ̄ := Aξ and x := 8ry, then we discover that

|ξ ||Dξ ã(ξ, y)| + |ã(ξ, y)| ≤ A1−p0
{
|ξ̄ ||Dξ̄ a(ξ̄ , x)| + |a(ξ̄ , x)|

}
≤ Ap(x)−p0�|ξ̄ |p̃(y)−1, (3.23)

and

〈
Dξ ã(ξ, y)η, η

〉= A2−p0
〈
Dξ̄ a(ξ̄ , x)η, η

〉
≥ A2−p0λ

∣∣ξ̄ ∣∣p(x)−2 |η|2

≥ Ap(x)−p0λ |ξ |p(x)−2 |η|2 = Ap(x)−p0λ |ξ |p̃(y)−2 |η|2 .

(3.24)

In addition, it follows from (3.5) and (2.9) that

A ≥
[
ν(�8r )

rn−1

] 1
p0−1 ≥

[
8nr|B1||�8r |

|B8r |
] 1

p0−1 ≥ 1

c
r

1
p0−1 . (3.25)

On the other hand, we see from (2.9) and (3.6) that

A ≤ [ν(�) + 1]
1

γ1−1 r
− n−1

γ1−1 + c [ν(�) + 1]

⎛
⎝ˆ

�

|Du| dx + 1

⎞
⎠2−γ1

r−(n−1)−n(2−γ1)

≤ r
− n

γ1−1 + cr−n(3−γ1)−(2−γ1)

≤ cr−c̃

(3.26)

for some c̃ = c̃(n, γ1) > 1. In the case that p(x) − p0 ≥ 0, we find from (2.1) and (3.25) that

Ap(x)−p0 ≥
(

1

c

)γ2−γ1

r
p(x)−p0

p0−1 ≥ 1

c
r

ω(16r)
γ1−1 ≥ 1

c
, (3.27)

and using (2.1) and (3.26), we discover

Ap(x)−p0 ≤ c

(
1

r

)ω(16r)c̃

≤ c. (3.28)

Similarly, in the case that p(x) − p0 < 0, then we infer from (2.1), (3.25), and (3.26) that

1

c
≤ Ap(x)−p0 ≤ c (3.29)

for some constant c = c(n, γ1, γ2) > 0. In light of (3.23), (3.24), (3.27), (3.28), and (3.29), we thus deduce

|ξ ||Dξ ã(ξ, y)| + |ã(ξ, y)| ≤ c�|ξ̄ |p̃(y)−1,

and

〈
Dξ ã(ξ, y)η, η

〉≥ λ

c
|ξ |p̃(y)−2 |η|2

for some constant c = c(n, γ1, γ2) > 0.
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We next prove that (3.8) holds for ũ and μ̃, instead of u and μ, respectively. We recall (3.22) to see

|μ̃|(�̃1) = A1−p0
|μ|(�8r )

(8r)n−1
≤ 1. (3.30)

Moreover we note that

|μ̃|(�̃1)

⎛
⎜⎝ˆ

�̃1

|Dũ| dy

⎞
⎟⎠

2−p1

≤ cAp1−p0−1 |μ|(�8r )

rn−1

⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p1

≤ cA−1 |μ|(�8r )

rn−1

⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p1

,

(3.31)

as Ap1−p0 ≤ c by (3.25). But then we use (2.9), (3.6), and (2.1) to discover that⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p1

=
⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

(2−p0)+(p0−p1)

≤ c

⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p0 ⎛
⎝(16

7

)n 1

|B8r |
ˆ

�

|Du| dx

⎞
⎠p0−p1

≤ c

(
1

r

)ω(16r)(n+1)

⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p0

≤ c

⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p0

.

(3.32)

Combining (3.31) with (3.32), we find that, for p0 < 2,

|μ̃|(�̃1)

⎛
⎜⎝ˆ

�̃1

|Dũ| dy

⎞
⎟⎠

2−p1

≤ cA−1 |μ|(�8r )

rn−1

⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p0

≤ c.

On the other hand, for p0 ≥ 2, it follows from (2.9), (3.6), and (2.1) that⎛
⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p1

≤
⎛
⎜⎝ 

�8r

|Du| dx + 1

⎞
⎟⎠

(2−p0)+(p0−p1)

≤ c. (3.33)

Then, from (3.31) and (3.33), we deduce that, for p0 ≥ 2,

|μ̃|(�̃1)

⎛
⎜⎝ˆ

�̃1

|Dũ| dy

⎞
⎟⎠

2−p1

≤ cAp1−p0−1 |μ|(�8r )

rn−1
≤ cAp1−2.

If A > 1, then Ap1−2 ≤ 1. If A ≤ 1, then Ap0−1 ≤ A, and so we have that Ap1−2 = Ap1−p0−1Ap0−1 ≤ Ap1−p0 ≤ c. 
Thus, the property (3.8) holds for ũ and μ̃.
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From the estimate (3.7) in Step 1, we obtain 

�̃1

|Dũ − Dw̃| dx =
 

�8r

|Du − Dw|
A

dx ≤ c

for some constant c = c(n, λ, γ1, γ2) > 0, which completes the proof. �
Remark 3.2. If p(·) is a constant, then in step 2 of Lemma 3.1, the vector field ã directly satisfies the growth condi-
tion (1.2) and uniformly ellipticity (1.3), and we can readily derive the condition (3.8). We refer to [24,25] for details. 
In this case, we can prove Lemma 3.1 without introducing the measure ν. However, if p(·) is not a constant, then the 
log-Hölder continuity of p(·) and the property of ν are crucial to proving (1.2), (1.3) and (3.8) in step 2, see (3.25)
and (3.26).

