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Abstract

We prove the existence of a forward discretely self-similar solutions to the Navier–Stokes equations in R3 × (0, +∞) for a 
discretely self-similar initial velocity belonging to L2

loc
(R3).
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1. Introduction

In this paper we study the existence of forward discretely self-similar (DSS) solutions to the Navier–Stokes equa-
tions in Q =R

3 × (0, +∞)

∇ · u = 0, (1.1)

∂tu + (u · ∇)u − �u = −∇π, (1.2)

with the initial condition

u = u0 on R
3 × {0}. (1.3)

Here u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) denotes the velocity of the fluid, and u0(x) = (u0,1(x), u0,2(x), u0,3(x)), 
while π stands for the pressure. In case u0 ∈ L2(R3) with ∇ · u0 = 0 in the sense of distributions the global in time 
existence of weak solutions to (1.1)–(1.3), which satisfy the global energy inequality for almost all t ∈ (0, +∞)

1

2
‖u(t)‖2

2 +
t∫

0

‖∇u(s)‖2
2ds ≤ 1

2
‖u0‖2

2 (1.4)
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has been proved by Leray [9]. On the other hand, the important questions of regularity and uniqueness of solutions 
to (1.1)–(1.3) are still open. The first significant results in this direction have been established by Scheffer [10] and 
later by Caffarelli, Kohn, Nirenberg [2] for solutions (u, π) that also satisfy the following local energy inequality for 
almost all t ∈ (0, +∞) and for all nonnegative φ ∈ C∞

c (Q)

1

2

∫
R3

|u(t)|2φ(x, t)dx +
t∫

0

∫
R3

|∇u|2φdxds

≤ 1

2

t∫
0

∫
R3

|u|2
( ∂

∂t
+ �

)
φdxds + 1

2

t∫
0

∫
R3

(|u|2 + 2π)u · ∇φdxds. (1.5)

On the other hand, the space L2(R3) excludes homogeneous spaces of degree −1 belonging to the scaling invariant 
class. In fact we observe that uλ(x, t) = λu(λx, λ2t) solves the Navier–Stokes equations with initial velocity u0,λ(x) =
λu0(λx), for any λ > 0. This suggests to study of the Navier–Stokes system for initial velocities in a homogeneous 
space X of degree −1, which means that ‖v‖X = ‖vλ‖X for all v ∈ X. Koch and Tataru proved in [7] that X =
BMO−1 is the largest possible space with scaling invariant norm which guarantees well-posedness under smallness 
condition. On the contrary, for self-similar (SS) initial data fulfilling u0,λ = u for all λ > 0 a natural space seems to be 
X = L3,∞(R3). This space is embedded into the space L2

uloc(R
3), which contains uniformly local square integrable 

functions. Obviously, possible solutions to the Navier–Stokes equations with u0 ∈ L2
uloc(R

3) do not satisfy the global 
energy equality, rather the local energy inequality in the sense of Caffarelli–Kohn–Nirenberg. Such solutions are called 
local Leray solutions. The existence of global in time local Leray solutions has been proved by Lemariè-Rieusset 
in [8] (see also in [6] for more details). This concept has been used by Bradshaw and Tsai [1] for the construction of 
a discretely self-similar (λ-DSS, λ > 1) local Leray solution for a λ-DSS initial velocity u0 ∈ L3,∞(R3). This result 
generalizes the previous results of Jia and Šverák [5] concerning the existence of SS local Leray solution, and the 
result by Tsai in [11], which proves the existence of a λ-DSS Leray solution for λ near 1. However, for the λ-DSS 
initial data it would be more natural to assume u0 ∈ L2

loc(R
3) instead L3,∞(R3). In general, such initial value does not 

belong to L2
uloc(R

3) and therefore it does not belong to the Morrey class M2,1, rather to the weighted space L2
k(R

3)

of all v ∈ L2
loc(R

3) such that v
(1+|x|k) ∈ L2(R3) for all 1

2 < k < +∞.
Since the authors in [1] work on the existence of periodic solutions to the time dependent Leray equation a certain 

spatial decay is necessary which can be ensured for initial data in L3,∞(R3). On the other hand, applying the local L2

theory it would be more natural to assume u0 ∈ L2(Bλ \ B1) only. As explained in [1] their method even breaks down 
for initial data in the Morrey class M2,1(R3), which is a much smaller subspace of L2

loc(R
3). By using an entirely 

different method we are able to construct a global weak solutions for such DSS initial data.
In the present paper we introduce a new notion of a local Leray solution satisfying a local energy inequality with 

projected pressure. To the end, we provide the notations of function spaces which will be used in the sequel. By 
Ls(G), 1 ≤ s ≤ ∞, we denote the usual Lebesgue spaces. The usual Sobolev spaces are denoted by Wk, s(G) and 
W

k, s
0 (G), 1 ≤ s ≤ +∞, k ∈ N. The dual of Wk, s

0 (G) will be denoted by W−k, s′
(G), where s′ = s

s−1 , 1 < s < +∞. 
For a general space of vector fields X the subspace of solenoidal fields will be denoted by Xσ . In particular, the space 
of solenoidal smooth fields with compact support is denoted by C∞

c,σ (R3). In addition we define the energy space

V 2(G × (0, T )) = L∞(0, T ;L2(G)) ∩ L2(0, T ;W 1, 2(G)), 0 < T ≤ +∞.

We now recall the definition of the local pressure projection E∗
G : W−1, s(G) → W−1, s(G) for a given bounded 

C2-domain G ⊂ R
3, introduced in [13] based on the unique solvability of the steady Stokes system (cf. [4]). More 

precisely, for any F ∈ W−1, s(G) there exists a unique pair (v, p) ∈ W
1, s
0,σ (G) ×Ls

0(G) which solves weakly the steady 
Stokes system

{∇ · v = 0 in G, −�v + ∇p = F in G,

v = 0 on ∂G.
(1.6)
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Here W 1, s
0,σ (G) stands for closure of C∞

c,σ (R3) with respect to the norm in W 1, s(G), while Ls
0(G) denotes the subspace 

of Ls(G) with vanishing average. Then we set E∗
G(F) := ∇p, where ∇p denotes the gradient function in W−1, s(G)

defined as

〈∇p,ϕ〉 = −
∫
G

p∇ · ϕdx, ϕ ∈ W
1, s′
0 (G).

Remark 1.1. From the existence and uniqueness of weak solutions (v, p) to (1.6) for given F ∈ W−1, s(G) it follows 
that

‖∇v‖s,G + ‖p‖s,G ≤ c‖F‖−1,s,G, (1.7)

where c = const depending on s and the geometric properties of G, and depending only on s if G equals a ball or an 
annulus, which holds due to the scaling properties of the Stokes equation. In case F is given by ∇ ·f for f ∈ Ls(R3)9

then (1.7) gives

‖p‖s,G ≤ c‖f ‖s,G. (1.8)

According to the estimate ‖∇p‖−1,s,G ≤ ‖p‖s,G, and using (1.8), we see that the operator E∗
G is bounded in 

W−1, s(G). Furthermore, as E∗
G(∇p) = ∇p for all p ∈ Ls

0(G) we see that E∗
G defines a projection.

2. In case F ∈ Ls(G), using the canonical embedding Ls(G) ↪→ W−1, s(G), by the aid of elliptic regularity we get 
E∗

G(F) = ∇p ∈ Ls(G) together with the estimate

‖∇p‖s,G ≤ c‖F‖s,G, (1.9)

where the constant in (1.9) depends only on s and G. In case G equals a ball or an annulus this constant depends 
only on s (cf. [4] for more details). Accordingly the restriction of E∗

G to the Lebesgue space Ls(G) appears to be a 
projection in Ls(G). This projection will be denoted still by E∗

G.

Definition 1.2 (Local Leray solution with projected pressure). Let u0 ∈ L2
loc(R

3). A vector function u ∈ L2
loc,σ (R3 ×

[0, +∞)) is called a local Leray solution to (1.1)–(1.3) with projected pressure, if for any bounded C2 domain G ⊂R
3

and 0 < T < +∞

1. u ∈ V 2
σ (G × (0, T )) ∩ Cw([0, T ]; L2(G)).

