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Abstract

We show the existence of a global weak solution of the heat flow for Dirac-harmonic maps from compact Riemann surfaces 
with boundary when the energy of the initial map and the L2-norm of the boundary values of the spinor are sufficiently small. 
Dirac-harmonic maps couple a second order harmonic map type system with a first-order Dirac type system. The heat flow that has 
been introduced in [9] and that we investigate here is novel insofar as we only make the second order part parabolic, but carry the 
first order part along the resulting flow as an elliptic constraint. Of course, since the equations are coupled, both parts then change 
along the flow.

The solution is unique and regular with the exception of at most finitely many singular times. We also discuss the behavior at the 
singularities of the flow.

As an application, we deduce some existence results for Dirac-harmonic maps. Since we may impose nontrivial boundary 
conditions also for the spinor part, in the limit, we shall obtain Dirac-harmonic maps with nontrivial spinor part.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Motivated by the nonlinear supersymmetric sigma model from quantum field theory, Dirac-harmonic maps are 
critical points of an energy functional that couples maps with spinor fields. They were introduced in Chen–Jost–Li–
Wang [7,8]. This subject generalizes the theory of harmonic maps and harmonic spinors. The particular structure of 
the coupling which comes from the nonlinear supersymmetric sigma model is crucial for their subtle geometric and 
analytical properties. This structure needs to be very carefully exploited and combined with some of the most power-
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ful and advanced techniques and results in geometric analysis in order to derive regularity, existence and uniqueness 
results. This is the context of the present paper. We shall discuss and analyze a parabolic version of the model. Since 
the action functional contains a field term which is quadratic in the field derivatives and a spinor term which is linear 
in the Dirac derivative of that spinor, the solutions of the resulting Euler–Lagrange system, the Dirac-harmonic maps, 
consist of a second order harmonic map type system and a first-order Dirac type system. Since the map and the spinor 
are coupled in the action functional, the resulting Euler–Lagrange equations are likewise coupled. In order to treat 
this somewhat unusual situation, we work with a heat flow that was introduced in [9]. This heat flow is non-standard 
insofar as we only make the second order part parabolic, but carry the first order part along the resulting flow as an 
elliptic constraint. Of course, since the equations are coupled, both parts then change along the flow. We shall show the 
existence of a unique global weak solution under some smallness assumptions on the initial data. As is to be expected 
for such problems, we encounter the possibility of finite time blow-up, and therefore the weak solution in general will 
not be strong. But at least, it can be continued across such a singularity as a weak solution.

1.1. The Dirac-harmonic variational problem

In order to discuss our results in more detail, we now need to become more technical. Let us first present the 
Dirac-harmonic model, which this paper is about. Let (M, g) be a Riemann surface with a fixed spin structure, �M

the spinor bundle over M and 〈·, ·〉�M the metric on �M . Choosing a local orthonormal basis eα,α = 1,2 on M , 
the usual Dirac operator is defined as /∂ := eα · ∇eα , where ∇ is the spin connection on �M and · is the Clifford 
multiplication. This multiplication is skew-adjoint:

〈X · ψ,ϕ〉�M = −〈ψ,X · ϕ〉�M

for any X ∈ �(T M), ψ, ϕ ∈ �(�M).
The usual Dirac operator /∂ on a surface can be seen as the (doubled) Cauchy–Riemann operator. Consider R2 with 

the Euclidean metric dx2 + dy2. Let e1 = ∂
∂x

and e2 = ∂
∂y

be the standard orthonormal frame. A spinor field on R2 is 

simply a map ψ : R2 → �R
2 = C

2, and the action of e1 and e2 on spinors can be identified with multiplication with 
matrices

e1 =
(

0 1
−1 0

)
, e2 =

(
0 i

i 0

)
.

If ψ :=
(

ψ1
ψ2

)
:R2 → C

2 is a spin field, then the Dirac operator is

/∂ψ =
(

0 1

−1 0

)(
∂ψ1
∂x
∂ψ2
∂x

)
+

(
0 i

i 0

)(
∂ψ1
∂y
∂ψ2
∂y

)
= 2

(
∂ψ2
∂z

− ∂ψ1
∂z

)
, (1.1)

where

∂

∂z
= 1

2
(

∂

∂x
− i

∂

∂y
),

∂

∂z
= 1

2
(

∂

∂x
+ i

∂

∂y
).

For more details on spin geometry and Dirac operators, we can refer to [18].
Let φ be a smooth map from M to some compact Riemannian manifold (N, h) with dimension n ≥ 2. If 

φ−1T N is the pull-back bundle of T N by φ, we get the twisted bundle �M ⊗ φ−1T N . Naturally, there is a met-
ric 〈·, ·〉�M⊗φ−1T N on �M ⊗φ−1T N which is induced from the metrics on �M and φ−1T N . Also we have a natural 

connection ∇̃ on �M ⊗ φ−1T N which is induced from the connections on �M and φ−1T N . Let ψ be a section of 
the bundle �M ⊗ φ−1T N . In local coordinates, it can be written as

ψ = ψi ⊗ ∂yi (φ),

where each ψi is a standard spinor on M and ∂yi is the natural local basis of T N . Then ∇̃ becomes

∇̃ψ = ∇ψi ⊗ ∂yi (φ) + (�i
jk∇φj )ψk ⊗ ∂yi (φ), (1.2)
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where �i
jk are the Christoffel symbols of the Levi-Civita connection of N . The Dirac operator along the map φ is 

defined by /Dψ := eα · ∇̃eαψ .
We consider the action functional

L(φ,ψ) =
∫
M

(
|dφ|2 + 〈ψ,/Dψ〉�M⊗φ−1T N

)
dvolg. (1.3)

Critical points (φ, ψ) of L are called Dirac-harmonic maps from M to N . The Euler–Lagrange equations of the 
functional L (see [7,8]) are(

	φi + �i
jkg

αβφj
αφk

β

) ∂

∂yi
(φ(x)) = R(φ,ψ), (1.4)

/Dψ = 0, (1.5)

where {�i
jk} is the Christoffel symbols of the metric h in local coordinates { ∂

∂yi
} and R(φ, ψ) is defined by

R(φ,ψ) = 1

2
Rm

lij (φ(x))〈ψi,∇φl · ψj 〉 ∂

∂ym
(φ(x)).

Here Rm
lij stands for the Riemann curvature tensor of the target manifold (N, h).

By the Nash embedding theorem, we may embed N into some RN . Then the Euler–Lagrange equations of the 
functional L are

τ(φ) =P(A(dφ(eα), eα · ψ);ψ), (1.6)

/∂ψ =A(dφ(eα), eα · ψ), (1.7)

where τ(φ) = 	φ − A(φ)(dφ, dφ) is the tension field of the map φ, A is the second fundamental form of N in RN , 
A and P are defined as follows

A(dφ(eα), eα · ψ) := (∇φi · ψj ) ⊗ A(∂yi , ∂yj ),

P(A(dφ(eα), eα · ψ);ψ) := P(A(∂yl , ∂yj ); ∂yi )Re(〈ψi, dφl · ψj 〉).
Here P(ξ ; ·) denotes the shape operator satisfying 〈P(ξ ; X), Y 〉 = 〈A(X, Y), ξ 〉 for any X, Y ∈ �(T N) and Re(z)

denotes the real part of z ∈C. We refer to [7,8,28,27,11,23,16] for more details.

1.2. The heat flow approach

A key difficulty arises from the fact that the action functional L is not bounded from below. Therefore, classical 
variational approaches developed for harmonic maps cannot be applied to study the existence of Dirac-harmonic 
maps. There have been other approaches, such as [15,6,2,4]. The methods used and the results obtained in those 
papers are rather different from the present ones. [15] constructs some explicit examples of nontrivial Dirac-harmonic 
maps. Of course, those examples are rather special and cannot replace a general existence scheme. [2] uses methods 
from index theory which are very powerful, but again in a more constrained setting. In [6], under the assumption 
that the target satisfies some convexity assumption, a subharmonic function is constructed from a solution to which 
a maximum principle can be applied. Here, however, we do not want to impose such an assumption on the target 
and rather approach the existence problem from a more global perspective for general Riemannian targets. Finally, 
Branding [4] treats a regularized version of the flow, where he adds a second order elliptic term to the Dirac equation. 
He can treat the resulting flow in detail, but does not show what happens when the regularization term goes to zero, 
that is, when we wish to pass to the original system.

Here, we shall pursue that approach that seems most promising to us for addressing the existence question in 
general terms. This is a heat flow that couples a parabolic second order equation for the map with a first order elliptic 
equation for the spinor. That is, the solution of the first order Dirac type equation is carried along a harmonic map 
type heat flow. That harmonic map heat flow is the prototype, and when the spinor vanishes, this is what we get. 
However, the case of interest for us is of course when the spinor is not trivial. The Dirac equation for the spinor 
might then be considered as a side condition or constraint that depends nonlinearly on the flow. This approach was 
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introduced in [9], and their heat flow for Dirac-harmonic maps looks as follows. For  ∈ C2,1,α(M × (0, T ]; N) and 
� ∈ C1,0,α(M × (0, T ]; �M ⊗ −1T N){

∂t = τ() −P(A(d(eα), eα · �);�), in M × [0, T );
/∂� =A(d(eα), eα · �), in M × [0, T ),

(1.8)

we impose the boundary-initial data{
(x, t) = φ(x, t), on M × {0} ∪ ∂M × [0, T ];
B�(x, t) = Bψ(x, t), on ∂M × [0, T ], (1.9)

where φ ∈ C2,1,α(M × {0} ∪ ∂M × [0, T ]; N), ψ ∈ C1,0,α(∂M × [0, T ]; �M ⊗ −1T N) and B = B± is the chiral 
boundary operator defined as follows:

B± : L2(∂M,�M ⊗ −1T N |∂M) → L2(∂M,�M ⊗ −1T N |∂M)

ψ �→ 1

2

(
Id ± −→

n · G) · ψ, (1.10)

where −→n is the outward unit normal vector field on ∂M , G = ie1 · e2 is the chiral operator defined using a local 
orthonormal frame {eα}2

α=1 on M and satisfying:

G2 = Id, G∗ = G, ∇G = 0, GX· = −X · G, (1.11)

for any X ∈ �(T M). One can also take B to be the MIT bag boundary operator B±
MIT or the J -boundary operator B±

J

as considered in [9]. For convenience, in the sequel, we shall only consider the case of chiral boundary conditions and 
omit the other two cases of boundary conditions, as the arguments for them are the same.

In [9], a short-time existence and uniqueness result for the flow (1.8) and (1.9) was obtained:

Theorem 1.1 (Theorem 1.3, [9]). Let Mm(m ≥ 2) be a compact spin Riemannian manifold with smooth boundary 
∂M , N be a compact Riemannian manifold. Suppose that

φ ∈ ∩T >0C
2,1,α(M × [0, T ];N)

and

ψ ∈ ∩T >0C
1,0,α(∂M × [0, T ];�M ⊗ −1T N)

for some 0 < α < 1, then the problem consisting of (1.8) and (1.9) admits a unique solution

 ∈ ∩0<t<s<T1C
2,1,α(M × [t, s]) ∩ C0(M × [0, T1],N)

and

� ∈ ∩0<t<s<T1C
1,0,α(M × [t, s]) ∩ C1,0,0(M × [0, T1];�M ⊗ −1T N)

for some time T1 > 0 which is characterized by

lim sup
t↗T1

‖∇(·, t)‖C0(M) = ∞.

For Dirac-geodesics and their heat flows, we refer to [10]. For the evolution problem of regularized Dirac-
geodesics, see [3].

1.3. Global existence and main results

In this paper, we shall study the global existence of the flow (1.8) in dimension dimM = 2 with the following 
boundary-initial data:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x, t) = ϕ(x), on ∂M × [0, T ];
(x,0) = φ0(x), in M;
B�(x, t) = Bψ0(x), on ∂M × [0, T ];
φ0(x) = ϕ(x), on ∂M.

(1.12)

Set

W 1,2(M,N) :=
{

φ ∈ W 1,2(M,RN) with φ(x) ∈ N for a.e. x ∈ M
}

,

W 1,4/3(M,�M ⊗ −1T N) :=
{

ψ ∈ W 1,4/3(M,�M ⊗R
N) with ψ(x) ∈ �M ⊗ −1T N for a.e. x ∈ M

}
.