The following lemma yields some self-improving property for the homogeneous equation (3.4):

Lemma 3.3. Let M1 > 1. Suppose that R0 > 0 satisfies

R0 ≤ min

{
R

2
,

1

4
,

1

2M1

}
and ω(2R0) ≤ 1

2n
< 1. (3.34)

Then there exists a constant σ0 = σ0(n, λ, �, γ1, γ2) > 0 such that the following holds: for any r ∈
(

0,
R0
8

]
, if w is 

the weak solution of (3.4) withˆ

�8r

|Dw| dx + 1 ≤ M1, (3.35)

then there is a constant c = c(n, λ, �, γ1, γ2, t) > 0 such that for every t ∈ (0, 1],⎛
⎜⎝  

�r̃ (x̃0)

|Dw|p(x)(1+σ) dx

⎞
⎟⎠

1
1+σ

≤ c

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝  

�2r̃ (x̃0)

|Dw|p(x)t dx

⎞
⎟⎠

1
t

+ 1

⎫⎪⎪⎬
⎪⎪⎭ , (3.36)

whenever 0 < σ ≤ σ0 and �2r̃ (x̃0) ⊂ �8r with r̃ ≤ 4r .

Proof. To simplify notation, we write Br̃ ≡Br̃(x̃0), B2r̃ ≡B2r̃ (x̃0), �r̃ ≡�r̃(x̃0), �2r̃ ≡�2r̃ (x̃0), p̄1 := infx∈�2r̃
p(x), 

and p̄2 := supx∈�2r̃
p(x).

We first consider the interior case, that is, �2r̃ = B2r̃ . We take ηp̄2(w − w̄B2r̃
) as a test function in (3.4), where 

η ∈ C∞
0 (B2r̃ ) with 0 ≤ η ≤ 1, η ≡ 1 on Br̃ , and |Dη| ≤ 2

r̃
. Then it follows from (1.5) and Young’s inequality that

 

Br̃

|Dw|p(x) dx ≤ c

⎧⎪⎨
⎪⎩
 

B2r̃

∣∣∣∣w − w̄B2r̃

r̃

∣∣∣∣p̄2

dx + 1

⎫⎪⎬
⎪⎭ . (3.37)

Using Sobolev–Poincaré’s inequality, we have

⎛
⎜⎝ 

B2r̃

∣∣∣∣w − w̄B2r̃

r̃

∣∣∣∣p̄2

dx

⎞
⎟⎠

1
p̄2

≤ c

⎛
⎜⎝ 

B2r̃

|Dw|
np̄2

n+p̄2 dx

⎞
⎟⎠

n+p̄2
np̄2

. (3.38)

From (2.1) and (3.34), we note that p̄2 − p̄1 ≤ ω(4r̃) ≤ ω(2R0) ≤ 1
2n

. By setting s := 1 + 1
2n

, we find that

p̄2 ≥ np̄2 ≥ np̄2
.

p̄2 − p̄1 + s n + 1 n + p̄2
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Then, by (3.37), (3.38) and Hölder’s inequality, we discover

 

Br̃

|Dw|p(x) dx ≤ c

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ 

B2r̃

|Dw|
np̄2

n+p̄2 dx

⎞
⎟⎠

n+p̄2
n

+ 1

⎫⎪⎪⎬
⎪⎪⎭≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 

B2r̃

|Dw|
p̄2

p̄2−p̄1+s dx

⎞
⎟⎠

p̄2−p̄1+s

+ 1

⎫⎪⎬
⎪⎭ .

But then the interpolation inequality yields⎛
⎜⎝ 

B2r̃

|Dw|
p̄2

p̄2−p̄1+s dx

⎞
⎟⎠

p̄2−p̄1+s

p̄2

≤
⎛
⎜⎝ 

B2r̃

|Dw| p̄1
s dx

⎞
⎟⎠

s
p̄2
⎛
⎜⎝ 

B2r̃

|Dw| dx

⎞
⎟⎠

p̄2−p̄1
p̄2

.

Moreover, it follows from (3.34), (3.35) and (2.1) that⎛
⎜⎝ 

B2r̃

|Dw| dx

⎞
⎟⎠

p̄2−p̄1

≤
⎛
⎜⎝ˆ

�8r

|Dw| dx

⎞
⎟⎠

p̄2−p̄1

|B2r̃ |−n(p̄2−p̄1) ≤ cM1
ω(4r̃)(2r̃)−nω(4r̃)

≤ c

(
1

2R0

)ω(2R0)
(

1

4r̃

)ω(4r̃)n

≤ c.

Consequently, we have

 

Br̃

|Dw|p(x) dx ≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 

B2r̃

|Dw| p̄1
s dx

⎞
⎟⎠

s

+ 1

⎫⎪⎬
⎪⎭≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 

B2r̃

|Dw| p(x)
s dx

⎞
⎟⎠

s

+ 1

⎫⎪⎬
⎪⎭ . (3.39)

We next consider the boundary case, that is, �2r̃ �= B2r̃ . Without loss of generality, one can assume that x̃0 ∈
∂� ∩ B8r (0). Taking a test function ηp̄2u to (3.4), and using Sobolev–Poincaré’s inequality along with the measure 
density condition (2.10), we have

 

�r̃

|Dw|p(x) dx ≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 

�2r̃

|Dw| p̄1
s dx

⎞
⎟⎠

s⎛⎜⎝ 

�2r̃

|Dw| dx

⎞
⎟⎠

p̄2−p̄1

+ 1

⎫⎪⎬
⎪⎭ .

Now it follows from (3.34), (3.35), (2.9) and (2.1) that⎛
⎜⎝ 

�2r̃

|Dw| dx

⎞
⎟⎠

p̄2−p̄1

≤
⎛
⎜⎝ˆ

�8r

|Dw| dx

⎞
⎟⎠

p̄2−p̄1

|�2r̃ |−n(p̄2−p̄1) ≤ cM1
ω(4r̃)

((
7

16

)n

|B2r̃ |
)−nω(4r̃)

≤ c.