2. u is a distributional solution to (1.2), i.e. for every ϕ ∈ C∞
c (Q) with ∇ · ϕ = 0∫∫

Q

−u · ∂ϕ

∂t
− u ⊗ u : ∇ϕ + ∇u : ∇ϕdxdt = 0. (1.10)

3. u(t) → u0 in L2(G) as t → 0+.
4. The following local energy inequality with projected pressure holds for every nonnegative φ ∈ C∞

c (G ×(0, +∞)), 
and for almost every t ∈ (0, +∞)

1

2

∫
G

|vG(t)|2φdx +
t∫

0

∫
G

|∇vG|2φdxds

≤ 1

2

t∫
0

∫
G

|vG|2
(
� + ∂

∂t

)
φ + |vG|2u · ∇φ)dxds

+
t∫

0

∫
G

(u ⊗ vG) : ∇2ph,Gφdxdt +
t∫

0

∫
G

p1,GvG · ∇φdxds

+
t∫

0

∫
G

p2,GvG · ∇φdxds, (1.11)
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where vG = u + ∇ph,G, and

∇ph,G = −E∗
G(u),

∇p1,G = −E∗
G((u · ∇)u), ∇p2,G = E∗

G(�u).

Remark 1.3. 1. Note that due to ∇ ·u = 0 the pressure ph,G is harmonic, and thus smooth in x. Furthermore, as it has 
been proved in [13] the pressure gradient ∇ph,G is continuous in G × [0, +∞).

2. The notion of local suitable weak solution to the Navier–Stokes equations satisfying the local energy inequality 
(1.11) has been introduced in [12]. One can show without difficulty that any suitable weak solution in the sense of [2]
is a local suitable weak solution in the above sense, satisfying in particular the inequality (1.11) (see Appendix of [3]
for a complete proof). As it has been shown there such solutions enjoy the same partial regularity properties as the 
usual suitable weak solutions in the Caffarelli–Kohn–Nirenberg theorem.

Our main result is the following

Theorem 1.4. For any λ-DSS initial data u0 ∈ L2
loc,σ (R3) there exists at least one local Leray solution with projected 

pressure u ∈ L2
loc,σ (R3 × [0, +∞)) to the Navier–Stokes equations (1.1)–(1.3) in the sense of Definition 1.2, which is 

discretely self-similar.

We close this section by describing the structure of the paper. In Section 2 we consider a linearized problem of the 
Navier–Stokes equations, where the convection term of (1.2) is replaced by (b · ∇)u with a given λ-DSS function b. 
For a λ-DSS solution of such linearized equations we derive various a priori estimates, which will be used later for 
construction of the desired solution of the original problem. In Section 3 based on the a priori estimates of Section 2, 
combined with the Schauder fixed point theorem, we complete the proof of Theorem 1.4. In Appendix we prove 
several important properties of the λ-DSS solutions.

2. Solutions of the linearized problem with initial velocity in L2
λ−DSS

Let 1 < λ < +∞ be fixed. For f : R3 → R
3 we denote fλ(x) := λf (λx), x ∈ R

3. For a time dependent function 
f : Q → R

3 we denote fλ(x, t) := λf (λx, λ2t), (x, t) ∈ R
3 × (0, +∞). We now define for 1 ≤ s ≤ +∞

Ls
λ−DSS(R3) :=

{
u ∈ L1

loc(R
3)

∣∣∣u ∈ Ls(Bλ \ B1), uλ = u a. e. in R
3
}
,

Ls
λ−DSS(Q) :=

{
u ∈ L1

loc(Q)

∣∣∣u ∈ Ls(Qλ \ Q1), uλ = u a. e. in Q
}
.

Here Br stands for the usual ball in R3 with center 0 and radius r > 0, while Qr = Br × (0, r2).
In the present section we consider the following linearized problem in Q

∇ · u = 0, (2.1)

∂tu + (b · ∇)u − �u = −∇π (2.2)

with the initial condition

u = u0 on R
3 × {0}, (2.3)

where u0 belongs to L2
λ−DSS(R3) with ∇ · u0 = 0, and b ∈ Ls

λ−DSS(Q), 3 ≤ s ≤ 5, with ∇ · b = 0 both in the sense 
of distributions. We give the following notion of a local solution with projected pressure for the linear system (2.1), 
(2.2).

Definition 2.1 (Local solution with projected pressure to the linearized problem). Let u0 ∈ L2
loc,σ (R3) and let b ∈

L3
loc,σ (R3 × [0, +∞)). A vector function u ∈ L2

loc,σ (R3 × [0, +∞)) is called a local solution to (2.1)–(2.3) with 
projected pressure, if for any bounded C2 domain G ⊂R

3 and 0 < T < +∞ the following conditions are satisfied

1. u ∈ V 2(G × (0, T )) ∩ Cw([0, T ]; L2(G)).
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2. u is a distributional solution to (2.2), i.e. for every ϕ ∈ C∞
c (Q) with ∇ · ϕ = 0∫∫

Q

−u · ∂ϕ

∂t
− b ⊗ u : ∇ϕ + ∇u : ∇ϕdxdt = 0. (2.4)

3. u(t) → u0 in L2(G) as t → 0+.
4. The following local energy inequality with projected pressure holds for every nonnegative φ ∈ C∞

c (G ×(0, +∞)), 
and for almost every t ∈ (0, +∞)

1

2

∫
G

|vG(t)|2φdx +
t∫

0

∫
G

|∇vG|2φdxds

≤ 1

2

t∫
0

∫
G

|vG|2
(
� + ∂

∂t

)
φ + |vG|2b · ∇φ)dxds

+
t∫

0

∫
G

(b ⊗ vG) : ∇2ph,Gφdxdt +
t∫

0

∫
G

p1,GvG · ∇φdxds

+
t∫

0

∫
G

p2,GvG · ∇φdxds (2.5)

where vG = u + ∇ph,G, and

∇ph,G = −E∗
G(u),

∇p1,G = −E∗
G((b · ∇)u), ∇p2,G = E∗

G(�u).

Theorem 2.2. Let b ∈ L3
λ−DSS(Q) ∩ L

18
5 (0, T ; L3(B1)), 0 < T < +∞, with ∇ · b = 0 in the sense of distributions. 

Suppose that b ∈ L3
loc(0, ∞; L∞(R3)). For every u0 ∈ L2

λ−DSS(R3) with ∇ · u0 = 0 in the sense of distributions, 
there exists a unique local solution with projected pressure u ∈ L2

loc,σ (R3 × [0, +∞)) to (2.1)–(2.3) according to 
Definition 2.1 such that for any 0 < ρ < +∞ and 0 < T < +∞ it holds

u ∈ L3
λ−DSS(Q), (2.6)

u ∈ C([0, T ];L2(Bρ)), (2.7)

‖u‖L∞(0,T ;L2(B
ρ

1
4

)) + ‖∇u‖L2(B
ρ

3
5

×(0,T )) ≤ C0K0

(
ρ

1
2 + ‖|b‖|3 max{T 13

18 , T
1
2 }

)
, (2.8)

‖u‖L4(0,T ;L3(B1))
≤ C0K0

(
1 + ‖|b‖|3 max{T 13

18 , T
1
2 }

)
, (2.9)

where K0 := ‖u0‖L2(B1)
and ‖ |b‖ | = ‖b‖

L
18
5 (0,T ;L3(B1))

, while C0 > 0 denotes a constant depending on λ only.

Before turning to the proof of Theorem 2.1, we show the existence and uniqueness of weak solutions to the linear 
system (2.1)–(2.3) for L2

σ initial data.

Lemma 2.3. Let b ∈ L3
λ−DSS(Q) ∩ L

18
5 (0, T ; L3(B1)), 0 < T < +∞ with ∇ · b = 0 in the sense of distributions. 

Suppose that b ∈ L3
loc(0, ∞; L∞(B1)). For every u0 ∈ L2

σ (R3) there exists a unique weak solution u ∈ V 2
σ (Q) ∩

C([0, +∞); L2(R3)) to (2.1)–(2.3), which satisfies the global energy equality for all t ∈ [0, +∞)

1

2
‖u(t)‖2

2 +
t∫

0

∫
R3

|∇u|2dxds = 1

2
‖u0‖2

2. (2.10)
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Proof. 1. Existence: By using standard linear theory of parabolic systems we easily get the existence of a weak 
solution u ∈ V 2(Q) ∩ Cw([0, +∞); L2(R3)) to (2.1)–(2.3) which satisfies the global energy inequality for almost all 
t ∈ (0, +∞)

1

2
‖u(t)‖2

2 +
t∫

0

∫
R3

|∇u|2dxds ≤ 1

2
‖u0‖2

2. (2.11)

It is well known that such solutions have the property

u(t) → u0 in L2(R3) as t → 0+. (2.12)

On the other hand, from the assumption of the Lemma it follows that for all t0 ∈ (0, T )

‖bu‖L2(R3×(t0,T )) ≤ ‖b‖L2(t0,T ;L∞(R3)‖u0‖2.

