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Abstract

This article proves the existence of solutions to a model of incompressible miscible displacement through a porous medium, with 
zero molecular diffusion and modelling wells by spatial measures. We obtain the solution by passing to the limit on problems in-
dexed by vanishing molecular diffusion coefficients. The proof employs cutoff functions to excise the supports of the measures and 
the discontinuities in the permeability tensor, thus enabling compensated compactness arguments used by Y. Amirat and A. Ziani 
for the analysis of the problem with L2 wells (Amirat and Ziani, 2004 [1]). We give a novel treatment of the diffusion–dispersion 
term, which requires delicate use of the Aubin–Simon lemma to ensure the strong convergence of the pressure gradient, owing to 
the troublesome lower-order terms introduced by the localisation procedure.
Crown Copyright © 2017 Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. The miscible displacement problem

We study the single-phase, miscible displacement of one incompressible fluid by another through a porous medium, 
as occurs in enhanced oil recovery processes. Neglecting gravity, the model reads [10,18]

u(x, t) = − K(x)

μ(c(x, t))
∇p(x, t)

div u(x, t) = (qI − qP )(x, t)

⎫⎬⎭ , (x, t) ∈ � × (0, T ), (1.1a)

�(x)∂t c(x, t) − div
(
D(x,u(x, t))∇c − cu

)
(x, t) + (qP c)(x, t) = (qI ĉ)(x, t), (x, t) ∈ � × (0, T ), (1.1b)
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subject to the no-flow boundary conditions

u(x, t) · n = 0, (x, t) ∈ ∂� × (0, T ), and (1.1c)

D(x,u(x, t))∇c(x, t) · n = 0, (x, t) ∈ ∂� × (0, T ), (1.1d)

the initial condition

c(x,0) = c0(x), x ∈ �, (1.1e)

and a normalisation condition to eliminate arbitrary constants in the solution p of the elliptic equation (1.1a):∫
�

p(x, t)dx = 0 for all t ∈ (0, T ). (1.1f)

The unknowns of the system are the pressure p and Darcy velocity u of the fluid mixture, and the concentration c
of one of the components in the fluid mixture. The reservoir is represented by �, a bounded connected open subset 
of Rd , d = 2 or 3, and the recovery process occurs over the time interval (0, T ). The reservoir-dependent quantities 
of porosity and absolute permeability are � and K, respectively. We denote by qI and qP the sums of injection well 
source terms and production well sink terms (henceforth collectively referred to as source terms), respectively, and 
write ĉ for the concentration of the injected fluid.

The coefficient D in (1.1b) is the diffusion–dispersion tensor, derived by Peaceman [17] as

D(x,u) = �(x)

(
dmI + |u|

(
dlE(u) + dt (I − E(u))

))
, (1.1g)

where

E(u) =
(

uiuj

|u|2
)

1≤i,j≤d

(1.1h)

is the projection in the direction of flow. The constants dm, dl and dt are the molecular diffusion coefficient and the 
longitudinal and transverse mechanical dispersion coefficients, respectively. After Koval [16] (see also [5,20]), the 
concentration-dependent viscosity μ of the fluid mixture often assumes the form

μ(c) = μ(0)
(

1 + (
M1/4 − 1

)
c
)−4

for c ∈ [0,1], (1.1i)

where the mobility ratio M := μ(0)
μ(1)

> 1. Finally, the boundary condition (1.1c) enforces a compatibility condition 
upon the source terms:∫

�

qI (x, t)dx =
∫
�

qP (x, t)dx for all t ∈ (0, T ). (1.1j)

1.2. Principal contributions

Our main result, Theorem 2.2, is the existence of weak solutions to (1.1) when dm = 0 and qI and qP are modelled 
spatially as bounded, nonnegative Radon measures on �. Indeed, the novelty of this article is the presence of both 
these features simultaneously; Amirat and Ziani [1] analyse the system as dm → 0 with qI , qP ∈ L∞(0, T ; L2(�)), 
and our previous work [9] establishes existence for dm > 0 and measure source terms. Fabrie and Gallouët [11]
assume that the diffusion–dispersion tensor is uniformly bounded to address the latter scenario. The first existence 
result for (1.1) as written above is due to Feng [12], focussing mostly on the two-dimensional problem with sources 
in L∞(0, T ; L2(�)). The subsequent analysis of Chen and Ewing [5] is valid for very general boundary conditions in 
three dimensions, but assumes dm > 0 and regular source terms. Uniqueness is known for “strong” solutions [12], but 
appears to be open for weak solutions even with dm > 0 fixed [1,5,12].

We prove Theorem 2.2 by passing to the limit as dm → 0 on a sequence of problems with measure source terms 
defined in Section 3. In further contrast to Amirat–Ziani who take � ≡ 1 and K continuous, we only assume that 
the porosity is bounded, and we allow for discontinuous permeabilities of the kind that one expects in practice [6]. 
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Working in such a low-regularity environment leads to the challenge of identifying the limits of the nonlinear terms 
− K

μ(c)
∇p and D(·, u)∇c as dm → 0. For this task we use smooth cutoff functions — first appearing in Section 4.1 — 

to excise both the supports of the measures and the discontinuities in K, thereby localising the problem to where the 
data is smooth enough for us to employ a compensated compactness-type lemma (Lemma B.1).

This localisation procedure nonetheless introduces problems of its own in the form of lower-order terms that inhibit 
a straightforward proof of strong convergence of the pressure gradients, as is the case for L2 sources. We handle these 
lower-order terms by exploiting the uniqueness of the solution to the elliptic problem in combination with careful use 
of the Aubin–Simon compactness lemma to first prove strong convergence of the pressure itself in Section 4.4.

Strong convergence of the pressure gradients (and then the Darcy velocities) is crucial for our treatment of the 
diffusion–dispersion term D(·, u)∇c in Section 4.5, which we believe is also novel. In particular, we fill a gap in the 
work of Amirat–Ziani by giving meaning to ∇c in the limit as dm → 0. When the molecular diffusion is neglected, the 
concentration gradient is only well-defined as a function in non-stagnant zones of the reservoir; that is, where u 	= 0. 
We introduce a new notion in Section 2.2 that resolves this difficulty.

1.3. Why vanishing molecular diffusion and singular wells?

The interest in studying (1.1) with dm = 0 is twofold. In practice, the mechanical dispersion coefficients will be at 
least an order of magnitude larger than dm, so the effects of molecular diffusion are negligible compared to those of 
mechanical dispersion [2,19,24]. Moreover, in practical simulations of (1.1) the mesh size is such that the effects of 
molecular diffusion are dominated by numerical diffusion, so dm is often neglected from the simulation [20,21].

Scale differences motivate the decision to model qI and qP as measures. The diameter of typical reservoir 
(∼ 103 m) is several orders of magnitude larger than that of a typical wellbore (∼ 10−1 m). At field scale the wells are 
thus effectively point (resp. line) sources in two (resp. three) dimensional models.

2. Assumptions and main result

2.1. Assumptions on the data

We make the following assumptions on the data:

T ∈ R
∗+ and � is a bounded, connected, open subset of Rd, d ≤ 3,

with a Lipschitz continuous boundary.
(2.1a)

Writing DK for the closure of the set of discontinuities of K, we assume that DK has zero Lebesgue measure (in 
practice, DK is contained in a finite union of hypersurfaces). Write Sd(R) for the set of d × d symmetric matrices. 
The permeability satisfies

K : � → Sd(R) is locally Lipschitz continuous on � \DK, and ∃k∗ > 0 such that,

for a.e. x ∈ � and for all ξ ∈R
d, k∗|ξ |2 ≤ K(x)ξ · ξ ≤ k−1∗ |ξ |2. (2.1b)

The porosity � is such that

� ∈ L∞(�) and there exists φ∗ > 0 such that for a.e. x ∈ �,φ∗ ≤ �(x) ≤ φ−1∗ . (2.1c)

Particularly important to our analysis are the assumptions on the viscosity:

μ ∈ C2([0,1]; (0,∞)) is such that μ′′ > 0 and (1/μ)′′ > 0.

We write μ∗ and μ∗ for the minimum and maximum of μ, respectively.
(2.1d)

This implies the strict convexity of μ and 1/μ. Note that the form (1.1i) satisfies (2.1d). By setting dm = 0 in (1.1g), 
we introduce the mechanical dispersion tensor

D◦(x,u) = �(x)|u|
(
dlE(u) + dt (I − E(u))

)
, (2.1e)

and note that it satisfies
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D◦ : � ×R
d → Sd(R) is a Carathéodory function such that for a.e. x ∈ � and for all ζ, ξ ∈R

d ,

D◦(x, ζ )ξ · ξ ≥ φ∗ min(dl, dt )|ζ ||ξ |2 and |D◦(x, ζ )ξ | ≤ φ−1∗ max(dl, dt )|ζ ||ξ |. (2.1f)

The injected and initial concentration are such that

ĉ ∈ L∞(0, T ;C(�)) satisfies 0 ≤ ĉ(x, t) ≤ 1 for a.e. (x, t) ∈ � × (0, T ), (2.1g)

c0 ∈ L∞(�) satisfies 0 ≤ c0(x) ≤ 1 for a.e. x ∈ �. (2.1h)

The source terms are such that

qI = aν and qP = bν, where

a, b ∈ L∞(0, T ;C(�)) are nonnegative on � × (0, T ),

ν ∈ M+(�) ∩ (W 1,	(�))′ for all 	 > 2,

and supp (ν) has zero Lebesgue measure.

(2.1i)

Here M+(�) is the set of bounded nonnegative Radon measures on �. The compatibility condition imposed by (1.1c)
becomes∫

�

a(x, t)dν(x) =
∫
�

b(x, t)dν(x) ∀t ∈ (0, T ). (2.1j)

Remark 2.1. We impose the condition ν ∈ (W 1,	(�))′ for all 	 > 2 in order to employ a sharp uniqueness result for 
the elliptic equation with measure data. This uniqueness result — which compensates for the absence of estimates on 
∂tp — is instrumental to establishing the strong convergence of the pressure. This (W 1,	(�))′ regularity is satisfied by 
all measures in two dimensions, and by all measures that can reasonably be used to model wells in three dimensions; 
see [11].

For a topological vector space X(�) of functions on �, we write (X(�))′ for its topological dual. When writing the 
duality pairing 〈·, ·〉(X(�))′,X(�), we omit the spaces if they are clear from the context. When z ∈ (1, ∞) is a Lebesgue 
exponent, we write z′ = z

z−1 for its conjugate. We denote by W 1,z

 (�) those elements of W 1,z(�) whose integral over 

� vanishes. For k ∈ R and g : � → R, we denote by {g = k} the level set {x ∈ � | g(x) = k}; similarly for sublevel 
sets {g ≤ k}, {g < k} and superlevel sets {g ≥ k}, {g > k}. When a constant appears in an estimate we track only its 
relevant dependencies. In particular, we do not indicate dependencies with respect to φ∗, dl , dt , T , �, k∗, μ∗, μ∗ or ĉ, 
as these quantities remain constant throughout the paper. When stating that a certain constant depends only on some 
quantity X, it is implicitly understood that this dependency is nondecreasing.