Therefore, we have

 

�r̃

|Dw|p(x) dx ≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 

�2r̃

|Dw| p(x)
s dx

⎞
⎟⎠

s

+ 1

⎫⎪⎬
⎪⎭ . (3.40)

Applying the modified version of Gehring’s lemma [27, Remark 6.12] to the estimates (3.39) and (3.40), we finally 
reach the desired conclusion. �
Corollary 3.4. Under the same assumptions and conclusion as in Lemma 3.3, we have

 

�r̃ (x̃0)

|Dw|p(x) dx ≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝  

�2r̃ (x̃0)

|Dw| dx

⎞
⎟⎠

p̄2

+ 1

⎫⎪⎬
⎪⎭ (3.41)

for some constant c = c(n, λ, �, γ1, γ2) > 0.
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Proof. From Hölder’s inequality and Lemma 3.3, we have

 

�r̃ (x̃0)

|Dw|p(x) dx ≤ c

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝  

�2r̃ (x̃0)

(|Dw| + 1)p̄2t dx

⎞
⎟⎠

1
t

+ 1

⎫⎪⎪⎬
⎪⎪⎭

≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝  

�2r̃ (x̃0)

(|Dw| + 1)
p̄2
γ2 dx

⎞
⎟⎠

γ2

+ 1

⎫⎪⎬
⎪⎭

≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝  

�2r̃ (x̃0)

(|Dw| + 1) dx

⎞
⎟⎠

p̄2

+ 1

⎫⎪⎬
⎪⎭ ,

by taking t = 1
γ2

for the second inequality. Thus, the corollary follows. �
Now we will specifically derive the universal constant M1 given in Lemma 3.3. Suppose that R0 > 0 satisfies (3.6). 

Then from Lemma 3.1 and the measure density condition (2.9), we calculate

ˆ

�8r

|Dw| dx ≤
ˆ

�8r

|Du| dx + c|�8r |
[
ν(�8r )

rn−1

] 1
p0−1

+ cχ{p0<2}|�8r |
[

ν(�8r )

rn−1

]⎛⎜⎝ 

�8r

|Du| dx

⎞
⎟⎠

2−p0

≤
ˆ

�

|Du| dx + crα [ν(�)]
1

p0−1 + cχ{p0<2}rβν(�)

⎛
⎝ˆ

�

|Du| dx

⎞
⎠2−p0

≤
ˆ

�

|Du| dx + c diam(�)α [ν(�) + 1]
1

γ1−1

+ cχ{p0<2} diam(�)β [ν(�) + 1]

⎛
⎝ˆ

�

|Du| dx + 1

⎞
⎠2−γ1

for some c = c(n, λ, γ1, γ2) > 0, where α := n − n−1
γ1−1 > 0, β := α(γ1 − 1) > 0, and diam(�) is the diameter of �. 

We define

M :=
ˆ

�

|Du| dx + c diam(�)α [ν(�) + 1]
1

γ1−1 + 1.

Then we conclude that
ˆ

�8r

|Dw| dx + 1 ≤ (cχ{p0<2} + 1)M ≤ c0M =: M1 (3.42)

for some c0 = c0(n, λ, γ1, γ2) > 0.
With this M1, we obtain the following higher integrability result which is used later:
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Lemma 3.5. Suppose that R0 > 0 satisfies (3.6), (3.34) with M1 given in (3.42). Let w be the weak solution of (3.4)
satisfying (3.3). Then we have w ∈ W 1,p2(�3r ) and the estimate

 

�3r

|Dw|p2 dx ≤ c

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 

�8r

|Dw| dx

⎞
⎟⎠

p2

+ 1

⎫⎪⎬
⎪⎭ (3.43)

for some constant c = c(n, λ, �, γ1, γ2) > 0.

Proof. We deduce from Lemma 3.3, (2.1), and [12, Section 3.3] that

 

�3r

|Dw|p2 dx ≤ c

⎧⎪⎨
⎪⎩
 

�4r

|Dw|p(x) dx + 1

⎫⎪⎬
⎪⎭ .

Applying Corollary 3.4 with r̃ and x̃0 replaced by 4r and 0, we obtain the desired estimate (3.43). �
We next consider a new vector field b = b(ξ, x) : Rn × �8r → R

n by

b(ξ, x) = a(ξ, x)|ξ |p2−p(x).

Then it satisfies the following growth and ellipticity conditions:

|ξ ||Dξ b(ξ, x)| + |b(ξ, x)| ≤ 3�|ξ |p2−1, (3.44)
λ

2
|ξ |p2−2|η|2 ≤ 〈Dξ b(ξ, x)η, η

〉
(3.45)

for all η ∈R
n, ξ ∈R

n \ {0} and x ∈ �8r provided that

p2 − p1 ≤ ω(16r) ≤ ω(2R0) ≤ min

{
1,

λ

2�

}
, (3.46)

see [13] for details. Here λ and � are the constants given in (1.2) and (1.3), respectively. We denote by b̄ = b̄(ξ) :
R

n →R
n the integral average of b(ξ, ·) on B+

8r , as

b̄(ξ) =
 

B+
8r

b(ξ, x) dx.

Then b̄ also satisfies (3.44) and (3.45) with b(ξ, ·) replaced by b̄(ξ). Moreover, we observe that

sup
ξ∈Rn\{0}

∣∣b(ξ, ·) − b̄(ξ)
∣∣

|ξ |p2−1
= θ(a,B+

8r )(x),

where θ is defined in (2.2). Then we recall (2.3) to discover that

sup
0<r≤R

 

B+
r

θ(a,B+
r )(x) dx ≤ 4δ.

We next let v ∈ w + W
1,p2
0 (�3r ) be the weak solution of the homogeneous frozen problem{

div b̄(Dv) = 0 in �3r ,

v = w on ∂�3r ,
(3.47)

where w is the weak solution of (3.4), which belongs to W 1,p2(�3r ) from Lemma 3.5. By putting the test function 
v − w into (3.47), we derive the standard energy estimate 

|Dv|p2 dx ≤ c

 
|Dw|p2 dx. (3.48)
�3r �3r
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From Corollary 3.4, Lemma 3.5, and [12, Lemma 3.7], we obtain the comparison estimate between (3.4) and (3.47), 
as we now state

Lemma 3.6. Suppose that R0 > 0 satisfies (3.6), (3.34), (3.46) with M1 given in (3.42), and

p2 − p1 ≤ ω(16r) ≤ ω(2R0) ≤ σ0

4
, (3.49)

where σ0 is given in Lemma 3.3. Let w be the weak solution of (3.4) satisfying (3.3), and let v be as in (3.47). Then 
there is a constant c = c(n, λ, �, γ1, γ2) > 0 such that

 

�3r

|Dw − Dv|p2 dx ≤ cδ
σ0

4+σ0

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 

�8r

|Dw| dx

⎞
⎟⎠

p2

+ 1

⎫⎪⎬
⎪⎭ . (3.50)

We now consider a weak solution v̄ ∈ W 1,p2(B+
2r ) of the reference problem{

div b̄(Dv̄) = 0 in B+
2r ,

v̄ = 0 on B2r ∩ {xn = 0}. (3.51)

Then we have the following Lipschitz regularity of v̄ up to the flat boundary:

Lemma 3.7. (See [35].) For any weak solution v̄ ∈ W 1,p2(B+
2r ) of (3.51), we have Dv̄ ∈ L∞(B+

r ) and

‖Dv̄‖L∞(B+
r ) ≤ c

 

B+
2r

|Dv̄| dx (3.52)

for some c = c(n, λ, �, γ1, γ2) > 0.