Let Nδ0 be the δ0-tubular neighborhood of N in RN . Then there exists δ0 > 0 small enough, such that the nearest 
point projection map �N : Nδ0 → N is smooth, i.e. |x − �N(x)| = d(x, N). Given  ∈ W 1,2(M, N), we define

/D : W 1,4/3(M,�M ⊗R
N) → L4/3(M,�M ⊗R

N)

� �→ /∂� −A(d(eα), eα · (D�N | ◦ �)),

where D�N | : �M ⊗RN → �M ⊗ TN is the projection defined by

D�N |(

N∑
A=1

ψA ⊗ ∂

∂yA
) =

N∑
A=1

ψA ⊗ D�N |(
∂

∂yA
). (1.13)

It is easy to see that /D� = /D� for � ∈ W 1,4/3(M, �M ⊗ −1T N).
Denote the energy of  on � ⊂ M by

E(,�) = 1

2

∫
�

|∇|2dM

and denote the energy of � on � ⊂ M by

E(�,�) =
∫
�

|�|4dM.

For simplicity, E() = E(, M) and E(�) = E(�, M).
When we have a non-vanishing spinor field � , the total energy of the map E((t)) is not necessarily non-

increasing in t , in contrast to what one knows for the ordinary harmonic map heat flow. However, by exploring 
the hidden structure of our elliptic-parabolic system (1.8) with boundary-initial data (1.12), we can still show that 
E((t)) is uniformly bounded in t – a key property for our flow, allowing for seeking a global weak solution with 
at most finitely many singularities, in the same spirit as is demonstrated by Struwe in [24]. The remaining difficulty 
then is that in general we do not have good control of the energy of the spinor field E(�(t)) as t approaches the first 
singular time T1, when the map blows up.

To overcome this, we shall impose some boundary-initial constraint on φ0 and ψ0. To be more precise, we shall 
first define a constant � = �(M, N).

� := sup
{

�̃ ∈ [0,∞] : For any (φ,ψ) ∈ W 1,2(M,N) × W 1,4/3(M,�M ⊗R
N), if E(φ) ≤ �̃2,

then ‖ψ‖W 1,4/3(M) ≤ C(M,N, �̃)(‖/Dφψ‖L4/3(M) + ‖Bψ‖W 1/4,4/3(∂M))
}
. (1.14)

If in this definition (1.14), we considered φ ∈ W 1,p(M, N) with p > 2 and replaced E(φ) with ‖φ‖W 1,p , then the cor-
responding � would be = ∞ (see Lemma 2.6 or Theorem 1.1 in [9]). However, in the critical case of φ ∈ W 1,2(M, N), 
we do not know whether � is ∞ or not.

In fact, the constant � defined above has a positive lower bound (see Lemma 2.9).
More precisely, we have

� ≥ 1
> 0, (1.15)
2�1 · �2 · �3



1856 J. Jost et al. / Ann. I. H. Poincaré – AN 34 (2017) 1851–1882
where �1 = �1(M, N) > 0 (see Lemma 2.7) is the elliptic estimate constant for the usual Dirac operator /∂:

‖ψ‖W 1,4/3(M) ≤ �1
(‖/∂ψ‖L4/3(M) + ‖Bψ‖W 1/4,4/3(∂M)

)
, ∀ ψ ∈ W 1,4/3(M,�M ⊗R

N). (1.16)

�2 = �2(M, N) > 0 is the following Sobolev embedding constant:

‖f ‖L4(M) ≤ �2‖f ‖W 1,4/3(M), ∀ f ∈ W 1,4/3(M,RN) (1.17)

and �3 > 0 denotes any upper bound of the L∞-norm ‖A‖L∞(N) of the spinorial extension of the second fundamental 
form A:

|A(d(eα), eα · �)| ≤ √
2‖A‖L∞(N)|d||�|, (1.18)

for any (, �) ∈ W 1,2(M, N) × W 1,4/3(�M ⊗ −1T N).
Now we are able to state our first main result:

Theorem 1.2. Let M be a compact Riemann spin surface with smooth boundary ∂M and let N ⊂ R
N be a compact 

Riemannian manifold. Suppose φ0 ∈ H 1(M, N), ϕ ∈ C2+α(∂M, N), ψ0 ∈ C1+α(∂M, �M ⊗ϕ−1T N) and satisfy the 
following boundary-initial constraint:

E(φ0) + √
2‖Bψ0‖2

L2(∂M)
< �2, (1.19)

where � = �(M, N) > 0 is the constant defined in (1.14). Then there exists a global weak solution of (1.8) with the 
boundary-initial data (1.12), which is defined in M × [0, ∞) and satisfies

E((t)) +
∫
Mt

|∂t|2dMdt ≤ E(φ0) + √
2‖Bψ0‖2

L2(∂M)
, ∀ t ≥ 0,

E((t)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(t) ≤ E((s)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(s), ∀ 0 ≤ s ≤ t < ∞.

Moreover, there exists an integer K > 0 depending only on M , N , E(φ0), ‖ϕ‖C2+α(∂M) and ‖Bψ0‖C1+α(∂M) and there 
exist finitely many singular times {Tk}, 1 ≤ k ≤ K , satisfying

 ∈ C
2,1,α
loc

(
M × ((0,∞) \ {Tk}Kk=1)

)
and � ∈ C

1,0,α
loc

(
M × ((0,∞) \ {Tk}Kk=1)

)
. (1.20)

These singular times are characterized by the condition

lim sup
x∈M
t↗Tk

E((t);BM
R (x)) > ε for all R > 0, (1.21)

where ε > 0 is the constant defined in Theorem 4.1 and BM
R (x) is the geodesic ball in M with center x and radius R.

Moreover, we show that at each singular time {Tk}, that is, when the energy of the map concentrates, after suitable 
space-time rescaling, a bubble, namely, a nontrivial Dirac-harmonic sphere splits off.

Theorem 1.3. Let (, �) be a solution to (1.8) with the boundary-initial data (1.12) from Theorem 1.2. Suppose T1
is a singular time, i.e.

lim sup
x∈M
t↗T1

E((t);BM
R (x)) > ε for all R > 0. (1.22)

There exist sequences ti ↗ T1, xi → x0 ∈ M , ri → 0 and a nontrivial Dirac-harmonic map (̃, ̃�) : R2 → N ×
(�R

2 ⊗ ̃−1T N), such that

(1) if x0 ∈ M \ ∂M , then as i → ∞,

i(x) := (xi + rix, ti) → ̃(x) in C1
loc(R

2) and

�i(x) := √
ri�(xi + rix, ti) → �̃(x) in C1

loc(R
2).

(̃, ̃�) has finite energy and conformally extends to a smooth Dirac-harmonic sphere.
(2) if x0 ∈ ∂M , then dist (xi ,∂M)

r
→ ∞ and the same bubbling statement as in (1) holds.
i
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In Theorem 1.3, for a boundary blow-up point, the case that dist (xi,∂M)
ri

is uniformly bounded cannot occur. Oth-
erwise, one obtains a bubbling solution with certain boundary constraints. However this cannot happen, due to the 
following result, which can be reduced to the harmonic map case considered by Lemaire [19].

Theorem 1.4. Let (, �) : R2+ → N be a smooth Dirac-harmonic map with boundary data |∂R2+ = const. and 
B�|∂R2+ = 0 and satisfying∫

R
2+

|∇|2dx +
∫
R

2+

|�|4dx < ∞,

where R2+ := {(x1, x2) ∈ R
2|x2 ≥ 0} and ∂R2+ := {(x1, x2) ∈ R

2|x2 = 0}. Then  must be a constant map and � ≡ 0.

With our results for the heat flow, we can now obtain some existence results for Dirac-harmonic maps. This is the 
main purpose of the present paper.

Theorem 1.5. Let (, �) be a solution to (1.8) with the boundary-initial data (1.12) as obtained in Theorem 1.2 and 
defined in [0, ∞). Then there exists a sequence ti ↗ ∞ such that ((·, ti ), �(·, ti )) converges weakly in W 1,2(M) ×
W 1,4/3(M) to a Dirac-harmonic map (∞, �∞) ∈ C2+α(M, N) × C1+α(M, �M ⊗ −1∞ T N) with boundary data 
∞|∂M = ϕ and B�∞|∂M = Bψ0.

If the boundary-initial data are small enough, the map part of the limiting Dirac-harmonic map (∞, �∞) obtained 
in the above theorem has to be homotopic to the initial map φ0.

Corollary 1.6. We define a constant ε0 = ε0(N) > 0:

ε0 := inf
{

E(φ) | (φ,ψ) : S2 → N is a nontrivial smooth Dirac-harmonic map
}

.

For any φ0 ∈ H 1(M, N) ∩ C0(M, N), ϕ ∈ C2+α(∂M, N), ψ0 ∈ C1+α(∂M, �M ⊗ ϕ−1T N), if

E(φ0) + √
2‖Bψ0‖2

L2(∂M)
< min {�2, ε0}, (1.23)

where � > 0 is defined in (1.14), there exists a Dirac-harmonic map (φ, ψ) : M → N with φ lying in the same 
homotopy class as φ0.

Remark 1.7. In the case of Bψ0 ≡ 0, by triviality of ker(/Dφ; B) for a regular map  ∈ W 1,p(M, N) with p > 2 (see 
Theorem 1.1 in [9] or Lemma 2.6), � has to vanish and hence our problem (1.8) and (1.12) reduces to the classical 
harmonic map flow with Dirichlet boundary condition, which was studied in e.g. [14,5]. In this case, no constraint on 
the initial energy E(φ0) is needed to obtain a global weak solution, see [24,5]. In contrast, if the boundary data Bψ0
are not identically zero, then, since the boundary data are fixed along the flow, the spinor ψ cannot be trivial at any 
time t ∈ [0, ∞]. The finer qualitative behavior at the singularities of our flow will be addressed in subsequent work.

This paper is organized as follows. In Section 2, we recall some lemmas which will be used in this paper, such as 
a covering lemma, an interpolation inequality and some elliptic estimates for the first order equation. In Section 3, we 
derive some a priori estimates which ensure the local existence for initial data with lower regularity. Also, we prove a 
small energy regularity theorem and the uniqueness of the solution in this section. In Section 4, some existence results 
including local existence and global existence (Theorem 1.2) are proved and the characterization of the singularities 
is derived. In Section 5, we prove Theorem 1.3, Theorem 1.4, Theorem 1.5 and Corollary 1.6.
Notations: Denote �t

s = � × [s, t], Mt
s = M × [s, t], MT = M × [0, T ] and denote the standard Sobolev and Hölder 

spaces by W 2k,k
p (MT ), C2k,k,α(MT ) = C2k+α,k+ α

2 (MT ) and C1,0,α(MT ) := Cα,α/2(MT ) ∩ {sup0≤t≤T ‖u‖C1+α(M) <

∞}. Finally,

V (Mt
s ) := {(,�) : M × [s, t] → N × (�M ⊗ −1T N)| sup

s≤σ≤t
‖∇‖L2(M) + sup

s≤σ≤t
‖�‖W 1,4/3(M)

+ sup
s≤σ≤t

‖�‖L8(M) +
∫
Mt

s

(|∂t|2 + |∇2|2)dMdt < ∞}.
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2. Preliminaries and some lemmas

In this section, we first recall some lemmas which will be used in this paper and then derive the properties of the 
constant � defined in (1.14).

Lemma 2.1 (II, Theorem 2.2 and Remark 2.1, P. 62, P. 63 in [17] or Lemma 4.1 in [12]). For any smooth bounded 
domain � ⊂R

2 and any function u ∈ H 1(�), there exists a constant C > 0 depending on the shape of � such that∫
�

|u|4dx ≤ C

∫
�

|u|2dx
(∫

�

|∇u|2dx + 1

|�|
∫
�

|u|2dx
)
, (2.1)

where |�| is the volume of �.

Lemma 2.2 (Lemma 3.3 in [24]). There exist constants K > 0, R0 > 0 depending only on M such that for any 
R ∈ (0, R0], there exists a cover of M by balls BM

R (xi) with the property that at any point x ∈ M at most K of the 
balls BM

2R(xi) meet.