Accordingly, u ∈ C((0, T ]; L2(R3)), and for all t0 ∈ (0, T ] and t ∈ [t0, T ] the following energy equality holds true

1

2
‖u(t)‖2

2 +
t∫

t0

∫
R3

|∇u|2dxds = 1

2
‖u(t0)‖2

2. (2.13)

Now letting t0 → 0 in (2.13), and observing (2.12), we are led to (2.10).
By a similar argument, making use of (2.12) we easily prove the local energy inequality (2.5).
2. Uniqueness: Let v ∈ V 2

σ (Q) be a second solution to (2.1)–(2.3) satisfying the global energy equality. As we have 
seen above this solution belongs to C([0, +∞); L2(R3)). Setting w = u − v, by our assumption on b it follows that 
b ⊗ w ∈ L2(R3 × (t0, T ]) for any t0 ∈ (0, T ]. Accordingly, as above we get the following energy equality

1

2
‖w(t)‖2

2 +
t∫

t0

∫
R3

|∇w|2dxds = 1

2
‖w(t0)‖2

2. (2.14)

Verifying that w(t0) → 0 in L2(R3) as t0 → 0+ from (2.14) letting t0 → 0+ it follows that ‖w(t)‖2 = 0 for all 
t ∈ [0, T ]. This completes the proof of the uniqueness. �
Proof of Theorem 2.2. Since u0 is λ-DSS we have λu0(λx) = u0(x) for all x ∈ R

3. We define the extended annulus 
Ãk = Bλk \ Bλk−3 , k ∈N. Clearly, B1 ∪ (∪∞

k=1Ãk) =R
3. There exists a partition of unity {ψk} such that suppψk ⊂ Ãk

for k ∈ N and suppψ0 ⊂ B1, and 0 ≤ ψk ≤ 1, |∇2ψk| + |∇ψk|2 ≤ cλ−2k , k ∈ N ∪ {0}. We set u0,k = P(u0ψk), 
k ∈N ∪ {0}, where P denotes the Leray–Helmholtz projection. Clearly,

u0 =
∞∑

k=0

u0,k, (2.15)

where the limit in (2.15) is taken in the sense of L2
loc(R

3).
Let k ∈N ∪ {0} be fixed. Thanks to Lemma 2.3 we get a unique weak solution uk ∈ V 2

σ (Q) to the problem

∇ · uk = 0 in Q, (2.16)

∂tuk + (b · ∇)uk − �uk = −∇πk in Q, (2.17)

uk = u0,k on R
3 × {0}, (2.18)

satisfying the following global energy equality for all t ∈ [0, +∞)

1

2
‖uk(t)‖2

2 +
t∫ ∫

3

|∇uk|2dxds = 1

2
‖u0,k‖2

2. (2.19)
0 R
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By using the transformation formula, we get

‖u0,k‖2
2 ≤

∫
R3

|u0ψk|2dx ≤
∫
Ãk

|u0|2dx = λ3k

∫
Ã1

|u0(λ
kx)|2dx

= λk

∫
Ã1

|λku0(λ
kx)|2dx = λk

∫
Ã1

|u0(x)|2dx ≤ cK2
0 λk. (2.20)

Combining (2.19) and (2.20), we are led to

‖uk‖2
L∞(0,T ;L2)

+ ‖∇uk‖2
L2(0,T ;L2)

≤ cK2
0 λk. (2.21)

Next, let λ
3
5 k ≤ r < ρ ≤ λ

3
5 (k+1) be arbitrarily chosen, but fixed. By introducing the local pressure we have

∂vk,ρ

∂t
+ (b · ∇)uk − �vk,ρ = −∇p1,k,ρ − ∇p2,k,ρ,

where vk,ρ = uk + ∇ph,k,ρ , and

∇ph,k,ρ = −E∗
Bρ

(uk),

∇p1,k,ρ = −E∗
Bρ

((b · ∇)uk), ∇p2,k,ρ = E∗
Bρ

(�uk).

The following local energy equality holds true for all φ ∈ C∞
c (Bρ) and for all t ∈ [0, T ],

1

2

∫
Bρ

|vk,ρ(t)|2φ6dx +
t∫

0

∫
Bρ

|∇vk,ρ |2φ6dxds

= 1

2

t∫
0

∫
Bρ

|vk,ρ |2�φ6dxds + 1

2

t∫
0

∫
Bρ

|vk,ρ |2b · ∇φ6dxds

+
t∫

0

∫
Bρ

(b ⊗ vk,ρ) : ∇2ph,k,ρφ6dxds +
t∫

0

∫
Bρ

p1,k,ρvk,ρ · ∇φ6dxds

+
t∫

0

∫
Bρ

p2,k,ρvk,ρ · ∇φ6dxds + 1

2

∫
Bρ

|v0,k|2φ6dx

= I + II + III + IV + V + V I. (2.22)

Let φ ∈ C∞
c (R3) denote a cut off function such that 0 ≤ φ ≤ 1 in R3, φ ≡ 1 on Br , φ ≡ 0 in R3 \ Bρ , and |∇2φ| +

|∇φ|2 ≤ c(ρ − r)−2 in R3.
Let m ∈ N be chosen so that λm−1 ≤ ρ < λm. Then we estimate

‖b‖3
L3(Bρ×(0,T ))

= λ5m

T λ−2m∫
0

∫
Bρλ−m

|b(λ−mx,λ−2mt)|3dxdt

= λ2m

T λ−2m∫
0

∫
Bρλ−m

|b(x, t)|3dxdt

≤ cλ2m− 1
3 mT

1
6 ‖b‖3

L
18
5 (0,T ;L3(B1))

≤ c‖|b‖|3ρ 5
3 T

1
6 ,
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where and hereafter the constants appearing in the estimates may depend on λ. The above estimate together with 
ρ

5
3 ≤ λk+1 yields

‖b‖L3(Bρ×(0,T )) ≤ c‖|b‖|λ 1
3 kT

1
18 . (2.23)

In what follows we extensively make use of the estimate for almost all t ∈ (0, T )

‖∇ph,k,ρ(t)‖L2(Bρ) � ‖uk(t)‖L2(Bρ), (2.24)

which is an immediate consequence of (1.9). In addition, we easily verify the inequality

‖∇2ph,k,ρ(t)‖L2(Bρ) � ‖∇uk(t)‖L2(Bρ). (2.25)

Indeed, observing that

∇2ph,k,ρ(t) = ∇(∇ph,k,ρ(t) − u(t)Bρ ) = −∇E∗
Bρ

(uk(t) − uk(t)Bρ )

by means of elliptic regularity along with the Poincaré inequality we get

‖∇2ph,k,ρ(t)‖2
L2(Bρ)

≤ cρ−2‖uk(t) − uk(t)Bρ ‖2
L2(Bρ)

+ c‖∇uk(t)‖2
L2(Bρ)

≤ c‖∇uk(t)‖2
L2(Bρ)

.

Whence, (2.25).
(i) With the help of (2.21) we easily deduce that

I ≤ c(ρ − r)−2

t∫
0

∫
Bρ

|uk|2dxds ≤ cK2
0 (ρ − r)−2λkT .

(ii) Next, using Hölder’s inequality and Young’s inequality together with (2.21), (2.23), (2.24) and (2.25), we 
estimate

II ≤ (ρ − r)−1

t∫
0

∫
Bρ

|b||vk,ρ |2φ5dxds

≤ c(ρ − r)−1T
1
6 ‖b‖L3(Bρ×(0,T ))‖vk,ρφ3‖L∞(0,T ;L2)‖vk,ρφ2‖L2(0,T ;L6)

≤ c(ρ − r)−2T
2
3 ‖b‖L3(Bρ×(0,T ))‖vk,ρφ3‖L∞(0,T ;L2)‖uk‖L∞(0,T ;L2)

+ c(ρ − r)−1T
1
6 ‖b‖L3(Bρ×(0,T ))‖vk,ρφ3‖L∞(0,T ;L2)‖∇vk,ρφ2‖L2(0,T ;L2)

≤ c‖|b‖|K0(ρ − r)−2λ
5
6 kT

13
18 ‖vk,ρφ3‖L∞(0,T ;L2)

+ c‖|b‖|(ρ − r)−1λ
1
3 kT

2
9 ‖vk,ρφ3‖L∞(0,T ;L2)‖∇vk,ρφ3‖

2
3
L2(0,T ;L2)

‖∇vk,ρ‖
1
3
L2(0,T ;L2(Bρ))