Note that the constant c given in (3.52) actually depends only on n, λ, �, and p2; however, since γ1 ≤ p2 ≤ γ2, we 
can choose c depending only on n, λ, �, γ1, and γ2.

We can now state the comparison estimate between (3.47) and (3.51).

Lemma 3.8. (See [13].) For any 0 < ε < 1, there exists δ = δ(n, λ, �, γ1, γ2, ε) > 0 such that if v ∈ W 1,p2(�3r ) is 
the weak solution of (3.47) with (3.3), then there exists a weak solution v̄ ∈ W 1,p2(B+

2r ) of (3.51) such that
 

�2r

|Dv − Dv̄|p2 dx ≤ εp2

 

�3r

|Dv|p2 dx, (3.53)

where v̄ is extended by zero from B+
2r to �2r .

We finally summarize the comparison L1-estimates near a boundary region.

Lemma 3.9. Suppose that R0 > 0 satisfies (3.6), (3.34), (3.46), and (3.49) with M1 given in (3.42). Let ρ > 1
and 0 < r ≤ R0

8 . Suppose that �8r satisfies (3.3). Then, for any 0 < ε < 1, there exists a small constant δ =
δ(n, λ, �, γ1, γ2, ε) > 0 such that if (p(·), a, �) is (δ, R)-vanishing, u ∈ W

1,p(·)
0 (�), w ∈ u + W

1,p(·)
0 (�8r ), and 

v ∈ w + W
1,p2
0 (�3r ) are the weak solutions of (1.1), (3.4), and (3.47), respectively, with

 

�8r

|Du| dx ≤ ρ and

[
ν(�8r )

rn−1

] 1
p0−1 ≤ δρ, (3.54)

where ν is given in (3.5), then there exists a weak solution v̄ ∈ W 1,p2(B+ ) of (3.51) such that
2r
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�2r

|Du − Dv̄| dx ≤ ερ and ‖Dv̄‖L∞(�r ) ≤ cρ (3.55)

for some c = c(n, λ, �, γ1, γ2) > 0. Here v̄ is extended by zero from B+
2r to �2r .

Proof. From Lemma 3.1, we have
 

�8r

|Du − Dw| dx ≤ cδmin{1,γ1−1}ρ and
 

�8r

|Dw| dx ≤ cρ. (3.56)

According to Hölder’s inequality and Lemma 3.6, we observe

 

�3r

|Dw − Dv| dx ≤
⎛
⎜⎝ 

�3r

|Dw − Dv|p2 dx

⎞
⎟⎠

1
p2

≤ cδ
σ0

γ2(4+σ0) ρ, (3.57)

and
 

�3r

|Dv| dx ≤ cρ. (3.58)

At this point that by Lemma 3.8 with ε replaced by ε̃, there is a weak solution v̄ ∈ W 1,p2(B+
2r ) of (3.51) such that

 

�2r

|Dv − Dv̄|p2 dx ≤ ε̃p2

 

�3r

|Dv|p2 dx.

We also discover from Hölder’s inequality, (3.48), and Lemma 3.5 that

 

�2r

|Dv − Dv̄| dx ≤ cε̃

⎧⎪⎨
⎪⎩
 

�8r

|Dw| dx + 1

⎫⎪⎬
⎪⎭≤ 2cε̃ρ ≤ ε

3
ρ (3.59)

by choosing small ε̃ such that 0 < ε̃ ≤ ε
6c

, and it follows from (3.58) and (3.59) that

 

�2r

|Dv̄| dx ≤ cρ. (3.60)

Then we combine (3.56), (3.57) and (3.59), to discover
 

�2r

|Du − Dv̄| dx ≤
 

�2r

|Du − Dw| + |Dw − Dv| + |Dv − Dv̄| dx

≤ cδmin{1,p0−1}ρ + cδ
σ0

γ2(4+σ0) ρ + ε

3
ρ

≤ ερ,

by selecting δ sufficiently small.
On the other hand, according to Lemma 3.7, (3.59) and (3.60), we obtain

‖Dv̄‖L∞(�r ) ≤ cρ,

which completes the proof. �
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3.2. Interior comparisons

With the same spirit as in the boundary case, one can derive a comparison estimate in L1 for the interior case, and 
we just sketch it here for the sake of simplicity. Let 0 < r ≤ R0

8 with B8r (x0) ⊂⊂ �, where R0 is selected so small 
that it satisfies (3.6), (3.34), (3.46), and (3.49) with M1 given in (3.42). In this subsection, we denote

p0 := p(x0), p1 := inf
x∈B8r (x0)

p(x), p2 := sup
x∈B8r (x0)

p(x), and Bkr ≡ Bkr(x0) (k ∈N) .

With the weak solution u ∈ W
1,p(·)
0 (�) of (1.1), let w ∈ u + W

1,p(·)
0 (B8r ) be the weak solution of{

div a(Dw,x) = 0 in B8r ,

w = u on ∂B8r .
(3.61)

Then from the same argument for the boundary case, we have w ∈ W 1,p2(B3r ).
Let v ∈ w + W

1,p2
0 (B3r ) be the weak solution of{

div b̄(Dv) = 0 in B3r ,

v = w on ∂B3r ,
(3.62)

where b̄ = b̄(ξ) : Rn →R
n is defined as

b̄(ξ) =
 

B8r

b(ξ, x) dx =
 

B8r

a(ξ, x)|ξ |p2−p(x) dx.