Lemma 2.3. There exist constants C > 0, R0 > 0 depending only on M , such that for any T ≤ ∞, any u ∈ C∞(MT ), 
any R ∈ (0, R0] and any function η ∈ C∞

0 (BR(x0)), x0 ∈ M depending only on the distance |x − x0| and non-
increasing as a function of this distance, there holds

∫
M

|∇u|4ηdMdt ≤C sup
0≤t≤T

∫
BM

R (x0)

|∇u|2(x, t)dM ·
⎛⎜⎝ ∫

MT

|∇2u|2ηdMdt + R−2
∫

MT

|∇u|2ηdMdt

⎞⎟⎠ (2.2)

where BM
R (x0) is the geodesic ball on the M . Moreover, we have

∫
M

|∇u|4dMdt ≤C sup
(x0,t)∈MT

∫
BM

R (x0)

|∇u|2(x, t)dM ·
⎛⎜⎝ ∫

MT

|∇2u|2dMdt + R−2
∫

MT

|∇u|2dMdt

⎞⎟⎠ . (2.3)

Proof. The idea is the same as in Struwe’s paper [24], using the density of step functions in L∞ space and the covering 
argument in Lemma 2.2. One can refer to Lemma 3.1, Lemma 3.2 in [24] or Lemma 4.1, Lemma 4.2 in [12] for a 
detailed proof. �

The next lemma provides a Green formula for the Dirac operator /D along a map φ.

Lemma 2.4 (Proposition 3.2 in [11]). For any ψ, ω ∈ W 1,3/4(�M ⊗ φ−1T N), we have∫
M

〈ψ,/Dω〉dM =
∫
M

〈/Dψ,ω〉dM −
∫

∂M

〈−→n · ψ,ω〉 (2.4)

where 〈ψ, ω〉 := hij 〈ψi, ωj 〉.

We next present a modified version of Proposition 3.1 in [9], which will play a crucial role in controlling the total 
energy of the map along our flow (see Section 3).

Proposition 2.5. Suppose that φ ∈ W 1,2(M, N) and ψ ∈ W 1,4/3(M, �M ⊗ φ−1T N), then

|
∫

∂M

(‖ψ‖2 − 2‖Bψ‖2)| ≤ 2‖ψ‖L4(M)‖/Dψ‖L4/3(M). (2.5)
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Proof. We use the observation of Proposition 3.1 in [9]. Denoting

X := 1

2
〈ψ,eα · G · ψ〉eα,

then

〈X,
−→
n 〉 = 1

2
〈ψ,

−→
n · G · ψ〉,

‖Bψ‖2 = 1

2
‖ψ‖2 − 〈X,

−→
n 〉,

and

div X = −Re〈/Dψ,G · ψ〉.
By the boundary trace embedding theorem W 1,4/3(M) → L2(∂M) (see Lemma 5.19 in [1]), we have ψ ∈ L2(∂M)

and hence X ∈ L1(∂M). Combined with the fact that div X ∈ L1(M), by the divergence theorem, we have

|
∫

∂M

〈X,
−→
n 〉| = |

∫
M

divX dM| = |
∫
M

Re〈/Dψ,G · ψ〉dM| ≤ ‖ψ‖L4(M)‖/Dψ‖L4/3(M).

Thus,

|
∫

∂M

(‖ψ‖2 − 2‖Bψ‖2)| ≤ 2‖ψ‖L4(M)‖/Dψ‖L4/3(M). � (2.6)

Next, we recall some elliptic estimates from [9].

Lemma 2.6 (Theorem 1.2 in [9]). Suppose φ ∈ W 1,2p∗
(M, N), p∗ > 1 and ψ ∈ W 1,p(M, �M ⊗ R

N), 1 < p < p∗
satisfy{

/Dφψ = ξ, in M;
Bψ = Bψ0, on ∂M,

(2.7)

then there exists a constant C = C(p, M, N, ‖φ‖W 1,2p∗
(M)) > 0 such that

‖ψ‖W 1,p(M) ≤ C
(‖ξ‖Lp(M) + ‖Bψ‖W 1−1/p,p(∂M)

)
.

As a special case of Lemma 2.6, when φ ≡ const., we have

Lemma 2.7. For any 1 < p < ∞, there exists a constant C = C(p, M, N) > 0 such that for any ψ ∈ W 1,p(M, �M ⊗
R

N) there holds

‖ψ‖W 1,p(M) ≤ C(p,M,N)
(‖/∂ψ‖Lp(M) + ‖Bψ‖W 1−1/p,p(∂M)

)
.

Here, C( 4
3 , M, N) = �1(M, N) defined in (1.16).

Taking /D to be the usual Dirac operator /∂ in Theorem 4.4 of [9], we get

Lemma 2.8 (Theorem 4.4 in [9]). Suppose ψ ∈ W 1,p(M, �M ⊗ R
N), 1 < p < ∞ and f ∈ Cα(M, �M ⊗ R

N), 
0 < α < 1 satisfy

/∂ψ = f in M,

then there exists a constant C = C(α, M, N) > 0 such that ψ ∈ C1+α(M, �M ⊗R
N) and

‖ψ‖C1+α(M) ≤ C(α,M,N)
(‖/∂ψ‖Cα(M) + ‖Bψ‖C1+α(∂M)

)
.
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Lemma 2.6 provides the elliptic estimate and the uniqueness result for φ regular enough, namely φ ∈
W 1,2p∗

(M, N) for some p∗ > 1. However, if φ is only in W 1,2(M, N), then the corresponding estimate may not 
hold. In this critical case, we need to use the constant � defined in (1.14) in order to obtain the elliptic estimate and 
the uniqueness result. Now we show that there is a positive lower bound of the constant �.

Lemma 2.9. The constant � defined in (1.14) satisfies (1.15).

Proof. Let �3 > ‖A‖L∞(N) be a positive constant. For any 0 < �̃ < 1
2�1·�2·�3

, it is sufficient to prove that if E(φ) ≤
�̃2, then

‖ψ‖W 1,4/3(M) ≤ C(M,N, �̃)(‖/Dφψ‖L4/3(M) + ‖Bψ‖W 1/4,4/3(∂M)).

In fact, suppose{
/Dφψ = ξ, in M;
Bψ = Bψ0, on ∂M,

since D�N |φ is a projection map (see (1.13)), by Lemma 2.7, we have

‖ψ‖W 1,4/3(M) ≤ �1
(‖A(dφ(eα), eα · D�N |φ ◦ ψ)‖L4/3(M) + ‖/Dφψ‖L4/3(M) + ‖Bψ0‖W 1/4,4/3(∂M)

)
≤ �1

(√
2‖A‖L∞(N)‖|dφ||D�N |φ ◦ ψ‖L4/3(M) + ‖/Dφψ‖L4/3(M) + ‖Bψ0‖W 1/4,4/3(∂M)

)
≤ √

2�1‖A‖L∞(N)‖dφ‖L2(M)‖ψ‖L4(M) + �1‖/Dφψ‖L4/3(M) + �1‖Bψ0‖W 1/4,4/3(∂M)

≤ √
2�1�2‖A‖L∞(N)‖dφ‖L2(M)‖ψ‖W 1,4/3(M) + �1‖/Dφψ‖L4/3(M) + �1‖Bψ0‖W 1/4,4/3(∂M)

≤ 2 �̃�1�2‖A‖L∞(N)‖ψ‖W 1,4/3(M) + �1‖/Dφψ‖L4/3(M) + �1‖Bψ0‖W 1/4,4/3(∂M).

Since 2 �̃�1�2‖A‖L∞(N) < 1, we get

‖ψ‖W 1,4/3(M) ≤ C(M,N, �̃)(‖/Dφψ‖L4/3(M) + ‖Bψ0‖W 1/4,4/3(∂M)). �
In fact, we can show that the constant � in (1.14) has the following equivalent definition:

� := sup
{
�̃ ∈ [0,∞] : For any φ ∈ W 1,2(M,N), if E(φ) ≤ �̃2, then Ker(/Dφ;B) = 0 and

for any ψ ∈ W 1,4/3(M,�M ⊗R
N), there holds

‖ψ‖W 1,4/3(M) ≤ C(M,N, �̃)(‖/Dφψ‖L4/3(M) + ‖Bψ‖W 1/4,4/3(∂M) + ‖ψ‖L4/3(M))
}
.

(2.8)

To see this, we first show that

Lemma 2.10. Suppose φ ∈ W 1,2(M, N) and ψ ∈ W 1,4/3(M, �M ⊗RN) satisfies{
/Dφψ = ξ, in M;
Bψ = Bψ0, on ∂M.

If

E(φ) ≤ �̃2 < �2,

where � is defined as in (2.8), then there exists a constant C(M, N, ̃�) > 0 such that

‖ψ‖W 1,4/3(M) ≤ C(M,N, �̃)(‖/Dφψ‖L4/3(M) + ‖Bψ‖W 1/4,4/3(∂M)). (2.9)

Proof. In fact, by the definition of � in (2.8), we have Ker(/Dφ; B) = 0 and

‖ψ‖W 1,4/3(M) ≤ C(M,N, �̃)(‖/Dφψ‖L4/3(M) + ‖Bψ‖W 1/4,4/3(∂M) + ‖ψ‖L4/3(M)). (2.10)
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If the conclusion (2.9) does not hold, there exists a sequence φn ∈ W 1,2(M, N), ψn ∈ W 1,4/3(M, �M ⊗ R
N), satis-

fying

E(φn) ≤ �̃2 < �2,

but,

‖ψn‖W 1,4/3(M) ≥ n (‖/Dφnψn‖L4/3(M) + ‖Bψn‖W 1/4,4/3(∂M)).

Without loss of generality, we may assume ‖ψn‖L4/3(M) = 1. By (2.10), we have

(1 − C

n
)(‖/Dφnψn‖L4/3(M) + ‖Bψn‖W 1/4,4/3(∂M)) ≤ C

n
‖ψn‖L4/3(M).

Using (2.10) again, we get ‖ψn‖W 1,4/3(M) ≤ C when n is big enough. Then there exists a subsequence of {(φn, ψn)}, 
still denoted by {(φn, ψn)}, and φ ∈ W 1,2(M, N), ψ ∈ W 1,4/3(M, �M ⊗R

N) such that

ψn ⇀ ψ weakly in W 1,4/3(M), dφn ⇀ dφ weakly in L2(M),

ψn → ψ strongly in L2(M).

So, we have ‖ψ‖L4/3(M) = 1, E(φ) ≤ E(φn) ≤ �̃2 < �2 and{
/Dφψ = 0, in M;
Bψ = 0, on ∂M.

Since Ker(/Dφ; B) = 0, we get ψ ≡ 0. This is a contradiction to ‖ψ‖L4/3(M) = 1. Thus, the estimate (2.9) follows. �
From Lemma 2.10, it is easy to get the following:

Corollary 2.11. The definition of (1.14) is equivalent to (2.8).

Finally, we provide the ε-regularity estimate for the Dirac equation. We remark that the interior regularity for 
weak solutions was proved in [23] (Theorem 3.4) and the boundary regularity for weak solutions in the homogeneous 
boundary value case was shown in [23] (Theorem 3.5).

Lemma 2.12. Let B1 ⊂R2 and φ ∈ W 1,2(B1, N), ψ ∈ W 1,q (B1,C
2 ⊗RN) satisfy

/Dφψ = 0 on B1.

Then for any 2 ≤ q < ∞, there exist ε = ε(q, N) > 0 and C = C(q, N) > 0 such that whenever

‖dφ‖L2(B1)
≤ ε,

then

‖ψ‖Lq(B1/2) + ‖∇ψ‖
W

1,
2q

2+q (B1/2)

≤ C(q,N)‖ψ‖L4(B1)
. (2.11)

Moreover, let B+
1 := {(x1, x2) ∈ B1; x2 ≥ 0} ⊂ R

2 and ∂0B+
1 := ∂B+

1 ∩ {(x1, x2) ∈ B1; x2 = 0}. If ψ ∈ W 1,q (B+
1 ,

C
2 ⊗R

N), Bψ0 ∈ W 1−1/q,q(∂0B+
1 ,C2 ⊗R

N), φ ∈ W 1,2(B+
1 , N) satisfy{

/Dφψ = 0 in B+
1 ;

Bψ = Bψ0 on ∂0B+
1 .