≤ c‖|b‖|K0(ρ − r)−2λ
5
6 kT

13
18 ‖vk,ρφ3‖L∞(0,T ;L2)

+ c‖|b‖|K
1
3

0 (ρ − r)−1λ
1
2 kT

2
9 ‖vk,ρφ3‖L∞(0,T ;L2)‖∇vk,ρφ3‖

2
3
L2(0,T ;L2)

≤ c‖|b‖|2K2
0 (ρ − r)−4λ

5
3 kT

13
9

+ c‖|b‖|6K2
0 (ρ − r)−6λ3kT

4
3 + 1

8
‖vk,ρφ3‖2

L∞(0,T ;L2)
+ 1

4
‖∇vk,ρφ3‖2

L2(0,T ;L2)

≤ cK2
0 (ρ − r)−3λk max{T 13

9 , T } + c‖|b‖|6K2
0 (ρ − r)−6λ3k max{T 13

9 , T }
+ 1

8
‖vk,ρφ3‖2

L∞(0,T ;L2)
+ 1

4
‖∇vk,ρφ3‖2

L2(0,T ;L2)
.
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(iii) In what follows we make use the following estimates using the fact that ph,k,ρ is harmonic. By using the 
identity∫

R3

|∇h|2φ2dx = 1

2

∫
R3

h2�φ2dx

for any harmonic function h on Bρ , and cut off function φ ∈ C∞
c (Bρ), we get

‖∇3ph,k,ρ(t)φ3‖2 ≤ c(ρ − r)−1‖∇2ph,k,ρ(t)φ2‖2 ≤ (ρ − r)−2‖∇ph,k,ρ(t)‖2,Bρ . (2.26)

By the aid of Sobolev’s inequality, together with (2.26), we get for almost every t ∈ (0, T )

‖∇2ph,k,ρ(t)φ3‖6 ≤ c(ρ − r)−1‖∇2ph,k,ρ(t)φ2‖2,Bρ + c‖∇3ph,k,ρ(t)φ3‖2

≤ c(ρ − r)−1‖∇2ph,k,ρ(t)φ2‖2,Bρ

≤ c(ρ − r)−2‖∇ph,k,ρ(t)‖2,Bρ

≤ c(ρ − r)−2‖uk(t)‖2,Bρ .

Integrating both sides of the above estimate, and estimating the right-hand side of the resultant inequality by (2.21), 
we arrive at

‖∇2ph,k,ρφ3‖L2(0,T ;L6) ≤ c(ρ − r)−2T
1
2 K0λ

1
2 k. (2.27)

Arguing as above, and using (2.27), we find

III ≤ cT
1
6 ‖b‖L3(0,T L3(Bρ)‖vkφ

3‖L∞(0,T ;L2)‖∇2ph,k,ρφ3‖L2(0,T ;L6)

≤ cK0(ρ − r)−2T
2
3 λ

1
2 k‖b‖L3(0,T L3(Bρ)‖vkφ

3‖L∞(0,T ;L2)

≤ c‖|b‖|K0(ρ − r)−2λ
1
2 kT

13
18 ‖vkφ

3‖L∞(0,T ;L2)

≤ c‖|b‖|2K2
0 (ρ − r)−4λkT

13
9 + 1

8
‖vkφ

3‖2
L∞(0,T ;L2)

.

(iv) We now going to estimate IV . Using (1.8), and arguing similar as before, we estimate

IV ≤ c(ρ − r)−1‖p1,k,ρ‖
L

6
5 (0,T ;L2(Bρ))

‖vk,ρφ3‖L6(0,t;L2)

≤ c(ρ − r)−1T
1
6 ‖buk‖

L
6
5 (0,T ;L2(Bρ))

‖vk,ρφ3‖L∞(0,T ;L2)

≤ c(ρ − r)−1T
1
6 ‖b‖L3(0,T ;L3(Bρ))‖uk‖L2(0,T ;L6(Bρ))‖vk,ρφ3‖L∞(0,T ;L2)

≤ c‖|b‖|(ρ − r)−1λ
1
3 kT

2
9 ‖uk‖L2(0,T ;L6(Bρ))‖vk,ρφ3‖L∞(0,T ;L2)

≤ c‖|b‖|K0(ρ − r)−1ρ−1λ
1
3 kT

13
18 ‖uk‖L∞(0,T ;L2)‖vk,ρφ3‖L∞(0,T ;L2)

+ c‖|b‖|(ρ − r)−1λ
1
3 kT

2
9 ‖vk,ρφ3‖L∞(0,T ;L2)‖∇uk‖

1
3
L2(0,T ;L2(Bρ))

‖∇uk‖
2
3
L2(0,T ;L2(Bρ))

≤ c‖|b‖|K0(ρ − r)−1λ
7
30 kT

13
18 ‖vk,ρφ3‖L∞(0,T ;L2)

+ c‖|b‖|K
1
3

0 (ρ − r)−1λ
1
2 kT

2
9 ‖vk,ρφ3‖L∞(0,T ;L2)‖∇uk‖

2
3
L2(0,T ;L2(Bρ))

≤ c‖|b‖|2K2
0 (ρ − r)−2λ

7
15 kT

13
9 + c‖|b‖|6K2

0 (ρ − r)−6λ3kT
4
3

+ 1

8
‖vk,ρφ3‖2

L∞(0,T ;L2)
+ 1

4
‖∇uk‖2

L2(0,T ;L2(Bρ))

≤ (1 + ‖|b‖|6)K2
0 (ρ − r)−6λ

17
5 k max{T 13

9 , T }
+ 1

8
‖vk,ρφ3‖2

L∞(0,T ;L2)
+ 1

4
‖∇uk‖2

L2(0,T ;L2(Bρ))
.
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(v) Recalling the definition of p2,k,ρ , using (1.8), (2.21) and Young’s inequality, we get

V ≤ c(ρ − r)−1‖p2,k,ρ‖L2(0,T ;L2(Bρ))‖vk,ρφ3‖L2(0,T ;L2)

≤ c(ρ − r)−1T
1
2

( T∫
0

∫
Bρ

|∇uk|2dxdt

) 1
2 ‖vk,ρφ3‖L∞(0,T ;L2)

≤ cK2
0 (ρ − r)−2λkT + 1

8
‖vk,ρφ3‖2

L∞(0,T ;L2)

≤ cK2
0 (ρ − r)−6λ

17
5 kT + 1

8
‖vk,ρφ3‖2

L∞(0,T ;L2)
.

(vi) It only remains to evaluate V I . Let k ≥ 9. Then 3
5 (k + 1) ≤ k − 3. Thus, supp(ψk) ∩ Bρ = ∅. In particular, 

ψku0 = 0 in Bρ . This shows that, almost everywhere in Bρ it holds

u0,k = P(ψku0) − ψku0

which is a gradient field. Accordingly, almost everywhere in Bρ

v0,k = u0,k − E∗
Bρ

(u0,k) = u0,k − u0,k = 0.

Hence

V I = 0.

For k ≤ 8 we find

V I ≤ ‖u0,k‖2
L2(Bρ)

≤ c

8∑
k=0

‖u0ψk‖2
L2 ≤ c‖u0‖2

L2(B
λ8 )

≤ cK2
0 .

We now insert the above estimates of I, . . . , V I into the right-hand side of (2.22). This gives

ess sup
t∈(0,T )

∫
Bρ

|vk,ρ(t)|2φ6dx +
T∫

0

∫
Bρ

|∇vk,ρ |2φ6dxdt

≤ cK2
0 max{8 − k,0} + c(1 + ‖|b‖|6)K2

0 max{T 13
9 , T }(ρ − r)−6λ

17
5 k

+ 1

4

T∫
0

∫
Bρ

|∇uk|2dxdt. (2.28)

On the other hand, employing (2.26) and (2.21)∫
Bρ

|∇2ph,k,ρ |2φ6dxdt ≤ cK2
0 (ρ − r)−2λkT ,

we estimate
T∫

0

∫
Br

|∇uk|2dxdt

≤ 2

T∫
0

∫
Bρ

|∇vk,ρ |2φ6dxdt + 2

T∫
0

∫
Bρ

|∇2ph,k,ρ |2φ6dxdt

≤ 2

T∫
0

∫
Bρ

|∇vk,ρ |2φ6dxdt + cK2
0 (ρ − r)−2λkT . (2.29)