Then we have Dv ∈ L∞(B2r ) and

‖Dv‖L∞(B2r )
≤ c

 

B3r

|Dv| dx

for some c = c(n, λ, �, γ1, γ2) > 0, see [22] for details.
We now state the comparison L1-estimates for the interior case.

Lemma 3.10. Suppose that R0 > 0 satisfies (3.6), (3.34), (3.46), and (3.49) with M1 given in (3.42). Let ρ > 1 and 0 <
r ≤ R0

8 . Then, for any 0 < ε < 1, there exists a small constant δ = δ(n, λ, �, γ1, γ2, ε) > 0 such that if p(·) and a(ξ, x)

satisfy the assumptions (AP) and (AA) in Section 2.1, respectively, and if u ∈ W
1,p(·)
0 (�), w ∈ u + W

1,p(·)
0 (B8r ), and 

v ∈ w + W
1,p2
0 (B3r ) are the weak solutions of (1.1), (3.61), and (3.62), respectively, with

 

B8r

|Du| dx ≤ ρ and

[
ν(B8r )

rn−1

] 1
p0−1 ≤ δρ, (3.63)

where ν is given in (3.5), then 

B3r

|Du − Dv| dx ≤ ερ and ‖Dv‖L∞(B2r )
≤ cρ (3.64)

for some c = c(n, λ, �, γ1, γ2) > 0.

4. Covering arguments

Now, we consider a SOLA u of (1.1) and the weak solutions uh, h ∈ N, of (1.6), where μh = μ ∗ φh with φh

the usual mollifier. Suppose that (p(·), a, �) is (δ, R)-vanishing. Since μh ∈ C∞(�), one can apply all the results 
obtained in Section 3 to u = uh and μ = μh. In this case, we denote by wh, vh, and v̄h the weak solutions to (3.4) or 
(3.61), (3.47) or (3.62), and (3.51), respectively. Moreover, we assume that R0 > 0 satisfies
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R0 ≤ min

{
R

2
,

1

6M1
,

1´
�

|Du| dx + 2
,

1

ν(�) + 2

}
, (4.1)

ω(2R0) ≤ min

{
λ

2�
,

1

2n
,
σ0

4

}
, (4.2)

where ν, M1, and σ0 are given in (3.5), (3.42), and Lemma 3.3, respectively. Then, thanks to (1.7) and (1.8), we see 
that R0 satisfies (3.6), (3.34), (3.46), and (3.49) with (u, μ) replaced by (uh, μh) for sufficiently large h.

For any fixed ε ∈ (0, 1) and N > 1, we define

λ0 := 1

ε|BR0 |

⎧⎨
⎩
ˆ

�

|Du| dx + 1

⎫⎬
⎭> 1 (4.3)

and upper-level sets: for k ∈N ∪ {0},
Ck :=

{
x ∈ � :M(|Du|)(x) > Nk+1λ0

}
,

Dk :=
{
x ∈ � :M(|Du|)(x) > Nkλ0

}
∪
{
x ∈ � : [M1(ν)(x)]

1
p(x)−1 > δNkλ0

}
.

Note that ε and N will be determined later as universal constants depending only on n, λ, �, γ1, γ2, and q .
We now verify two assumptions of the Vitali type covering lemma (Lemma 2.4).

Lemma 4.1. There exists a constant N1 = N1(n) > 1 such that for any fixed N ≥ N1 and k ∈ N ∪ {0},
|Ck| ≤ ε

(1000)n
|BR0 |. (4.4)

Proof. For each k ∈ N ∪ {0}, |Ck| ≤ |C0|. Thus, we only need to show that (4.4) holds for k = 0. It follows from (2.7)
and (4.3) that

|C0| = |{x ∈ � : M(|Du|)(x) > Nλ0}| ≤ c

Nλ0

ˆ

�

|Du| dx ≤ cε

N
|BR0 | ≤

ε

(1000)n
|BR0 |,

by selecting N ≥ N1 = c(1000)n > 1. �
Lemma 4.2. There is a constant N2 = N2(n, λ, �, γ1, γ2) > 1 so that for any ε > 0, there exists a small constant 
δ = δ(n, λ, �, γ1, γ2, ε) > 0 such that for any fixed N ≥ N2, k ∈ N ∪ {0}, y0 ∈ � and r0 ≤ R0

1000 , if

|Ck ∩ Br0(y0)| ≥ ε|Br0(y0)|, (4.5)

then �r0(y0) ⊂ Dk .

Proof. We simply write λk := Nkλ0 > 1, where N ≥ N2 > 1. We argue by contradiction. Suppose that there exists 
y1 ∈ �r0(y0) such that y1 /∈ Dk . Then we have

1

|Br(y1)|
ˆ

�r(y1)

|Du| dx ≤ λk and

[
ν(Br(y1))

rn−1

] 1
p(y1)−1 ≤ c(n, γ1)δλk (4.6)

for all r > 0.
We divide the proof into two cases: an interior and a boundary case.

Case 1. The interior case B10r0(y1) ⊂ �.
Since y1 ∈ �r0(y0), we see that B8r0(y0) ⊂ B10r0(y1). We set

p1 := inf
x∈B8r0 (y0)

p(x) and p2 := sup
x∈B8r0 (y0)

p(x).

Then it follows that p2 − p1 ≤ ω(16r0).
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From (4.6), we have 

B8r0 (y0)

|Du| dx ≤ |B10r0(y1)|
|B8r0(y0)|

 

B10r0 (y1)

|Du| dx ≤
(

5

4

)n

λk,

and it follows from (1.7) that for any ε̃ ∈ (0, 1), 

B8r0 (y0)

|Du − Duh| dx ≤ ε̃λk (4.7)

for h large enough. Then we discover 

B8r0 (y0)

|Duh| dx ≤
 

B8r0 (y0)

|Du| dx +
 

B8r0 (y0)

|Du − Duh| dx ≤
((

5

4

)n

+ ε̃

)
λk.