Then there exist ε = ε(q, N) > 0 and C = C(q, N) > 0 such that whenever

‖dφ‖L2(B+
1 ) ≤ ε,

then

‖ψ‖Lq(B+
1/2)

≤ C(q,N)(‖ψ‖L4(B+
1 ) + ‖Bψ0‖

W
1− 2+q

2q
,

2q
2+q (∂0B+

1 )

). (2.12)
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Proof. Taking a cut-off function η ∈ C∞
0 (B1) such that η|B3/4 ≡ 1 and |∇η| ≤ C, by the standard elliptic estimates, 

for any 1 < p < 2, we have

‖ηψ‖W 1,p(B1)
≤ C(‖/∂(ηψ)‖Lp(B1) + ‖ψ‖L4(B1)

)

≤ C(‖dφ‖L2(B1)
‖ηψ‖

L
2p

2−p (B1)

+ ‖ψ‖L4(B1)
)

≤ Cε ‖ηψ‖W 1,p(B1)
+ C‖ψ‖L4(B1)

.

Then we can get the interior estimate (2.11) by the Sobolev embedding theorem.
For the boundary estimates, we also need to choose a cut-off function η ∈ C∞

0 (B+
1 ) such that η|B+

3/4
≡ 1 and 

|∇η| ≤ C, by Lemma 2.7, we get

‖ηψ‖W 1,p(B+
1 ) ≤ C(‖/∂(ηψ)‖Lp(B+

1 ) + ‖ηBψ0‖W 1−1/p,p(∂B+
1 ))

≤ C(‖dφ‖L2(B+
1 )‖ηψ‖

L
2p

2−p (B+
1 )

+ ‖ψ‖L4(B+
1 ) + ‖ηBψ0‖W 1−1/p,p(∂B+

1 ))

≤ Cε ‖ηψ‖W 1,p(B+
1 ) + C(‖ψ‖L4(B+

1 ) + ‖Bψ0‖W 1−1/p,p(∂0B+
1 )).

Then we can get the boundary estimate (2.12) by Sobolev embedding again. �
3. A priori estimates

In this section, we shall first show some elementary properties of the flow, in particular we show that the energy 
of the map E((t)) is uniformly bounded from above. Then, we impose the boundary-initial constraint (1.19) and 
prove some a priori estimates, an ε-regularity and a uniqueness result, which will be used in the next section to get 
the existence results.

First, we need the following proposition.

Proposition 3.1. Suppose (, �) ∈ V (MT ) is a solution of (1.8) with the boundary-initial data (1.12), then we have∫
MT

〈P(A(d(eα), eα · �);�),
∂

∂t
〉dMdt = −1

2

T∫
0

d

dt

∫
∂M

〈Bψ0,
−→
n · �〉(t)dt

= −1

2

∫
∂M

〈Bψ0,
−→
n · �〉(T ) + 1

2

∫
∂M

〈Bψ0,
−→
n · �〉(0). (3.1)

Proof. Computing directly, we have

d

dt
/D� = d

dt
(eα · ∇eα (�

i ⊗ ∂yi ))

= d

dt
(eα · ∇eα�

i ⊗ ∂yi ) + d

dt
(eα · �i ⊗ ∇eα ∂yi )

= eα · ∇eα (
d

dt
�i) ⊗ ∂yi + eα · ∇eα�

i ⊗ ∇ d
dt

∂yi + eα · ∇ d
dt

�i ⊗ ∇eα ∂yi + eα · �i ⊗ ∇ d
dt

∇eα ∂yi .

Noting that

∇ d
dt

∇eα ∂yi = ∇eα∇ d
dt

∂yi + R(d(∂t ), d(eα))∂yi

where R is the Riemann curvature operator on (N, h), we get

d

dt
/D� = /D(

d

dt
�) + eα · �i ⊗ R(d(∂t ), d(eα))∂yi . (3.2)

Since /D� = 0, we have
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0 =
∫

MT

〈�,
d

dt
/D�〉dMdt

=
∫

MT

〈�,/D(
d

dt
�)〉dMdt +

∫
MT

〈�,eα · �i ⊗ R(d(∂t ), d(eα))∂yi 〉dMdt

=
T∫

0

Idt +
T∫

0

IIdt.

On the one hand, by the definition of B (see (1.10)), we have

2B� = � ± −→
n · G · � and 0 = d

dt
(2B�) = 2B�̇ = �̇ ± −→

n · G · �̇
where �̇ := d

dt
� . Combining this with Lemma 2.4 and (1.11), we can get

I =
∫
M

〈/D�, �̇〉dM −
∫

∂M

〈−→n · �,�̇〉 = −
∫

∂M

〈−→n · �,�̇〉

= −
∫

∂M

〈−→n · �,∓−→
n · G · �̇〉 = −

∫
∂M

〈∓−→
n · G · �,

−→
n · �̇〉

= −
∫

∂M

〈�,
−→
n · �̇〉 +

∫
∂M

〈2B�,
−→
n · �̇〉,

then we have

I = −
∫

∂M

〈−→n · �,�̇〉 =
∫

∂M

〈B�,
−→
n · �̇〉 = d

dt

∫
∂M

〈Bψ0,
−→
n · �〉.

On the other hand, using the equation of Gauss, we get

II =
∫
M

〈�,eα · �i ⊗ Rm
ijk∂t

jdk(eα)∂ym〉dM

=
∫
M

Rmijk〈�m,∇k · �i〉∂t
jdM

=
∫
M

[〈A(∂ym, ∂yj ),A(∂yi , ∂yk )〉RN − A(∂ym, ∂yk ),A(∂yi , ∂yj )〉RN ]

· 〈�m,∇k · �i〉∂t
jdM

= 2
∫
M

〈A(∂ym, ∂yj ),A(∂yi , ∂yk )〉RN Re(〈�m,∇k · �i〉)∂t
jdM

= 2
∫
M

〈P(A(d(eα), eα · �);�), ∂t〉. (3.3)

Then the equality (3.1) follows immediately. �
Lemma 3.2. Suppose (, �) ∈ V (MT ) is a solution of (1.8) with the boundary-initial data (1.12), then there holds

E((t)) +
∫
Mt

|∂t|2dMdt ≤ E(φ0) + √
2‖Bψ0‖2

L2(∂M)
.

Moreover, E((t)) + 1 ∫ 〈−→n ·Bψ0, �〉 is absolutely continuous on [0, T ] and non-increasing.
2 ∂M
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Proof. Multiplying the equation (1.8) by ∂t and using the Lemma 2.4, we have∫
Mt

s

|∂t|2dM −
∫
Mt

s

	∂tdM = −
∫
Mt

s

〈P(A(d(eα), eα · �);�), ∂t〉

= 1

2

t∫
s

d

dt

∫
∂M

〈Bψ0,
−→
n · �〉dt,

for any 0 ≤ s ≤ t ≤ T . Integrating by parts, we get

1

2

t∫
s

d

dt

∫
M

|∇|2dMdt +
∫
Mt

s

|∂t|2dMdt = 1

2

t∫
s

d

dt

∫
∂M

〈Bψ0,
−→
n · �〉dt. (3.4)

So, we have

E((t)) +
∫
Mt

|∂t|2dMdt ≤ E(φ0) + 1

2
|

∫
{0}×∂M

〈Bψ0,
−→
n · �〉| + 1

2
|

∫
{t}×∂M

〈Bψ0,
−→
n · �〉|

≤ E(φ0) + √
2‖Bψ0‖2

L2(∂M)
,

where the last inequality follows from Proposition 2.5 since /Dψ ≡ 0. Also, we have

t∫
s

d

dt

(1

2

∫
M

|∇|2dM + 1

2

∫
∂M

〈−→n ·Bψ0,�〉)dt = −
∫
Mt

s

|∂t|2dMdt, (3.5)

and the claims follow. �
Next, we shall study the flow with the boundary-initial constraint (1.19), namely

E(φ0) + √
2‖Bψ0‖2

L2(∂M)
< �2,

where � is the constant in Theorem 1.2.

Lemma 3.3. Suppose (, �) ∈ V (MT ) is a solution of (1.8) with the boundary-initial data (1.12) that satisfies the 
boundary-initial constraint (1.19). Then

‖�(·, t)‖W 1,4/3(M) ≤ C(M,E(φ0) + √
2‖Bψ0‖2

L2(∂M)
)‖Bψ0‖W 1/4,4/3(∂M), ∀ 0 ≤ t ≤ T . (3.6)

Proof. By Lemma 3.2, we know

E((t)) ≤ E(φ0) + √
2‖Bψ0‖2

L2(∂M)
< �2. (3.7)

Since � satisfies the first order elliptic equation{
/D� = 0, in M;
B� = Bψ0, on ∂M,

along the flow, by Lemma 2.10, we have

‖�(·, t)‖W 1,4/3(M) ≤ C(M,E(φ0) + √
2‖Bψ0‖2

L2(∂M)
)‖Bψ0‖W 1/4,4/3(∂M). � (3.8)

Lemma 3.4. Suppose φ0 ∈ H 1(M, N), ϕ ∈ H 3/2(∂M, N), φ0|∂M = ϕ, ψ0 ∈ W 3/8,8/5(∂M, �M ⊗ ϕ−1T N) and sat-
isfy the boundary-initial constraint (1.19). Then there exists constants ε1 = ε1(M, N) > 0 and C = C(M, N) > 0, 
such that if (, �) ∈ V (MT ) is a solution of (1.8) with the boundary-initial data (1.12) and satisfies
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ε(R) := sup
(x,t)∈MT

E((t);BM
R (x)) ≤ ε1 for all R ∈ (0,R0],

then there hold the estimates

sup
0≤t≤T

‖�(·, t)‖L8(M) ≤ C

R1/4
‖Bψ0‖W 3/8,8/5(∂M) (3.9)

and ∫
MT

|∇2|2dMdt ≤ C(1 + T

R2
)E((0)) + CT

R2
(1 + ‖ϕ‖2

H 3/2(∂M)
+ ‖Bψ0‖8

W 3/8,8/5(∂M)
). (3.10)

Proof. By Lemma 2.2, for any 0 < R << 1, we know there exists a cover of M by balls BM
R (xi) with the property 

that at any point x ∈ M at most K of the balls BM
2R(xi) meet. By Lemma 2.12 (taking q = 8), Sobolev embedding and 

a standard scaling argument, if BM
2R(xi) ∩ ∂M = ∅, then

‖ψ‖L8(BR) ≤ C

R1/4
‖ψ‖L4(B2R);

If BM
2R(xi) ∩ ∂M �= ∅, then

‖ψ‖L8(BM
R ) ≤ C

R1/4

(‖ψ‖L4(BM
2R) + R1/4‖Bψ0‖W 3/8,8/5(∂BM

2R∩∂M)

)
≤ C

R1/4

(‖ψ‖L4(BM
2R) + ‖Bψ0‖W 3/8,8/5(∂BM

2R∩∂M)

)
.

Combining these, we have

‖ψ‖L8(M) ≤
∑

i

‖ψ‖L8(BM
R (xi ))

≤ C

R1/4

(‖ψ‖L4(M) + ‖Bψ0‖W 3/8,8/5(∂M)

)
≤ C

R1/4

(‖Bψ0‖W 1/4,4/3(∂M) + ‖Bψ0‖W 3/8,8/5(∂M)

)
≤ C

R1/4
‖Bψ0‖W 3/8,8/5(∂M),

where the third inequality follows from Lemma 3.3.
Multiplying the first equation of (1.8) by −	 and integrating over MT , we obtain

E((T )) − E((0)) +
∫

MT

|	|2dMdt

= −
∫

MT

∂t · 	dMdt +
∫

MT

|	|2dMdt

= −
∫

MT

A()(d,d)	dMdt +
∫

MT

P(A(d(eα), eα · �);�)	dMdt

≤ 1

2

∫
MT

|	|2dMdt + C

∫
MT

|∇|4dMdt +
∫

MT

|�|8dMdt.