Before detailing our results, we must first introduce a new concept that is key to our notion of solution when 
dm = 0.

2.2. The concentration gradient in the absence of molecular diffusion

Consider dm = ε > 0. Write (pε, uε, cε) for the corresponding solution to (1.1) (the existence of which we dis-
cuss shortly), and Dε(·, uε) the corresponding diffusion–dispersion tensor. A straightforward computation using the 
definition (1.1g) shows that

T∫
0

∫
�

Dε(·,uε)∇cε · ∇cε ≥ ε

T∫
0

∫
�

|∇cε|2 + min(dl, dt )

T∫
0

∫
�

|uε||∇cε|2.

Thus, in order to obtain estimates on ∇cε as ε → 0, it seems necessary to first restrict attention to regions where 
|uε| > η > 0. This leads to the following definition, which we use in the treatment of the diffusion–dispersion term to 
give meaning to ∇c in the limit as dm → 0.
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Definition 2.1. Let f, v ∈ L2(0, T ; L2(�)), with v ≥ 0. We say that f has a {v > 0}-gradient if

• there are sequences (fε)ε>0 in L2(0, T ; H 1(�)) and (vε)ε>0 in L1(� × (0, T )) such that as ε → 0,

fε ⇀ f weakly in L2(0, T ;L2(�)),

vε → v a.e. on � × (0, T );
• there is a sequence (ηi)i∈N in R with ηi → 0+ as i → ∞ such that for every i ∈ N, meas({v = ηi}) = 0, and for 

some function χηi
∈ L2(0, T ; L2(�)d),

1{vε>ηi }∇fε ⇀ χηi
weakly in L2(0, T ;L2(�)d) as ε → 0.

We then denote ∇{v>ηi}f := χηi
the {v > ηi}-gradient of f and define the {v > 0}-gradient of f as the function 

∇{v>0}f satisfying

∇{v>0}f =
{

∇{v>ηi }f on {v > ηi} ∀i ∈N,

0 on {v = 0}.

Appendix A establishes some important properties that this construction satisfies.

Remark 2.2. If f is a regular function then ∇{v>0}f = ∇f on {v > 0}.

2.3. Main result

The principal contribution of this article is the following existence result.

Theorem 2.2. Under Hypotheses (2.1), there exists a weak solution (p, u, c) to (1.1) with dm = 0 in the following 
sense:

c ∈ L∞(� × (0, T )) , 0 ≤ c(x, t) ≤ 1 for a.e. (x, t) ∈ � × (0, T ),

c ∈ L∞(0, T ;L1(�, ν)) , 0 ≤ c(x, t) ≤ 1 for ν-a.e. x ∈ �, for a.e. t ∈ (0, T ),
(2.2a)

�∂tc ∈ L2(0, T ; (W 1,s(�))′) ∀s > 2d, (2.2b)

�c ∈ C([0, T ]; (W 1,s(�))′), �c(·,0) = �c0 in (W 1,s(�))′ ∀s > 2d, (2.2c)

c has a {|u| > 0}-gradient, and

D◦(·,u)∇{|u|>0}c ∈ L2(0, T ;Lr(�)d) ∀r <
2d

2d − 1
,

(2.2d)

p ∈ L∞(0, T ;W 1,q

 (�)), u ∈ L∞(0, T ;Lq(�)d) ∀q <

d

d − 1
, (2.2e)

T∫
0

〈�∂tc(·, t), ϕ(·, t)〉dt +
T∫

0

∫
�

D◦(x,u(x, t))∇{|u|>0}c(x, t) · ∇ϕ(x, t)dx dt

−
T∫

0

∫
�

c(x, t)u(x, t) · ∇ϕ(x, t)dx dt +
T∫

0

∫
�

c(x, t)ϕ(x, t)b(x, t)dν(x)dt

=
T∫ ∫

ĉ(x, t)ϕ(x, t)a(x, t)dν(x)dt ∀ϕ ∈
⋃

s>2d

L2(0, T ;W 1,s(�)),

(2.2f)
0 �
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u(x, t) = − K(x)

μ(c(x, t))
∇p(x, t),

−
T∫

0

∫
�

u(x, t) · ∇ψ(x, t)dx dt =
T∫

0

∫
�

(a − b) (x, t)ψ(x, t)dν(x)dt ∀ψ ∈
⋃
q>d

L1(0, T ;W 1,q (�)).

(2.2g)

To reiterate, the duality product in the first term of (2.2f) is between W 1,s(�) and its dual.

Remark 2.3. Following Remark 2.2, if c is regular then ∇{v>0}c can be replaced with ∇c in (2.2f).

3. Approximate problems and associated estimates

We obtain the solution (p, u, c) to (2.2) by passing to the limit on approximate problems defined below. Let ε > 0. 
Replace the molecular diffusion coefficient dm in (1.1g) with ε to obtain a family of diffusion–dispersion tensors:

Dε(x,u) := �(x)

(
εI + |u|

(
dlE(u) + dt (I − E(u))

))
. (3.1)

Then for almost every x ∈ �, for all ξ, ζ ∈ R
d ,

Dε(x, ζ )ξ · ξ ≥ φ∗(ε + min(dl, dt )|ζ |)|ξ |2, (3.2)

|Dε(x, ζ )| ≤ φ−1∗ (ε + max(dl, dt )|ζ |). (3.3)

Moreover, writing D1/2
ε for the square-root of Dε (which is well-defined since Dε is positive-definite), one can show 

that

|D1/2
ε (·, ζ )| ≤ φ

−1/2∗ (ε + max(dl, dt )|ζ |)1/2. (3.4)

In order to define our approximate problems, we need access to the solution when the source terms are regular and 
the molecular diffusion is fixed. To this end, replace D by Dε in (1.1) and fix both ε and νn ∈ L2(�) (where n ∈ N

will vary in subsequent notions of solution). Then Feng [12] and Chen and Ewing [5] show that there exists a weak 
solution (pn

ε , un
ε , c

n
ε ) to (1.1) satisfying

cn
ε ∈ L2(0, T ;H 1(�)), 0 ≤ cn

ε (x, t) ≤ 1 for a.e. (x, t) ∈ � × (0, T ),

�∂tc
n
ε ∈ L2(0, T ; (W 1,4(�))′),

�cn
ε ∈ C([0, T ]; (W 1,4(�))′), �cn

ε (·,0) = �c0 in (W 1,4(�))′,
Dε(·,un

ε )∇cn
ε ∈ L2(0, T ;L4/3(�)d),

pn
ε ∈ L∞(0, T ;H 1


 (�)), un
ε ∈ L∞(0, T ;L2(�)d),

(pn
ε ,un

ε , c
n
ε ) satisfies (2.2f) for all ϕ ∈ L2(0, T ;W 1,4(�))

with D◦ and ∇{|u|>0}c replaced by Dε and ∇cn
ε , respectively,

(pn
ε ,un

ε , c
n
ε ) satisfies (2.2g) for all ψ ∈ L1(0, T ;H 1(�)).

(3.5)

Keeping Dε (with ε fixed), consider now ν ∈ M+(�). Our previous work [9] shows that for every ε > 0, there exists 
a solution (pε, uε, cε) to (1.1) in the following sense:

cε ∈ L2(0, T ;H 1(�)), 0 ≤ cε(x, t) ≤ 1 for a.e. (x, t) ∈ � × (0, T ),

cε ∈ L∞(0, T ;L1(�, ν)), 0 ≤ cε(x, t) ≤ 1 for ν-a.e. x ∈ �, for a.e. t ∈ (0, T ),
(3.6a)

�∂tcε ∈ L2(0, T ; (W 1,s(�))′) ∀s > 2d, (3.6b)

�cε ∈ C([0, T ]; (W 1,s(�))′), �cε(·,0) = �c0 in (W 1,s (�))′ ∀s > 2d, (3.6c)

Dε(·,uε)∇cε ∈ L2(0, T ;Lr(�)d) ∀r <
2d

, (3.6d)

2d − 1
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pε ∈ L∞(0, T ;W 1,q

 (�)), uε ∈ L∞(0, T ;Lq(�)d) ∀q <

d

d − 1
, (3.6e)

(pε,uε, cε) satisfies (2.2f) with D◦ and ∇{|u|>0}c replaced by Dε and ∇cε, respectively, (3.6f)

(pε,uε, cε) satisfies (2.2g). (3.6g)

Remark 3.1. Standard arguments show that the integral relation in (3.6g) is equivalent to

−
∫
�

uε(x, t) · ∇ψ(x)dx =
∫
�

(a − b)(x, t)ψ(x)dν(x), for a.e. t ∈ (0, T ), ∀ψ ∈
⋃
q>d

W 1,q (�). (3.7)

We are now ready to define precisely the approximate problems that we work with in the subsequent analysis. The 
following two definitions provide the details.

Definition 3.1 (Solution-by-truncation to (3.5)). Assume (2.1). Fix νn ∈ L2(�), ε > 0 and take k ∈ N. Define the 
truncated tensor, for (x, ζ ) ∈ � ×R

d , by

Dk
ε(x, ζ ) = Dε

(
x,min(|ζ |, k)

ζ

|ζ |
)

. (3.8)

Then a solution-by-truncation to (3.5) is a triple (pn
ε , un

ε , c
n
ε ) that satisfies (3.5) and such that, for some solution 

(pn,k
ε , un,k

ε , cn,k
ε ) to (3.5) with Dε replaced by Dk

ε , along a subsequence as k → ∞,

pn,k
ε → pn

ε strongly in L2(0, T ;H 1(�)),

un,k
ε → un

ε strongly in L2(0, T ;L2(�)d), and

cn,k
ε → cn

ε a.e. on � × (0, T ) and weakly in L2(0, T ;H 1(�)).

(3.9)

Remark 3.2. Our previous work [9, Section 3.3] establishes the existence of a solution-by-truncation to (3.5). The 
interest in considering νn ∈ L2(�) and a truncated (and therefore bounded) diffusion–dispersion tensor is twofold. 
It enables us to consider test functions ϕ ∈ L2(0, T ; H 1(�)) for the concentration equation, so that ϕ = cn,k

ε is an 
admissible test function. The concentration equation then shows that �∂tc

n,k
ε ∈ L2(0, T ; (H 1(�))′).

