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Abstract

We study the non-wandering set of contracting Lorenz maps. We show that if such a map f doesn’t have any attracting periodic 
orbit, then there is a unique topological attractor. Furthermore, we classify the possible kinds of attractors that may occur.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In [10] Lorenz studied the solution of the system of differential equations (1) in R3, originated by truncating the 
Navier–Stokes equations for modeling atmospheric conditions

ẋ = −10x + 10y (1)

ẏ = 28x − y − xz

ż = −8

3
z + xy

He observed what was thought to be an attractor with features that led to the present concept of a strange attractor. 
V.S. Afraimovich, V.V. Bykov, L.P. Shil’nikov, in [2], and Guckenheimer and Williams, in [7], introduced the idea 
of Lorenz-like attractors: dynamically similar models that also displayed the characteristics of the Lorenz strange 
attractor.

These models consist of a hyperbolic singularity with one-dimensional unstable manifold such that, in a lineariz-
able neighborhood, these separatrices can be considered as one of the coordinate axes, say x, in such a way that both 
components of x \ {0} return to this neighborhood cutting transversally the plane z = constant , with the eigenvalues 
λ2 < λ3 < 0 < λ1 (see Fig. 1), and the expanding condition λ3 + λ1 > 0. We consider the Poincaré map of the square 
Q = {|x| ≤ cte; |y| ≤ cte; z = cte} into itself, having the returns as indicated in Fig. 1 and we can exhibit in Q a foli-
ation by one dimensional leaves, invariant by the Poincaré map, and such that it exponentially contracts the leaves. In 
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Fig. 1. Lorenz-like flow and its associated one-dimensional dynamics.

[7] Guckenheimer and Williams show that given such a system, in a neighborhood U the system is structurally stable 
in codim 2, and in any representative family there is only a single attractor attracting the neighborhood constructed.

In [1], Arneodo, Coullet and Tresser studied similar systems, just modifying the relation between the eigenvalues 
of the singularity, taking λ3 + λ1 < 0: the so-called contracting Lorenz attractors. In this case the induced one-
dimensional map is as displayed in Fig. 1.

Critical points and critical values play fundamental roles in the study of dynamics of maps of the interval and from 
this point of view Lorenz maps are of hybrid type. Indeed, these maps have a single critical point, as unimodal maps 
do, but two critical values, as bimodal ones have. Because of this, it could perhaps happen that two different attractors 
would occur, but indeed we prove in Theorem D that there is only one single topological attractor. That is, the behavior 
of contracting Lorenz maps looks like the one of unimodal maps, instead of the behavior of bimodal maps, that admits 
up to two attractors.

More specifically, we prove that, for contracting Lorenz maps, the possible long-term behavior scenarios for orbits 
of generic points are either periodic orbits, that only can be one or two of them, or a single attractor that can be one of 
the following types: cycle of intervals that forms a single chaotic attractor, Cherry attractor, Solenoid, or yet a subset 
of a chaotic Cantor set coexisting with wandering intervals. This last possibility, however, is expected not to occur, as 
conjectured by Martens and de Melo.

The problem addressed in this work is a conjecture of Palis in the context of contracting Lorenz maps, and the 
author wants to thank Jacob Palis for purposing this problem as his PhD advisor at IMPA, where this work was done, 
and to acknowledge all the mathematical enthusiasm shared there. The author also wants to thank V. Pinheiro, W. de 
Melo and C. Tresser for several fruitful conversations during the preparation of this paper.

2. Statement of the main results

We say an open interval I is of trivial dynamics (up to some iterate) if ∃n ∈N such that f n|I ≡ id.

Definition 2.1 (Lorenz maps). We say that a C2 map f : [0, 1] \ {c} → [0, 1], 0 < c < 1, is a Lorenz map if f (0) = 0, 
f (1) = 1, f ′(x) > 0, ∀ x ∈ [0, 1] \{c}. A Lorenz map is called contracting if limx→c f ′(x) = 0 and there is no interval 
of trivial dynamics.

Given n ≥ 1, define f n(c±) = lim0<ε→0 f n(c ± ε). The critical values of f are f (c−) and f (c+). If x ∈
{f (c−), f (c+)} set f −1(x) = {c} ∪ {y ∈ [0, 1] ; f (y) = x}. Given a set X ⊂ [0, 1], define f −1(X) = ⋃

x∈X f −1(x). 
Inductively, define f −n(x) = f −1(f −(n−1)(x)), where n ≥ 2. The pre-orbit of a point x ∈ [0, 1] is the set O−

f (x) :=⋃
n≥0 f −n(x), where f 0(x) := x. Denote the positive orbit of a point x ∈ [0, 1] \ O−

f (c) by O+
f (x), i.e., O+

f (x) =
{f j (x); j ≥ 0}. If ∃p ≥ 1 such that f p(c−) = c, we take p ∈ N as being minimal with this property and define 
O+(c−) = {f j (c−) ; 1 ≤ j ≤ p}. Otherwise, if �p ≥ 1 such that f p(c−) = c, we define O+(c−) = {f j (c−) ; j ≥ 0}. 
f f
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Similarly we define O+
f (c+). If x ∈ O−

f (c), let O+
f (x) = {x, f (x), · · · , f mx−1(x), c} ∪ O+

f (c−) ∪ O+
f (c+), with mx

minimum such that f mx (x) = c. Also, O+
f (X) denotes the positive orbit of X by f , that is, O+

f (X) = ⋃
x∈X O+

f (x).
A point x is said to be non-wandering if for any neighborhood U � x, ∃n ≥ 1 such that f −n(U) ∩ U �= ∅. The set 

of all non-wandering points is the non-wandering set �(f ). The set of accumulation points of the positive orbit of 
x ∈ [0, c) ∪ {c−, c+} ∪ (c, 1] is denoted by ωf (x), the ω-limit set of x. The α-limit set of x, αf (x), is the set of points 
y such that y = limj→∞ xj for some sequence xj ∈ f −nj (x) with nj → +∞.

Following Milnor [14], a compact set A is a topological attractor if its basin β(A) = {x; ωf (x) ⊂ A} is residual in 
an open set and if each closed forward invariant subset A′ which is strictly contained in A has a topologically smaller 
basin of attraction, i.e., β(A) \ β(A′) is residual in an open set. (Similarly, A is a metrical attractor if Lebβ(A) > 0
and Leb

(
β(A) \ β(A′)

)
> 0, ∀A′ closed forward invariant A′ � A.)

Given a periodic point p, say f n(p) = p, we say that its periodic orbit O+
f (p) is an attracting periodic orbit if ∃ε >

0 such that (p, p + ε) or (p − ε, p) ⊂ β(O+
f (p)). A periodic attractor is a finite set � such that interior({x ; ωf (x) =

�}) �= ∅, and it can be either an attracting periodic orbit, or a super-attractor: a finite set � = {p1, · · · , pn, c} such 
that f (pi) = pi+1 for 1 ≤ i < n, f (pn) = c and lim0<ε↓0 f (c + ε) = p1 or lim0<ε↓0 f (c − ε) = p1. A weak repeller
is a periodic point p of f such that it is non-hyperbolic and it is not a periodic attractor.

We say I is a wandering interval of f if f n|I is a homeomorphism for ∀n ≥ 1, f i(I ) ∩ f j (I ) = ∅ for i �= j > 0
and I doesn’t intersect the basin of an attracting periodic orbit.

We say that an attractor (topological or metrical) � is a chaotic attractor if � is transitive, periodic orbits are dense 
in it (Per(f ) ∩ � = �), its topological entropy htop(f |�) is positive and ∃λ > 0 and a dense subset of points x ∈ �

such that their Lyapunov exponents, expf (x), are greater than λ, where expf (x) := lim inf 1
n

log |Df n(x)|.
A cycle of intervals is a transitive finite union of non-trivial disjoint closed intervals.
A gap map is a continuous and injective map g : S1 \ {c} → S1, where S1 = R/Z is the circle and c is any point 

of it. It is a known fact that such a map has a well defined rotation number ρ(g). Furthermore, if ρ(g) /∈Q, then g is 
semi-conjugated to an irrational rotation. In this case there exists a minimal set � containing c such that ωg(x) = �

for every x ∈ S1 (if x ∈ ⋃
j≥0 g−j (c) we consider ωg(x±) instead of ωg(x)).

We say that a Lorenz map f is a Cherry map if there is a neighborhood J of the critical point such that the first 
return map to J is conjugated to a gap map with an irrational rotation. It follows from [6] that a Lorenz map f is a 
Cherry map if and only if f does not admit super-attractors and there exists a neighborhood J of the critical point c
such that c ∈ ωf (x±), ∀ x ∈ J . If f is a Cherry map, � := ωf (c−) = ωf (c+) is called a Cherry attractor and it is a 
minimal compact set containing the critical point c in the interior of its basin of attraction.

A renormalization interval for f is an open interval J = (a, b) � c such that the first return map to [a, b] is 
conjugated to a Lorenz map. Their points of boundary are always periodic points and f period(a)([a, c)) ⊂ [a, b] ⊃
f period(b)((c, b]). Further properties of intervals of this type will be studied in Section 5.

Given a renormalization interval J = (a, b), define the renormalization cycle associated to J (or generated by J ) 
as

UJ =
( period(a)⋃

i=0

f i((a, c))

)
∪

( period(b)⋃
i=0

f i((c, b))

)
.

Given J ⊂ [0, 1] an open set with c ∈ J , define �J := {x ∈ [0, 1] ; O+
f (x) ∩ J = ∅}. We call a gap of �J any 

connected component of [0, 1] \ �J . We also define the set KJ , the nice trapping region associated to J, as being the 
set formed by the union of gaps of �J such that each of these gaps contains one interval of the renormalization cycle.