So,

E((T )) + 1

2

∫
MT

|	|2dMdt

≤ E((0)) + C

∫
T

|∇|4dMdt +
∫
T

|�|8dMdt
M M
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≤ E((0)) +
∫

MT

|�|8dMdt + C sup
(x0,t)∈MT

∫
BM

R (x0)

|∇|2(x, t)dM

·
⎛⎜⎝ ∫

MT

|∇2|2dMdt + R−2
∫

MT

|∇|2dMdt

⎞⎟⎠ , (3.11)

where the last inequality follows from (2.3).
By the theory of elliptic equations, there exists a unique solution g ∈ H 2(M, RN) for{

	g = 0 in M,

g = ϕ on ∂M,
(3.12)

such that

‖g‖H 2(M) ≤ C(M,N)‖ϕ‖H 3/2(∂M). (3.13)

Since  − g ∈ H 1
0 (M), then by standard elliptic theory, we have∫

MT

|∇2|2dMdt ≤
∫

MT

|∇2( − g)|2dMdt +
∫

MT

|∇2g|2dMdt

≤ C

∫
MT

|	( − g)|2dMdt + C(M)T ‖ϕ‖2
H 3/2(∂M)

= C

∫
MT

|	|2dMdt + C(M)T ‖ϕ‖2
H 3/2(∂M)

. (3.14)

Combining this with (3.11), (3.9) and Lemma 3.2, we get

E((t)) + 1

2

∫
MT

|	|2dMdt

≤ E((0)) +
∫

MT

|�|8dMdt + Cε1

⎛⎜⎝ ∫
MT

|∇2|2dMdt + R−2
∫

MT

|∇|2dMdt

⎞⎟⎠
≤ Cε1

∫
MT

|	|2dMdt + C(1 + T

R2
)E((0)) + CT

R2
(1 + ‖ϕ‖2

H 3/2(∂M)
+ ‖Bψ0‖8

W 3/8,8/5(∂M)
).

Taking ε1 small enough, we obtain∫
MT

|	|2dMdt ≤ C(1 + T

R2
)E((0)) + CT

R2
(1 + ‖ϕ‖2

H 3/2(∂M)
+ ‖Bψ0‖8

W 3/8,8/5(∂M)
).

Then the estimate (3.10) follows from (3.14) immediately. �
By taking a similar choice of testing function as in Lemma 3.8 of [25] or Lemma 4.5 in [12], we obtain

Lemma 3.5. Suppose φ0 ∈ H 1(M, N), ϕ ∈ H 3/2(∂M, N), φ0|∂M = ϕ, ψ0 ∈ W 3/8,8/5(∂M, �M ⊗ ϕ−1T N) and sat-
isfy (1.19). Then there exist constants ε2 = ε2(M, N) > 0 and C = C(M, N) > 0, such that if (, �) ∈ V (MT ) is a 
solution of (1.8) with the boundary-initial data (1.12) that satisfies

ε(R) := sup
(x,t)∈MT

E((t);BM
R (x)) ≤ ε2 for all R ∈ (0,R0],

then there holds the estimate
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E((T );BM
R (x0)) +

∫
(BM

R (x0))
T

|∇2|2dMdt

≤ E((0);BM
2R(x0)) + C

T

R2

(
1 + E(φ0) + ‖ϕ‖2

H 3/2(M)
+ ‖Bψ0‖8

W 3/8,8/5(∂M)

)
.

Proof. Fixing x0 ∈ M , taking a cut-off function η ∈ C∞
0 (BM

2R(x0)) such that η|BR
≡ 1, |∇η| ≤ C

R
and |∇2η| ≤ C

R2 , 
then multiplying the first equation of (1.8) by −	η2 and integrating over MT , we obtain

−
∫

MT

∂t	η2dMdt +
∫

MT

|	|2η2dMdt

= −
∫

MT

A()(d,d)	η2dMdt +
∫

MT

P(A(d(eα), eα · �);�)	η2dMdt,

then integrating by parts, we have

1

2

∫
MT

∂t |∇|2η2dMdt +
∫

MT

|	|2η2dMdt

≤
∫

MT

|∂t||∇||2η∇η|dMdt + 1

2

∫
MT

|	|2η2dMdt + C

∫
MT

|∇|4η2dMdt +
∫

MT

|�|8η2dMdt

≤ δ

2

∫
MT

|∂t|2η2dMdt + C(δ)

∫
MT

|∇|2|∇η|2dMdt + 1

2

∫
MT

|	|2η2dMdt

+ C

∫
MT

|∇|4η2dMdt +
∫

MT

|�|8η2dMdt.

Noting that

|∂t| ≤ √
2|∇2| + C|∇|2 + C|�|2|∇|,

we get

1

2

∫
MT

∂t |∇|2η2dMdt + 1

2

∫
MT

|	|2η2dMdt

≤ δ

∫
MT

|∇2|2η2dMdt + C(δ)

∫
MT

|∇|2|∇η|2dMdt + C

∫
MT

|∇|4η2dMdt

+
∫

MT

|�|8η2dMdt

≤ (δ + Cε2)

∫
MT

|∇2|2η2dMdt + C(δ)

R2

∫
(BM

2R(x0))
T

|∇|2dMdt +
∫

MT

|�|8η2dMdt, (3.15)

where the last inequality follows from the same argument as (3.11).
Since η − gη ∈ H 1

0 (M) (see (3.12)), then by standard elliptic theory, we have∫
MT

|∇2(η)|2dMdt ≤
∫

MT

|∇2(η − gη)|2dMdt +
∫

MT

|∇2(gη)|2dMdt

≤ C

∫
T

|	(η − gη)|2dMdt +
∫
T

|∇2(gη)|2dMdt
M M
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≤ C

∫
MT

|	|2η2dMdt + C(M)

∫
MT

(|∇|2|∇η|2 + ||2|∇2η|2

+ |∇2g|2η2 + |∇g|2|∇η|2 + |g|2|∇2η|2)dMdt. (3.16)

By (3.15) and (3.16), we get∫
MT

∂t |∇|2η2dMdt +
∫

MT

|∇2|2η2dMdt

≤ C(δ + Cε2)

∫
MT

|∇2|2η2dMdt + C(δ)

R2

∫
(BM

2R(x0)
)T

|∇|2dMdt +
∫

MT

|�|8η2dMdt

+ C

∫
MT

(|∇|2|∇η|2 + ||2|∇2η|2 + |∇2g|2η2 + |∇g|2|∇η|2 + |g|2|∇2η|2)dMdt.

Taking δ > 0 and ε2 > 0 sufficiently small such that C(δ + Cε2) ≤ 1/2, then with (3.9), (3.13) and Lemma 3.2 we 
have ∫

MT

∂t |∇|2η2dMdt +
∫

MT

|∇2|2η2dMdt

≤ C(δ)

R2

∫
(BM

2R(x0))
T

|∇|2dMdt +
∫

MT

|�|8η2dMdt + C
T

R2

(
1 + ‖ϕ‖2

H 3/2(M)

)

≤ C
T

R2

(
1 + E(φ0) + ‖ϕ‖2

H 3/2(M)
+ ‖Bψ0‖8

W 3/8,8/5(∂M)

)
.

Thus, we get the estimate

E((T );BM
R (x0)) +

∫
(BM

R (x0))
T

|∇2|2dMdt

≤ E((0);BM
2R(x0)) + C

T

R2

(
1 + E(φ0) + ‖ϕ‖2

H 3/2(M)
+ ‖Bψ0‖8

W 3/8,8/5(∂M)

)
. �

Next, we obtain the ε-regularity

Lemma 3.6. Suppose that φ0 ∈ H 1(M, N), ϕ ∈ C2+α(∂M, N) and ψ0 ∈ C1+α(∂M, �M ⊗ ϕ−1T N) satisfy the 
boundary-initial constraint (1.19). Let (, �) ∈ V (MT ) be a solution of (1.8) with boundary-initial data (1.12). Given 
z0 = (x0, t0) ∈ M × (0, T ], denote P M

R (z0) := BM
R (x0) × [t0 − R2, t0]. Assume that  ∈ C2+α,1+ α

2 (P M
R (z0), N) and 

� ∈ C1+α(P M
R (z0), �M ⊗ −1T N). Then there exist two positive constants ε3 = ε3(M, N, E(φ0), ‖ϕ‖C2+α(∂M),

‖Bψ0‖C1+α(∂M)) > 0 and C = C(α, R, M, N, E(φ0), ‖ϕ‖C2+α(∂M), ‖Bψ0‖C1+α(∂M)) > 0 such that if

sup
[t0−R2,t0]

E((t),BM
R (x0)) ≤ ε3,

then
√

R‖�‖L∞(PM
R/2(z0))

+ R‖∇‖L∞(PM
R/2(z0))

≤ C (3.17)

and for any 0 < β < 1,

sup
t0− R2

4 ≤t≤t0

‖�(t)‖C1+α(BM
R/2(z0))

+ ‖‖C1,0,β (PM
R/2(z0))

≤ C(β). (3.18)

Moreover, if
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sup
x0∈M

sup
[t0−R2,t0]

E((t),BM
R (x0)) ≤ ε1,

then

‖�‖
C1,0,α(M×[t0− R2

8 ,t0]) + ‖‖
C2,1,α(M×[t0− R2

8 ,t0]) ≤ C. (3.19)

Proof.
Step 1: We derive (3.18) and (3.19) from (3.17).

Taking the cut-off function η ∈ C∞
0 (P M

R (z0)) such that 0 ≤ η ≤ 1, η|PM
3R/4(z0)

≡ 1, |∇j η| ≤ C
Rj , j = 1, 2 and |∂tη| ≤

C

R2 , set U = η, then⎧⎪⎨⎪⎩
Ut − 	U = f, in P M

R (z0);
U(x, t) = 0, on BM

R (z0) × {t = t0 − R2};
U(x, t) = ηϕ, on ∂M × (t0 − R2, t0),

where

f := η(∂t − 	) + ∂tη − 2∇η∇ − 	η.

By standard parabolic theory, for any 1 < p < ∞, we have

‖U‖
W

2,1
p (PM

R (z0))
≤ C

(‖f ‖Lp(PM
R (z0))

+ ‖ηϕ‖
W

2,1
p (∂P M

R (z0))

) ≤ C
(
1 + ‖ϕ‖C2(∂M)

)
where we used the fact that f ∈ L∞ since  satisfies equation (1.8) and assumption (3.17) holds. Then for any 
0 < β = 1 − 4/p < 1, we obtain

‖∇‖Cβ,β/2(PM
3R/4(z0))

≤ ‖∇U‖Cβ,β/2(PM
R (z0))

≤ C‖U‖
W

2,1
p (PM

R (z0))
≤ C(β)

(
1 + ‖ϕ‖C2(∂M)

)
. (3.20)

Taking the cut-off function χ ∈ C∞
0 (BM

R (z0)) such that 0 ≤ χ ≤ 1, χ |BM
3R/4(z0)

≡ 1 and |∇jχ | ≤ C
Rj , j = 1, 2, set 

V = χ� , then{
/∂V = h, in BM

R (z0);
BV (x) = χBψ0, on ∂BM

R (z0),

where h = χ/∂� + ∇χ · � ∈ L∞. By Lemma 2.7 and Sobolev embedding, we have

‖�‖C1−n/p(BM
3R/4(z0))

≤ C‖V ‖W 1,p(BM
R (z0))

≤ C(1 + ‖Bψ0‖C1(∂M)) (3.21)

for any 2 < p < ∞. Combining (3.20) with (3.21), we know /∂� ∈ Cα(BM
R/2(z0)) and by the Schauder estimates 

Lemma 2.8 and taking some suitable cut-off function as before, we have

‖�(t)‖C1+α(BM
R/2(z0))

≤ C
(
1 + ‖Bψ0‖C1+α(∂M)

)(
1 + ‖ϕ‖C2(∂M)

)
(3.22)

for any t0 − R2

4 ≤ t ≤ t0. Then the inequality (3.18) follows from (3.20), (3.22) immediately.
In order to prove (3.19), noting that we can rewrite the equation /∂� =A(d(eα), eα · �) as

/∂� + � · � = 0

where

� =
N∑

i=n+1

[νi(), dνi()] =
N∑

i=n+1

(
(νi)A(∇eα ν

i)Beα − (νi)B(∇eα νi)Aeα

)
and {νi}Ni=n+1 is an orthonormal basis of the normal bundle T ⊥N and νi = ((νi)1, ..., (νi)N ), then for any t0 − R2

4 <

t, s < t0, we have
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{
/∂(�(·, t) − �(·, s)) = −�(·, t)(�(·, t) − �(·, s)) + (

�(·, s) − �(·, t))�(·, s) in M;
B(�(·, t) − �(·, s)) = 0 on ∂M.