Definition 3.2 (Solution-by-approximation to (3.6)). Assume (2.1). A solution-by-approximation to (3.6) is a 
triple (pε, uε, cε) satisfying (3.6) and such that there exists (νn)n∈N ⊂ L2(�), (an)n∈N ⊂ L∞(0, T ; C(�)) and 
(pn

ε , un
ε , c

n
ε )n∈N, with

• νn ≥ 0, νn → ν in (C(�))′ ∩ (W 1,	(�))′ weak-∗ as n → ∞ (for all 	 > 2), and for all η > 0 there exists N ∈ N

such that if n ≥ N , supp (νn) ⊂ supp (ν) + B(0, η),
• an ≥ 0, (an)n∈N is bounded in L∞(0, T ; C(�)) and an → a a.e. on � × (0, T ) as n → ∞,
• (νn, an, b) satisfy the compatibility condition (2.1j),
• (pn

ε , un
ε , c

n
ε ) is a solution-by-truncation to (3.5) with (ν, a) replaced by (νn, an),

and, along a sequence as n → ∞,

pn
ε → pε strongly in L2(0, T ;W 1,q(�)) for all q < d

d−1 ,

un
ε → uε strongly in L2(0, T ;Lq(�)d) for all q < d

d−1 , and

cn
ε → cε a.e. on � × (0, T ) and weakly in L2(0, T ;H 1(�)).

(3.10)
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Table 1
Notions of solution to (1.1).

Data Solution

Dk
ε , ε = dm > 0, νn ∈ L2(�) (p

n,k
ε ,un,k

ε , c
n,k
ε )⏐⏐⏐�k → ∞

ε = dm > 0, νn ∈ L2(�) solution-by-truncation (pn
ε ,un

ε , cn
ε )⏐⏐⏐�n → ∞

ε = dm > 0, ν ∈ M+(�) solution-by-approximation (pε,uε, cε)⏐⏐⏐�ε → 0

dm = 0, ν ∈ M+(�) solution (p,u, c) to (2.2)

Remark 3.3. The existence of a solution-by-approximation to (3.6) is known [9, Section 4.3]. Fabrie–Gallouët [11, 
Section 5] establish the existence of an approximation (νn, an) of (ν, a) that satisfies the requirements of Defini-
tion 3.2.

Table 1 helps to visualise the relationship between these notions of solution to (1.1). Access to the solution 
(pn,k

ε , un,k
ε , cn,k

ε ) of the truncated problem is only required for Lemma 4.2 and the first step of Lemma 4.3. The 
rest of the analysis is largely conducted on the solution-by-approximation (pε, uε, cε).

We now recall the estimates necessary for our subsequent analysis. Taking cn,k
ε as a test function in its own equation 

[9, Eq. (3.8)] (see Remark 3.2) gives a bound on Dk
ε(·, un,k

ε )∇cn,k
ε · ∇cn,k

ε in L1(� × (0, T )) that is independent of k, 
n and ε. Passing to the limit as k → ∞ and then as n → ∞ (in that order) gives∥∥∥D1/2

ε (·,uε)∇cε

∥∥∥
L2(0,T ;L2(�)d )

= ∥∥Dε(·,uε)∇cε · ∇cε

∥∥
L1(�×(0,T ))

≤ C1, (3.11)

where C1 does not depend on ε. It is well-known [3,4,11] that for all q ∈ [1, d
d−1 ) there exists a constant C2 not 

depending on ε such that∥∥pε

∥∥
L∞(0,T ;W 1,q (�))

≤ C2 and
∥∥uε

∥∥
L∞(0,T ;Lq(�)d )

≤ C2. (3.12)

Estimates (3.4) and (3.12) give a bound on |D1/2
ε (·, uε)| in L∞(0, T ; Ls(�)) for all s < 2d/(d − 1). Combined with 

(3.11), the decomposition Dε(·, uε)∇cε = D1/2
ε (·, uε)D

1/2
ε (·, uε)∇cε and Hölder’s inequality, this shows that for all 

r < 2d
2d−1 , there exists a constant C3 not depending on ε such that∥∥Dε(·,uε)∇cε

∥∥
L2(0,T ;Lr(�)d )

≤ C3. (3.13)

Applying the coercivity (3.2) to (3.11) gives∥∥∥|uε|1/2∇cε

∥∥∥
L2(0,T ;L2(�)d )

≤ C
1/2
1 φ

−1/2∗ min(dl, dt )
−1/2. (3.14)

As for (3.13), from estimates (3.12) and (3.14), for every r ∈ [1, 2d
2d−1 ) we obtain the existence of a constant C4 not 

depending on ε such that∥∥|uε|∇cε

∥∥
L2(0,T ;Lr(�)d )

≤ C4. (3.15)

Finally, from (3.6f) and the previous estimates, for every s > 2d there is a constant C5 not depending on ε such that∥∥�∂tcε

∥∥
L2(0,T ;(W 1,s (�))′) ≤ C5. (3.16)

Remark 3.4. Using the regularity result of Monier and Gallouët [13] and the fact that ν ∈ (W 1,	(�))′ for all 	 > 2, as 
in Fabrie–Gallouët [11] we see that (3.12) holds for any q < 2. In order to demonstrate that this additional regularity 
is required in only a few places, we retain (3.12) and all subsequent estimates with q < d/(d − 1).

By using the Stampacchia formulation of the solution to linear elliptic equations with measures [23], we previously 
analysed [9] the model (1.1) for dm > 0. This Stampacchia formulation provides the uniqueness of the solution to 
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linear elliptic equations with measure data, without the additional (W 1,	(�))′ regularity assumption. However, it is 
unclear if our reasoning below could be adapted to this formulation, rather than the (more natural) (4.24).

4. Proof of Theorem 2.2

4.1. Improving local elliptic regularity

Multiplying the elliptic equation (1.1a) by an appropriately chosen cutoff function θ excises the singularities caused 
by the measure sources and localises the problem to regions where the absolute permeability K is regular. Our next 
lemma follows an analogous procedure to Amirat–Ziani by rewriting the pressure equation in a form that yields higher 
local regularity of the solution.

Lemma 4.1. Assume (2.1). For ε > 0, let (pε, uε, cε) be a solution-by-approximation to (3.6). Let θ ∈ C∞
c (�) be such 

that supp (θ) ∩ (DK ∪ supp (ν)) = ∅ and take r < 2d
2d−1 . Then there exists C6, depending on θ and r but not on ε, such 

that ∥∥θpε

∥∥
L∞(0,T ;H 1(�))

≤ C6, (4.1)∥∥θpε

∥∥
L2(0,T ;W 2,r (�))

≤ C6, (4.2)∥∥θuε

∥∥
L2(0,T ;W 1,r (�)d )

≤ C6. (4.3)

Proof. Step 1: proof of (4.1).
Consider (3.7) with a and ν replaced by an and νn. For almost every t ∈ (0, T ), the local elliptic estimates in [7, 

Theorem 2] show that pn
ε satisfies (4.1) with a bound not depending on n or ε. Passing to the limit as n → ∞ shows 

that (4.1) holds.
Step 2: derivation of localised equation.
Take θ satisfying the hypotheses of the lemma, and consider (1.1a) with p, u and c replaced by pε , uε and cε , 

respectively. Multiplying the first equation by θ gives, in the sense of distributions,

θuε = −θ
K

μ(cε)
∇pε = − K

μ(cε)
∇(θpε) + pε

K
μ(cε)

∇θ.

Multiplying the second equation by θ yields

div(θuε) − uε · ∇θ = θ(a − b)ν.

The property of supp (ν) and the choice of θ show that θν = 0, so the right-hand side of the previous equality vanishes. 
Combining these expressions using standard computations that are justified (in the sense of distributions) by the 
regularity (4.1), then simplifying where appropriate using the definition of uε leads to

−div (K∇(θpε)) = −pε div (K∇θ) + θμ′(cε)uε · ∇cε + 2μ(cε)uε · ∇θ. (4.4)

In order to apply Grisvard’s estimates we require that the diffusion matrix belongs to the class C0,1(�; Sd(R)). Note 
that each term in (4.4) contains θ , so that both sides vanish outside the support of θ . We may therefore replace K
in (4.4) by a uniformly coercive Lipschitz tensor K̃ that agrees with K on supp (θ) whilst retaining equality. Take 
ρ ∈ C∞

c (�) with 0 ≤ ρ ≤ 1 and such that supp (θ) ⊂ ω ⊂ supp (ρ) ⊂ � \DK, where ω is an open set such that ρ ≡ 1
on ω. Define

K̃ := ρK + (1 − ρ)I. (4.5)

Then K̃ ∈ C0,1(�; Sd(R)) and satisfies K̃ = K on supp (θ), K̃ = I outside supp (ρ). Furthermore, for almost every 
x ∈ � and for all ξ ∈ R

d we have K̃(x)ξ · ξ ≥ min(1, k∗)|ξ |2. Replacing K with K̃ in the first two terms of (4.4), we 
are lead to the following localised pressure equation:

−div
(
K̃∇(θpε)

) = −pε div
(
K̃∇θ

) + θμ′(cε)uε · ∇cε + 2μ(cε)uε · ∇θ. (4.6)
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Step 3: proof of local estimates.
The equation (4.6) is satisfied on � × (0, T ), but due to the compact support of θ , it also holds on B × (0, T ), 

where B is ball containing � and all functions are extended by 0 outside �. Estimates (3.12) and (3.15) then show 
that for every 1 ≤ r < 2d/(2d − 1) the right-hand side of (4.6) is bounded in L2(0, T ; Lr(�)) uniformly in ε. Then 
(4.2) follows from Grisvard [14, Eq. (2.3.3.1)] and from the fact that θpε(·, t) ∈ H 1

0 (B) for almost every t ∈ (0, T ).
For (4.3), write K̃ = (k̃ij )i,j=1,...,d . Observing the summation convention, the i-th component of θuε is

(θuε)i = − θ

μ(cε)
k̃ij ∂xj

pε.

By the regularity properties (3.6a) and (3.6e) of pε and cε , we can write, in the sense of distributions,

∂xl
(θuε)i = (∂xl

θ)

(
− k̃ij

μ(cε)
∂xj

pε

)
− θ

μ′(cε)

μ(cε)
(uε)i∂xl

cε − θ

μ(cε)
(∂xl

k̃ij )(∂xj
pε) − θ

μ(cε)
k̃ij ∂

2
xlxj

pε

= T1 + T2 + T3 + T4.