We next claim that[
ν(B8r0(y0))

rn−1
0

]p(y1)−p(y0)

≤ c (4.8)

for some constant c = c(n) > 0.
If p(y1) > p(y0), then p(y1) − p(y0) ≤ ω(16r0), and so we see from (4.1) and (2.1) that[

ν(B8r0(y0))

rn−1
0

]p(y1)−p(y0)

≤
(

1

r0

)(n−1)ω(16r0)

(ν(�) + 1)ω(16r0) ≤ c

(
1

r0

)nω(16r0)

≤ ceδn ≤ c.

If p(y1) < p(y0), then p(y0) − p(y1) ≤ ω(16r0), and so we find from (2.1) and (3.5) that[
ν(B8r0(y0))

rn−1
0

]p(y1)−p(y0)

=
[

8nr0|B1|ν(B8r0(y0))

|B8r0 |

]p(y1)−p(y0)

≤ [8nr0|B1|
]p(y1)−p(y0)

≤ c

(
1

16r0

)ω(16r0)

≤ ceδ ≤ c.

In any case, we obtain the inequality (4.8). We therefore have from (4.6) and (4.8) that[
ν(B8r0(y0))

rn−1
0

] 1
p(y0)−1

=
[

ν(B8r0(y0))

rn−1
0

] 1
p(y1)−1 + p(y1)−p(y0)

(p(y0)−1)(p(y1)−1)

≤
[

ν(B10r0(y1))

rn−1
0

] 1
p(y1)−1

[
ν(B8r0(y0))

rn−1
0

] p(y1)−p(y0)

(p(y0)−1)(p(y1)−1)

≤ cδλk.

In addition, it follows from (1.8) that[
νh(B8r0(y0))

rn−1
0

] 1
p(y0)−1

≤
[

ν(B8r0(y0)) + ε̄

rn−1
0

] 1
p(y0)−1

≤ c1δλk,

by selecting ε̄ small enough, the constant c1 depending only on n, γ1, and γ2. Here νh is given in (3.5) with μ replaced 
by μh.

Consequently, we obtain

 

B8r (y0)

|Duh| dx ≤ c2λk and

[
νh(B8r0(y0))

rn−1
0

] 1
p(y0)−1

≤ c2δλk, (4.9)
0
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where c2 := max
{(

5
4

)n + ε̃, c1

}
. Applying Lemma 3.10 with x0, ρ, r , and ε replaced by y0, c2λk , r0, and η, respec-

tively, we can find δ = δ(n, λ, �, γ1, γ2, η) such that 

B3r0 (y0)

|Duh − Dvh| dx ≤ c2ηλk and ‖Dvh‖L∞(B2r0 (y0))
≤ cc2λk =: c3λk (4.10)

for some c3 = c3(n, λ, �, γ1, γ2) > 0. Thus, we have from (4.7) and (4.10) that 

B2r0 (y0)

|Du − Dvh| dx ≤
(

4n +
(

3

2

)n)
c2ηλk =: c4ηλk (4.11)

by choosing sufficiently small ε̃ with ε̃ ≤ c2η.
Now we claim that

Ck ∩ Br0(y0) = {x ∈ Br0(y0) : M(|Du|)(x) > Nλk

}
⊂
{
x ∈ Br0(y0) : MB2r0 (y0)(|Du − Dvh|)(x) > λk

}
=: Q,

(4.12)

provided N ≥ N2 ≥ max {3n,1 + c3}.
Let y �∈ Q. If y �∈ Br(y0), then it is done. Suppose y ∈ Br(y0). If r̃ < r0, then Br̃(y) ⊂ B2r0(y0). We have 

from (4.10) that 

Br̃ (y)

|Du| dx ≤
 

Br̃ (y)

χB2r0 (y0)|Du − Dvh| dx +
 

Br̃ (y)

|Dvh| dx

≤ MB2r0 (y0)(|Du − Dvh|)(y) + c3λk

≤ (1 + c3)λk.

If r̃ ≥ r0, then Br̃(y) ⊂ B2r̃ (y0) ⊂ B3r̃ (y1). We have from (4.6) that

1

|Br̃(y)|
ˆ

�r̃ (y)

|Du| dx ≤ 3n

|B3r̃ (y)|
ˆ

�3r̃ (y1)

|Du| dx ≤ 3nλk.

Consequently, we have

M(|Du|)(y) ≤ max
{
(1 + c3)λk,3nλk

}
.

Choosing N2 ≥ max {1 + c3,3n}, we have y �∈ Ck ∩ Br0(y0), that is, the claim (4.12) holds.
Using (4.12), (2.7), and (4.11), we discover

|Ck ∩ Br0(y0)| ≤
∣∣∣{x ∈ Br0(y0) : MB2r0 (y0)(|Du − Dvh|)(x) > λk

}∣∣∣
≤ c

λk

ˆ

B2r0 (y0)

|Du − Dvh| dx ≤ cc4η|Br0(y0)| < ε|Br0(y0)|,

by selecting η and δ that satisfy the last inequality above, which is a contradiction to (4.5).
Case 2. The boundary case B10r0(y1) �⊂ �.

At first we find a boundary point ỹ1 ∈ ∂� ∩ B10r0(y1). Since 640r0 ≤ R0 < R
2 and the domain � is (δ, R)-Reifenberg 

flat, there exists a coordinate system, which we still denote by x = (x1, · · · , xn), with the origin at ỹ1, such that

B640r0 ∩ {xn > 640δr0} ⊂ �640r0 ⊂ B640r0 ∩ {xn > −640δr0}.
We select δ so small with 0 < δ < 1

16 . Then we see that B480r0(640δr0en) ⊂ B640r0 , where en = (0, · · · , 0, 1). Trans-
lating this coordinate system to the xn-direction 640δr0, still say x-coordinate, we observe

B+
480r0

⊂ �480r0 ⊂ B480r0 ∩ {xn > −1280δr0}. (4.13)

Since |y1| ≤ |y1 − ỹ1| + |ỹ1| ≤ 10r0 + 640δr0 ≤ 50r0 in the new coordinate, we have
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�2r0(y0) ⊂ �3r0(y1) ⊂ �60r0 and �480r0 ⊂ �640r0(y1). (4.14)

We denote

p1 := inf
x∈�480r0

p(x) and p2 := sup
x∈�480r0

p(x).