Since d� = [dν(), dν()], with (3.20) and (3.22), according to Theorem 4.1 in [9], for any 0 < β < 1, by Sobolev 
embedding, we have

‖�(·, t) − �(·, s)‖Cβ(M) ≤ C
(‖�(·, t) − �(·, s)‖L∞(M)

) ≤ C|s − t |β.

So, we get ‖�‖
C1,0,α(M×[t0− R2

4 ,t0]) ≤ C and{
∂t − 	 ∈ Cβ,β/2(M × [t0 − R2

4 , t0]) for any 0 < β < 1;
|∂M = ϕ ∈ C2+α(∂M).

Taking some suitable cut-off function and by standard Schauder estimates of parabolic equation, we have  ∈
C2,1,α(M × [t0 − R2

8 , t0]) and

‖‖
C2,1,α(M×[t0− R2

8 ,t0]) ≤ C
(‖∂t − 	‖

Cα,α/2(M×[t0− R2
4 ,t0]) + ‖‖

C0(M×[t0− R2
4 ,t0]) + ‖ϕ‖C2+α(∂M)

) ≤ C.

So we have proved (3.19).

Step 2: We prove (3.17).

We follow as similar idea as in [22,20]. Without loss of generality, we may assume R = 1. Choose 0 ≤ ρ < 1 such 
that

(1 − ρ)2 sup
PM

ρ (z0)

|∇|2 = max
0≤σ≤1

{(1 − σ)2 sup
PM

σ (z0)

|∇|2}

and then choose z1 = (x1, t1) ∈ P M
ρ (z0) such that

|∇|2(z1) = sup
PM

ρ (z0)

|∇|2 := e.

We claim:

(1 − ρ)2e ≤ 4.

We proceed by contradiction. If (1 − ρ)2e > 4, we set

u(x, t) := (x1 + e− 1
2 x, t1 + e−1t) and v(x) := e− 1

4 �(x1 + e− 1
2 x).

Denoting Pr(0) = Br(0) × [−r2, 0] ⊂ R
2 and

Sr := Pr(0) ∩ {(x, t)|(x1 + e− 1
2 x, t1 + e−1t) ∈ P M

1 (0)},
then u ∈ C2,1,α(S1), v ∈ C1,0,α(S1), and they satisfy{

∂tu = τ(u) −P(A(du(eα), eα · v);v), in S1;
/∂v =A(du(eα), eα · v), in S1,

(3.23)

with the boundary data{
u(x, t) = ϕ(x1 + e− 1

2 x), if x1 + e− 1
2 x ∈ ∂M;

Bv(x, t) = e− 1
4 Bψ0(x1 + e− 1

2 x), if x1 + e− 1
2 x ∈ ∂M.

(3.24)

Moreover, we have

sup
S1

|∇u|2 = e−1 sup
PM

e−1/2 (z1)

|∇|2 ≤ e−1 sup
PM

ρ+e−1/2 (z0)

|∇|2 ≤ e−1 sup
PM

1+ρ
2

(z0)

|∇|2 ≤ 4
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and

|∇u|2(0) = e−1|∇|2(z1) = 1.

Since v satisfies the equation /∂v =A(du(eα), eα · v) and there holds

|du| ≤ 2, sup
−1≤t≤0

‖v‖L4(B1)
≤ ‖�‖L4(M) ≤ C,

where in the last step we have used Lemma 3.3. By elliptic theory, we have

sup
−1≤t≤0

‖v‖L∞(B3/4) ≤ C sup
−1≤t≤0

‖v‖W 1,4(B3/4)
≤ C(‖Bψ0‖C1(∂M)).

Next, we want to show that there exists a constant C > 0 such that

1 ≤ C

∫
S3/4

|∇u|2dxdt. (3.25)

If C does not exist, then we can find a sequence {(ui, vi)} satisfying{
∂tui = τ(ui) −P(A(dui(eα), eα · vi);vi), in S3/4;
/∂vi =A(dui(eα), eα · vi), in S3/4,

(3.26)

with the boundary data{
ui(x, t) = ϕ(x1 + e− 1

2 x), if x1 + e− 1
2 x ∈ ∂M;

Bvi(x, t) = e− 1
4 Bψ0(x1 + e− 1

2 x), if x1 + e− 1
2 x ∈ ∂M

(3.27)

and

sup
S3/4

(|∇ui | + |vi |
) ≤ C, (3.28)

|∇ui |2(0) = 1, (3.29)∫
S3/4

|∇ui |2dxdt ≤ 1

i
. (3.30)

By Step 1 (since (ui, vi) satisfy (3.26), (3.27) and (3.28)), we have

‖∇ui‖Cβ,β/2(S1/2)
≤ C(β)

for any 0 < β < 1.
Therefore, there exist a subsequence of {ui} (we still denote it by {ui}) and a function u ∈ C1,0,γ (S1/2) such that

∇ui → ∇u in Cγ,γ /2(S1/2)

where 0 < γ < β . Then by (3.30), we know∫
S1/2

|∇u|2dxdt = 0 (3.31)

which implies ∇u ≡ 0 in S1/2. But, (3.29) tells us |∇u|(0) = 1. This is impossible and then (3.25) must be true. Thus, 
we have

1 ≤ C

∫
S3/4

|∇u|2dxdt ≤ C sup
−1<t<0

∫
BM

e
1
2

(x1)

|∇|2(t1 + e−1t)dx ≤ C sup
−1<t<0

∫
BM

1 (z0)

|∇|2(t)dx ≤ Cε3.

Choosing ε3 > 0 sufficiently small leads to a contradiction, so we must have (1 − ρ)2e ≤ 4 and then
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(1 − 3/4)2 sup
PM

3/4(z0)

|∇|2 ≤ (1 − ρ)2e ≤ 4.

Since � satisfies the equation /∂� = A(d(eα), eα · �) and ‖d‖L∞(PM
3/4(z0))

≤ 8, ‖�‖L4(M) ≤ C, by the elliptic 

theory of first order equations and Sobolev embedding again, we shall easily obtain

‖�‖L∞(PM
1/2(z0))

≤ C.

Thus we get the inequality (3.17). This finishes the proof of the lemma. �
Finally, we show the uniqueness result.

Theorem 3.7. Let φ0 ∈ H 1(M, N), φ0|∂M = ϕ ∈ H 3/2(∂M, N) and ψ0 ∈ W 3/8,8/5(∂M, �M ⊗ ϕ−1T N) satisfy the 
boundary-initial constraint (1.19). Furthermore, suppose that (i, �i) ∈ V (MT ), i = 1, 2 are weak solutions of (1.8)
with the same boundary-initial data (1.12). Then (1, �1) ≡ (2, �2) in MT .

Proof. Let W := 1 −2, � := �1 −�2 and denote |∇U | := |∇1| +|∇2|, |V | := |�1| +|�2|. Since (i, �i) ∈
V (MT ), i = 1, 2 are weak solutions to (1.8), we have

|∂tW − 	W | ≤ |A(1)(d1, d1) − A(2)(d2, d2)|
+ |P(A(d1(eα), eα · �1);�1) −P(A(d2(eα), eα · �2);�2)|

≤ C
(|W |(|∇U |2 + |∇U ||V |2) + |∇W |(|∇U | + |V |2) + |�||∇U ||V |).

Multiplying the above inequality by W and integrating over Mt , we obtain

1

2

∫
Mt

∂t |W |2dMdt −
∫
Mt

	W · WdMdt

= 1

2

∫
M

|W |2dM +
∫
Mt

|∇W |2dMdt

≤ C

∫
Mt

(|W |2(|∇U |2 + |∇U ||V |2) + |W ||∇W |(|∇U | + |V |2) + |W ||�||∇U ||V |)
≤ C(

∫
Mt

|W |4dMdt)1/2((∫
Mt

|∇U |4dMdt)1/2 + (

∫
Mt

|V |8dMdt)1/2)
+ C(

∫
Mt

|W |4dMdt)1/4(

∫
Mt

|∇W |2dMdt)1/2((∫
Mt

|∇U |4dMdt)1/4 + (

∫
Mt

|V |8dMdt)1/4)
+ C(

∫
Mt

|W |4dMdt)1/4(

∫
Mt

|�|2dMdt)1/2(

∫
Mt

|∇U |8dMdt)1/8(

∫
Mt

|V |8dMdt)1/8

≤ Cε(t)(

∫
Mt

|W |4dMdt)1/2 + Cε(t)(

∫
Mt

|W |4dMdt)1/4(

∫
Mt

|∇W |2dMdt)1/2

+ Cε(t)(

∫
Mt

|W |4dMdt)1/4(

∫
Mt

|�|2dMdt)1/2

for any t ∈ (0, T ] and ε(t) → 0 as t → 0.
Noticing that /Dl

�l = 0, l = 1, 2, we have

|/D2�| = |/∂� −A(2)(d2(eα), eα · D�N |2 ◦ �)|
= |A(1)(d1(eα), eα · �1) −A(2)(d2(eα), eα · D�N |2 ◦ �1)|
= |(∇i

1 · �j

1 ) ⊗ A(D�N |1 ◦ ∂yi ,D�N |1 ◦ ∂yj ) − (∇i
2 · �j

1 )

⊗ A(D�N |2 ◦ ∂yi ,D�N |2 ◦ ∂yj )|
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≤ |(∇i
1 · �j

1 ) ⊗ (A(D�N |1 ◦ ∂yi ,D�N |1 ◦ ∂yj ) − A(D�N |2 ◦ ∂yi ,D�N |2 ◦ ∂yj ))|
+ |(∇i

1 · �j

1 − ∇i
2 · �j

1 ) ⊗ A(D�N |2 ◦ ∂yi ,D�N |2 ◦ ∂yj )|
≤ C|W ||∇U ||V | + C|∇W ||V |,

where 1 ≤ i, j ≤ N and {∂yi }Ni=1 is the standard basis of RN .

Since E(2(t)) ≤ E(φ0) +
√

2‖Bψ0‖2
L2(∂M)

< �2 and B� = 0 on ∂M , by definition of � in (1.14), we have

‖�‖W 1,4/3(M) ≤ C
(‖|W ||∇U ||V |‖L4/3(M) + ‖|∇W ||V |‖L4/3(M)

)
≤ C‖|W |‖L4(M)‖|∇U |‖L4(M)‖|V |‖L4(M) + C‖|∇W |‖L2(M)‖|V |‖L4(M).

Thus,

‖�‖L4(M) ≤ C‖�‖W 1,4/3(M)

≤ C‖|W |‖L4(M)‖|∇U |‖L4(M)‖|V |‖L4(M) + C‖|∇W |‖L2(M)‖|V |‖L4(M)

and

( ∫
Mt

|�|2dMdt
)1/2 ≤ C

( t∫
0

(

∫
M

|�|4dM)1/2dt
)1/2

≤ C
( t∫

0

(

∫
M

|W |4dM ·
∫
M

|∇U |4dM ·
∫
M

|V |4dM)1/2dt
)1/2

+ C
( t∫

0

∫
M

|∇W |2dM · (
∫
M

|V |4dM)1/2dt
)1/2

≤ C
( t∫

0

(

∫
M

|W |4dM)1/2 · (
∫
M

|∇U |4dM)1/2dt
)1/2

+ C
( t∫

0

∫
M

|∇W |2dMdt
)1/2

≤ C
( t∫

0

∫
M

|W |4dMdt
)1/4 · ( t∫

0

∫
M

|∇U |4dMdt
)1/4

+ C
( t∫

0

∫
M

|∇W |2dMdt
)1/2

≤ ε(t)
( t∫

0

∫
M

|W |4dMdt
)1/4 + C

( t∫
0

∫
M

|∇W |2dMdt
)1/2

.