D. Chae, J. Wolf / Ann. I. H. Poincaré – AN 35 (2018) 1019–1039 1029
Combining (2.28) and (2.29), we are led to
T∫

0

∫
Br

|∇uk|2dxdt

≤ cK2
0 max{8 − k,0} + c(1 + ‖|b‖|6)K2

0 max{T 13
9 , T }(ρ − r)−6λ

17
5 k

+ 1

2

T∫
0

∫
Bρ

|∇uk|2dxdt. (2.30)

By virtue of a routine iteration argument from (2.30) we get for all ρ ∈ [λ 3
5 k, 2λ

3
5 k]

ess sup
t∈(0,T )

∫
Bρ/2

|vk,ρ(t)|2dx +
T∫

0

∫
Bρ/2

|∇uk|2dxdt

≤ cK2
0 max{8 − k,0} + c(1 + ‖|b‖|6)K2

0 max{T 13
9 , T }ρ−6λ

17
5 k

≤ cK2
0 max{8 − k,0} + c(1 + ‖|b‖|6)K2

0 max{T 13
9 , T }λ− 1

5 k. (2.31)

In addition, by using the mean value property of harmonic functions along with (2.21), we estimate for almost all 
t ∈ (0, T )

‖∇ph,k,ρ(t)‖2
L2(B

λ
1
4 k

)
≤ cλ

3
4 k‖∇ph,k,ρ(t)‖2

L∞(Bρ/2)

≤ cλ− 21
20 k‖∇ph,k,ρ(t)‖2

L2(Bρ)

≤ cλ− 21
20 k‖uk‖2

L∞(0,T ;L2(Bρ))
≤ cK2

0 λ− 1
20 k.

Combining this estimate with (2.31), we obtain

ess sup
t∈(0,T )

∫
B

λ
1
4 k

|uk(t)|2dx +
T∫

0

∫
B

λ
3
5 k

|∇uk|2dxdt

≤ cK2
0

(
1 + ‖|b‖|6 max{T 13

9 , T }
)
λ− 1

20 k. (2.32)

Next, let l ∈ N be fixed. Then (2.32) implies for all k ≥ l

‖uk‖L∞(0,T ;L2(B
λ

1
4 l

)) + ‖∇uk‖L2(B
λ

3
5 l

×(0,T ))

≤ ‖uk‖L∞(0,T ;L2(B
λ

1
4 k

)) + ‖∇uk‖L2(B
λ

3
5 k

×(0,T ))

≤ cK0

(
1 + ‖|b‖|3 max{T 13

18 , T
1
2 }

)
λ− 1

40 k. (2.33)

Thus, by means of triangular inequality we find for each N ∈N, N > l

∥∥∥ N∑
k=0

uk

∥∥∥
L∞(0,T ;L2(B

λ
1
4 l

))
+

∥∥∥ N∑
k=0

∇uk

∥∥∥
L2(B

λ
3
5 l

×(0,T ))

≤
l−1∑
k=0

‖uk‖L∞(0,T ;L2(R3)) +
l−1∑
k=0

‖∇uk‖L2(R3×(0,T ))

+
N∑

‖uk‖L∞(0,T ;L2(B
λ

1
4 l

)) +
N∑

‖∇uk‖L2(B
λ

3
5 l

×(0,T ))
k=l k=0
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≤ cK0λ
1
2 l + cK0

(
1 + ‖|b‖|3 max{T 13

18 , T
1
2 }

)
≤ cK0

(
λ

1
2 l + ‖|b‖|3 max{T 13

18 , T
1
2 }

)
.

Therefore, uN = ∑N
k=0 uk → u in V 2

loc(R
3 × [0, T ]) as N → ∞. It is readily seen that u is a weak solution to 

(1.1)–(1.3), and by virtue of the above estimate we see that for every 1 ≤ ρ < ∞
‖u‖L∞(0,T ;L2(B

ρ
1
4

)) + ‖∇u‖L2(B
ρ

3
5

×(0,T )) ≤ cK0

(
ρ

1
2 + ‖|b‖|3 max{T 13

18 , T
1
2 }

)
. (2.34)

In particular, in (2.34) taking ρ = 1, and using Sobolev’s embedding theorem, we get

‖u‖L4(0,T ;L3(B1))
+ ‖u‖V 2(B1×(0,T )) ≤ C0K0

(
1 + ‖|b‖|3 max{T 13

18 , T
1
2 }

)
(2.35)

with a constant C0 > 0 depending only on λ. Furthermore, by means of the assumption on b we see that u satisfies 
(2.5) with the equality(=) replaced by the inequality(≤) and this belongs to C([0, T ]; L2(BR)) for all 0 < R < +∞, 
and therefore it is unique. It remains to show that uλ = u. Let N ∈ N, N ≥ 4. We set wN = uN − uN

λ . Recalling that 
b = bλ, it follows that wN solves the system

∇ · wN = 0 in Qλ−2T , (2.36)

∂tw
N + (b · ∇)wN − �wN = −∇πN in Qλ−2T , (2.37)

wN = wN
0 on R

3 × {0}, (2.38)

where

wN
0 =

N∑
k=0

u0,k − (u0,k)λ =
N∑

k=0

P(u0ψk) − (P(u0ψk))λ

= u0

N∑
k=0

ψk −
(
u0

N∑
k=0

ψk

)
λ
+ ∇N ∗ (u0 · ∇

N∑
k=0

ψk) −
(
∇N ∗ (u0 · ∇

N∑
k=0

ψk)
)

λ

= u0

( N∑
k=0

ψk −
( N∑

k=0

ψk

)
(λ·)

)
+ ∇N ∗ (u0 · ∇

N∑
k=0

ψk) −
(
∇N ∗ (u0 · ∇

N∑
k=0

ψk)
)

λ
,

where N = 1
4π |x| stands for the Newton potential. For obtaining the third line in the above equalities we used the fact 

that (u0)λ = u0. Owing to 
∑N

k=0 ψk = 1 in BλN−3 we have

( N∑
k=0

ψk −
( N∑

k=0

ψk

)
(λ·)

)
= 0 in BλN−4 . (2.39)

Let λ
3
5 N ≤ r < ρ ≤ λ

3
5 (N+1) be arbitrarily chosen, but fixed. Let φ ∈ C∞

c (R3) denote a cut off function such that 
0 ≤ φ ≤ 1 in R3, φ ≡ 1 on Br , φ ≡ 0 in R3 \ Bρ , and |∇2φ| + |∇φ|2 ≤ c(ρ − r)−2 in R3. Without loss of generality 

we may assume that λ
3
5 (N+1) ≤ λN−4. Thus, in view of (2.39) we infer that wN

0 is a gradient field in Bρ , and therefore

wN
0 − E∗

Bρ
(wN

0 ) = 0 a. e. in Bρ. (2.40)

By a similar reasoning we have used to prove (2.30) we get the estimate

‖wN‖2
L2(0,λ−2T ;L6(Br ))

+
λ−2T∫
0

∫
Br

|∇wN |2dxdt

≤ cK2
0 (1 + ‖|b‖|6)max{T 13

9 , T }(ρ − r)−6λ
17
5 N + 1

2

λ−2T∫
0

∫
Bρ

|∇wN |2dxdt. (2.41)
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Once more applying an iteration argument, together with the latter estimate, we deduce from (2.41)

‖wN‖2
L2(0,λ−2T ;L6(B

λ
3
5 N

))
≤ cK2

0 (1 + ‖|b‖|6)max{T 13
9 , T }λ− 1

5 N. (2.42)

Accordingly, for all 0 < ρ < ∞,

wN → 0 in L2(0, λ−2T ;L6(Bρ)) as N → +∞.

On the other hand, observing that wN = uN − (uN)λ → u − uλ in L2(0, λ−2T ; L6(Bρ)) as N → ∞, we conclude 
that u = uλ. This completes the proof of the theorem. �
3. Proof of Theorem 1.4

We divide the proof in three steps. Firstly, given a λ-DSS function b ∈ L
18
5

loc([0, ∞); L3
loc(R

3)) we get the existence 
of a unique λ-DSS local solution with projected pressure u to the linearized system (2.1)–(2.3), replacing b by Rεb

therein (cf. appendix for the notion of the mollification Rε). Secondly, based on the first step we may construct a 
mapping T : M → M , which is continuous and compact. Application of Schauder’s fixed point theorem gives a local 
suitable solution with projected pressure to the approximated Navier–Stokes equation. Thirdly, letting ε → 0+ in the 
weak formulation and in the local energy inequality (2.5), we obtain the existence of the desired local Leray solution 
with projected pressure to (1.1)–(1.3).