We say that f is ∞-renormalizable if f has infinitely many different renormalization intervals. An attractor � of 
a contracting Lorenz map f is a Solenoidal attractor (or Solenoid) if � ⊂ ⋂∞

n=0 KJn , and {Jn}n is an infinite nested 
chain of renormalization intervals.

A Contracting Lorenz map f : [0, 1] \ {c} → [0, 1] is called non-flat if there exist constants α, β > 1, a, b ∈ [0, 1]
and C2 orientation preserving diffeomorphisms φ0 : [0, c] → [0, a1/α] and φ1 : [c, 1] → [0, b1/β ] such that

f (x) =
{

a − (φ0(c − x))α if x < c,

1 − b + (φ1(x))β if x > c.
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Theorem A (The solenoid attractor). Let f be a C2 non-flat contracting Lorenz map without periodic attractors. 
If f is ∞-renormalizable, then there is a compact minimal set �, with c ∈ � ⊂ ⋂

J∈R KJ such that ωf (x) = �, 
∀ x ∈ [0, 1] with c ∈ ωf (x), where R is the set of renormalization intervals J of f and KJ their corresponding nice 
trapping regions.

Theorem B. If f is a C2 non-flat contracting Lorenz map without periodic attractors, then f has a transitive topolog-
ical attractor �. Furthermore, β(�) is a residual set in the whole interval, and � is one and only one of the following 
types:

(1) Cherry attractor and in this case ωf (x) = � in an open and dense set of points x ∈ [0, 1].
(2) Solenoidal attractor and in this case ωf (x) = � in a residual set of points x ∈ [0, 1].
(3) Chaotic attractor that can be of two kinds:

(a) Cycle of intervals, in this case ωf (x) = � in a residual set of points x ∈ [0, 1].
(b) Cantor set and in this case there are wandering intervals.

Theorem C. Let f be a C2 non-flat contracting Lorenz map without periodic attractors and � its single topological 
attractor as obtained in Theorem B. Then, f has no wandering interval if and only if αf (x) = [0, 1], ∀x ∈ �.

The next theorem goes deeper in the classification provided by Theorem B, as it distinguishes two possible situ-
ations for item (3)(b) of that theorem. Observe that item (3)(b) didn’t state that the Cantor set � is equal to ωf (x)

for a residual set of x ∈ [0, 1], but only that the basin β(�) contains a residual set. That is, (3)(b) can split into two 
situations. In the first one, � attracts a residual set whose ω-limit coincides with �. In the case this doesn’t happen, 
under some additional hypothesis we can have that � properly contains another Cantor set �′ such that its basin β(�′)
is residual in [0, 1] and ∀x ∈ β(�′) is such that ω(x) = �′.

We say that a C3 map f has negative Schwarzian derivative, denoted by Sf , if Sf is negative in every point x such 
that Df (x) �= 0, where

Sf (x) = D3f (x)

Df (x)
− 3

2

(
D2f (x)

Df (x)

)2

(2)

Theorem D. Let f be a C3 non-flat contracting Lorenz map with negative Schwarzian derivative. If f has a periodic 
attractor �, then either β(�) is an open and dense set or there is another periodic attractor �′ such that β(�) ∪β(�′)
is open and dense.

If f does not have any periodic attractor, then there is a single topological attractor � with ωf (x) = � for a 
residual set of points x ∈ [0, 1] and it is one of the following types:

(1) � is a Cherry attractor;
(2) � is a solenoidal attractor;
(3) � is a chaotic cycle of intervals;

(4) � =O+
f (c+) ∪O+

f (c−) and it is contained in a chaotic Cantor set whose gaps are wandering intervals.

Theorem D allows us to compare between the metrical and topological attractors. Indeed we can conclude that (1) 
the topological attractor contains the metrical one, and (2) if the topological attractor is not a cycle of intervals, then 
the topological attractor and the metrical one coincide. The existence and classification of metrical attractors can be 
found in [16].

Results on contracting Lorenz maps and flows date from the beginning of the 1980’s. In this decade and the 
first half of the 1990’s, we mention C. Tresser, A. Arneodo, L. Alsedà, A. Chenciner, P. Coullet, J-M. Gambaudo, 
M. Misiurewicz, A. Rovella, R.F. Williams (see [1,4,6,5,17,15]). Later on, main contributions include M. Martens and 
W. de Melo [11], G. Keller and M. St. Pierre [8,16], D. Berry and B. Mestel [3], and R. Labarca and C.G. Moreira [9].
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Fig. 2. Contracting Lorenz map partially coinciding with a C2 map that cannot display wandering intervals.

3. Preliminary results

A homterval is an open interval I = (a, b) such that f n|I is a homeomorphism for n ≥ 1 or, equivalently, I ∩
O−

f (c) = ∅.
Let us denote by B0(f ) the union of the basins of attraction of all periodic attractors of f .

Lemma 3.1 (Homterval lemma, see [13]). Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map and 
I = (a, b) be a homterval of f . If I is not a wandering interval, then I ⊂ B0(f ) ∪O−

f (Per(f )). Furthermore, if f is 

C3 with Sf < 0, and I is not a wandering interval, then the set I \B0 has at most one point.

Lemma 3.2. If f : [0, 1] \ {c} → [0, 1] is a C2 non-flat contracting Lorenz map, then every wandering interval 
accumulates on both sides of the critical point. In particular, a wandering interval cannot contain any interval of the 
form (−r, c) or (c, r).

Proof. Suppose we have a wandering interval J that doesn’t accumulate on the right side of the critical point, say, it 
never enters a neighborhood (c, c+ε). So, we can modify f to coincide with the original function outside this interval, 
but being C2 and non-flat in this interval (see Fig. 2). In this way, the modified function is a C2 map displaying 
a wandering interval, but it is a known fact that this can’t happen with a C2 map with non-flat critical points (see 
Theorem A, Chapter IV of [13]). �

One can adapt the well known Singer’s Theorem to our context, with f : [0, 1] \ {c} → [0, 1] being a C3 non-flat 
contracting Lorenz map with negative Schwarzian derivative, and obtain that the immediate basin of any attracting 
periodic orbit of this map contains in its border either its critical point or a boundary point of [0, 1]. From this we 
obtain that f can have, at most, two attractors of periodic type (one can also obtain that each neutral periodic point is 
an attracting periodic orbit and that there exists no interval of periodic points). We can go even further and state:

Proposition 3.3. Let f : [0, 1] \ {c} → [0, 1] be a C3 non-flat contracting Lorenz map with negative Schwarzian 
derivative. Then f can have at most two periodic attractors and, when it has a periodic attractor, the union of the 
basins of the periodic attractors is always an open and dense set.

Proof. Let p be so that O+
f (p) is an attracting periodic orbit. Notice that β(O+

f (p)) is an open set. By Singer’s 

theorem (c, δ) ⊂ β(O+
f (p)) for some δ > 0 (or (−δ, c) ⊂ β(O+

f (p)), which is similar). If β(O+
f (p)) �= [0, 1], then 

there is a connected component T of [0, 1] \ β(O+
f (p)).

If ∃j such that f j (T ) � c, ∃y ∈ T such that f j (y) ∈ (c, δ), then y ∈ β(O+
f (p)), leading to an absurd, as y ∈ T and 

T ⊂ [0, 1] \ β(O+
f (p)).

In this way, for any given j , f j |T is a homeomorphism, so T is a homterval and then it is either a wandering interval 
or it intersects the basin of attraction of an attracting periodic orbit that can’t be O+(p) as T ⊂ [0, 1] \ β(O+(p)).
f f
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The first case can’t occur, as T cannot be a wandering interval, as its orbit would accumulate in c by both sides (by 
Lemma 3.2) and then there would be j such that f j (T ) ∩ (c, δ) �= ∅, leading again to an absurd. In the second case, 
∃q such that O+

f (q) is an attracting periodic orbit, and O+
f (q) �= O+

f (p). Finally, if β(O+
f (p)) ∪ β(O+

f (q)) �= [0, 1], 
there would be a connected component of [0, 1] \ (β(O+

f (p)) ∪ β(O+
f (q))) and we could show in the same way it is 

a homterval, that cannot be wandering. Also, it cannot be in the basin of a third periodic orbit, as this would have to 
have the critical point in its border, but both sides of it are already attracted to one or possibly two aforementioned 
orbits. �
Lemma 3.4. Let f : [0, 1] \ {c} → [0, 1] be a C2 contracting Lorenz map. If f does not have any periodic attractor, 
then there is a residual set U such that

c ∈ ωf (x)∀x ∈ U.

Furthermore, given any neighborhood V of the critical point, the set of points that visit V is an open and dense set.

Proof. Let Jn = {x ∈ [0, 1]‖O+
f (x) ∩ (c − 1/n, c + 1/n) �= ∅}, n ∈ N, so Jn is open and non-empty. If Jn was not 

dense, then ∃(a, b) ⊂ [0, 1] \ Jn. By the homterval lemma, as f has no periodic attracting orbit, there would be  ≥ 0
such that f 

(
(a, b)

) � c or (a, b) would be a wandering interval. The first case would imply that (a, b) ∩ Jn �= ∅. The 
second one also cannot happen, as otherwise iterates of (a, b) would approach c, by Lemma 3.2, and this would lead 
to the same contradiction. Then, J = ∩n≥0Jn is residual and we have that c ∈ ω(x), ∀x ∈ J . �

A metrical version of this lemma also can be obtained as a consequence of [12] if we add the hypothesis that the 
map has no weak repellers.