Thanks to (3.12), both T1 and T3 are bounded in L∞(0, T ; Lq(�)) for every q < d
d−1 . For every r < 2d

2d−1 , estimate 
term T2 in L2(0, T ; Lr(�)) using (3.15). For T4, use (4.2). �
4.2. Extraction of converging sequences

From (3.6a) the sequence (cε)ε>0 is bounded in L∞(� × (0, T )), so that up to a subsequence

cε ⇀ c in L∞(� × (0, T )) weak-∗, 0 ≤ c ≤ 1 a.e. in � × (0, T ), (4.7)

which proves the first part of (2.2a); the second part follows at the end of Section 4.5. Estimate (3.12) implies the 
existence of extracted subsequences such that

pε ⇀ p in L∞(0, T ;W 1,q

 (�)) weak-∗ ∀1 ≤ q <

d

d − 1
, and (4.8)

uε ⇀ u in L∞(0, T ;Lq(�)d) weak-∗ ∀1 ≤ q <
d

d − 1
, (4.9)

which proves (2.2e). The porosity is independent of time, so for every s > 2d , (3.16) provides an estimate in 
L2(0, T ; (W 1,s(�))′) of the sequence (∂t (�cε))ε>0, from which we conclude that

�∂tcε ⇀ �∂tc weakly in L2(0, T ; (W 1,s(�))′) for all s > 2d, (4.10)

thus proving (2.2b). Furthermore, (�cε)ε>0 is bounded in L∞(� × (0, T )), and L∞(�) is compactly embedded in 
(W 1,s(�))′ (since W 1,s(�) is compactly and densely embedded in L1(�)). A classical compactness lemma due to 
Simon [22] therefore ensures that, up to a subsequence, �cε → �c in C([0, T ]; (W 1,s(�))′) for all s > 2d , which 
proves (2.2c).

4.3. Passing to the limit in the pressure equation

The proof that (p, u, c) satisfies the elliptic equation (2.2g) will be complete by passing to the limit in (3.6g), 
provided that we identify u. For this we follow the ideas of Amirat–Ziani [1, Lemma 2.4], who rely on a variant of the 
compensated compactness phenomenon due to Kazhikhov [15]. Our proof necessarily departs from that of Amirat–
Ziani due to our use of the cutoff functions θ . We also correct an error in their estimate of the term corresponding to 
our ∂tμ(cε). They claim this sequence is bounded L2 in time, when in fact it is only L1 (for both regular and measure 
source terms). This necessitates our use of the BV (0, T ) spaces and a compensated compactness result adapted to this 
regularity, Lemma B.1 in the appendix.

Lemma 4.2. Assume (2.1) and for ε > 0, let (pε, uε, cε) be a solution-by-approximation to (3.6). Assume that 
(4.7)–(4.9) hold. Then for almost every (x, t) ∈ � × (0, T ),

u(x, t) = − K(x)

μ(c(x, t))
∇p(x, t). (4.11)
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Proof. By the assumptions (2.1d) on μ, there exists μ, μ ∈ L∞(� × (0, T )) such that μ∗ ≤ μ, μ ≤ μ∗ and, up to a 
subsequence,

μ(cε) ⇀ μ and
1

μ(cε)
⇀

1

μ
in L∞(� × (0, T )) weak-∗. (4.12)

Step 1: BV estimates.
Take ψ ∈ C∞

c (�). To apply Lemma B.1, we must estimate the sequences 
(∫

�
�μ(cε(x, ·))ψ(x)dx

)
ε>0 and (∫

�
�

μ(cε(x,·))ψ(x)dx
)

ε>0
in the space BV (0, T ). We first obtain these estimates on the solution to the truncated 

problem from Definition 3.1, and then deduce the corresponding estimates on (pε, uε, cε).
Replace ν and a by νn and an from Definition 3.2. Let (pn,k

ε , un,k
ε , cn,k

ε ) be the solution to the corresponding 
truncated problem, that is with Dε replaced by Dk

ε , defined by (3.8).
Take γ ∈ C2([0, 1]), ψ ∈ C∞(�) and choose ϕ = γ ′(cn,k

ε ))ψ as a test function in [9, Eq. (3.8)]. Then for almost 
every t ∈ (0, T ) we have

〈(�∂tc
n,k
ε )(·, t), γ ′(cn,k

ε )(·, t)ψ〉(H 1)′,H 1 +
∫
�

Dk
ε(x,un,k

ε (x, t))∇cn,k
ε (x, t) · ∇[γ ′(cn,k

ε (x, t))ψ(x)]dx

−
∫
�

cn,k
ε (x, t)un,k

ε (x, t) · ∇[γ ′(cn,k
ε (x, t))ψ(x)]dx +

∫
�

cn,k
ε (x, t)γ ′(cn,k

ε (x, t))ψ(x)b(x, t)νn(x)dx

=
∫
�

ĉ(x, t)γ ′(cn,k
ε (x, t))ψ(x)an(x, t)νn(x)dx. (4.13)

Since �∂tc
n,k
ε ∈ L2(0, T ; (H 1(�))′) and γ ′(cn,k

ε ) ∈ L2(0, T ; H 1(�)), the product �∂tc
n,k
ε γ ′(cn,k

ε ) is well-defined as 
an element of L1(0, T ; (C∞(�))′). Reasoning by density of smooth functions, we also see that

∂t (�γ (cn,k
ε )) = �γ ′(cn,k

ε )∂t c
n,k
ε in L1(0, T ; (C∞(�))′). (4.14)

Introducing ζ(s) = ∫ s

0 qγ ′′(q) dq , write

cn,k
ε un,k

ε · ∇
[
γ ′(cn,k

ε )ψ
]

=
[
un,k

ε · ∇cn,k
ε

]
cn,k
ε γ ′′(cn,k

ε )ψ +
[
un,k

ε · ∇ψ
]
cn,k
ε γ ′(cn,k

ε )

= un,k
ε · ∇(ζ(cn,k

ε )ψ) +
[
un,k

ε · ∇ψ
](

cn,k
ε γ ′(cn,k

ε ) − ζ(cn,k
ε )

)
.

The equation (3.7) on un,k
ε then shows that

−
∫
�

cn,k
ε (x, t)un,k

ε (x, t) · ∇[γ ′(cn,k
ε (x, t))ψ(x)]dx

=
∫
�

ζ(cn,k
ε (x, t))(an − b)(x, t)ψ(x)νn(x)dx

−
∫
�

[
un,k

ε (x, t) · ∇ψ(x)
](

cn,k
ε (x, t)γ ′(cn,k

ε (x, t)) − ζ(cn,k
ε (x, t))

)
dx.
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Substituted alongside (4.14) in (4.13), this gives

〈∂t (�γ (cn,k
ε )(·, t)),ψ〉(C∞(�))′,C∞(�)

+
∫
�

γ ′(cn,k
ε (x, t))Dk

ε(x,un,k
ε (x, t))∇cn,k

ε (x, t) · ∇ψ(x)dx

+
∫
�

[
Dk

ε(x,un,k
ε (x, t))∇cn,k

ε (x, t) · ∇cn,k
ε (x, t)

]
γ ′′(cn,k

ε (x, t))ψ(x)dx

+
∫
�

ζ(cn,k
ε (x, t))(an − b)(x, t)ψ(x)νn(x)dx

−
∫
�

[
un,k

ε (x, t) · ∇ψ(x)
](

cn,k
ε (x, t)γ ′(cn,k

ε (x, t)) − ζ(cn,k
ε (x, t))

)
dx

+
∫
�

cn,k
ε (x, t)γ ′(cn,k

ε (x, t))ψ(x)b(x, t)νn(x)dx

=
∫
�

ĉ(x, t)γ ′(cn,k
ε (x, t))ψ(x)an(x, t)νn(x)dx.

(4.15)

All the integral terms can be bounded in the L1(0, T ) norm by using 0 ≤ cn,k
ε ≤ 1 and the estimates (3.11), (3.12) and 

(3.13) for (pn,k
ε , un,k

ε , cn,k
ε ) (and Dε replaced by Dk

ε), with constants that do not depend on k, n or ε. This gives∣∣∣∣∣∣
∫
�

(�γ (cn,k
ε ))(x, ·)ψ(x)dx

∣∣∣∣∣∣
BV (0,T )

=
∥∥∥∥∥∥∂t

∫
�

(�γ (cn,k
ε ))(x, ·)ψ(x)dx

∥∥∥∥∥∥
L1(0,T )

≤ C7,

where C7 may depend on ψ and γ , but not on k, n or ε. Letting k → ∞, cn,k
ε → cn

ε almost-everywhere and so ∣∣∫
�

�γ (cn
ε )(x, ·)ψ(x)dx

∣∣
BV (0,T )

≤ C7. By the convergence (3.10) of cn
ε to cε , we infer a uniform-in-ε estimate in 

BV (0, T ) of 
∫
�

�γ (cε)(x, ·)ψ(x) dx. Finally, set γ = μ or 1
μ

to see that⎛⎝∫
�

�(x)μ(cε(x, ·))ψ(x)dx

⎞⎠
ε>0

and

⎛⎝∫
�

�(x)

μ(cε(x, ·))ψ(x)dx

⎞⎠
ε>0

are bounded in BV (0, T ). (4.16)

Step 2: passing to the limit on μ(cε)uε .
For q ∈ [1, d

d−1 ), the sequence (μ(cε)uε)ε>0 is bounded in L∞(0, T ; Lq(�)d), so there exists μu ∈ L∞(0, T ;
Lq(�)d) such that, up to a subsequence,

μ(cε)uε ⇀ μu in L∞(0, T ;Lq(�)d) weak-∗ for all q < d
d−1 . (4.17)

The estimates (4.3) and (4.16) and the weak convergences (4.9) and (4.12) enable us to apply Lemma B.1 with p = 2, 
a = r (for a fixed r < 2d/(2d − 1)), αε = components of θuε and βε = �μ(cε), to see that

θ�μ(cε)uε ⇀ θ�μu in D′(� × (0, T )).

Combined with (4.17) multiplied by θ�, this shows that θ�μu = θ�μu almost-everywhere. This holds for any 
θ ∈ C∞

c (�) with supp (θ) ∩ DK = ∅. By the freedom of θ and since � is uniformly positive, so we conclude that 
μu = μu almost-everywhere and hence

μ(cε)uε ⇀ μu in L∞(0, T ;Lq(�)d) weak-∗ for all q < d
d−1 .
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Note that by (4.8), μ(cε)uε = −K∇pε ⇀ −K∇p in L∞(0, T ; Lq(�)d) weak-∗ for all q < d/(d −1). Thus for almost 
every (x, t) ∈ � × (0, T ),

u(x, t) = − K(x)

μ(x, t)
∇p(x, t). (4.18)

Step 3: identifying the limit of uε.
We seek to identify the limit of

�θuε = −�θ
K̃

μ(cε)
∇pε. (4.19)

Apply Lemma B.1 to the right-hand side, with p = 2, a = r (for a fixed r < 2d/(2d − 1)), αε = components of 
−θK̃∇pε and βε = �

μ(cε)
. The estimates (4.2) and (4.16) and the convergences (4.8) and (4.12) once again show that 

the assumptions of Lemma B.1 are satisfied. We then pass to the limit on both sides of (4.19) to obtain

�θu = −�θ
K̃
μ

∇p = −�θ
K
μ

∇p.