We set

T := min
{ 1

64C6
0K6

0 λ
10
3

,
( 1

64C6
0K6

0 λ
10
3

) 9
13

}
. (3.1)

Furthermore, set X = L3
λ−DSS(Q) ∩ L

18
5 (0, T ; L3

loc,σ (R3)) equipped with the norm

‖|v‖| := ‖v‖
L

18
5 (0,T ;L3(B1))

, v ∈ X.

Then we define,

M =
{
b ∈ X

∣∣∣‖|b‖| ≤ 2C0K0

}
.

We now fix 0 < ε < λ − 1. For b ∈ M we set

bε := Rεb,

where Rε stands for the mollification operator defined in the appendix below. According to Theorem 2.2 there exists 
a unique λ-DSS solution u ∈ X to (2.1)–(2.3) with bε in place of b. Observing (2.35), it follows that

‖u‖L4(0,T ;L3(B1))
+ ‖u‖V 2(B1×(0,T )) ≤ C0K0

(
1 + ‖|bε‖|3 max{T 13

18 , T
1
2 }

)
. (3.2)

In view of (A.2) having ‖ |bε‖ |3 ≤ λ
5
3 ‖ |b‖ |3, (3.2) together with (3.1) implies that

‖|u‖| ≤ 2C0K0,

and thus u ∈ M . By setting Tε(b) := u defines a mapping Tε : M → M .
Tε is closed. In fact, let {bk} be a sequence in M such that bk → b in X as k → ∞, and let uk := Tε(bk), k ∈ N, 

such that uk → u in X as k → ∞. From (3.2) it follows that {uk} is bounded in V 2
σ (B1 × (0, T )), and thus, eventually 

passing to a subsequence, we find that uk → u weakly in V 2
σ (B1 × (0, T )) as k → ∞. Since uk solves (2.1)–(2.3) with 

bk,ε = Rεbk in place of b, from the above convergence properties we deduce that u ∈ M ∩ V 2
σ (B1 × (0, T )) solves 

(2.1)–(2.3). Accordingly, u = Tε(b).
Tε(M) is relatively compact in X. To see this, let {uk = Tε(bk)} ⊂ Tε(M) be any sequence. Then uk ∈ L2

loc,σ (R3 ×
[0, ∞)) is a λ-DSS local suitable weak solution with projected pressure to
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∇ · uk = 0 in Q, (3.3)

∂tuk + (bk,ε · ∇)uk − �uk = −∇πk in Q, (3.4)

uk = u0 on R
3 × {0}. (3.5)

Introducing the local pressure, we have

∂tvk + (bk,ε · ∇)uk − �uk = −∇p1,k − ∇p2,k in B2 × (0, T ), (3.6)

where vk = uk + ∇ph,k , and

∇ph,k = −E∗
B2

(uk),

∇p1,k = −E∗
B2

((bk,ε · ∇)uk), ∇p2,k = E∗
B2

(�uk).

Thus, (3.4) implies that v′
k = ∇ · (−bk,ε ⊗ uk + ∇uk − p1,kI − p2,kI ) in B2 × (0, T ). Since bk, uk ∈ M we get the 

estimate

‖ − bk,ε ⊗ uk + ∇uk − p1,kI − p2,kI‖
L

9
5 (0,T ;L 3

2 (B2))
≤ c(1 + C2

0K2
0 ).

Furthermore, by means of the reflexivity of L2(0, T ; W 1, 2(B2)), and using Banach–Alaoglu’s theorem we get a 
subsequence {ukj

} and a function u ∈ M ∩ V 2
loc,σ (R3 × [0, T ]) such that

ukj
→ u weakly in L2(0, T ;W 1, 2(B2)),

ukj
→ u weakly∗ in L∞(0, T ;L2(B2)) as j → ∞.

In particular, we have for almost every t ∈ (0, T )

ukj
(t) → u(t) weakly in L2(B2) as j → ∞. (3.7)

In addition, verifying that {vkj
} is bounded in V 2(B2 × (0, T )), by Lions–Aubin’s compactness lemma we see that

vkj
→ v in L2(B2 × (0, T )) as j → +∞, (3.8)

where v = u + ∇ph, and ∇ph = −E∗(u). Now, let t ∈ (0, T ) be fixed such that (3.7) is satisfied. Then

∇ph,kj
(t) → ∇ph(t) weakly in L2(B2) as j → ∞. (3.9)

Since ph,k is harmonic in B2, from (3.9) we deduce that

∇ph,kj
(t) → ∇ph(t) a. e. in B2 as j → ∞. (3.10)

On the other hand, using the mean value property of harmonic functions, we see that {∇ph,k} is bounded in L∞(B1 ×
(0, T )). Appealing to Lebesgue’s theorem of dominated convergence, we infer from (3.10) that

∇ph,kj
→ ∇ph in L2(B1 × (0, T )) as j → ∞. (3.11)

Now combining (3.8) and (3.11), we obtain ukj
→ u in L2(B1 × (0, T )). Recalling that {ukj

} is bounded in V 2(B1 ×
(0, T )), we get the desired convergence property ukj

→ u in X as j → ∞. To see this we argue as follows. Eventually 
passing to a subsequence, we may assume that ukj

→ u almost everywhere in B1 × (0, T ). Let ε > 0 be arbitrarily 
chosen. We denote Am = {(x, t) ∈ B1 × (0, T ) | ∃ j ≥ m : |ukj

(x, t) − u(x, t)| > ε}. Clearly, ∩∞
m=1Am is a set of 

Lebesgue measure zero. Thus measAm → 0 as m → ∞. We now get the following estimate

‖ukj
− u‖

L
18
5 (0,T ;L3(B1))

=
≤ ‖(ukj

− u)χAm‖
L

18
5 (0,T ;L3(B1))

+ ‖(ukj
− u)χAc

m
‖
L

18
5 (0,T ;L3(B1))

≤ ‖ukj
− u‖

L
168
45 (0,T ;L 28

9 (B1))
‖χAm‖

L
504

5 (0,T ;L84(B1))
+ ‖(ukj

− u)χAc
m
‖
L

18
5 (0,T ;L3(B1))

.

≤ c(measAm)
5

504 + cε.

This shows that ‖ |ukj
− u‖ | → 0 as j → ∞. Applying Schauder’s fixed point theorem, we get a function uε ∈ M such 

that uε = Tε(uε). Thus, uε is a local suitable weak solution with projected pressure to
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∇ · uε = 0 in Q, (3.12)

∂tuε + (Rεuε · ∇)uε − �uε = −∇πε in Q, (3.13)

uε = u0 on R
3 × {0}. (3.14)

In particular, we have the a-priori estimate

‖uε‖L4(0,T ;L3(B1))
+ ‖uε‖V 2(B1×(0,T )) ≤ 2C0K0. (3.15)

Let {εj } be a sequence of positive numbers in (0, λ − 1). Since uεj
is λ-DSS we may apply Lemma B.5 which shows 

that, after redefining uεj
on a set in [0, +∞) of measure zero, it holds uε ∈ Cw([0, +∞), L2

loc(R
3))) together with

M(uεj
) = [0,+∞),

where M(uεj
) denotes the set of all t ∈ [0, +∞) such that for all k ∈ Z and almost every x ∈R

3

u(x, t) = λkuεj
(λkx,λ2kt).

We now define for t ∈ [0, +∞) and j ∈N the set Pj (t) ⊂ R
3 such that

uεj
(x, t) = λkuεj

(λkx,λ2kt) ∀x ∈ Pj (t), ∀ k ∈ Z.

Since t ∈ M(uεj
) it holds measR3 \ Pj (t) = 0. Accordingly, measR3 \ P(t) = 0, where P(t) = ∩∞

j=1Pj (t). In other 
words, it holds

uεj
(x, t) = λkuεj

(λkx,λ2kt) ∀x ∈ P(t), ∀ k ∈ Z,∀ j ∈ N.

By means of the reflexivity we get a sequence εj → 0+ as j → ∞ and u ∈ V 2
loc,σ (R3 × [0, T ]) such that

uεj
→ u weakly in L2(0, T ;W 1, 2(B1)) as j → +∞,

uεj
→ u weakly∗ in L∞(0, T ;L2(B1)) as j → +∞.

Arguing as in the proof the compactness of Tε, we infer

uεj
→ u in L

18
5 (0, T ;L3(B1)) as j → 0+.