Theorem (Koebe’s lemma [13]). For every ε > 0, ∃K > 0 such that the following holds: let M , T be intervals in [0, 1]
with M ⊂ T and denote respectively by L and R the left and right components of T \ M and let f : [0, 1] → [0, 1] be 
a map with negative Schwarzian derivative. If f n|T is a diffeomorphism for a given n ≥ 1 and

|f n(L)| ≥ ε|f n(M)| and |f n(R)| ≥ ε|f n(M)|,
then |Df n(x)|

|Df n(y)| ≤ K for x, y ∈ M .

Lemma 3.5. Let f : [0, 1] \{c} → [0, 1] be a C3 non-flat contracting Lorenz map with negative Schwarzian derivative. 
If I is a wandering interval, ∀y ∈ I , ωf (y) = O+

f (c+) ∪O+
f (c−).

Proof. We have shown in Lemma 3.2 that the orbit of any given wandering interval I accumulates in the critical point 
by both sides, and then, by continuity we have ωf (I) ⊃ O+

f (c+) ∪O+
f (c−). Now, suppose there is p ∈ ωf (I) such that 

p /∈ O+
f (c+) ∪O+

f (c−). We can also suppose without loss of generality that I is maximal, in the sense that there is no 

bigger wandering interval that contains I properly. Let T be a connected component of [0, 1] \ (
O+

f (c+) ∪O+
f (c−)

)
containing p. Given ε > 0, let nε be the minimum j such that f j (I ) ⊂ Bε(p). Let Tε be the maximal interval 
containing I such that f nε (Tε) ⊂ T and that f nε |Tε is a diffeomorphism.

Notice that f nε (Tε) = T for otherwise, there would exist y ∈ T such that y = f nε (a), where a ∈ ∂Tε . And as 
f nε |Tε cannot be monotonously extended to a bigger interval, then ∃0 ≤ j < nε such that f j (a) = c, which would 

lead to an absurd, as f (nε−j)(a+) ∈ T ⊂ [0, 1] \O+
f (c+) ∪O+

f (c−) (or this would occur for f (nε−j)(a−)).

Let Jε = (f nε |Tε )
−1(Bε(p)) and U = ∩ε>0Jε . As ε → 0 implies nε → ∞, and as every f nε is a diffeomorphism 

onto its image, ∀nε , it follows that f j is a diffeomorphism in U , ∀j . In this way, U is a homterval and then either 
U is a wandering interval or U ⊂ O−(P er(f )) ∪ B0(f ). As U ⊃ I it cannot be as in the second case for I being 
wandering implies there is no periodic attractor, and as I was taken as maximal, we have necessarily that U = I .

We can take ε0 small enough such that the left and right connected components of T \ Bε(p) are as big as we 
want compared to |Bε(p)|, in such a way that Koebe’s Lemma ensures that given any ε > 0 such that ε < ε0, ∃K > 0
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such that |Df nε (x)|
|Df nε (y)| ≤ K , ∀x, y ∈ Jε , ∀ε ∈ (0, ε). Recall that Bε(p) = f nε (Jε) and |f nε (Jε)| ≥ (1/K)m|Jε | where 

m = |Df nε (x0)|, to some x0 ∈ M and also |f nε (Jε \ I )| ≤ Km|Jε \ I |. So, we have the following inequality

|Bε(p) \ f nε (I )|
|Bε(p)| = |f nε (Jε \ I )|

|f nε (Jε)| ≤ K2 |Jε \ I |
|Jε | < 1/2.

The last inequality follows from the fact that the collection of Jε cannot have subsequences whose limit would be 
bigger than I , for otherwise the intersection of them would generate a bigger wandering interval, in contradiction to 
the maximality of I . So, we can calculate these estimates on a nested subsequence of Jε whose intersection is I , and 
so we can take ε small enough such that

|Jε \ I |
|Jε | <

1

2K2

then

|f nε (I )|
|Bε(p)| > 1/2

and then p ∈ f nε (I ), which is a contradiction, as p was chosen as belonging to ωf (I) where I is a wandering 
interval. �
Lemma 3.6 (Denseness of wandering intervals, when they exist). Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat con-
tracting Lorenz map without periodic attractors. If f has a wandering interval I , then W is an open and dense set, 
where W is the union of all open wandering intervals of f .

Proof. If W is not dense, then [0, 1] \ W contains some open interval I . Clearly, I is not a wandering interval. 
As f does not have periodic attractors, we can apply Lemma 3.1 and conclude that there is n ∈ N such that f n|I
is a homeomorphism and that f n(I ) � c. As W is invariant (f −1(W) = W), [0, 1] \ W is also invariant. Thus, 
c ∈ interior([0, 1] \ W), that is, there is no wandering interval in a neighborhood of c. And this is not possible, by 
Lemma 3.2. �
Corollary 3.7. Let f : [0, 1] \ {c} → [0, 1] be a C3 non-flat contracting Lorenz map with negative Schwarzian deriva-
tive displaying no periodic attractors. If f has a wandering interval I , then there is an open and dense set U such 
that any given x ∈ U , ωf (x) = O+

f (c+) ∪O+
f (c−).

Proof. Taking U as the set W of Lemma 3.6, U satisfies the required condition by applying Lemma 3.5. �
4. Periodic points

Given an interval J = (a, b) and a map f defined in J , denote the first return map to J by FJ : J ∗ → J . That is, 
FJ (x) = f R(x)(x), where J ∗ = {x ∈ J ; O+

f (f (x)) ∩ J �= ∅} and R(x) = min{j ≥ 1 ; f j (x) ∈ J }, that is called the 
first return time. Let PJ be the collection of connected components of J ∗.

An open interval I = (a, b) containing the critical point c is called a nice interval of f if O+
f (∂I ) ∩ I = ∅ and 

a and b /∈ β(O+(p)) \ O+(p), p a periodic attractor. We will denote the set of nice intervals of f by N = N (f )

and the set of nice intervals whose borders belong to the set of periodic points of f by Nper = Nper (f ), that is, 
Nper = {I ∈ N ‖ ∂I ⊂ Per(f )}.

Lemma 4.1. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map and let J = (a, b) be a nice interval, 
with first return map FJ : J ∗ → J . The following statements are true.

(1)
(
(p, q) ∈ PJ and p �= c

) ⇒ FJ ((p, q)) = (a, f R|(p,q) (q));
(2)

(
(p, q) ∈ PJ and q �= c

) ⇒ FJ ((p, q)) = (f R|(p,q) (p), b);
(3)

(
I ∈PJ and c /∈ ∂I

) ⇒ FJ (I ) = J .
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Proof. Assume that I = (p, q) ∈ PJ and p �= c. Let n = R|I .
If p = a, then:

(i) If f n(p) < a, then f n(p+ε) < a for ε > 0 sufficiently small. This is an absurd, as n is a return time of p+ε ∈ I .
(ii) If f n(p) ≥ b, as f preserves orientation, f n(p + ε) ≥ b, that will also be in contradiction with the fact that n is 

a return time of (p + ε) ∈ I .
(iii) f n(p) ∈ (a, b) also leads to a contradiction, because J is nice. So, f n(p) = a whenever p = a.

Consider now a < p and p �= c. Cases (i) and (ii) can be proved as before, and the remaining case, if f n(p) ∈
(a, b), ∃ε sufficiently small such that, (p, p + ε) doesn’t return until n, as n is the first return time of I to (a, b), 
f j (I ) ∩ (a, b) = ∅ for every 0 < j < n. Thus, f j (p) �= c, ∀ 0 ≤ j < n. Thus, f n is continuous in (p − δ, p + δ) for a 
sufficiently small δ > 0. As a consequence, if a < f n(p) < b, then, taking δ > 0 small, n will be the first return time 
for (p − δ, q) to (a, b), contradicting I ∈PJ . So, we necessarily have f n(p) = a, proving (1).

Similarly, (2) follows from the same kind of reasoning, and (3) is a consequence of (1) and (2). �
Corollary 4.2. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map and let J = (a, b) be a nice 
interval, with first return map FJ : J ∗ → J . If J = (a, b) is a nice interval and f is a contracting Lorenz map defined 
in J , then the following statements are true:

(1) a ∈ ∂I for some I ∈ PJ ⇔ a ∈ Per(f ).
(2) b ∈ ∂I for some I ∈ PJ ⇔ b ∈ Per(f ).

Proof. If I = (a, q) ∈ PJ (the case I = (q, b) is analogous) and n = R|I , it follows from Lemma 4.1 that f n(a) =
FJ (a) = a. That is, a is a periodic point.

Now suppose that a ∈ Per(f ) or a is a super-attractor (the proof for b is analogous). Thus, there is n > 0 such 
that limδ↓0 f n(a + δ) = a and f j (a) /∈ [a, b) � c, ∀0 < j < n. As f n is well defined, continuous and monotone on 
(a, a + ε) for some ε > 0 and as f preserves orientation, we get f n(x) ∈ (a, b) for every x > a sufficiently close to a
and that f j (x) /∈ (a, b), ∀0 < j < n. Thus, there is some I = (a, q) ∈ PJ . �
Lemma 4.3. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map. If J = (a, b) is a nice interval, then 
there are sequences an, bn ∈ J ∩ Per(f ) such that

(1) limn an = a and limn bn = b;
(2) O+

f (an) ∩ (an, b) = ∅ and O+
f (bn) ∩ (a, bn) = ∅.

Proof. We will show the existence of a sequence an ∈ J ∩ Per(f ) with limn an = a such that O+
f (an) ∩ (an, b) = ∅. 