Then we get

1

2

∫
M

|W |2(·, t)dM +
∫
Mt

|∇W |2dMdt

≤ Cε(t)(

∫
Mt

|W |4dMdt)1/2 + Cε(t)(

∫
Mt

|W |4dMdt)1/4(

∫
Mt

|∇W |2dMdt)1/2

≤ Cε(t)(

∫
Mt

|W |4dMdt)1/2 + 1

2

∫
Mt

|∇W |2dMdt (3.32)
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By the covering Lemma 2.2 and inequality (2.1), we have∫
Mt

|W |4dMdt ≤ C

t∫
0

∫
M

|W |2dM
(∫
M

|∇W |2dM +
∫
M

|W |2dM
)
dt

≤ C sup
0≤s≤t

∫
M

|W |2dM
( ∫
Mt

|∇W |2dMdt +
∫
Mt

|W |2dMdt
)

≤ C
(

sup
0≤s≤t

∫
M

|W |2dM +
∫
Mt

|∇W |2dM
)2

. (3.33)

Combing (3.32) with (3.33), we have

1

2

∫
M

|W |2(·, t)dM + 1

2

∫
Mt

|∇W |2dMdt ≤ ε(t)
(

sup
0≤s≤t

∫
M

|W |2(·, t)dM +
∫
Mt

|∇W |2dM
)
.

Without loss of generality, we may assume∫
M

|W |2(·, t)dM = sup
0≤s≤t

∫
M

|W |2(·, t)dM.

Since ε(t) → 0 as t → 0, then there exists S ∈ (0, T ] such that∫
M

|W |2(·, S)dM +
∫

MS

|∇W |2dMdt = 0

and W ≡ 0 in MS . Thus, � ≡ 0 in MS by the fact Ker(/D; B) = 0. Iterating we obtain the lemma. �
4. Local and global existence results

In this section, under the boundary-initial constraint (1.19), we show the local existence of our flow for some initial 
map φ0 ∈ H 1(M, N) and then show the existence of a global weak solution, completing the proof of Theorem 1.2.

Theorem 4.1 (Local existence). Suppose φ0 ∈ H 1(M, N), ϕ ∈ C2+α(∂M, N), ψ0 ∈ C1+α(∂M, �M ⊗ ϕ−1T N) and 
satisfy the boundary-initial constraint (1.19). Then there exists a unique solution (, �) ∈ ∪T ′<T1V (MT ′

) of (1.8)
with boundary-initial data (1.12) which is defined in M × [0, T1), satisfying

 ∈ C
2,1,α
loc (M × (0, T1),N) and � ∈ C

1,0,α
loc (M × (0, T1),�M ⊗ −1T N)

where T1 is characterized by the condition

lim
t↗T1

sup
(x,t)∈MT1

E((t);BM
R (x)) > ε for all R > 0 (4.1)

and ε = min{ε1, ε2, ε3} is a constant.
Moreover, E((t)) + 1

2

∫
∂M

〈−→n ·Bψ0, �〉 is absolutely continuous and non-increasing in [0, T1).

Proof.
Step 1: There exists a sequence φ0m ∈ C2+α(M) such that

φ0m → φ0 strongly in H 1(M);
ϕm := φ0m|∂M → ϕ strongly in C2+α(∂M).

In fact, let g ∈ C2+α(M) be a harmonic function satisfying (3.12). Since φ0 − g ∈ H 1
0 (M), choosing u0m ∈ C∞

0 (M)

such that u0m → φ0 − g in H 1(M), then φ0m = u0m + g is the desired sequence.
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Step 2: Local existence.

By Theorem 1.1, there exist Tm > 0 and m ∈ C
2,1,α
loc (M × (0, Tm)), �m ∈ C

1,0,α
loc (M × (0, Tm)) which solve (1.8)

with the boundary-initial data φ0m, ϕm, ψ0.
Since φ0m → φ0 strongly in H 1(M), there exists some R > 0 such that for all x ∈ M ,

E(φ0m;BM
2R(x)) <

ε

4
.

Then by Lemma 3.5, if T = O(R2ε), we have

sup
(x,t)∈MT

E(m(·, t);BM
R (x)) < ε. (4.2)

So, combining (4.2) with Lemma 3.5, Lemma 3.6 and Theorem 1.1, we may assume Tm ≥ T = O(R2ε). Using 
Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have

‖(m,�m)‖2
V (MT )

≤ C.

Furthermore, by Lemma 3.6, we have

‖�m‖C1,0,α(M×[δ,T ]) + ‖m‖C2,1,α(M×[δ,T ]) ≤ C(α,R, δ,T ). (4.3)

According to the weak compactness, there exists a subsequence of {(m, �m)} which for convenience we still denote 
by {(m, �m)}, and a function (, �) ∈ V (MT ) such that as m → ∞,

∂tm ⇀ ∂t weakly in L2(MT ),

∇2m ⇀ ∇2 weakly in L2(MT ),

∇m ⇀ ∇ weakly in L∞(0, T ;L2(M)),

�m ⇀ � weakly in L∞(0, T ;W 1,4/3(M)),

where L∞(0, T ; ‖ · ‖) := sup0≤t≤T ‖ · ‖. In addition, by the Sobolev embedding theory, we get

∇m → ∇ strongly in L2(MT ),

∇m ⇀ ∇ weakly in L4(MT ),

�m ⇀ � weakly in L2(MT ).

Then it is easy to check that (, �) ∈ V (MT ) is a weak solution of (1.8) with (1.12) in the sense of distributions. 
Moreover, from (4.3), we know  ∈ ∩0<s<T C2,1,α(M ×[s, T ]), � ∈ ∩0<s<T C1,0,α(M ×[s, T ]) and then (, �) is a 
classical solution of (1.8). The short-time existence Theorem 1.1 guarantees the existence of a solution to (1.8) using 
(T ) as the new initial data and the solution can be continued to a larger time interval. Repeating this argument, 
the solution can be continued until the first time of energy concentration, that is, when t = T1, the condition (4.1) is 
satisfied.

Finally, from Lemma 3.2 and Lemma 3.6, we have

E((t)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(t)

is absolutely continuous and non-increasing in [0, T1) and

 ∈ C
2,1,α
loc (M × (0, T1),N) and � ∈ C

1,0,α
loc (M × (0, T1),�M ⊗ −1T N). �

Remark 4.2. If ϕ ∈ C∞(∂M, N), ψ0 ∈ C∞(∂M, �M ⊗ ϕ−1T N), then the solution will be regular in M × (0, T1).

Next, we prove our main Theorem 1.2.
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Proof of Theorem 1.2. By Theorem 4.1, there exists an unique local solution (, �) on MT1 satisfying

 ∈ C
2,1,α
loc (M × (0, T1)) and � ∈ C

1,0,α
loc (M × (0, T1)),

where T1 is the first singular time. Next, we claim: there exist (·, T1) ∈ H 1(M, N) and �(·, T1) ∈ W 1,4/3(M, �M ⊗
(·, T1)

−1T N) such that

(·, t) ⇀ (·, T1) weakly in H 1(M),

�(·, t) ⇀ �(·, T1) weakly in W 1,4/3(M)

as t → T1.
In fact, by Lemma 3.2 and Lemma 3.3, for any sequence ti → T1, there exists a subsequence (also denoted by ti) 

such that (·, ti ) → (·, T1) weakly in H 1(M) and �(·, ti ) → �(·, T1) weakly in W 1,4/3(M) as i → ∞. So, we just 
need to show the weak limits (·, T1) and �(·, T1) are independent of the choice of the time sequence. Let si → T1
be another time sequence and the corresponding weak limit ̂(·, T1), then∫

M

|(·, T1) − ̂(·, T1)|2dM

=
∫
M

〈(·, T1) − ̂(·, T1),(·, T1) − (·, ti )〉dM +
∫
M

〈(·, T1) − ̂(·, T1),(·, ti )

− (·, si)〉dM +
∫
M

〈(·, T1) − ̂(·, T1),(·, si) − ̂(·, T1)〉dM (4.4)

for any i ≥ 1. Noting that∫
M

|(·, ti ) − (·, si)|2dM =
∫
M

|
ti∫

si

∂

∂t
dt |2dM ≤ |si − ti ||

∫
M

ti
si

|∂

∂t
|2dMdt |

and 
∫
MT1 | ∂

∂t
|2dMdt ≤ C (see Lemma 3.2), letting i → ∞ in (4.4), by Hölder’s inequality and the fact (·, ti) ⇀

(·, T1) weakly in H 1(M), we obtain∫
M

|(·, T1) − ̂(·, T1)|2dM = 0.

Thus, (·, T1) = ̂(·, T1), and with Lemma 2.10, the uniqueness of the weak limit �(·, T1) follows immediately.
Since T1 is a singular time, there exists at least one singular point {(x1, T1)} satisfying

lim sup
t↗T1

E((t);BM
R (x1)) > ε for all R > 0. (4.5)

Then, we have

E((T1)) = lim
R→0

E((T1),M \ BM
R (x1))

≤ lim
R→0

lim inf
t↗T1

E((t),M \ BM
R (x1))

= lim
R→0

lim inf
t↗T1

(
E((t)) − E((t),BM

R (x1))
)

≤ lim inf
t↗T1

E((t)) − lim
R→0

lim sup
t↗T1

E((t),BM
R (x1))

≤ lim inf
t↗T1

E((t)) − ε

and
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1

2

∫
∂M

〈−→n ·Bψ0,�〉(T1) = 1

2
lim inf
t↗T1

∫
∂M

〈−→n ·Bψ0,�〉(t)

where equality follows from the trace theory. Thus

E((T1)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(T1) ≤ lim inf
t↗T1

(
E((t)) + 1

2

∫
∂M

〈−→n · �Bψ0, 〉(t)
) − ε. (4.6)

By Theorem 4.1, we can continue (, �) to some larger time interval [0, T2] by solving (1.8) with the new initial data 
(T1) on [T1, T2] and piecing together the solutions at T1. It is easy to see that (, �) is a distribution solution to 
(1.8) on all of MT2 and satisfies

E((t)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(t) ≤ E((s)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(s)

for any 0 ≤ s ≤ t < T2. Iterating this process, we obtain a global solution defined on M × [0, ∞). Let {Tk}Kk=1 be the 
singular times at which (, �) can attain singularities. According to (4.6), we have

E((TK)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(TK) ≤ lim inf
t↗TK

(
E((t)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(t)) − ε1

≤ E((0)) + 1

2

∫
∂M

〈−→n ·Bψ0,�〉(0) −
K∑

k=1

ε.

Then

E((TK)) ≤ E((0)) + |1

2

∫
∂M

〈−→n ·Bψ0,�〉(TK)| + 1

2
|
∫

∂M

〈−→n ·Bψ0,�〉(0)| − Kε

≤ E(φ0) + √
2‖Bψ0‖2

L2(∂M)
− Kε.

This implies

K ≤
E(φ0) + √

2‖Bψ0‖2
L2(∂M)

ε
.

Hence there are at most finitely many singular times. �
5. Behavior of singularities

In this section, we shall study the behavior of singularities of the global weak solution derived in the previous 
section by using blow-up analysis. Theorem 1.3, Theorem 1.4, Theorem 1.5 and Corollary 1.6 will be proved in this 
section.

Proof of Theorem 1.3. Let T1 be a singular time, i.e.

lim sup
x∈M
t↗T1

E((t);BM
R (x)) > ε for all R > 0.

From Lemma 3.6, we know

 ∈ C
2,1,α
loc (M × [T1 − δ2, T1))

for some small δ > 0. Then by the standard blowup argument, there exist sequences ti ↗ T1, xi → x0 ∈ M , ri → 0
such that

E((ti),B
M
ri

(xi)) = sup
(x,t)∈M×[T1−δ2,ti ]

BM
r (x)⊂M, r≤ri

E((t),BM
r (x)) = ε

2
. (5.1)
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By Lemma 3.5, for any T1 − δ2 ≤ s ≤ ti < T1, we have

E((ti);BM
ri

(xi)) ≤ E((s);BM
2ri

(xi)) + Ĉ
ti − s

r2
i

,

where Ĉ := C
(
1 + E(φ0) + ‖ϕ‖2

H 3/2(M)
+ ‖Bψ0‖8

W 3/8,8/5(∂M)

)
> 0 is a constant. Denoting T = ε

4Ĉ
, then we have

E((s);BM
2ri

(xi)) ≥ ε

4
(5.2)

for any s ∈ [ti − T r2
i , ti].