Note that u is λ-DSS, since u is obtained as a limit of sequence of λ-DSS functions.
Together with Lemma A.3 we see that

Rεj
uεj

→ u in L
18
5 (0, T ;L3(B1)) as j → 0+. (3.16)

This shows that u ∈ L2
loc,σ (R3 × [0, +∞)) is a local Leray solution with projected pressure to (1.1)–(1.3). �
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Appendix A. Mollification for DSS functions

Let 1 < λ < +∞. Let u ∈ Ls
λ−DSS(R3). Let ρ ∈ C∞

c (B1) denote the standard mollifying kernel such that ∫
R3 ρdx = 1. For 0 < ε < λ − 1 we define

(Rεu)(x, t) = 1

(
√

tε)3

∫
B √

tε

u(x − y, t)ρ
( y√

tε

)
dy, (x, t) ∈ Q.

We have the following



1034 D. Chae, J. Wolf / Ann. I. H. Poincaré – AN 35 (2018) 1019–1039
Lemma A.1. Rε defines a bounded operator from Ls
λ−DSS(Q) into itself. Furthermore, for all u ∈ Ls

λ−DSS(Q) it 
holds for all (x.t) ∈ Q

|(Rεu)(x, t)| ≤ c{√
tε}− 3

s ‖u(·, t)‖Ls(B √
tε(x)) (A.1)

with a constant c > 0 depending on s only.

Proof. Let u ∈ Ls
λ−DSS(Q). First we will verify that Rεu is λ-DSS. Indeed, using the transformation formula of the 

Lebesgue integral, we calculate for any (x, t) ∈ Q,

λ(Rεu)(λx,λ2t) = 1

λ2(
√

tε)3

∫
Bλ

√
tε

u(λx − y,λ2t)ρ
( y

λ
√

tε

)
dy,

= 1

(
√

tε)3

∫
R3

λu(λ(x − y),λ2t)ρ
( y√

tε

)
dy

= 1

(
√

tε)3

∫
R3

u(x − y, t)ρ
( y√

tε

)
dy = (Rεu)(x, t).

Firstly, let λ−2 < t ≤ 1. Noting that (Rεu)(·, t) = u(·, t) ∗ ρ√
tε , where ρ√

tε(y) = 1
(
√

tε)3 ρ
(

y√
tε

)
, recalling that 

ε < λ − 1, by means of Young’s inequality we find

‖(Rεu)(·, t)‖s
Ls(B1)

≤ ‖u(·, t)‖s
Ls(B1+ε)

‖ρ√
tε‖s

L1 = ‖u(·, t)‖s
Ls(Bλ).

Integrating the above inequality over (λ−2, 1), and using a suitable change of coordinates, we obtain

‖Rεu‖Ls(B1×(λ−2,1)) ≤ ‖u‖Ls(Bλ×(λ−2,1))

= ‖u‖Ls(B1×(λ−2,1)) + ‖u‖Ls(Bλ\B1×(λ−2,1))

= ‖u‖Ls(B1×(λ−2,1)) + λ
5−s
s ‖u‖Ls(B1\Bλ−1×(λ−4,λ−2)).

Secondly, for 0 < t < λ−2 we estimate

‖(Rεu)(·, t)‖s
Ls(B1\Bλ−1 ) ≤ ‖u(·, t)‖s

Ls(Bλ\B
λ−1 )‖ρ√

tε‖s
L1 = ‖u(·, t)‖s

Ls(Bλ\B
λ−1 ).

Integration over (0, λ−2) in time yields

‖Rεu‖Ls(B1\Bλ−1×(0,λ−2)) ≤ ‖u‖Ls(Bλ\B
λ−1×(0,λ−2))

≤ ‖u‖Ls(B1\Bλ−1×(0,λ−2)) + ‖u‖Ls(Bλ\B1×(0,λ−2))

= ‖u‖Ls(B1\Bλ−1×(0,λ−2)) + λ
5−s
s ‖u‖Ls(B1\Bλ−1 ×(0,λ−4).

Combining the last two estimates, we get

‖Rεu‖Ls(Q1\Qλ−1 ) ≤ (1 + λ
5−s
s )‖u‖Ls(Q1\Qλ−1 ).

This shows that Rε : Ls
λ−DSS(Q) → Ls

λ−DSS(Q) is bounded.
The inequality (A.1) follows immediately from the definition of Rεu with the help of Hölder’s inequality. �

Remark A.2. Arguing as in the proof of Lemma A.1, we get for any u ∈ L3
λ−DSS(Q) ∩L

18
5 (0, T ; L3(B1)), 0 < T < 1

‖Rεu‖
L

18
5 (0,T ;L3(B1))

≤ λ
5
9 ‖u‖

L
18
5 (0,T ;L3(B1))

. (A.2)

Lemma A.3. Let u ∈ L3
λ−DSS(Q) ∩ L

18
5 (0, T ; L3(B1)), 0 < T ≤ 1. Then

Rεu → u in L
18
5 (0, T ;L3(B1)) as ε → 0+. (A.3)
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Proof. First by the absolutely continuity of the Lebesgue integral we see that for almost all t ∈ (0, T )

(Rεu)(·, t) → u(·, t) in L3(B1) as ε → 0+.

Let A ⊂ (0, T ) be any Lebesgue measurable set. By Young’s inequality of convolutions we get for almost all t ∈ (0, T )∫
A

‖(Rεu)(·, t)‖
18
5

L3(B1)
dt ≤

∫
A

‖u(·, t)‖
18
5

L3(Bλ)
dt.

Since u ∈ L
18
5 (0, T ; L3(Bλ)), the assertion (A.3) follows by the aid of Vitali’s convergence lemma. �

Appendix B. Weak trace for time dependent λ-DSS functions

Let 1 < λ < +∞. A measurable function u : Q → R
3 is said to be λ-DSS, if for almost every (x, t) ∈ Q

u(x, t) = λu(λx,λ2t). (B.1)

We denote by M(u) the set of all t ∈ [0, +∞) such that for all k ∈ Z

u(x, t) = λku(λkx,λ2kt) for a. e. x ∈R
3. (B.2)

Lemma B.1. The set [0, +∞) \ M(u) is a set of Lebesgue measure zero.

Proof. For m ∈ N and k ∈ Z by Am,k we denote the set of all t ∈ [0, +∞) such that

meas
{
x ∈R

3
∣∣∣u(x, t) �= λku(λkx,λ2kt)

}
≥ 1

m
.

Since u is discretely self-similar, we must have meas(Am,k) = 0. Since M(u) \ [0, +∞) = ∪k∈Z ∪∞
m=1 Am,k the 

assertion follows. �
Lemma B.2. For every t ∈ [0, +∞) it holds t ∈ M(u) iff λ2t ∈ M(u).

Proof. Let t ∈ M(u). There exists a set P ⊂ R
3 with meas(R3 \ P) = 0 such that (B.2) holds for all x ∈ P . Define 

Pk = {y = λkx | x ∈ P }, k ∈ Z. Clearly, meas(R3 \ ∩k∈ZPk) = 0. Let x ∈ ∩k∈ZPk . Then x, λ−1x ∈ P , and therefore 
for all k ∈ Z we get u(λ−1x, t) = λu(x, λ2t) = λk+1u(λkx, λ2+2kt), which is equivalent to

u(x,λ2t) = λku(λkx,λ2kλ2t).

This shows that λ2t ∈ M(u). Similarly, we get the opposite direction. �
As an immediate consequence of Lemma B.2 we see that

t ∈ M(u) ⇐⇒ λ2kt ∈ M(u) ∀ k ∈ Z. (B.3)

Let {vj } be a sequence in L2
loc(R

3). We say

vj → v weakly in L2
loc(R

3) as j → +∞
if for every 0 < R < +∞

vj → v weakly in L2(BR) as j → +∞.

Lemma B.3. Let {vj } be a sequence in L2
loc(R

3) such that for all 0 < R < +∞
sup
j∈N

‖vj‖L2(BR) < +∞. (B.4)

Then there exists a subsequence {vjm} and v ∈ L2
loc(R

3) such that

vjm → v weakly in L2
loc(R

3) as m → +∞.
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Proof. By induction and the reflexivity of L2(Bm) we construct a sequence of subsequences {v
j

(m)
k

} ⊂ {v
j

(m−1)
k

} and 

{vj0
k
} = {vj } such that for some vm ∈ L2(Bk) it holds

v
j

(m)
k

→ vm in L2(Bm) as k → +∞

(m ∈ N). Clearly, vm|Bm−1 = vm−1. This allows us to define v : R3 → R be setting v = vm on Bm. Then by Cantor’s 
diagonalization principle the subsequence vjm = v

j
(m)
m

meets the requirements. �
We denote V = L∞

loc([0, +∞); L2
loc(R

3)) the space of all measurable functions u : Q → R such that u ∈
L∞(0, R2, L2(BR)) for all 0 < R < +∞. By Vλ−DSS we denote the space of all λ-DSS functions u ∈ V .