Assume that a /∈ Per(f ), otherwise take an = a. Let I0 = (p0, q0) ∈ PJ such that I0 ⊂ (a, c). By Lemma 4.1, as 
a is not periodic we get p0 �= a. Thus, there is some I1 ∈ PJ with I1 ⊂ (a, p0). In particular, c �= ∂I1. Again by 
Lemma 4.1 we get FJ (I1) = f n1(I1) = J . Thus, there is a fixed point a1 ∈ I1 of f n1 |I1

. As n1 = RJ (I1) it follows 
that f j (a1) /∈ (a, b) for every 0 < j < n and so, {a1} = O+(a1) ∩ (a, b). From this we get O+(a1) ∩ (a1, b) = ∅. 
Again, writing I1 = (p1, q1), it follows as before that a �= p1 and so there is some I2 ∈ PJ such that I2 ⊂ (a, p1). 
Proceeding as before, we get a periodic point a2 ∈ I2 satisfying the statement. Inductively, we get a sequence an ↘ a

of periodic points with O+(an) ∩ (an, b) = ∅. Similarly, one can get the sequence bn ↗ b. �
Lemma 4.4. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map. If Per(f ) ∩ (0, 1) = ∅, then either 
f has an attracting periodic orbit (indeed, at least one of the fixed points is an attractor) or ωf (x) � c, ∀ x ∈ (0, 1).

Proof. Under these hypotheses, if f has a periodic attractor, it has to be the point 0, or 1 or both. If none of these 
occur, f does not have a periodic attractor. Suppose we can choose a point x ∈ (0, 1) such that ωf (x) /� c. Let (a, b)

be the connected component of [0, 1] \ O+(x) containing c. If ∃n such that f n(a) ∈ (a, b), then, as a ∈ O+(x), 
f f



P. Brandão / Ann. I. H. Poincaré – AN 35 (2018) 1409–1433 1417
f n(a) ∈ O+
f (x), in contradiction with the fact that (a, b) ⊂ [0, 1] \O+

f (x). The same reasoning applies to point b, and 
then (a, b) � (0, 1) is a nice interval and so Per(f ) ∩ (a, b) �= ∅ (Lemma 4.3), which is a contradiction. �
Lemma 4.5. Let f : [0, 1] \ {c} → [0, 1] be a non-flat C2 contracting Lorenz map. If f (x) > x, ∀x ∈ (0, c), f (x) < x, 
∀x ∈ (c,1) and limx↑c f (x) > c > limx↓c f (x), then

O+
f (x) ∩ (0, c) �= ∅ �= O+

f (x) ∩ (c,1), ∀x ∈ (0,1) \O−
f (c).

Proof. Suppose, for instance, that there is y ∈ (0, c) \O−
f (c) such that f n(y) ∈ (0, c), ∀ n ≥ 0. That is, 0 < f n(y) < c

for all n ≥ 0. As f |(0,c) is an increasing map, we get f (0) = 0 < y < f (y) < f 2(y) < · · · < f n(y) · · · < c. This 
implies that limn→∞ f n(y) is a fixed point for f , contradicting our hypothesis. Thus, there is some n > 0 such that 
f n(y) ∈ (c, 1). �
Lemma 4.6. If f : [0, 1] \{c} → [0, 1] is a non-flat C2 contracting Lorenz map without periodic attractors, then either 
∃ δ > 0 such that c ∈ ωf (x), ∀ x ∈ (c − δ, c + δ) or

Per(f ) ∩ (0, c) � c ∈ (c,1) ∩ Per(f ).

Proof. Suppose that f does not have periodic attractors and suppose also that �δ > 0 such that c ∈ ωf (x), ∀ x ∈
(c − δ, c + δ). In this case, by Lemma 4.4, Per(f ) ∩ (0, 1) �= ∅. As f does not have periodic attractors, f (x) > x, 
∀x ∈ (0, c), f (x) < x, ∀x ∈ (c,1) and limx↑c f (x) > c > limx↓c f (x), and then O+

f (x) ∩ (0, c) �= ∅ �= (c, 1) ∩O+
f (x), 

∀ x ∈ (0, 1) \O−
f (c), by Lemma 4.5. Thus, Per(f ) ∩ (0, c) �= ∅ �= (c, 1) ∩ Per(f ).

Let a = supPer(f ) ∩ (0, c) and b = infPer(f ) ∩ (c, 1). We know that 0 < a ≤ c ≤ b < 1. If a = b the proof is 
done. So suppose that a �= b. We may assume that 0 < a < c ≤ b < 1 (the other case is analogous).

We claim that O+
f (a−) ∩ (a, b) = ∅ = (a, b) ∩ O+

f (b+). Indeed, if there is a minimum  ≥ 1 such that f (a−) ∈
(a, b), then ∅ �= f ((a − ε, a) ∩ Per(f )) ⊂ (a, b), contradicting the definition of a and b. With the same reasoning 
we can show that O+

f (b+) ∩ (a, b) = ∅.
Notice that ∃n > 0 such that f n((a, c)) ∩ (a, c) �= ∅. Indeed, (a, c) can not be a wandering interval (Lemma 3.2) 

and as f does not have periodic attractors, it follows from the homterval lemma (Lemma 3.1) that f n((a, c)) � c

for some n ≥ 1. Let  be the smallest integer bigger than 0 such that c ∈ f ((a, c)). As O+
f (a) ∩ (a, c) = ∅, we get 

f ((a, c)) ⊃ (a, c). Thus, there is a periodic point p ∈ [a, c) with period . By the definition of a, it follows that 
p = a.

We claim that f ((a, c)) ⊂ (a, b). If not, let q0 ∈ f ((a, c)) ∩ Per(f ) ∩ [b, 1). Let q = minO+
f (q0) ∩ (c, 1) and 

q ′ = (f |(a,c))
−1(q). Clearly, a < q ′ < c < q and (q ′, q) is a nice interval. Thus, by Lemma 4.3, Per(f ) ∩ (q ′, c) �= ∅

and this contradicts the definition of a.
Notice that f ((a, c)) � c, otherwise f would have periodic attractors. As a consequence of this and of the claim 

above, b > c.
As b > c, (a, b) is a nice interval. We already know that f (a) = a. Moreover, by the definition of b and 

Lemma 4.3, b also must be a periodic point. So, let r = period(b). From the same reasoning of the claim above, 
we get f r((c, b)) ⊂ ((a, b)).

Thus, the first return map to [a, b] is conjugated to a contracting Lorenz map g : [0, 1] \ {cg} → [0, 1]. As �δ > 0
such that c ∈ ωf (x), ∀ x ∈ (c−δ, c+δ), it follows that ∃ x ∈ [0, 1] such that cg /∈ ωg(x). So, it follows from Lemma 4.4
that Per(g) ∩ (0, 1) �= ∅. As a consequence, Per(f ) ∩ (a, b) �= ∅. This contradicts the definition of a and b, proving 
the lemma. �
Lemma 4.7. Let f : [0, 1] \ {c} → [0, 1] be a non-flat C2 contracting Lorenz map without periodic attractors and 
such that Per(f ) ∩ (0, 1) = ∅. If x ∈ (0, 1), then O+

f (x) ∩ (0, c) � c ∈ (c,1) ∩O+
f (x).

Proof. As f has no periodic attractor, Lemma 4.4 implies that c ∈ ωf (x). Notice that no other fixed point can exist 
besides 0 and 1, and these are not attractors, so f ′(0) ≥ 1, f ′(1) ≥ 1 and as there is no interval of trivial dynamics, then 
f (x) > x, ∀x ∈ (0, c), f (x) < x, ∀x ∈ (c,1). Moreover, as there are no periodic attractors, there is no super-attractor, 
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Fig. 3. Variational Principle: minimal period orbit in a lateral neighborhood of the critical point must be unique.

then limx↑c f (x) > c > limx↓c f (x) and f is under the hypotheses of Lemma 4.5. So if x ∈ (0, 1) \ O−
f (c), then 

O+
f (x) ∩ (0, c) �= ∅ �= (c, 1) ∩ O+

f (x). This also holds if x ∈ O−
f (c). (Recall that O+

f (c) = O+
f (c−) ∪ O+

f (c+), see 

Section 2.) Also, c ∈ ωf (x) implies that c ∈ O+
f (x) ∩ (0, c) or c ∈ (c,1) ∩O+

f (x). Suppose one of these do not occur. 

For instance, suppose c /∈ (c,1) ∩O+
f (x). Then, defining v = inf (c,1) ∩O+

f (x), we have that J = (c, v) is such that 

�j such that c ∈ f j (J ), for otherwise, either J ⊂ f j (J ), that would imply the existence of a periodic repeller, what 
is in contradiction to the hypothesis, or f j (v) ∈ J , and as v ∈ ωf (x) and ωf (x) is a positively invariant set, this is in 
contradiction with the definition of J . So, as �j ∈ N such that c ∈ f j (J ) and we are supposing there are no periodic 
attractors, Lemma 3.1 implies that J is a wandering interval. But we know from Lemma 3.2 that (c, v) cannot be a 
wandering interval, leading to an absurd. �
Lemma 4.8 (Variational Principle). Let f : [0, 1] \ {c} → [0, 1] be a non-flat C2 contracting Lorenz map without 
periodic attractors. Suppose that �δ > 0 such that c ∈ ωf (x), ∀ x ∈ (c − δ, c + δ). Given ε > 0, there exists a unique 
periodic orbit minimizing the period of all periodic orbits intersecting (c − ε, c). Similarly, there exists a unique 
periodic orbit minimizing the period of all periodic orbits intersecting (c, c + ε).