Then it follows that p2 − p1 ≤ ω(960r0).
To obtain the corresponding estimates (4.9) in the boundary case, we deduce from (2.1), (4.6), (4.13), and (4.14)

that

 

�480r0

|Du| dx ≤ c5λk and

[
ν(�480r0)

rn−1
0

] 1
p(0)−1

≤ c5δλk (4.15)

for some constant c5 = c5(n, γ1) > 0. Moreover, it follows from (1.7), (1.8) and (4.15) that, for any ε̃ ∈ (0, 1),

 

�480r0

|Duh| dx ≤ (c5 + ε̃)λk =: c6λk and

[
νh(�480r0)

rn−1
0

] 1
p(0)−1

≤ c6δλk

for h large enough. Applying Lemma 3.9 with ρ, r , and ε replaced by c6λk , 60r0, and η, respectively, we can find 
δ = δ(n, λ, �, γ1, γ2, η) such that 

�120r0

|Du − Dv̄h| dx ≤ c6ηλk and ‖Dv̄h‖L∞(�60r0 ) ≤ cc6λk =: c7λk (4.16)

for some c7 = c7(n, λ, �, γ1, γ2) > 0. Here we have chosen sufficiently small ε̃ such that ε̃ ≤ c6η
2 .

Proceeding as in Case 1, we infer

Ck ∩ Br0(y0) = {x ∈ �r0(y0) : M(|Du|)(x) > Nλk

}
⊂
{
x ∈ �r0(y0) : M�2r0 (y0)(|Du − Dv̄h|)(x) > λk

} (4.17)

provided N ≥ N2 ≥ max {3n,1 + c7}.
Thus, we have from (4.17), (2.7), (4.14) and (4.16) that

|Ck ∩ Br0(y0)| ≤
∣∣∣{x ∈ �r0(y0) : M�2r0 (y0)(|Du − Dv̄h|)(x) > λk

}∣∣∣
≤ c

λk

ˆ

�2r0 (y0)

|Du − Dv̄h| dx ≤ c|�120r0 |
λk

 

�120r0

|Du − Dv̄h| dx

≤ cc6η|Br0(y0)| < ε|Br0(y0)|
by taking η sufficiently small, as a consequence δ = δ(n, λ, �, γ1, γ2, ε) is also determined. This is a contradiction 
to (4.5). �
5. Global Calderón–Zygmund type estimates

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Choosing N = max{N1, N2} from Lemma 4.1 and Lemma 4.2, we can apply Lemma 2.4 to 
obtain

|Ck| ≤
(

80

7

)n

ε|Dk| =: ε1|Dk| for k ∈N∪ {0}.
As a consequence above and its iteration argument, we deduce the power decay estimates for the level sets of M(|Du|)
to increasing levels, as follows:
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∣∣∣{x ∈ � : M(|Du|)(x) > Nkλ0

}∣∣∣
≤ εk

1 |{x ∈ � : M(|Du|)(x) > λ0}| +
k∑

i=1

εi
1

∣∣∣{x ∈ � : [M1(ν)(x)]
1

p(x)−1 > δNk−iλ0

}∣∣∣ . (5.1)

Now we write

S :=
∞∑

k=1

Nqk
∣∣∣{x ∈ � :M(|Du|)(x) > Nkλ0

}∣∣∣ .
Then we have from (5.1) and (2.12) that

S ≤
∞∑

k=1

Nqkεk
1 |{x ∈ � :M(|Du|)(x) > λ0}| +

∞∑
k=1

Nqk

k∑
i=1

εi
1

∣∣∣{x ∈ � : [M1(ν)(x)]
1

p(x)−1 > δNk−iλ0

}∣∣∣
≤ |�|

∞∑
k=1

(
Nqε1

)k +
∞∑
i=1

(
Nqε1

)i ∞∑
k=i

Nq(k−i)
∣∣∣{x ∈ � : [M1(ν)(x)]

1
p(x)−1 > δNk−iλ0

}∣∣∣
≤

∞∑
i=1

(
Nqε1

)i⎧⎨⎩2|�| + c

(δλ0)q

ˆ

�

M1(ν)
q

p(x)−1 dx

⎫⎬
⎭ .

Now we select ε1 with Nqε1 = 1
2 , and then we can take ε and a corresponding δ = δ(n, λ, �, γ1, γ2, q) > 0. Conse-

quently, we find

S ≤ 2|�| + c

λ
q

0

ˆ

�

M1(ν)
q

p(x)−1 dx. (5.2)

According to (2.12) and (5.2), we have

ˆ

�

|Du|q dx ≤
ˆ

�

M(|Du|)q dx ≤ cλ
q

0 (|�| + S) ≤ c

⎧⎨
⎩|�|λq

0 +
ˆ

�

M1(ν)
q

p(x)−1 dx

⎫⎬
⎭

≤ c

⎧⎨
⎩ |�|

|BR0 |q

⎛
⎝ˆ

�

|Du| dx + 1

⎞
⎠q

+
ˆ

�

M1(ν)
q

p(x)−1 dx

⎫⎬
⎭

(5.3)

for some c = c(n, λ, �, γ1, γ2, q) > 0.
On the other hand, it follows from the estimate (5.7) in Remark 5.1 thatˆ

�

|Du| dx ≤ c(n,λ, γ1, γ2, s,�)

{
|μ|(�) + [|μ|(�)]

1
(γ1−1)(1−s)

}
.