Lemma B.4. Let u ∈ Vλ−DSS . We assume that ‖u(t)‖L2(BR) ≤ ‖u‖L∞(0,R2;L2(BR)) for all t ∈ (0, R2), 0 < R < +∞. 
There exists a constant C > 0 such that for every t ∈ M(u)

‖u(t)‖L2(BR) ≤ C max
{
R1/2‖u‖L∞(0,1;L2(B1))

,‖u(t)‖L2(B √
t )

}
. (B.5)

Proof. Let t ∈ M(u). Let k ∈ Z. Then by means of the transformation formula we get∫
B

λk

|u(x, t)|2dx = λ3k

∫
B1

|u(λkx, t)|2dx = λk

∫
B1

|λku(λkx,λ2kλ−2kt)|2dx

= λk

∫
B1

|u(x,λ−2kt)|2dx.

In case λ2k ≥ t we get

‖u(t)‖2
L2(B

λk )
≤ λk‖u‖2

L∞(0,1;L2(B1))
.

On the contrary, if λ2k < t we find

‖u(t)‖L2(B
λk ) ≤ ‖u(t)‖L2(B √

t )
.

Accordingly,

‖u(t)‖L2(B
λk ) ≤ c max

{
λk/2‖u‖L∞(0,1;L2(B1))

,‖u(t)‖L2(B √
t )

}
.

This yields (B.5). �
Lemma B.5. Let u ∈ Vλ−DSS . Furthermore, let Fij , gi : Q → R such that Fij , gi ∈ L1(QR) and for all 0 < R < +∞, 
i, j = 1, 2, 3. We suppose for all t ∈ [0, +∞) the function u(·, t) ∈ L2

loc(R
3) with ∇ · u(·, t) = 0 in the sense of 

distributions, and that for all ϕ ∈ C∞
c (Q) with ∇ · ϕ = 0 the following identity holds true∫

Q

u · ∂ϕ

∂t
dxdt =

∫
Q

F : ∇ϕ + g · ϕdxdt. (B.6)

Then, eventually redefining u(t) for t in a set of measure zero, we have

u ∈ Cw([0,+∞);L2(BR)) ∀0 < R < +∞, (B.7)

M(u) = [0,+∞). (B.8)

Proof. By L(u) ⊂ [0, +∞) we denote the set of all Lebesgue points of u, more precisely, we say t ∈ L(u), if for 
every 0 < R < +∞
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1

ε

t+ε∫
t

u(·, τ )dτ → u(·, t) in L2(BR) as ε → +∞.

By Lebesgue’s differentiation theorem we have meas([0, +∞) \L(u)) = 0. Let t ∈ L(u). By a standard approximation 
argument we deduce from (B.6) that for every ϕ ∈ C∞

c (Q) with ∇ · u = 0

−
∫
R3

u(t) · ϕ(t)dx +
t∫

0

∫
R3

u · ∂ϕ

∂t
dxds =

t∫
0

∫
R3

F : ∇ϕ + g · ϕdxds. (B.9)

Next, let {tj } be a sequence in M(u) ∩ L(u) such that tj → t ∈ L(u) as j ∈ +∞. Thanks to Lemma B.4 we are in 
a position to apply Lemma B.3. Thus, there exists a subsequence {tjm} and v ∈ L2

loc(R
3) with ∇ · v in the sense of 

distributions such that

u(tjm) → v weakly in L2
loc(R

3) as m → +∞.

Then, in (B.9) with t = tjm letting m → ∞, we see that for all ϕ ∈ C∞
c (Q) with ∇ · ϕ = 0 it holds

−
∫
R3

v · ϕ(t)dx +
t∫

0

∫
R3

u · ∂ϕ

∂t
dxds =

t∫
0

∫
R3

F : ∇ϕ + g · ϕdxds. (B.10)

On the other hand, recalling that t ∈ L(u), the identity (B.9) holds true. Combining both (B.9) and (B.10) we deduce 
that for all ψ ∈ C∞

c,σ (R3)∫
R3

(v − u(t)) · ψdx = 0.

Consequently, v − u(t) is a harmonic function. On the other hand, by the lower semi continuity of the L2 norm we 
obtain from (B.5) that

‖u(t) − v‖L2(BR) ≤ C max
{
R1/2‖u‖L∞(0,1;L2(B1))

,‖u(t)‖L2(B √
t )

}
. (B.11)

Whence, v = u(t). In particular, u(s) → u(t) weakly in L2
loc(R

3) as s ∈ M(u) ∩ L(u) → t .
Let t ∈ [0, +∞). There exists a sequence {tj } in M(u) ∩L(u) such that tj → t as j → +∞. Thanks to Lemma B.4

and Lemma B.3 there exists a subsequence {tjm} and v ∈ L2
loc(R

3) with ∇ · v = 0 in the sense of distributions such 
that

u(tjm) → v weakly in L2
loc(R

3) as m → +∞.

Observing (B.9) with tjm in place of t and letting m → +∞, we obtain for all ϕ ∈ C∞
c (Q) with ∇ · ϕ = 0

−
∫
R3

v · ϕ(t)dx +
t∫

0

∫
R3

u · ∂ϕ

∂t
dxds =

t∫
0

∫
R3

F : ∇ϕ + g · ϕdxds. (B.12)

On the other hand, by the lower semi continuity of the L2 norm from (B.5) it follows that

‖v‖L2(BR) ≤ C max
{
R1/2‖u‖L∞(0,1;L2(B1))

,‖u(t)‖L2(B √
t )

}
. (B.13)

For a second subsequence {t ′jm
} with limit w ∈ L2

loc(R
3) we derive the same property as v which leads to the fact that 

for all ψ ∈ C∞
c,σ (R3)∫

3

(v − w) · ψdx = 0.
R
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Consequently, v − w is a harmonic function. Now taking into account the estimate (B.13), which is satisfied for w
too, we infer v = w. Thus, the limit is uniquely determined. In case t /∈ M(u) ∩ L(u) we set u(t) = v. In particular, 
(B.13) yields for all t ∈ [0, +∞) the estimate

‖u(t)‖L2(BR) ≤ C max
{
R1/2‖u‖L∞(0,1;L2(B1))

,‖u(t)‖L2(B √
t )

}
. (B.14)

Furthermore, observing (B.10) for t ∈ L(u)) and (B.12) otherwise, it follows that for all t ∈ [0, +∞) and for all 
ϕ ∈ C∞

c (Q) with ∇ϕ = 0

−
∫
R3

u(t) · ϕ(t)dx +
t∫

0

∫
R3

u · ∂ϕ

∂t
dxds =

t∫
0

∫
R3

F : ∇ϕ + g · ϕdxds. (B.15)

Next, let t ∈ [0, +∞), and let {tj } be any sequence in [0, +∞) with tj → t as j → +∞. In view of (B.14) once 
more we may apply Lemma B.3, which yields a subsequence {tjm} and w ∈ L2

loc(R
3) such that

u(tjm) → w weakly in L2
loc(R

3) as m → +∞.

Observing (B.15) with tjm in place of t and letting m → +∞, it follows that

−
∫
R3

w · ϕ(t)dx +
t∫

0

∫
R3

u · ∂ϕ

∂t
dxds =

t∫
0

∫
R3

F : ∇ϕ + g · ϕdxds. (B.16)

Combining (B.16) and (B.15) and verifying (B.13) for w by a similar reasoning as above, we conclude w = u(t). This 
shows that u ∈ Cw([0, +∞); L2

loc(R
3)).

It only remains to prove that M(u) = [0, +∞). To see this let {tj } be a sequence in M(u) such that tj → t . By 
using the transformation formula of the Lebesgue integral together with Lemma B.2 (cf. also (B.3)), we calculate for 
all ψ ∈ C∞

c (R3)∫
R3

u(x, t)ψ(x)dx = lim
j→∞

∫
R3

u(x, tj )ψ(x)dx

= λ−3k lim
j→∞

∫
R3

u(λ−kx, tj )ψ(λx)dx

= λ−2k lim
j→∞

∫
R3

u(x,λ2ktj )ψ(λx)dx

= λ−2k

∫
R3

u(x,λ2kt)ψ(λx)dx =
∫
R3

λku(λkx,λ2kt)ψ(x)dx.

This yields u(x, t) = λku(λkx, λ2kt) for almost every (x, t) ∈ Q, and thus t ∈ M(u). �
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