Proof. As Per(f ) ∩ (c − ε, c) �= ∅ (Lemma 4.6), let

n = min{period(x) ;x ∈ Per(f ) ∩ (c − ε, c)}
and suppose that there are p0, q0 ∈ Pern(f ) ∩ (c − ε, c) such that O+

f (p0) �= O+
f (q0). Let p = max{O+

f (p0) ∩ (c −
ε, c)} and q = max{O+

f (q0) ∩ (c − ε, c)}. Thus, O+
f (p) ∩ (p, c) = ∅ =O+

f (q) ∩ (q, c). We may assume that q < p.
Notice that f n can not be monotone on (q, p). Indeed, otherwise, if f n is monotone on (q, p), then f n([q, p]) =

[q, p]. As f n can not be the identity on [q, p], f n([q, p]) = [q, p] would imply the existence of an attracting fixed 
point for f n on [q, p]. But this is impossible, as we are assuming that f does not have a finite attractor.

As f n is not monotone on (q, p), there is 0 < j < n such that f j is monotone on (q, p) and c ∈ f j ((q, p)). Thus, 
f j (q) < c < f j (p). Moreover, f j (q) < q (because O+

f (q) ∩ (q, c) = ∅ and j < n). Thus, f j ((q, p)) ⊃ (q, p) (see 
Fig. 3) and this implies in the existence of a periodic point a ∈ [q, p] ⊂ (c − ε, c) with period j < n, contradicting the 
minimality of n.

The proof for the case (c, c + ε) is analogous. �
5. Renormalization and Cherry maps

Definition 5.1 (Left and right renormalizations). Let f be a contracting Lorenz map, J = (a, b) ∈ N and let F :
J ∗ → J be the map of first return to J . We say that f is renormalizable by the left side with respect to J (or, for short, 
J -left-renormalizable) if (a, c) ⊂ J ∗ (this means that F |(a,c) = f n|(a,c) for some n ≥ 1). Analogously, we define f to 
be renormalizable by the right side with respect to J (or, for short, J -right-renormalizable) if (c, b) ⊂ J ∗.

If the first return map of f to an interval [a, b] � [0, 1], F , is conjugated by an affine map to a Lorenz map, f is 
called renormalizable with respect to J = (a, b). The fact that the conjugation is affine preserves the regularity of the 
original Lorenz map (even in the case of negative Schwarzian derivative) in such a way that the results obtained for 
the whole interval are also valid in the restriction to the renormalization interval J . The renormalization of f (with 
respect to J ) is the map g : [0, 1] \ { c−a } → [0, 1] given by
b−a
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g(x) = A−1 ◦ F ◦ A(x)

where A(x) = (b − a)x + a.
Notice that f is renormalizable with respect to J if and only if J ∈ Nper and f is renormalizable by both sides 

(left and right) with respect to J . Moreover, using Corollary 4.2, it is easy to check the following result:

Lemma 5.2. Let J = (a, b) ∈ N . The following statements are equivalent:

(1) f is renormalizable with respect to J .
(2) ( J ) ∗ = [a, c) ∪ (c, b].
(3) c ∈ ∂I , ∀ I ∈ (J )∗.
(4) a and b are periodic points,

f period(a)([a, c)) ⊂ [a, b] ⊃ f period(b)((c, b]).

The interval involved in a (left/right) renormalization is called an interval of (left/right) renormalization. A map f
is non-renormalizable if it does not admit any interval of renormalization.

In what follows, given a renormalization interval J , we will refer to some concepts that were previously introduced. 
Namely, of its renormalization cycle UJ , the nice trapping region KJ associated to J, and gaps of sets �J (�J also 
already defined, being the set of points whose orbits never reach an open set J � c). These definitions were given 
before the statement of Theorem A in Section 2.

Lemma 5.3. Let f : [0, 1] \ {c} → [0, 1] be a C2 contracting Lorenz map without periodic attractors. For any given 
J = (a, b) renormalization interval of f , we have that

O+
f (x) ∩ (a, c) �= ∅ �= O+

f (x) ∩ (c, b) ∀x ∈ J \O−
f (c).

Therefore, the positive orbit O+
f (x) of any x ∈ J \O−

f (c) intersects each connected component of the renormalization 
cycle UJ (and also each connected component of the nice trapping region KJ ).

Proof. Let  = period(a) and r = period(b). As f has no periodic attractors, it doesn’t have any super-attractor, then 
limx↑c f (x) > c > limx↓c f r(x). If there is x ∈ (a, c) such that f (x) ≤ x, then f |[a,x] will have an attracting fixed 
point, as f |[a,x] is not the identity, but this contradicts the hypothesis. The same reasoning can be done for f r |(c,b), 
and therefore applying Lemma 4.5 to the renormalization of f with respect to J , we conclude the proof. �

We say that two open intervals I0 and I1 are linked if ∂I0 ∩ I1 �= ∅ �= I0 ∩ ∂I1.

Lemma 5.4. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map without periodic attractors. Then, 
two renormalization intervals of f can never be linked. Moreover, if J0 and J1 are two renormalization intervals and 
J0 �= J1, then either J0 ⊂ J1 or J1 ⊂ J0. In particular, ∂J0 ∩ ∂J1 = ∅.

Proof. Write J0 = (a0, b0) and J1 = (a1, b1). First note that J0 and J1 can not be linked. Indeed, if they were linked, 
we would either have a0 < a1 < c < b0 < b1 or a1 < a0 < c < b1 < b0. We may suppose that a0 < a1 < c < b0 < b1. 
In this case, a1 ∈ J0 and by Lemma 5.3. ∅ �= O+

f (a1) ∩ (c, b0) ⊂ O+
f (a1) ∩ (a1, b1) = O+

f (a1) ∩ J1 contradicting the 
fact that J1 is a nice interval.

As J0 ∩ J1 �= ∅ (because both contain the critical point) and as J0 and J1 are not linked, it follows that either 
J0 ⊃ J1 or J0 ⊂ J1. We may suppose that J0 ⊃ J1. In this case, as J0 �= J1 we have three possibilities: either a0 <

a1 < c < b1 = b0 or a0 = a1 < c < b1 < b0 or J0 ⊃ J1. If a0 < a1 < c < b1 = b0, we can use again Lemma 5.3 to get 
O+

f (a1) ∩ J1 �= ∅. On the other hand, if a0 = a1 < c < b1 < b0, the same Lemma 5.3 implies that O+
f (b1) ∩ J1 �= ∅. In 

both cases we get a contradiction to the fact that J1 is a nice interval. Thus, the remaining possibility is the only valid 
one. �

A periodic attractor � is called essential if its local basin contains c− or c+. Precisely, if ∃ p ∈ � such that (p, c)
or (c, p) is contained in β(�) = {x ; ωf (x) ⊂ �} (the basin of �). If a periodic attractor in not essential, it is called 
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inessential. Notice that if f is C3 and has negative Schwarzian derivative, then, by Singer’s Theorem, f does not 
admit inessential periodic attractors.

Proposition 5.5. Suppose that f : [0, 1] \ {c} → [0, 1] is a C2 non-flat contracting Lorenz map that does not ad-
mit inessential periodic attractors. If Jn is an infinite sequence of renormalization intervals with Jn � Jn+1, then ⋂

n Jn = {c}.

Proof. Let J = ⋂
n Jn. Write (a, b) = interiorJ . Suppose for example that a �= c (the case b �= c is analogous). Given 

x ∈ (a, b), let R(x) = min{j > 0 ; f j (x) ∈ (a, b)}. As Jn = (an, bn) are renormalization intervals, then (an, c) only 
returns to Jn at period(an) (and (c, bn) at the period of bn), that is, the first return is at the time period(an). So, 
as R(x) ≥ min{period(an), period(bn)} → ∞. Thus, R(x) = ∞, ∀ x ∈ (a, b). As f j ((a, c)) ∩ (a, b) = ∅, ∀ j > 0
(because R ≡ ∞), then f j |(a,c) is a homeomorphism ∀ j . By Lemma 3.2, (a, c) is not a wandering interval. As 
O−

f (P er(f )) does not contain intervals, it follows from Lemma 3.1 that there is a periodic attractor � with (a, c) ∩
β(�) �= ∅. As f does not have inessential periodic attractors, there is some q ∈ � such that (q, c) or (c, q) ⊂ β(�). 
As q is periodic, q /∈ [a, b]. Thus, q < an < c for some n or c < bn < q . In any case, we get a contradiction for nor an

neither bn can be in the basin of a periodic attractor. �
Corollary 5.6. Suppose that f : [0, 1] \ {c} → [0, 1] is a C2 non-flat contracting Lorenz map that does not admit 
inessential periodic attractors. If there exists p ∈ (0, 1) such that αf (p) � c /∈ O+

f (p), then f is not an infinitely 
renormalizable map.

Proof. Suppose that Tn is a sequence of two by two distinct renormalizable intervals. By Proposition 5.5, 
⋂

n Tn = {c}. 
For each n ∈N, let 0 < rn, n ∈N be such that f n(Tn ∩ (0, c)) ⊂ Tn and f rn(Tn ∩ (c, 1)) ⊂ Tn and let

Un = Tn ∪
( n−1⋃

j=1

f j ((Tn ∩ (0, c))

)
∪

( rn−1⋃
j=1

f j ((Tn ∩ (c,1))

)
.

If p ∈ Un, ∀ n ∈N, then c ∈ ωf (p), contradicting our hypothesis. Thus, one can find some n ≥ 0 such that p /∈ Un. 
But this is not possible, because c ∈ αf (p) and so, O−

f (p) ∩ Tn �= ∅. �
Now we have enough information on maps that are infinitely many times renormalizable in order to prove Theo-

rem A.

Proof of Theorem A. Write R = {Jn}n∈N, with J1 � J2 � J3 � · · · . Notice that Jn ⊃ Jn+1, ∀ n ∈N and also

KJn = interior(KJn) ⊃ KJn+1 , ∀n ∈ N. (3)

Thus,

� :=
⋂
n∈N

KJn =
⋂
n∈N

KJn.