Again using the freedom of θ and the strict positivity of �, for almost every (x, t) ∈ � × (0, T ),

u(x, t) = − K(x)

μ(x, t)
∇p(x, t). (4.20)

Comparing (4.18) and (4.20), for almost every (x, t) ∈ � × (0, T ),

(μu)(x, t) = (μu)(x, t).

To conclude the proof of (4.11), argue exactly as in Amirat–Ziani [1, Lemma 2.4]. �
4.4. Strong convergence of the Darcy velocity

The strong convergence of the Darcy velocity is necessary to handle the convergence of the diffusion–dispersion 
term, detailed in Section 4.5. Strong convergence of (uε)ε>0 begins with strong convergence of (∇pε)ε>0. When the 
source terms belong to L∞(0, T ; L2(�)), the key to proving the latter is to use pε − p as a test function in its own 
equation (see [1, Lemma 2.5]). In the non-variational setting of measure source terms, this is no longer possible as 
pε − p does not have the required regularity. We first need to excise the support of the measure using localisation 
functions θ . While doing so, we create lower order terms in the right-hand side whose convergence needs to be 
assessed. This is the purpose of the following lemma, which establishes the strong convergence of (pε)ε>0. Due to 
the lack of estimates on the time derivative of (pε)ε>0, this result is not straightforward and requires careful use 
of the Aubin–Simon compactness lemma, alongside a uniqueness result for elliptic equations with source terms in 
M+(�) ∩ (W 1,	(�))′ for all 	 > 2.

Lemma 4.3. Assume (2.1). For ε > 0, let (pε, uε, cε) be a solution-by-approximation to (3.6). Assume that (4.7)–(4.9)
hold along a subsequence. Then along the same subsequence,

pε → p strongly in La(0, T ;Lq(�)) for all a < ∞ and all q < d
d−1 , (4.21)

and for any θ ∈ C∞
c (�) such that supp (θ) ∩ (DK ∪ supp (ν)) = ∅,

θpε → θp strongly in La(0, T ;L2(�)) for all a < ∞. (4.22)

Proof. Step 1: almost-everywhere convergence of 1/μ(cε).
Our aim is to apply an Aubin–Simon lemma to 1/μ(cε). We can only estimate the time derivative of this function 

when multiplied by the porosity �. To eliminate this factor, we use a similar trick as in our previous work [9, Sec-
tion 3.3]. Let δ ∈ (1, ∞) and set 1

�
W 1,δ(�) = {v ∈ Lδ(�) : �v ∈ W 1,δ(�)}, with norm ‖v‖ 1

�
W 1,δ(�)

= ‖�v‖W 1,δ(�). 

By the Rellich theorem, 1
�

W 1,δ(�) is compactly and densely embedded in Lδ(�). It follows that Lδ′
(�) is compactly 

embedded in ( 1 W 1,δ(�))′.

�
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Take (pn,k
ε , un,k

ε , cn,k
ε ) as in the proof of Lemma 4.2 and fix s > 2d . The family (pn,k

ε , un,k
ε , cn,k

ε ))
n,k∈N
ε>0 satisfies esti-

mates (3.11)–(3.13), with constants not depending on n, k or ε. Used in (4.15) applied to γ = 1/μ, these estimates give 
a uniform bound on ∂t (�/μ(cn,k

ε )) in L1(0, T ; (W 1,s(�))′) and therefore in L1(0, T ; (W 1,s(�))′ + ( 1
�

W 1,δ(�))′).
Now (�/μ(cn,k

ε ))
n,k∈N
ε>0 is bounded in L∞(� × (0, T )) and therefore in L1(0, T ; Lδ′

(�)), with Lδ′
(�) compactly 

embedded in ( 1
�

W 1,δ(�))′. Classical Aubin–Simon lemmas show that A = {�/μ(cn,k
ε ) : ε > 0; n, k ∈ N} is rela-

tively compact in the space L1(0, T ; ( 1
�

W 1,δ(�))′). Write A for the (compact) closure of A in this space.
By compactness of A, the limit in D′(� × (0, T )) of any sequence in A also belongs to A. As k → ∞ and 

n → ∞ (in that order), we know that cn,k
ε → cε almost-everywhere on � × (0, T ). Hence �/μ(cn,k

ε ) → �/μ(cε)

almost-everywhere on � × (0, T ), and thus in D′(� × (0, T )) since these functions are uniformly bounded in L∞(� ×
(0, T )). As a consequence, (�/μ(cε))ε>0 is a sequence in A and thus, up to a subsequence, converges strongly in 
L1(0, T ; ( 1

�
W 1,δ(�))′). By (4.12), the limit of this sequence must be �/μ. Extracting another subsequence, we can 

therefore assert that, as ε → 0, for almost every t ∈ (0, T ),

�

μ(cε(·, t))
→ �

μ(·, t) strongly in
(

1
�

W 1,δ(�)
)′

.

The definition of 1
�

W 1,δ(�) shows that, for all Z ∈ L∞(�), ‖�Z‖
( 1

�
W 1,δ(�))′ = ‖Z‖(W 1,δ(�))′ . Then, along a subse-

quence as ε → 0, for almost every t ∈ (0, T )

1

μ(cε(·, t))
→ 1

μ(·, t) strongly in (W 1,δ(�))′, for all δ ∈ (1,∞). (4.23)

Step 2: proof of (4.21).
From here on, we work with the subsequence along which (4.23) holds and explicitly denote any other extraction 

of a subsequence. Let A1 be the set of t ∈ (0, T ) such that (4.23) holds, and A2 be the set of t ∈ (0, T ) such that, 
for all q < 2, (pε(·, t))ε>0 is bounded in W 1,q


 (�) (see Remark 3.4). Take functions (θj )j≥3 in C∞
c (�) such that 

supp (θj ) ∩ (DK ∪ supp (ν)) = ∅, 0 ≤ θj ≤ 1 and θj → 1 almost-everywhere on � as j → ∞. Apply Lemma B.2 to 
(θjpε)ε>0 and E = W 2,r (�) (see (4.2)), and let Aj be the set of t ∈ (0, T ) that satisfy the conclusion of the lemma. 
The complement of A = ∩j∈NAj has a zero measure.

Fix t ∈ A. Owing to (2.1i), as in [11, Step 3, proof of Theorem 2.1] we see that (a(·, t) − b(·, t))ν ∈ (W 1,	(�))′
for all 	 > 2. Hence by [11, Proposition 3.2], there is a unique solution to − div(K

μ
∇P(t)) = (a(·, t) − b(·, t))ν with 

zero average and homogeneous Neumann conditions in the sense

P(·, t) ∈
⋂
q<2

W
1,q

 (�) and ∀ψ ∈ C∞(�),

∫
�

K(x)

μ(x, t)
∇P(x, t) · ∇ψ(x)dx =

∫
�

(a − b)(x, t)ψ(x)dν(x).
(4.24)

Note that the formulation in Fabrie–Gallouët [11] is written for ψ ∈ ⋃
z>d W 1,z(�) which, by density, is equivalent 

to the formulation above.
We first prove that, up to a subsequence (depending on t ), pε(t) → P(t) strongly in Lq(�) for all q < 2. By 

choice of t ∈ A, there exists a subsequence (p
ε′(t))ε′>0 that converges weakly W 1,q


 (�) for all q < 2 — and strongly 
in the corresponding Lq(�) spaces — toward some function P . Recalling the conclusion of Lemma B.2, we can also 
assume that this subsequence satisfies

(θjpε′(·, t))ε′>0 is bounded in W 2,r (�) for all r < 2d
2d−1 and all j ∈N,

which shows that, for every j ∈ N, θjpε′(·, t) ⇀ θjP in W 2,r (�) for all r < 2d
2d−1 . Substitute ψ ∈ C∞(�) into (3.7). 

Defining K̃j by (4.5), with ρ = ρj associated with θj , this gives (dropping the explicit mention of the x variable)∫
(a − b)(t)ψ dν =

∫
K

μ(c
ε′(t))

∇pε′(t) · ∇ψ dx
� �
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=
∫
�

1

μ(c
ε′(t))

θj K̃j∇pε′(t) · ∇ψ dx +
∫
�

(1 − θj )
K

μ(c
ε′(t))

∇pε′(t) · ∇ψ dx

= Iε′,j,1 + Iε′,j,2. (4.25)

The tensor K̃j is Lipschitz continuous and, as ε′ → 0, θj∇p
ε′(t) ⇀ θj∇P in W 1,r (�) for all r < 2d

2d−1 . Hence, the 
convergence (4.23) (which holds since t ∈ A) gives

lim
ε′→0

Iε′,j,1 =
∫
�

1

μ(t)
θj K̃j∇P · ∇ψ dx =

∫
�

K
μ(t)

∇P · ∇ψ dx − Jj , (4.26)

where

Jj =
∫
�

K
μ(t)

(1 − θj )∇P · ∇ψ.

Fix q0 ∈
(

1, d
d−1

)
. Since (p

ε′(t))ε′>0 is bounded in W 1,q0(�) and P ∈ W 1,q0(�), we find C8 not depending on j or 
ε such that

|Iε′,j,2| + |Jj | ≤ C8
∥∥1 − θj

∥∥
L

q′
0 (�)

.

Plugged into (4.25), this gives∣∣∣∣∣∣
∫
�

(a(t) − b(t))ψ dν −
∫
�

K
μ(t)

∇P · ∇ψ dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Iε′,j,1 −
⎛⎝∫

�

K
μ(t)

∇P · ∇ψ dx − Jj

⎞⎠∣∣∣∣∣∣ + C8
∥∥1 − θj

∥∥
L

q′
0 (�)

. (4.27)

Since q ′
0 < ∞, the properties of θj show that 

∥∥1 − θj

∥∥
L

q′
0 (�)

→ 0 as j → ∞. Then thanks to (4.26), taking the 

superior limit as ε′ → 0 and then the limit as j → ∞ of (4.27) shows that P satisfies (4.24).
We infer that P = P(t) and thus that the limit of (p

ε′(t))ε′>0 does not depend on the chosen subsequence. In 
other words, the whole sequence (pε(t))ε>0 converges in Lq(�) to P(t), for almost every t ∈ (0, T ). By the bound 
in L∞(0, T ; Lq(�)) on (pε)ε>0 given by (3.12), the dominated convergence theorem shows that pε → P strongly in 
La(0, T ; Lq(�)) for all a < ∞. The convergence (4.8) imposes P = p and the proof of (4.21) is complete.