We first prove the second statement (2).

Step 1: Let x0 ∈ ∂M and we prove the statement (1) under the assumption that

lim sup
i→∞

dist (xi, ∂M)

ri
→ ∞.

By taking subsequences, we may assume limi→∞ dist (xi ,∂M)
ri

→ ∞. Assume ti − δ2

4 > T1 − δ2, define

Bi := {x ∈ R
2|xi + rix ∈ BM

δ (x0)}
and

ui(x, t) : = (xi + rix, ti + r2
i t)

vi(x, t) : = √
ri �(xi + rix, ti + r2

i t).

Then (ui, vi) lives in Bi × [− δ2

4r2
i

, 0] which tends to R2 ×R− as i → ∞ and satisfies⎧⎪⎨⎪⎩
∂tui = τ(ui) −P(A(dui(eα), eα · vi);vi), in Bi × [− δ2

4r2
i

,0];
/∂vi =A(dui(eα), eα · vi), in Bi × [− δ2

4r2
i

,0],
(5.3)

with the boundary data{
ui(x, t) = ϕ(x1 + rix), if xi + rix ∈ ∂M;
Bvi(x, t) = √

riBψ0(xi + rix), if xi + rix ∈ ∂M.
(5.4)

By Lemma 3.2 and Lemma 3.3, we have

0∫
−T

∫
Bi

|∂tui |2dxdt ≤
ti∫

ti−r2
i T

∫
M

|∂t|2dMdt → 0, as i → ∞, (5.5)

and

sup
δ2

4r2
i

≤t≤0

‖vi‖L4(Bi)
≤ sup

T1−δ2≤t≤T1

‖�‖L4(M) ≤ C, (5.6)

sup
δ2

4r2
i

≤t≤0

‖dui‖L2(Bi)
≤ sup

T1−δ2≤t≤T1

‖d‖L2(M) ≤ C. (5.7)

By (5.1), we can see that

sup
−T ≤t≤0

sup
x∈Bi

∫
B1(x)∩Bi

|∇ui |2(y, t)dy ≤ sup
(x,t)∈BM

δ (x0)×[T1−δ2,ti ]
BM

r (x)⊂BM
δ (x0), r≤ri

E((t),BM
r (x)) = ε

2
.
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So, for any x ∈R
2, when i is sufficiently large, we have

sup
−T ≤t≤0

∫
B1(x)

|∇ui |2(y, t)dy ≤ ε

2
. (5.8)

Combining (5.6), (5.8) with Lemma 3.6, we have

sup
− T

2 ≤t≤0

‖vi(·, t)‖C1+α(B1/2(x)) + sup
− T

2 ≤t≤0

‖ui(·, t)‖C1+α(B1/2(x)) ≤ C (5.9)

which tells us

sup
− T

2 ≤t≤0

‖vi(·, t)‖C1+α
loc (R2)

+ sup
− T

2 ≤t≤0

‖ui(·, t)‖C1+α
loc (R2)

≤ C. (5.10)

From (5.10) and (5.5), we can find σi ∈ [−T
2 , 0] such that as i → ∞, there holds∫

Bi

|∂tui |2(x, σi)dx → 0 (5.11)

and

‖vi(·, σi)‖C1+α
loc (R2)

+ ‖ui(·, σi)‖C1+α
loc (R2)

≤ C. (5.12)

Therefore, there exists a subsequence of (ui(·, σi), vi(·, σi)) and a limit field (̃, ̃�) ∈ C1
loc(R

2) such that

ui(·, σi) → ̃ in C1
loc(R

2) and

vi(·, σi) → �̃ in C1
loc(R

2).

Setting t = σi in the equation (5.3) and letting i → ∞, it is easy to see that (̃, ̃�) is a Dirac-harmonic map with

ε

4
≤ ‖∇̃‖L2(R2) + ‖�̃‖L4(R2) ≤ C,

where the above inequality follows from (5.6), (5.7) and (5.2). Taking ti + r2
i σi as the new time sequence, then we get 

that

i(x) = ui(x, σi) = (xi + rix, ti + r2
i σi)

�i(x) = vi(x, σi) = √
ri�(xi + rix, ti + r2

i σi)

is the desired sequence in the theorem.

Step 2: If x0 ∈ ∂M , then lim supi→∞
dist (xi ,∂M)

ri
→ ∞.

If not, there exists a converging subsequence of dist (xi ,∂M)
ri

. Without loss of generality, we may assume 
dist (xi ,∂M)

ri
→ a as i → ∞. Then

Bi → R
2
a := {(x1, x2)|x2 ≥ −a}.

Noting that for any x ∈ {x2 = −a} on the boundary, xi + rix → x0 and

ui(x, t) = ϕ(xi + rix) if xi + rix ∈ ∂M;
Bvi(x, t) = √

riBψ0(xi + rix) if xi + rix ∈ ∂M;
By Lemma 3.6 and (5.1), for any BR(0) ⊂ R

2, R > 0, we have

sup
− T

2 ≤t≤0

‖vi(·, t)‖C1+α(BR(0)∩Bi)
+ sup

− T
2 ≤t≤0

‖ui(·, t)‖C1+α
loc (BR(0)∩Bi)

≤ C. (5.13)

Using a similar argument as in Step 1, we can obtain a C1 field (̃, ̃�) satisfying
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ε

4
≤ ‖∇̃‖L2(R2

a) + ‖�̃‖L4(R2
a) ≤ C, (5.14)

and a sequence σi ∈ [−T
2 , 0] such that as i → ∞, there hold

‖ui(·, σi) − ̃‖C1(Bi∩BR(0)) → 0

‖vi(·, σi) − �̃‖C1(Bi∩BR(0)) → 0,

for any R > 0 where BR(0) ⊂ R
2 is the standard ball with radius R and centered at 0. Moreover, (̃, ̃�) is a Dirac-

harmonic map satisfying{
τ(̃) =P(A(d̃(eα), eα · �̃); �̃), in R

2
a;

/∂�̃ =A(d̃(eα), eα · �̃), in R
2
a,

(5.15)

with the boundary data{
̃(x, t) = ϕ(x0), on ∂R2

a;
B�̃(x, t) = 0, on ∂R2

a.
(5.16)

Then, by Theorem 1.4, we get ̃ ≡ ϕ(x0) and �̃ ≡ 0. This contradicts (5.14). The second statement (2) is proved.
For the first statement (1), the argument is almost the same as in Step 1, so we omit it. The proof of theorem is 

finished. �
Now, we begin to prove Theorem 1.4.

Proof of Theorem 1.4. Denoting

f (z) := i
z − i

z + i
:R2+ → B1(0)

where B1(0) = {u + iv|u2 + v2 ≤ 1} ⊂R
2 is the unit ball, it is well known that f is conformal satisfying

(f −1)∗(dzdz) = 4

(u2 + (v − 1)2)2
(du2 + dv2)

and f (i) = 0, {f (x1, x2)|x1 ∈ R, x2 = 0} = ∂B1 \ {i}. Defining

′ =  ◦ f −1 and � ′ = u2 + (v − 1)2

2
� ◦ f −1,

then (′, � ′) : B1 \ {i} → N × −1T N is a smooth Dirac-harmonic map with the boundary data ′|∂B1\{i} = const.
and B� ′|∂B1\{i} = 0 satisfying∫

B1

|∇′|2dx +
∫
B1

|� ′|4dx < ∞.

It is known that the equation of ′ can be written as an elliptic system with an anti-symmetric potential [27,11,23]:

	′ = � · ∇′,

with � ∈ L2(B1, so(N) ⊗ R
2) satisfying |�| ≤ C(|∇′| + |� ′|2). Then by taking pure Dirichlet conditions in the 

boundary regularity Theorem 1.2 in [23] (or see Remark 1.3 in [21]) and bootstrapping, we get ′ ∈ W 2,p(B1) for 
any 1 < p < ∞. By the boundary elliptic estimates of first order equations of � ′, we shall get � ′ ∈ W 1,p(B1) for 
any 1 < p < ∞. Furthermore, by the standard bootstrap method, we can get higher regularity, i.e. (′, � ′) can be 
smoothly extended to B1. By Lemma 2.6, we get � ′ = 0 in B1. Thus, ′ is a harmonic map from B1 to N with 
constant boundary data. By the result of Lemaire [19], ′ is a constant map. Then  must be a constant map, � ≡ 0
and we finished the proof. �
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Without the continuity of local energy near the singular time (see Lemma 3.5), we don’t know whether the singular 
set at time infinity (if T = ∞ is a singular time) is a finite set or not (see [13,26] for a similar phenomenon in the 
cases of higher order heat flows). However, thanks to the weak compactness Theorem 1.9 in [27], we can still prove 
the existence Theorem 1.5.

Proof of Theorem 1.5. By Theorem 1.2 and Lemma 3.3, we know

∞∫
0

∫
M

|∂t|2dMdt + sup
0≤t<∞

E((·, t)) + sup
0≤t<∞

‖�(·, t)‖
W

1, 4
3 (M)

≤ C < ∞.

Thus, there exists a time sequence ti ↗ ∞ and (∞, �∞) ∈ W 1,2(M) × W 1,4/3(M) with boundary data ∞|∂M =
ϕ ∈ C2+α(∂M) and B�∞|∂M = Bψ0 ∈ C1+α(∂M), such that

‖∂t(·, ti )‖L2(M) → 0

and

((·, ti ),�(·, ti )) ⇀ (∞,�∞)

weakly in W 1,2(M) × W 1,4/3(M).
By weak compactness Theorem 1.9 in [27], we know (∞, �∞) is a weakly Dirac-harmonic map from M with 

boundary data ∞|∂M = ϕ ∈ C2+α(∂M) and B�∞|∂M = Bψ0 ∈ C1+α(∂M). Then, using the same argument as in 
the proof of Theorem 1.4, we get ∞ ∈ C2+α(M) and �∞ ∈ C1+α(M). This finishes the proof. �
Proof of Corollary 1.6. We shall first show that the constant ε0 = ε0(N) > 0 is well-defined. We claim: there exists 
a constant ε(N) > 0 such that, for any smooth Dirac-harmonic map sphere (φ, ψ) : S2 → N , if E(φ) ≤ ε(N), then 
both φ and ψ are trivial.

In fact, by Proposition 5.2 in [16], we have

‖ψ‖L4/3(S2) ≤ C‖/∂ψ‖L4/3(S2),

where C > 0 is a universal constant. By standard elliptic estimates and Sobolev embedding, we have

‖ψ‖L4(S2) ≤ C‖ψ‖W 1,4/3(S2)

≤ C(‖/∂ψ‖L4/3(S2) + ‖ψ‖L4/3(S2))

≤ C‖/∂ψ‖L4/3(S2)

≤ C‖|dφ||ψ |‖L4/3(S2)

≤ C‖dφ‖L2(S2)‖ψ‖L4(S2) ≤ Cε(N)‖ψ‖L4(S2).

Choosing ε(N) > 0 sufficiently small, we have ψ = 0. So

‖|dφ|‖W 1,4/3(S2) ≤ C‖	φ‖L4/3(S2)

≤ C‖|dφ|2‖L4/3(S2)

≤ C‖|dφ|‖L2(S2)‖|dφ|‖L4(S2)

≤ C‖|dφ|‖L2(S2)‖|dφ|‖W 1,4/3(S2) ≤ Cε(N)‖|dφ|‖W 1,4/3(S2).

Again, taking ε(N) > 0 sufficiently small, φ has to be a constant map.
Next, it is sufficient to prove that no blow-up will occur along the flow. In fact, if the flow blows up at some singular 

time T ≤ ∞, then by Theorem 1.5, some nontrivial Dirac-harmonic spheres appear. Assume (̃, ̃�) is one, then by 
Theorem 1.5, it is easy to see that

E(̃) ≤ lim sup
t→T

E().

However, by Lemma 3.2, we have
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ε0 ≤ E(̃) ≤ lim sup
t→T

E() ≤ E(φ0) + √
2‖Bψ0‖2

L2(∂M)
< min {�2, ε0}.

This is a contradiction which finishes the proof. �
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