As each Kn is a trapping region (f (Kn) ⊂ Kn), it is easy to see that ωf (x) ⊂ �, whenever c ∈ ωf (x). Indeed, 
if c ∈ ωf (x), then O+

f (x) ∩ Jn �= ∅ for every n ∈ N, because {c} = ⋂
n Jn (see Proposition 5.5). Thus, ωf (x) ⊂ Kn, 

∀ n ∈N.
Let Kn be the collection of connected components of KJn and Kn(y) be the element of Kn containing y (see 

Fig. 4), for any given y ∈ �. Let � be the (closed) set of points y ∈ � such that there is a sequence � � yn → y

and N � kn → ∞ with limn diameter(Kkn(yn)) = 0. Given any x ∈ [0, 1] with c ∈ ωf (x), we have O+
f (x) ∩ Jn �= ∅

∀ n ∈ N and, by Proposition 5.5 and Lemma 5.3, O+
f (x) intersects every element of Kn, ∀ n ∈ N. As a consequence, 

any point y ∈ � is accumulated by points of O+
f (x) for any x ∈ [0, 1] with c ∈ ωf (x). That is,

� ⊃ ωf (x) ⊃ � for every x such that c ∈ ωf (x). (4)
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Fig. 4. Nested structure of connected components of trapping regions for an infinitely renormalizable map.

Fig. 5. In the proof of Theorem A, with c ∈ ωf (x), y ∈ � \ � such that y ∈ ωf (x) would create a contradiction to the homterval lemma.

Claim. Define �(y) as the connected component of � containing y. If interior(�(y)) �= ∅, y ∈ �, then interior(�(y))

is a wandering interval.

Proof of the Claim. Suppose that interior(�(y)) �= ∅ and that ∃s such that c ∈ f s(�(y)). Then, ∀n, f s(�(y)) ∩
Jn �= ∅. But if f s(�(y)) ∩ Jn �= ∅, then f s(Kn(y)) ∩ Jn �= ∅ and so, f s(�(y)) ⊂ f s(Kn(y)) ⊂ Jn, ∀n. Thus, if c ∈
f s(�(y)), then we have f s(�(y)) ⊂ ⋂

n Jn = {c} (Proposition 5.5), a contradiction. This implies that c /∈ f s(�(y)), 
∀s ∈ N. From Lemma 3.1, we get that interior(�(y)) is a wandering interval. �

Now consider y ∈ � \ �. We will show that if c ∈ ωf (x), then y /∈ ωf (x).
Under the assumption of y ∈ � \ �, there is some ε > 0 such that Bε(y) ∩ � = Bε(y) ∩ �(y). Notice that �(y) �=

{y}, otherwise limn diameter(Kn(y)) = 0 and y ∈ �. So, interior(�(y)) �= ∅ and so, by the claim above, interior(�(y))

is a wandering interval. This implies that ωf (x) ∩ interior(�(y)) = ∅, ∀x. So, if y ∈ interior(�(y)) we have that 
y /∈ ωf (x).

Let’s then consider y /∈ interior(�(y)). Reducing ε if necessary, Bε(y) ∩� ∩�(f ) = Bε(y) ∩�(y) ∩�(f ) ⊂ {y}. 
Suppose that y ∈ ωf (x) for some x such that c ∈ ωf (x). In this case, as � ⊃ ωf (x), we conclude that y is an 
isolated point of ωf (x): indeed, as ωf (x) ⊂ � ∩ �(f ), we have y ∈ ωf (x) ∩ Bε(y) = ωf (x) ∩ Bε(y) ∩ � ∩ �(f ) =
ωf (x) ∩ Bε(y) ∩ �(y) ∩ �(f ) ⊂ {y}, then this set is {y}.

Since y /∈ interior(�(y)), we may suppose that �(y) = [y, b] (the case �(y) = [a, y] is analogous). Tak-
ing ε > 0 small enough, we can assume that y + ε < b. Let n ≥ 1 be such that y − ε < kn,0(y) < y, where 
(kn,0, kn,1) := Kn(y). Let mj ∈ N be such that kn,0 < f m1(x) < f m2(x) < · · · < f mj (x) ↗ y and O+

f (x) ∩(kn,0, y) =
{f m1(x), f m2(x), f m3(x), · · · } (see Fig. 5).

Choose j0 big enough so that mj > m1, ∀ j ≥ j0. Given j ≥ j0, let Ij = (tj , f m1(x)) be an interval contained 
in (kn,0, f m1(x)), maximal such that f mj −m1 |Ij

is a homeomorphism. If kn,0 < tj , there is some 1 ≤ s < mj −
m1 s.t. f s((tj , f m1(x))) = (c, f m1+s(x)). As f is infinitely renormalizable, Lemma 5.3 says that the orbit of x
accumulates on c by both sides, then #O+

f (x) ∩ (c, f m1+s(x)) = ∞. As KJn is positively invariant and f mj −m1(Ij ) ∩
Kn(y) �= ∅, we get that f mj −m1(Ij ) ⊂ Kn(y). So, f mj −m1(Ij ) ⊂ (kn,0, f mj (x)) ⊂ (y − ε, f mj (x)). Thus, #O+(x) ∩
f



1422 P. Brandão / Ann. I. H. Poincaré – AN 35 (2018) 1409–1433
(y − ε, f mj (x)) = ∞, and this is an absurd, as y was taken as the only non-wandering point in this neighborhood. 
Thus, tj = kn,0 and so, Ij = (kn,0, f m1(x)) ∀ j ≥ j0.

As a consequence, f j |(kn,0,f
m1 (x)) is a homeomorphism ∀ j ∈ N because f mj −m1 |(kn,0,f

m1 ) = f mj −m1 |Ij
is a home-

omorphism, ∀ j ≥ j0. But this contradicts the homterval lemma (Lemma 3.1), as (kn,0, f m1(x)) cannot be a wandering 
interval (kn,0 is pre-periodic, as ∂KJn ⊂O−

f (∂Jn)) and as f does not have periodic attractors.
For short, if c ∈ ωf (x), then y /∈ ωf (x) for all y ∈ � \ �. So, by (4), ωf (x) = � when c ∈ ωf (x). Finally, as 

� ⊂ ⋂
J∈R KJ and c ∈ ωf (x) for every x ∈ ⋂

J∈R KJ , then ωf (x) = �, ∀ x ∈ �. That is, � is minimal and so we 
conclude the proof. �
Remark 5.7. Let x, y ∈ [0, 1] \ {c}, δ > 0 and j ∈ N. If f j |(y−δ,y+δ) is a homeomorphism, then y ∈ αf (x) ⇐⇒
f j (y) ∈ αf (x).

Lemma 5.8. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map without periodic attractor. If 
c ∈ αf (p) for some p �= c, then O−

f (p) ∩ [0, c) � c ∈ (c,1] ∩O−
f (p).

Proof. Suppose that c ∈ αf (p), p ∈ [0, c) ∪ (c, 1]. We may suppose that O−
f (p) ∩ (−δ, c) �= ∅, ∀δ > 0 and O−

f (p) ∩
(c, δ0) = ∅ for some δ0 > 0, the symmetrical case being analogous. As αf (p) is compact, there is some q > 0 such 
that (c, q) is a connected component of [0, 1] \ αf (p).

Claim. f j
(
(c, q)

) ∩ (c, q) = ∅, ∀ j > 0.

Proof of the Claim. Suppose there is a smallest  > 0 such that f 
(
(c, q)

) ∩ (c, q) �= ∅. In this case f |(c,q) is 
a homeomorphism. If f 

(
(c, q)

) ⊂ (c, q), then f admits a periodic attractor or a super-attractor, contradicting our 
hypothesis. Thus, there is some x ∈ {c, q} ∩ f 

(
(c, q)

)
. As both c and q are accumulated by pre-images of p, it 

follows that x is also accumulated by pre-images of p. So, αf (p) ∩ (c, q) �= ∅ (Remark 5.7), contradicting that (c, q)

is contained in the complement of αf (p). �
It follows from the Claim that f j |(c,q) is a homeomorphism for every j > 0. Moreover, (c, q) is a wandering inter-

val. Indeed, if f j
(
(c, q)

) ∩ f k
(
(c, q)

) �= ∅, with j < k, then f j
(
(c, q)

) �⊃ f k
(
(c, q)

)
, since f j

(
(c, q)

) ⊃ f k
(
(c, q)

)
implies the existence of a periodic attractor or a super-attractor, contradicting again our hypothesis. Thus, there is 
x ∈ {f j (c), f j (q)} belonging to f k

(
(c, q)

)
. As f j (c) and f j (q) ∈ αf (p) we get 

(
f j |(c,q)

)−1
(x) ∈ αf (p) ∩ (c, q)

(Remark 5.7), contradicting again that (c, q) is contained in the complement of αf (p).
As (c, q) being a wandering interval is a contradiction to Lemma 3.2, we have to conclude that O−

f (p) ∩ (c, δ) �= ∅, 
∀δ > 0. �
Lemma 5.9. Let f : [0, 1] \ {c} → [0, 1] be a contracting Lorenz map without periodic attractors. Let p ∈ (0, 1) be 
such that c /∈ O+

f (p) and let (p1, p2) be the connected component of (0, 1) \O+
f (p) containing the critical point c. 

Given y ∈ O−
f (p) and ε > 0, we have

⋃
j≥0

f j (y, y + ε) ⊃ (p1, c) and
⋃
j≥0

f j (y − ε, y) ⊃ (c,p2).