Step 3: proof of (4.22).
This follows from the previous convergence by a simple interpolation technique. Let τ ∈ (0, 1) be such that 1

2 =
τ
1 + 1−τ

2∗ , where 2∗ > 2 is a Sobolev exponent (that is, such that H 1(�) ↪→ L2∗
(�)). Fix a < ∞ and take A ∈ (a, ∞)

such that 1
a

= τ
A

+ 1−τ
∞ . Then∥∥θpε − θp

∥∥
La(0,T ;L2(�))

≤ ∥∥θpε − θp
∥∥τ

LA(0,T ;L1(�))

∥∥θpε − θp
∥∥1−τ

L∞(0,T ;L2∗
(�))

≤ ‖θ‖∞
∥∥pε − p

∥∥τ

LA(0,T ;L1(�))

∥∥θpε − θp
∥∥1−τ

L∞(0,T ;L2∗
(�))

.

The second term in the right-hand side converges to 0 by (4.21), and the third term is bounded by (4.1), which, 
combined with (4.8), proves in particular that θp ∈ L∞(0, T ; H 1(�)). �

The next lemma highlights an almost-everywhere convergence property of (cε)ε>0 that is critical for obtaining 
strong convergence of (∇pε)ε>0.

Lemma 4.4. Assume (2.1) and for ε > 0, let (pε, uε, cε) be a solution-by-approximation to (3.6). Assume that 
(4.7)–(4.9) hold along a subsequence. Then, up to another subsequence,

cε → c a.e. on {(x, t) ∈ � × (0, T ) : |u(x, t)| 	= 0}. (4.28)
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Proof. By Assumption (2.1d) on μ, m := 2 min[0,1] μ′′ is strictly positive. Lagrange’s Remainder Theorem therefore 
gives μ(cε) − μ(c) − (cε − c)μ′(c) ≥ m(cε − c)2. Multiplying by |u| ≥ 0 and integrating yields

T∫
0

∫
�

(
μ(cε(x, t))|u(x, t)| − μ(c(x, t))|u(x, t)|) dx dt −

T∫
0

∫
�

(cε − c)(x, t)μ′(c(x, t))|u(x, t)|dx dt

≥ m

T∫
0

∫
�

(cε(x, t) − c(x, t))2|u(x, t)|dx dt.

By (4.7) and (4.12), since |u| ∈ L1(� × (0, T )), we pass to the limit in the left-hand side to obtain

T∫
0

∫
�

(μ(x, t)|u(x, t)| − μ(c(x, t))|u(x, t)|) dx dt ≥ m lim sup
ε→0

T∫
0

∫
�

(cε(x, t) − c(x, t))2|u(x, t)|dx dt.

Thanks to (4.11) and (4.18) we have μu = μ(c)u. Taking the norms, we see that left-hand side vanishes. This shows 
that (cε − c)2|u| → 0 in L1(� × (0, T )), and therefore almost-everywhere on � × (0, T ) up to a subsequence. �
Remark 4.1. The main purpose of this almost-everywhere convergence of (cε)ε>0 is to prove the convergence of 
(uε)ε>0.

Lemma 4.4 is no longer valid if μ is constant. However, in that case, the system is decoupled: the pressure does not 
depend on the concentration (and then does not even depend on ε), and there are no difficulties with the convergence 
of uε as it does not depend on ε.

Lemma 4.5. Assume (2.1). For ε > 0, let (pε, uε, cε) be a solution-by-approximation to (3.6). Assume that (4.7)–(4.9)
hold along a subsequence. Then along the same subsequence,

∇pε → ∇p strongly in La(0, T ;Lq(�)d) for all a < ∞ and all q < d
d−1 . (4.29)

Proof. Step 1: strong convergence of localised functions.
Let ρ ∈ C∞

c (�) such that supp (ρ) ∩ (DK ∪ supp (ν)) = ∅ and ρ ≥ 0. We want to prove that as ε → 0,

√
ρ∇pε → √

ρ∇p strongly in L2(0, T ;L2(�)d). (4.30)

Let ψ ∈ L1(0, T ; W 1,q(�)) for some q > d , and take ρψ as a test function in the equation (3.6g) satisfied by uε . 
Since supp (ρ) ∩ supp (ν) = 0, the source terms disappear and we find that

T∫
0

∫
�

uε(x, t) · ∇(ρψ)(x, t)dx dt = 0. (4.31)

Let U be an open set in � such that supp (ρ) ⊂ U and U ∩ (DK ∪ supp (ν)) = ∅. Let θ ∈ C∞
c (�) be such that 

θ = 1 on U and supp (θ) ∩ (DK ∪ supp (ν)) = ∅. Applying (4.1), we see that uε ∈ L2(0, T ; L2(U)) and pε − p ∈
L2(0, T ; H 1(U)). Taking a sequence (ψj )j∈N ⊂ L1(0, T ; W 1,q(�)) for some q > d and such that ψj → pε − p in 
L2(0, T ; H 1(U)), we pass to the limit in (4.31) to see that this relation still holds with pε −p instead of ψ . Expanding, 
we obtain

−
T∫

0

∫
�

ρ(x)uε(x, t) · ∇(pε − p)(x, t)dx dt =
T∫

0

∫
�

(pε(x, t) − p(x, t))uε(x, t) · ∇ρ(x)dx dt.

By the choice of θ above, this can be written as
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−
T∫

0

∫
�

ρ(x)uε(x, t) · ∇(pε − p)(x, t)dx dt =
T∫

0

∫
�

(θ(x)pε(x, t) − θ(x)p(x, t))θ(x)uε(x, t) · ∇ρ(x)dx dt

≤ C9
∥∥θpε − θp

∥∥
L2(0,T ;L2(�))

, (4.32)

where the existence of C9 (not depending on ε) is ensured by (4.1), which shows that (θuε)ε>0 is bounded in 
L2(0, T ; L2(�)d). Now use the definition of uε = − K

μ(cε)
∇pε , estimate (4.32) and the properties of θ to write

k∗
μ∗

∥∥√
ρ∇(pε − p)

∥∥2
L2(0,T ;L2(�)d )

≤
T∫

0

∫
�

ρ(x)
K(x)

μ(cε(x, t))
∇(pε − p)(x, t) · ∇(pε − p)(x, t)dx dt

= −
T∫

0

∫
�

ρ(x)uε(x, t) · ∇(pε − p)(x, t)dx dt

−
T∫

0

∫
�

ρ(x)
K(x)

μ(cε(x, t))
∇p(x, t) · ∇(pε − p)(x, t)dx dt

≤ C9
∥∥θpε − θp

∥∥
L2(0,T ;L2(�))

−
T∫

0

∫
�

ρ(x)
K(x)

μ(cε(x, t))
θ(x)∇p(x, t) · θ(x)∇(pε − p)(x, t)dx dt. (4.33)

By (4.28), μ(cε) → μ(c) almost-everywhere on {|u| 	= 0} = {|∇p| 	= 0}. Hence, by the dominated convergence 
theorem and (4.1), ( K

μ(cε)
θ∇p)ε>0 converges strongly in L2(0, T ; L2(�)d). Using (4.1) and (4.8) we also have 

θ∇pε → θ∇p weakly in L2(0, T ; L2(�)d). Hence, the last term in (4.33) tends to 0 as ε → 0. Taking the supe-
rior limit of this estimate and using (4.22) shows that (4.30) holds.

Step 2: conclusion.
Since (4.30) is satisfied for all nonnegative ρ ∈ C∞

c (�) whose support does not intersect the closed set 
DK ∪ supp (ν), and since this set has a zero Lebesgue measure, up to a subsequence we can assume that ∇pε → ∇p

almost-everywhere on � × (0, T ). The convergence (4.29) then follows from the Vitali theorem and the bound (3.12)
on (∇pε)ε>0 in L∞(0, T ; Lq(�)d) for all q < d/(d − 1). �

The strong convergence of the Darcy velocity and of (cεuε)ε>0 is then straightforward.

Lemma 4.6. Assume (2.1). For ε > 0, let (pε, uε, cε) be a solution-by-approximation of (3.6). Assume that (4.7)–(4.9)
hold along a subsequence. Then along the same subsequence,

uε → u strongly in La(0, T ;Lq(�)d) for all a < ∞ and all q < d
d−1 . (4.34)

Proof. The almost-everywhere convergence (4.28) of cε gives μ(cε)u → μ(c)u almost-everywhere on � × (0, T ). 
Since u ∈ La(0, T ; Lq(�)d) for all a < ∞ and q < d/(d − 1), this convergence also holds in La(0, T ; Lq(�)d) by 
dominated convergence. Thanks to (4.11) and (4.29), letting ε → 0 gives

μ∗
∥∥uε − u

∥∥
La(0,T ;Lq(�)d )

≤ ∥∥μ(cε)uε − μ(cε)u
∥∥

La(0,T ;Lq(�)d )

= ∥∥−K∇pε − μ(cε)u
∥∥

La(0,T ;Lq(�)d )

→ ‖−K∇p − μ(c)u‖La(0,T ;Lq(�)d ) = 0. �
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Corollary 4.7. Assume (2.1). For ε > 0, let (pε, uε, cε) be a solution-by-approximation of (3.6). Assume that 
(4.7)–(4.9) hold along a subsequence. Then along the same subsequence,

cεuε → cu strongly in La(0, T ;Lq(�)d) for all a < ∞ and all q < d
d−1 .

Proof. Write cεuε − cu = cε(uε − u) + (cε − c)u. Owing to (4.34) and 0 ≤ cε ≤ 1, the first term tends to 0 in 
La(0, T ; Lq(�)d) as ε → 0. For the second term, use (4.28) and the fact that u ∈ La(0, T ; Lq(�)d). �
4.5. Passing to the limit in the concentration equation

The proof that (p, u, c) satisfies (2.2d) and (2.2f) follows from the next two lemmas, which address the regularity 
and convergence of the diffusion–dispersion term.

Lemma 4.8. Assume (2.1) and for ε > 0, let (pε, uε, cε) be a solution-by-approximation to (3.6). Assume that 
(4.7)–(4.9) hold along a subsequence. Then the function c defined by (4.7) has a {|u| > 0}-gradient and

D◦(·,u)∇{|u|>0}c ∈ L2(0, T ;Lr(�)d) for all r < 2d
2d−1 . (4.35)

Proof. From (4.34) and the partial converse to the dominated convergence theorem, up to a subsequence uε → u
almost everywhere on � × (0, T ). Let (ηi)i∈N be a sequence in R with ηi → 0+ as i → ∞ and such that for every 
i ∈ N, meas({|u| = ηi}) = 0 (existence of such a sequence is guaranteed by Lemma A.1). On the set {|uε| > ηi} we 
have

Dε(x,uε)∇cε · ∇cε ≥ min(dl, dt )φ∗ηi |∇cε|2.
Since (Dε(·, uε)∇cε · ∇cε)ε>0 is bounded in L1(0, T ; L1(�)) (see (3.11)), it follows that

(1{|uε |>ηi }∇cε)ε>0 is bounded in L2(0, T ;L2(�)d) for all i ∈N.