Since R0 satisfies (4.1) and (4.2) with M1 given in (3.42), we see from the estimate above that

1

R0
≤ c

R

{
|μ|(�) + [|μ|(�)]

1
(γ1−1)(1−s) + 1

}
for some constant c = c(n, λ, γ1, γ2, ω(·), s, �) > 0 and for some R < 1. Thus, it follows that

ˆ

�

|Du|q dx ≤ cK
q
s

⎧⎨
⎩
ˆ

�

M1(ν)
q

p(x)−1 dx + 1

⎫⎬
⎭ (5.4)

for some c = c(n, λ, �, γ1, γ2, ω(·), q, R, s, �) > 0. Here we define

Ks :=
(

|μ|(�) + [|μ|(�)]
1

(γ1−1)(1−s) + 1

)n+1

.
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Recalling the definition (3.5), we have that for x ∈ �,

M1(ν)(x) := sup
r>0

rν(Br(x))

|Br(x)| ≤ sup
r>0

r|μ|(Br(x))

|Br(x)| + sup
r>0

r|Br(x) ∩ �|
|Br(x)|

≤ M1(μ)(x) + c(n)diam(�) ≤M1(μ)(x) + c(n)|�| 1
n ,

where diam(�) is the diameter of �. Then we haveˆ

�

M1(ν)
q

p(x)−1 dx ≤
ˆ

�

M1(μ)
q

p(x)−1 dx + c|�|
q

n(γ1−1)
+1

. (5.5)

The estimates (5.4) and (5.5) yield the desired estimate (2.5). This completes the proof. �
Remark 5.1. We derive a standard estimate for measure data. Consider the regularized problem (1.6), we denote, for 
k ∈N,

Dk := {x ∈ � : |uh(x)| ≤ k} and Ck := {x ∈ � : k < |uh(x)| ≤ k + 1}.
Then from (3.2), (1.5), and (1.9), we haveˆ

Dk

|Duh|p(x) dx ≤ ck|μ|(�) and
ˆ

Ck

|Duh|p(x) dx ≤ c|μ|(�)

by substituting test functions ϕ = Tk(u) and ϕ = �k(u) in (3.2), respectively. Here the functions Tk and �k are defined 
as in (3.9). Then we discoverˆ

Dk

|Duh| dx ≤
ˆ

Dk

(|Duh| + 1)p(x) dx ≤ ckν(�),

where ν is given in (3.5). If 1
γ1−1 < t < n

n−1 , then it follows that

ˆ

Ck

|Duh| dx ≤
⎛
⎜⎝ˆ

Ck

|Duh|γ1 dx

⎞
⎟⎠

1
γ1

|Ck|
1
γ ′

1 ≤ c [ν(�)]
1
γ1

⎛
⎜⎝ˆ

Ck

( |uh|
k

)t

dx

⎞
⎟⎠

1
γ ′

1

≤ c [ν(�)]
1
γ1

(
1

k

) t

γ ′
1

⎛
⎜⎝ˆ

Ck

|uh|t dx

⎞
⎟⎠

1
γ ′

1

,

where γ ′
1 is the Hölder conjugate of γ1. Then we see that

ˆ

�

|Duh| dx ≤ cν(�) + c [ν(�)]
1
γ1

∞∑
k=1

(
1

k

) t

γ ′
1

⎛
⎜⎝ˆ

Ck

|uh|t dx

⎞
⎟⎠

1
γ ′

1

︸ ︷︷ ︸
(∗)

.

Applying Hölder’s inequality and Sobolev’s inequality to (∗), we find that

(∗) ≤
⎛
⎝ ∞∑

k=1

(
1

k

) tγ1
γ ′

1

⎞
⎠

1
γ1

⎛
⎜⎝ ∞∑

k=1

ˆ

Ck

|uh|t dx

⎞
⎟⎠

1
γ ′

1

≤ c

⎛
⎝ˆ

�

|uh| n
n−1 dx

⎞
⎠

(n−1)t

nγ ′
1

|�|
(

1− (n−1)t
n

)
1
γ ′

1

≤ c

⎛
⎝ˆ |Duh| dx

⎞
⎠

t

γ ′
1

|�|
(

1− (n−1)t
n

)
1
γ ′

1

(5.6)
�
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for some constant c = c(n, γ1, t) > 0. Thus, we have

ˆ

�

|Duh| dx ≤ c

⎧⎪⎨
⎪⎩ν(�) + [ν(�)]

1
γ1

⎛
⎝ˆ

�

|Duh| dx

⎞
⎠

t

γ ′
1

|�|
(

1− (n−1)t
n

)
1
γ ′

1

⎫⎪⎬
⎪⎭

for some constant c = c(n, λ, γ1, γ2, t) > 0. From the fact that γ1 ≤ n, on the other hand, we see that t < n
n−1 ≤ γ ′

1. 
Then it follows from Young’s inequality that

ˆ

�

|Duh| dx ≤ cν(�) + 1

2

ˆ

�

|Duh| dx + c [ν(�)]
1

γ1−(γ1−1)t |�|
(

1− (n−1)t
n

)
1

γ ′
1−t .

Then we have from (1.7) that

ˆ

�

|Du| dx ≤ c

{
ν(�) + [ν(�)]

1
γ1−(γ1−1)t |�|

(
1− (n−1)t

n

)
1

γ ′
1−t

}
.

Therefore we obtain from (3.5) that
ˆ

�

|Du| dx ≤ c

{
|μ|(�) + [|μ|(�)]

1
(γ1−1)(1−s)

}
(5.7)

for some constant c = c(n, λ, γ1, γ2, s, �) > 0, where we have selected t := 1
γ1−1 + s for small s with 0 < s ≤

1
2

(
n

n−1 − 1
γ1−1

)
< 1.

We clearly point out that this constant c goes to +∞ as s ↘ 0, since the exponent tγ1
γ ′

1
= 1 in the first inequality 

of (5.6).

Remark 5.2. If p(·) is a constant, then we infer from Remark 3.2 and (5.3) that

ˆ

�

|Du|q dx ≤ c

⎧⎨
⎩ |�|

Rnq

⎛
⎝ˆ

�

|Du| dx

⎞
⎠q

+
ˆ

�

M1(μ)
q

p−1 dx

⎫⎬
⎭ (5.8)

for some c = c(n, λ, �, p, q) > 0. On the other hand, a standard estimate for measure data can be obtained by the 
normalization property for the problem (1.1), that is,

ˆ

�

|Du| dx ≤ c(n,λ,p)

ˆ

�

M1(μ)
1

p−1 dx. (5.9)

Indeed, the proof of (5.9) is similar to that of Lemma 3.1. Using (5.8) and (5.9), we derive
ˆ

�

|Du|q dx ≤ c

ˆ

�

M1(μ)
q

p−1 dx

for some constant c = c(n, λ, �, p, q, R, �) > 0. This is the main estimate in [43]. However, in the case that p(·)
is not a constant, the normalization property of (1.1) does not hold, and so (5.9) is no longer satisfied. See also 
Remark 5.1.
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