Proof. For any given δ > 0, Lemma 3.4 says that, ∀ε > 0, ∃j1, j2 ≥ 0 such that f j1((p − ε, p)) ∩ (c − δ, c + δ) �=
∅ �= f j2((p, p + ε)) ∩ (c − δ, c + δ). Take j1, j2 minima with such property such that f j1 |(p−ε,p) and f j2 |(p,p+ε) are 
homeomorphisms. Notice that f j2 |(p,p+ε) ⊃ (p1, c − δ) and f j1((p − ε, p)) ⊃ (c + δ, p2), as O+

f (p) ∩ (p1, p2) = ∅
and f j1 |(p−ε,p) and f j2 |(p,p+ε) preserve orientation.

As a consequence,⋃
f j

(
(p,p + ε)

) ⊃
⋃

(p1, c − δ) = (p1, c)
j≥0 δ>0
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and ⋃
j≥0

f j
(
(p − ε,p)

) ⊃
⋃
δ>0

(c + δ,p2) = (c,p2).

Suppose that y ∈ f −s(p) for some s ≥ 1. There is r > 0 such that f s |(y,y+r) and f s |(y−r,y) are homeomorphisms. 
As f s |(y,y+r) is a homeomorphism, f s((y, y + r)) = (p, p + ε) with ε = f s(y + r) − p. Thus,⋃

j≥0

f j
(
(y, y + r)

) ⊃
⋃
j≥0

f j
(
f s((y, y + r))

) =
⋃
j≥0

f j
(
(p,p + ε)

) ⊃ (p1, c). �

Lemma 5.10. Let f : [0, 1] \ {c} → [0, 1] be a contracting Lorenz map. Write v1 = f (c−) and v0 = f (c+). Given 
any x, v0 < x < v1, let Jx = (x1, x2) be the connected component of [0, 1] \ αf (x) that contains the critical point c. 
If Jx �= ∅, then Jx is a renormalization interval and ∂Jx ⊂ αf (x).

Proof. Firstly observe that αf (x) ⊃ {0, 1} because, as x ∈ (v0, v1), 0 = limn→∞(f |[0,c))
−n(x) and 1 =

limn→∞(f |(c,1])−n(x). Thus, Jx is an open interval. Moreover, ∂Jx ⊂ αf (x).
We claim that Jx is a nice interval. Otherwise, consider n the smallest integer n > 0 such that f n(∂Jx) ∩ Jx �= ∅. 

Let i ∈ {1, 2} be so that f n(xi) ∈ Jx . As f j (xi) /∈ Jx , ∀0 ≤ j < n, there is ε > 0 such that f n|(xi−ε,xi+ε) is a homeo-
morphism. From Remark 5.7 it follows that f n(xi) ∈ αf (x), contradicting αf (x) ∩ Jx = ∅. Thus, Jx ∈ N .

Now let us check that Jx is a renormalization interval. Suppose it is not the case, it follows from Lemma 5.2
that one can find a connected component I = (t1, t2) of the domain of the first return map to Jx such that c /∈ ∂I . 
By Lemma 4.1, f k(I ) = FJx (I ) = Jx , where k = RJx (I ). Notice that t1 or t2 ∈ (x1, x2). Suppose that t1 ∈ (x1, x2)

(the case t2 ∈ (x1, x2) is similar). As c /∈ ∂I (and f j (t1) /∈ Jx , ∀0 < j < k), there is some small δ > 0 such that 
f k|(t1−δ,t1+δ) is a homeomorphism. As f k(t1) = x1 ∈ αf (x), it follows from Remark 5.7 that t1 ∈ αf (x). But this is 
impossible as αf (x) ∩ Jx = ∅. �
Corollary 5.11. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map without periodic attractors. If 
p ∈ Per(f ), then either O−

f (p) ∩ (0, c) � c ∈ (c,1) ∩O−
f (p) or the connected component of [0, 1] \ αf (p), Jp , is 

non-empty and it is a renormalization interval.

Notation 5.12 (LPer , LSol and LChe). Let LPer denote the collection of contracting Lorenz maps having periodic 
attractors. The set of all ∞-renormalizable contracting Lorenz maps will be denoted by LSol. Let LChe be the set of 
all contracting Lorenz maps that are Cherry maps.

Recall that f is a Cherry map if it does not have a periodic or super-attractor and there is δ > 0 such that c ∈ ωf (x±)

for every x ∈ (c − δ, c + δ).

Lemma 5.13. If f : [0, 1] \ {c} → [0, 1] is a C2 non-flat contracting Lorenz map and f /∈ LPer ∪ LSol ∪ LChe , then 
c ∈ αf (p) for some p ∈ Per(f ).

Proof. If f is not renormalizable let I = (0, 1), otherwise let I = (a, b) be the smallest renormalization interval of f
(we are assuming that f /∈ LPer ∪ LSol ∪ LChe). By Lemma 4.4 we can pick a point p ∈ (a, b) that is periodic. So, 
we have that p ∈ αf (p). As a consequence, it follows from Corollary 5.11 that O−

f (p) ∩ (0, c) � c ∈ (c,1) ∩O−
f (p). 

Indeed, if the pre-orbit of p is not accumulating on c by both sides, then Jp �= ∅ is a renormalization interval. In this 
case, as p ∈ αf (p), we get Jp � (a, b). This is an absurd, as (a, b) is the smallest renormalization interval. �
Proposition 5.14 (Long branches lemma). Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map. 
Suppose that f does not admit a periodic attractor. If αf (p) � c /∈ ωf (p) for some p �= c, then there exists ε > 0 such 

that O−
f (x) ∩ (0, c) � c ∈ O−

f (x) ∩ (c,1) for every 0 < |x − c| < ε. Furthermore, f is not ∞-renormalizable, f is 
not a Cherry map and Per(f ) ∩ (c − δ, c) �= ∅ �= Per(f ) ∩ (c, c + δ), ∀δ > 0.
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Proof. Suppose by contradiction that the main statement is not true. That is, c ∈ W , where

W = {x ; c /∈O−
f (x) ∩ (0, c) or c /∈ O−

f (x) ∩ (c,1)}.
By Lemma 5.8, if O−

f (x) accumulates on one side of c, then O−
f (x) will accumulate on c by both sides. Then, 

W = {x; c /∈ αf (x)}.
Let (p1, p2) be the connected component of [0, 1] \O+

f (p) that contains c. Choose a sequence O−
f (p) � yn → c. 

As f does not have a periodic attractor, taking a subsequence if necessary, we get by Lemma 5.9 that⋃
j≥0

f j
(
(yn, yn + ε)

) ⊃ (p1, c) ∀ε > 0,∀n > 0 (5)

and that⋃
j≥0

f j
(
(yn − ε, yn)

) ⊃ (c,p2) ∀ε > 0,∀n > 0. (6)

As c is accumulated by W , say by the left side (the other case is similar), choose some q ∈ (p1, c) ∩ W . It follows 
from (5) that 

⋃
j≥0 f j

(
(yn, c)

) ⊃ (p1, c) � q , ∀ n > 0 (we are taking ε = |yn − c| in (5)). Thus, there is a sequence 
yn < qn < c and in → ∞ such that f in(qn) = q , ∀ n ∈ N. This implies that c ∈ αf (q). But this is an absurd because 
q ∈ W .

Therefore, we can not have c ∈ W and this proves the main part of the Proposition. By Corollary 5.6, f cannot be 
∞-renormalizable. As ωf (y) = ωf (p) /� c for all y ∈O−

f (p), it follows that f cannot be a Cherry map. Finally, let us 
show that Per(f ) ∩ (c − δ, c) �= ∅ �= Per(f ) ∩ (c, c + δ), ∀δ > 0. For this, let n ≥ period(p) and Jn be the connected 
component of (0, 1) \ ⋃n−1

j=0 f −j (p) containing the critical point 0. It is easy to see that Jn is a nice interval, ∀ n ∈N. 

Also, as αf (p) � c, ∀δ > 0, ∃n such that ∂Jn ⊂ Bδ(c). As it follows from Lemma 4.3 that Per(f ) ∩ Jn ∩ (−∞, c) �=
∅ �= (c, +∞) ∩ Jn ∩ Per(f ), ∀ n ∈N, we conclude the proof. �

Observe that it is also true that f being a Cherry map implies that Per(f ) ∩ (u, v) = ∅, (u, v) being the last interval 
of renormalization.

6. The structure of the topological attractors

We now study the topological attractors for the contracting Lorenz maps. The main result is Theorem 1, from which 
we obtain (Section 7) the main theorems: Theorem B, C and D.

In this Section, f will be a C2 non-flat contracting Lorenz map f : [0, 1] \ {c} → [0, 1].

Lemma 6.1. If f does not have periodic attractors, then

αf (x) � c ⇒ αf (x) ⊃ �(f ).

Proof. Let x such that αf (x) � c and given y ∈ �(f ) consider any neighborhood T of y. As y is non-wandering, 
there is z ∈ T , (we may assume z /∈ O−

f (c) ∪ O−
f (P er(f ))) and j ∈ N such that f j (z) ∈ T . It follows from the 

homterval lemma that there exists a smallest t ∈N such that f t ((z, f j (z))) � c.
As x is such that αf (x) � c, we have that O−

f (x) ∩f t (z, f j (z)) �= ∅ and, then, O−
f (x) ∩T ⊃O−

f (x) ∩ (z, f j (z)) �=
∅. As the chosen neighborhood T can be taken as small as wanted, we conclude that y ∈ αf (x). �

For a Lorenz map f /∈ LPer ∪LSol ∪LChe as in 5.12, let us define

E = {x ∈ (0,1);αf (x) � c}.
By Lemma 5.13 and Proposition 5.14, E contains a neighborhood of c. In the next lemma, consider (a, b) ⊂ E to be 
the maximal interval containing c.
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Lemma 6.2. ∃ and r > 0 such that f ((a, c)) ⊂ (a, b) ⊃ f r((c, b)).