After performing a diagonal extraction upon the index i, we infer the existence of χηi
∈ L2(0, T ; L2(�)d) such that, 

up to a subsequence not depending on i,

1{|uε |>ηi }∇cε ⇀ χηi
weakly in L2(0, T ;L2(�)d). (4.36)

The hypotheses of Definition 2.1 are therefore satisfied and so c has a {|u| > 0}-gradient.
To prove (4.35), we begin by using the same splitting trick as in our previous work [9, Section 4.3] by writing

1{|uε |>ηi }Dε(·,uε)∇cε = D1/2
ε (·,uε)

(
1{|uε |>ηi }D1/2

ε (·,uε)∇cε

)
(4.37)

and applying Lemma B.4 once to each term in the right-hand side product. By (4.34) with a = q = 1 and the estimate 
(3.4) on D1/2

ε , Lemma B.3 yields

D1/2
ε (·,uε) → D1/2◦ (·,u) strongly in L2(0, T ;L2(�)d×d). (4.38)

Since (D1/2
ε (·, uε)∇cε)ε>0 is bounded in L2(0, T ; L2(�)d) (see (3.11)), the weak convergence (4.36) enables us to 

apply Lemma B.4 with r1 = r2 = s2 = s2 = 2 and a = b = 2, to wε = components of D1/2
ε (·, uε) and vε = components 

of 1{|uε |>ηi }∇cε . This gives

1{|uε |>ηi }D1/2
ε (·,uε)∇cε ⇀ D1/2◦ (·,u)χηi

= D1/2◦ (·,u)∇{|u|>ηi }c weakly in L2(0, T ;L2(�)d).

This weak convergence and (4.38) enable us to re-use Lemma B.4 with wε = components of D1/2
ε (·, uε) and vε =

components of 1{|uε|>ηi }D
1/2
ε (·, uε)∇cε . Owing to the decomposition (4.37), the bound (3.13) then shows that, for any 

r < 2d
2d−1 ,

1{|uε |>ηi }Dε(·,uε)∇cε ⇀ D◦(·,u)∇{|u|>ηi }c weakly in L2(0, T ;Lr(�)d). (4.39)
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In particular, this shows that∥∥D◦(·,u)∇{|u|>ηi }c
∥∥

L2(0,T ;Lr(�)d )
= ∥∥1{|u|>ηi }D◦(·,u)∇{|u|>0}c

∥∥
L2(0,T ;Lr(�)d )

≤ C3.

Now 1{|u|>ηi} → 1{|u|>0} almost-everywhere as i → ∞, so by the Fatou lemma (applied twice),

T∫
0

∥∥D◦(·,u(·, t))∇{|u|>0}c(·, t)
∥∥2

Lr(�)d
dt ≤

T∫
0

lim inf
i→∞

∥∥1{|u|>ηi }D◦(·,u(·, t))∇{|u|>0}c(·, t)
∥∥2

Lr(�)d
dt

≤ lim inf
i→∞

T∫
0

∥∥1{|u|>ηi }D◦(·,u(·, t))∇{|u|>0}c(·, t)
∥∥2

Lr(�)d
dt ≤ C3. �

Lemma 4.9. Assume (2.1) and for ε > 0 let (pε, uε, cε) be a solution-by-approximation to (3.6). Assume that 
(4.7)–(4.9) hold along a subsequence. Then along the same subsequence,

Dε(·,uε)∇cε ⇀ D◦(·,u)∇{|u|>0}c weakly in L2(0, T ;Lr(�)d) for all r < 2d
2d−1 . (4.40)

Proof. Let ψ ∈ L2(0, T ; Lr ′
(�)d) and i ∈ N. Write

T∫
0

∫
�

Dε(x,uε(x, t))∇cε(x, t) · ψ(x, t)dx dt

=
T∫

0

∫
�

1{|uε |>ηi }Dε(x,uε(x, t))∇cε(x, t) · ψ(x, t)dx dt

+
T∫

0

∫
�

1{|uε |≤ηi }Dε(x,uε(x, t))∇cε(x, t) · ψ(x, t)dx dt

= T1(i, ε) + T2(i, ε), (4.41)

and

T∫
0

∫
�

D◦(x,u(x, t))∇{|u|>0}c(x, t) · ψ(x, t)dx dt

=
T∫

0

∫
�

1{|u|>ηi }D◦(x,u(x, t))∇{|u|>0}c(x, t) · ψ(x, t)dx dt

+
T∫

0

∫
�

1{0<|u|≤ηi }D◦(x,u(x, t))∇{|u|>0}c(x, t) · ψ(x, t)dx dt

= L1(i) + L2(i). (4.42)

Using (4.39) we obtain limε→0 T1(i, ε) = L1(i). For T2(i, ε), use the estimate (3.11) on D1/2
ε (·, uε)∇cε and the esti-

mate (3.4) on D1/2
ε to obtain

|T2(i, ε)| ≤
T∫

0

∫
�

1{|uε |≤ηi }|D1/2
ε (x,uε(x, t))∇cε(x, t) · D1/2

ε (x,uε(x, t))ψ(x, t)|dx dt

≤
∥∥∥D1/2

ε (·,uε)∇cε

∥∥∥
2 2 d

∥∥∥1{|uε |≤ηi }D1/2
ε (·,uε)ψ

∥∥∥
2 2 d
L (0,T ;L (�) ) L (0,T ;L (�) )
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≤ C1φ
−1/2∗ (ε + max(dl, dt )ηi)

1/2 ‖ψ‖L2(0,T ;L2(�)d ) .

This shows that

lim
i→∞ lim sup

ε→0
T2(i, ε) = 0.

For L2(i), use (4.35) and write

|L2(i)| ≤
T∫

0

∫
�

1{0<|u|≤ηi }|D◦(x,u)∇{|u|>0}c · ψ |dx dt

≤ ∥∥D◦(·,u)∇{|u|>0}c
∥∥

L2(0,T ;Lr(�)d )

∥∥1{0<|u|≤ηi }ψ
∥∥

L2(0,T ;Lr′ (�)d )

≤ C3
∥∥1{0<|u|≤ηi }ψ

∥∥
L2(0,T ;Lr′ (�)d )

→ 0 as i → ∞.

Then ∣∣∣∣
T∫

0

∫
�

Dε(x,uε(x, t))∇cε(x, t) · ψ(x, t)dx dt −
T∫

0

∫
�

D◦(x,u(x, t))∇{|u|>0}c(x, t) · ψ(x, t)dx dt

∣∣∣∣
= |T1(i, ε) + T2(i, ε) − (L1(i) + L2(i))|
≤ |T1(i, ε) − L1(i)| + |T2(i, ε)| + |L2(i)|.

Then taking (in this order) the limit superior as ε → 0 and the limit as i → ∞, we conclude that as ε → 0

T∫
0

∫
�

Dε(x,uε(x, t))∇cε(x, t) · ψ(x, t)dx dt →
T∫

0

∫
�

D◦(x,u(x, t))∇{|u|>0}c(x, t) · ψ(x, t)dx dt. �

The proof of Theorem 2.2 is now easy to complete. Equation (4.10), Corollary 4.7 and Lemma 4.9 enable us to 
take the limit of (3.6f), thus proving (2.2f). To prove the last two parts of (2.2a), that is, c ∈ L∞(0, T ; L1(�, ν)) and 
0 ≤ c(x, t) ≤ 1 for ν-almost-every x ∈ � and for almost-every t ∈ (0, T ), follow exactly the same argument as that 
employed by Fabrie–Gallouët [11, Lemma 5.1].

Remark 4.2. Note that we can use exactly the same method as in Lemmas 4.8 and 4.9 to show that

D1/2
ε (·,uε)∇cε ⇀ D1/2◦ (·,u)∇{|u|>0}c weakly in L2(0, T ;L2(�)d), and

uε · ∇cε ⇀ u · ∇{|u|>0}c weakly in L2(0, T ;Lr(�)) for all r < 2d
2d−1 .

The latter is particularly relevant in the nonconservative formulation of (1.1b), in which a term of that form appears.
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Appendix A. Properties of the concentration gradient

The results in this appendix attest to the consistency of Definition 2.1. Lemmas A.1 and A.2 give the necessary 
background for Proposition A.3, which makes precise the dependence of the {v > 0}-gradient (Definition 2.1) on the 
sequences necessary to define it.
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Lemma A.1. Let (�, �, μ) be a σ -finite measure space and f : � → R be measurable. For almost every k ∈R,

μ({f = k}) = 0. (A.1)

Proof. We use the Fubini–Tonelli theorem to measure the graph G = {(x, f (x)) : x ∈ �} of f in � ×R. Denote by λ
the Lebesgue measure on R. For a given k ∈ R, the slice Gk of G at k in the first direction is Gk = {x ∈ � : f (x) = k}. 
For a fixed x ∈ �, the slice Gx of G at x in the second direction is Gx = {f (x)}. By Fubini–Tonelli, we therefore 
have ∫

R

μ({x ∈ � : f (x) = k})dλ(k) =
∫
�

λ({f (x)})dμ(x).

Since λ({f (x)}) = 0 for all x ∈ �, this shows that 
∫
R

μ({x ∈ � : f (x) = k})dλ(k) = 0 and the conclusion fol-
lows. �
Lemma A.2. Let (�, �, μ) be a σ -finite measure space and for every ε > 0 let fε : � → R be measurable. Suppose 
there is a measurable function f : � → R such that fε → f almost-everywhere as ε → 0. Then for every k ∈ R

satisfying (A.1),

1{fε>k} → 1{f >k} a.e. as ε → 0.

Proof. Take k such that A = {x ∈ � : f (x) = k} is null, and let B be the null set {x ∈ � : fε(x) 	→ f (x)}. If x /∈
A ∪ B we have either f (x) > k or f (x) < k. In each respective case, for ε sufficiently small, fε(x) > k (respectively 
fε(x) < k) and thus 1{fε>k} = 1{f >k}. �
Proposition A.3. Let f, v ∈ L2(0, T ; L2(�)) be such that f has a {v > 0}-gradient in the sense of Definition 2.1. 
Then

(i) The {v > 0}-gradient is independent of the choice of sequence (ηi)i∈N.
(ii) ∇{v>ηi }f = 0 on {v ≤ ηi}.

(iii) The {v > 0}-gradient is independent of the choice of sequence (vε)ε>0.

Proof. Fix the sequences (fε)ε>0, (vε)ε>0 in Definition 2.1 and let (ηi)i∈N and (ζi)i∈N be two sequences of real 
numbers such that for every i ∈ N,

meas({v = ηi}) = meas({v = ζi}) = 0.

Let χηi
, χζi

∈ L2(0, T ; L2(�)d) be such that as ε → 0,

1{vε>ηi }∇fε ⇀ χηi
weakly in L2(0, T ;L2(�)d), and

1{vε>ζi }∇fε ⇀ χζi
weakly in L2(0, T ;L2(�)d).

It suffices to show that for any i ∈ N, χηi
= χζi

on {v > ηi} ∩ {v > ζi}. Without loss of generality, assume that ηi > ζi

so that {v > ηi} ∩ {v > ζi} = {v > ηi}. We have

1{vε>ηi }∇fε = 1{vε>ηi }1{vε>ζi }∇fε. (A.2)

Thanks to Lemma A.2, as ε → 0,

1{vε>ηi }∇fε ⇀ χηi
weakly in L2(0, T ;L2(�)d),

1{vε>ηi } → 1{v>ηi } a.e. on � × (0, T ), and (A.3)

1{vε>ζi }∇fε ⇀ χζi
weakly in L2(0, T ;L2(�)d).

Passing to the weak limit in L2(0, T ; L2(�)d) on (A.2) shows that on {v > ηi}, χηi
= χζi

in L2(0, T ; L2(�)d), which 
proves (i).
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For (ii), we have

1{vε>ηi }∇fε ⇀ ∇{v>ηi }f weakly in L2(0, T ;L2(�)d), and (A.4)

1{vε>ηi } → 1{v>ηi} in L2(0, T ;L2(�)).

Then

1{vε>ηi }∇fε = 1{vε>ηi }1{vε>ηi }∇fε → 1{v>ηi }∇{v>ηi }f in D′(� × (0, T )). (A.5)

Comparing (A.4) and (A.5), we see that ∇{v>ηi}f = 1{v>ηi }∇{v>ηi }f in D′(� ×(0, T )), which shows that ∇{v>ηi}f = 0
on {v ≤ ηi}.

For (iii), fix the sequence (fε)ε>0 and let (vε)ε>0 and (v̄ε)ε>0 be two sequences in L2(0, T ; L2(�)) such that as 
ε → 0, vε → v and v̄ε → v, both almost-everywhere � × (0, T ). Let ηi > 0 be such that meas({v = ηi}) = 0 and 
suppose that there are functions χηi

, χηi
∈ L2(0, T ; L2(�)d) such that, as ε → 0,

1{vε>ηi }∇fε ⇀ χηi
weakly in L2(0, T ;L2(�)d), and

1{v̄ε>ηi }∇fε ⇀ χηi
weakly in L2(0, T ;L2(�)d).

Observe that by Lemma A.2,

(1{vε>ηi } − 1{v̄ε>ηi })∇fε = 1{v̄ε≤ηi }(1{vε>ηi }∇fε) − 1{vε≤ηi }(1{v̄ε>ηi }∇fε)

⇀ 1{v≤ηi }χηi
− 1{v≤ηi }χηi

weakly in L2(0, T ;L2(�)d) as ε → 0.

By (ii), the last term vanishes, which shows that χηi
= χηi

in L2(0, T ; L2(�)d). �
Appendix B. Convergence lemmas

A similar result to the following appeared in Kazhikhov [15] with stronger assumptions. Here we give a proof of 
this “compensated compactness” lemma by following the ideas in the proof of Droniou–Eymard [8, Theorem 5.4].

Theorem B.1. For ψ ∈ C∞
c (�) and γ ∈ L1(� × (0, T )), define Fψ

γ ∈ L1(0, T ) by Fψ
γ (t) = ∫

�
γ (x, t)ψ(x) dx. Let 

a, p ∈ (1, ∞) and (αε)ε>0 and (βε)ε>0 be sequences such that

(αε)ε>0 is bounded in Lp(0, T ;W 1,a(�)),

αε ⇀ α weakly in Lp(0, T ;La(�)),

βε ⇀ β weakly in Lp′
(0, T ;La′

(�)) and

∀ψ ∈ C∞
c (�) , (F

ψ
βε

)ε>0 is bounded in BV (0, T ).

Then up to a subsequence,

αεβε ⇀ αβ in D′(� × (0, T )).

Proof. Let

A(W,Z) =
T∫

0

∫
�

W(x, t)Z(x, t)dx dt.

We prove that for every φ ∈ C∞
c (� × (0, T )),

A(αεφ,βε) → A(αφ,β). (B.1)

In this proof, C denotes a generic constant that does not depend on ε.
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Step 1: reduction to tensorial functions.
Consider a covering (Cδ

	)	=1,...,M of � in cubes of length δ. For g ∈ La(Rd), define

Rδg =
M∑

	=1

(
1

meas(Cδ
	)

∫
Cδ

	

g(x)dx

)
1Cδ

	
,

where 1 denotes the characteristic function. In what follows, take g ∈ W
1,a
0 (�). Using Jensen’s inequality, a linear 

change of variable, and a standard inequality for functions in W 1,a
0 (�) (extended by 0 outside �),

‖Rδg − g‖La(�) ≤ C sup
z∈(−δ,δ)d

‖g(· + z) − g‖La(Rd ) ≤ Cδ ‖g‖
W

1,a
0 (�)

.

The sequence of functions (αεφ)ε>0 is bounded in Lp(0, T ; W 1,a
0 (�)), the zero boundary condition coming from the 

support of φ. Hence

‖Rδ(αεφ) − (αεφ)‖Lp(0,T ;La(�)) ≤ Cδ.

By the weak convergence of (αε)ε>0, this estimate also holds with αε replaced by α. Using the boundedness of (βε)ε>0
in Lp′

(0, T ; La′
(�)) and the Hölder inequality,

|A(αεφ,βε) −A(αφ,β)| ≤ Cδ + |A(Rδ(αεφ),βε) −A(Rδ(αφ),β)|. (B.2)

For a fixed δ, assume that we can prove that

A(Rδ(αεφ),βε) →A(Rδ(αφ),β) as ε → 0. (B.3)

Then taking the limit superior as ε → 0 and then the limit as δ → 0 of (B.2) would show that (B.1) holds.
Step 2: reduction to smooth functions.
By construction of Rδ , we have

Rδ(αεφ)(x, t) =
M∑

	=1

ξε,	(t)1Cδ
	
(x), with ξε,l(t) = 1

meas(Cδ
	)

∫
Cδ

	

αε(x, t)φ(x, t)dx.

Hence by the bilinearity of A, (B.3) follows if we can establish that

A(ξε,	 ⊗ 1Cδ
	
, βε) → A(ξ	 ⊗ 1Cδ

	
, β) as ε → 0, (B.4)

where

ξ	(t) = 1

meas(Cδ
	)

∫
Cδ

	

α(x, t)φ(x, t)dx.

Let ψ ∈ C∞
c (�). Using the bounds on (αε)ε>0 and (βε)ε>0 we have∣∣∣A(ξε,	 ⊗ 1Cδ

	
, βε) −A(ξε,	 ⊗ ψ,βε)

∣∣∣ ≤ C

∥∥∥1Cδ
	
− ψ

∥∥∥
La(�)

where C may depend on 	 and δ, but not on ε. A similar estimate holds with ξ	 and β instead of ξε,	 and βε . Since 
‖1Cδ

	
− ψ‖La(�) can be made arbitrarily small by an appropriate choice of ψ , we see that (B.4) holds provided that, 

for any ψ ∈ C∞
c (�),

A(ξε,	 ⊗ ψ,βε) →A(ξ	 ⊗ ψ,β) as ε → 0.

Step 3: conclusion.
We have

A(ξε,	 ⊗ ψ,βε) =
T∫

ξε,	(t)F
ψ
βε

(t)dt.
0
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The weak convergence of (βε)ε>0 ensures that Fψ
βε

→ F
ψ
β in D′(0, T ). Since (Fψ

βε
)ε>0 is bounded in BV (0, T ), this 

convergence also holds in Lp′
(0, T ). On the other side, the weak convergence of (αε)ε>0 shows that ξε,	 → ξ	 weakly 

in Lp(0, T ). Hence as ε → 0,

A(ξε,	 ⊗ ψ,βε) =
T∫

0

ξε,	(t)F
ψ
βε

(t)dt →
T∫

0

ξ	(t)F
ψ
β (t)dt =A(ξ	 ⊗ ψ,β). �

Lemma B.2. Let E be a Banach space, T > 0, and (fm)m∈N be a bounded sequence in L1(0, T ; E). Then for almost 
every t ∈ (0, T ), there exists a subsequence (fmk

)k∈N such that (fmk
(t))k∈N is bounded in E.

Proof. Let Z be the set of t ∈ (0, T ) such that no subsequence exists along which ‖fm(t)‖E is bounded. Then for 
every t ∈ Z, ‖fm(t)‖E → ∞. Using Fatou’s lemma and denoting by M a bound of (fm)m∈N in L1(0, T ; E) gives

meas(Z) × (∞) =
∫
Z

lim inf
m→∞ ‖fm(t)‖E dt

≤
T∫

0

lim inf
m→∞ ‖fm(t)‖E dt ≤ lim inf

m→∞

T∫
0

‖fm(t)‖E dt ≤ M.

This shows that meas(Z) = 0. �
The following two lemmas are proved in [9].

Lemma B.3. Let � be a bounded subset of Rd , d ∈ N, and for ε > 0 let Hε : � ×R
d → R be a Carathéodory function 

such that

• there exist positive constants C10, γ such that for a.e. x ∈ �,

|Hε(x, ξ)| ≤ C10(1 + |ξ |γ ) ∀ξ ∈R
d , ∀ε > 0;

• there is a Carathéodory function H : � ×R
d → R such that for a.e. x ∈ �,

Hε(x, ·) → H(x, ·) uniformly on compact sets as ε → 0.

If p, q ∈ [max(1, γ ), ∞) and (uε)ε>0 ⊂ Lp(0, T ; Lq(�)d) is a sequence with uε → u in Lp(0, T ; Lq(�)d) as ε → 0, 
then Hε(·, uε) → H(·, u) in Lp/γ (0, T ; Lq/γ (�)) as ε → 0.

Lemma B.4. Let � be a bounded, open subset of Rd and for ε > 0, let wε : � × (0, T ) → R and vε : � × (0, T ) → R

be such that as ε → 0,

wε → w strongly in Lr1(0, T ;Ls1(�)), and

vε → v weakly in Lr2(0, T ;Ls2(�)),

where r1, r2, s1, s2 ≥ 1 are such that 1/r1 + 1/r2 ≤ 1 and 1/s1 + 1/s2 ≤ 1. Suppose also that the sequence (wεvε)ε>0
is bounded in La(0, T ; Lb(�)), where a, b ∈ (1, ∞). Then wεvε → wv weakly in La(0, T ; Lb(�)).
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