Proof. As f ((a, c)) has non-empty interior, it follows from Lemma 3.4 that some iterates of its points will intersect 
the neighborhood (a, b) of the critical point. Take the minimum k such that f k((a, c)) ∩ (a, b) �= ∅.

Suppose f k((a, c)) �⊂ (a, b). For example, b ∈ f k((a, c)). As b ∈ [0,1] \E and [0, 1] \ E is invariant, we get that 
f k((a, c)) ∩ ([0, 1] \E) �= ∅ and so, (a, c) ∩ ([0, 1] \E) �= ∅, which is an absurd. �

For a Lorenz map f /∈ LPer ∪LSol ∪LChe and  and r as given by the former lemma, we define

U= (a, b) ∪
( −1⋃

j=1

f j ((a, c))

)
∪

( r−1⋃
j=1

f j ((c, b))

)
� c (7)

and we have that U is a trapping region, that is, f (U \ {c}) ⊂U.
It’s worth observing that given a non-renormalizable Lorenz map f having a trapping region U , any point in (0, 1)

eventually reaches this region when iterated by f . Also, the non-wandering set within (0, 1) is necessarily inside U .

Lemma 6.3. Let f be a non-renormalizable Lorenz map defined in [0, 1] \ {c} and an open set U ⊂ [0, 1], c ∈ U, so 
that f (U \ {c}) ⊂ U, then ∀x ∈ [0, 1] \ {c} ∃k ≥ 0 such that f k(x) ∈ U.

Proof. Suppose ∃x ∈ [0, 1] \ {c} such that f j (x) /∈ U, ∀j ≥ 0. We may suppose x < c. If O+
f (x) ⊂ (0, c), it converges 

to a fixed point y ∈ (0, c), y /∈ U and y ∈ αf (y) and so Jy , as introduced in Lemma 5.10, is such that Jy �= (0, 1). On 
the other hand, as f (U \ {c}) ⊂ U, αf (y) ∩U = ∅, so Jy �= ∅. In this way Jy is a non-trivial renormalization interval 
smaller than (0, 1), what contradicts the hypothesis.

Suppose now O+
f (x) ∩ (c, 1) �= ∅. Let u1 < c < u2 be such that (u1, u2) ⊂ U and let w1 = f (u2) and w2 = f (u1). 

The first time a point in O+
f (x) reaches the interval (c, 1) is within the interval [u2, w2], and from this moment on, 

its orbit is trapped in the region [w1, u1] ∪ [u2, w2]. Consider the set W = ωf (x), we have that [w1, u1] ∪ [u2, w2] ⊃
ωf (x). Consider g := f |W . As f (ωf (x)) = ωf (x), given any y ∈ ωf (x) we have ∅ �= αg(y) ⊂ W and αg(y) ⊂ αf (y). 
Then, again it follows from Lemma 5.10 that Jy �= ∅ (as αf (y) ∩U = ∅) and as αf (y) ∩ W �= ∅, Jy �= (0, 1), then Jy

is a renormalization interval and it is strictly contained in (0, 1), which is an absurd. �
Corollary 6.4. For f /∈ LPer ∪LSol ∪LChe , we have that αf (x) ⊃ �(f ) ∀x ∈U.

Proof. As Lemma 6.1 states that αf (x) ⊃ �(f ) for any x such that c ∈ αf (x), this holds for any x in U, as this is 
contained in E. �
Lemma 6.5. For f /∈ LPer ∪LSol ∪LChe , if αf (x) � c, then αf (x) ∩U ⊂ �(f ) ∩U.

Proof. Consider x such that αf (x) � c. Given y ∈ αf (x), consider any neighborhood V of y. We may assume V ⊂U.

Claim (A). y ∈ (V \ {y}) ∩O−
f (x).

Proof. If not, ∃ε > 0 such that Bε(y) ∩O−
f (x) = {y}. In this case, we have that ∃n1 < n2 < ... < nj → ∞ such that 

f nj (y) = x. Then,

x = f n2(y) = f n2−n1(f n1(y)) = f n2−n1(x).

Observe that if f s(Bε(y)) /� c∀s, then writing (α, β) = f n1(Bε(y)) we have

x ∈ (α,β) and f k(n2−n1)((α,β)) /� c∀k.

Taking (x, γ ) = ⋃
k≥1 f k(n2−n1)((x, β)) = ⋃

k≥1(x, f k(n2−n1)(β)), we have that f n2−n1 |(x,γ ) is a homeomorphism 
and f n2−n1((x, γ )) ⊂ (x, γ ).
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But this would imply the existence of attracting periodic orbits, that are considered not to exist. Then, we neces-
sarily have that ∃s such that f s(Bε(y)) � c.

As c ∈ αf (x), we would have that #O−
f (x) ∩ Bε(y) = ∞. Again a contradiction, proving Claim (A). �

Because of the Claim we may assume that y ∈ (y,1) ∩ V ∩O−
f (x) (the proof for the case y ∈ (0, y) ∩ V ∩O−

f (x)

is analogous).
We may take x2 < x1 ∈ (y, 1) ∩ V ∩O−

f (x) such that f n2(x2) = x = f n1(x1) with n1 < n2.

Claim (B). ∃s ∈ N such that f s([x1, x2)) � c.

Proof. If c /∈ f s([x1x2)), ∀ s ≥ 0, then

f k(n2−n1)([f n2−n1(x), x)) = f k(n2−n1)+n2([x1, x2)) /� c, ∀k ∈N.

As f preserves orientation, f k(n2−n1)|[f n2−n1 (x),x) is a homeomorphism, ∀x, ∀k ≥ 0, so we have f (k+1)(n2−n1)(x) <
f k(n2−n1)(x), ∀k ≥ 0.

Then, 
⋃

k≥0 f k(n2−n1)([f n2−n1(x), x)) is an interval (γ, x). Besides that, f n2−n1 |(γ,x) is a homeomorphism and 
f n2−n1((γ, x)) ⊂ (γ, x).

But this is an absurd, because it would imply the existence of attracting periodic orbits, what proves Claim (B). �
Let s ∈ N such that f s([x1, x2)) � c. As x1 ∈ U, we have that O−

f (x1) accumulates in c by both sides. Then, 

O−
f (x1) ∩ f s([x1, x2)) �= ∅.

This implies that ∃x′
1 ∈O−

f (x1) ∩ [x1, x2) ⊂ V , say x′
1 ∈ f −t (x1) ∩ V . Then,

f t (V ) ∩ V �= ∅
As V is a neighborhood of y ∈ U that was arbitrarily taken, we may conclude that y ∈ �(f ), proving 

Lemma 6.5. �
Corollary 6.6. For f /∈ LPer ∪LSol ∪LChe , αf (x) ∩U = �(f ) ∩U, ∀x ∈ U.

Corollary 6.7. For f /∈ LPer ∪LSol ∪LChe , then any connected component of U \ �(f ) is a wandering interval.

Proof. Let J = (a, b) connected component of U \ �(f ). Suppose it is not a wandering interval. Then, Lemma 3.1
says there will be n for which f n(J ) � c. Lemma 5.13 and Proposition 5.14 assure us that there are several points 
with c in their α-limits inside this set f n(J ). We know f −1(αf (x)) ⊂ αf (x) and, then, Corollary 6.6 assures us these 
points are in �(f ), but they are inside J , that should not contain any point of �(f ). �
Definition 6.8 (Strong transitivity). Let X be a compact metrical space. Given a continuous map g : A ⊂ X → X, we 
say it is strongly (topologically) transitive if for any open set V ⊂X with V ∩ A �= ∅, we have 

⋃
j≥0 gj (V ) = A.

Let us make precise the notation used in this definition: given V ⊂ X, let g−1(V ) = {x ∈ A ; g(x) ∈ V }. We 
define inductively g−n(V ), for n ≥ 2, by g−n(V ) = g−(n−1)(g−1(V )). We define for n ≥ 1, gn(V ) = {gn(v) ; v ∈
V ∩ g−n(A)}.

Proposition 6.9. If f /∈ LPer ∪LSol ∪LChe , then f |�∩U is strongly transitive. In particular,

f |�∩U is transitive.

Proof. We know that f −1(αf (x)) ⊂ αf (x). We will show that 
⋃

j≥0 f j (V ∩ �(t)) = �(f ) ∩ U, ∀V ⊂ U, V open 
and V ∩ �(f ) �= ∅. It follows from the Corollary 6.6 that

f −1(�(f ) ∩U) ∩U⊂ �(f ) ∩U. (8)
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Let V ⊂ U, V any open set with V ∩ �(f ) �= ∅. Given x ∈ �(f ) ∩ U, we have that αf (x) ∩ V �= ∅ and, then, 
O−

f (x) ∩ V �= ∅. Pick xt ∈ f −t (x) ∩ V . Define xk = f t−k(xt ) for 0 ≤ k ≤ t .

xt
f→ xt−1

f→ ·· · f→ x0 = f t (xt )

As U is a trapping region, we have that xk in U, ∀0 ≤ k ≤ t .
We claim that xt ∈ �(f ) ∩ U. Indeed, we have that x0 ∈ �(f ) ∩ U. Suppose it also works for k − 1, that is, 

xk−1 ∈ �(f ) ∩U. We have that xk ∈U. Then xk ∈ f −1(xk−1) ∩U and by (8) we have that xk ∈ �(f ) ∩U. It follows 
by induction that xt ∈ �(f ) ∩U. �
Theorem 1. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map. If f doesn’t have a periodic 
attracting orbit, isn’t a Cherry map nor ∞-renormalizable, then there is an open trapping region U � c given by a 
finite union of open intervals such that � := U ∩ �(f ) satisfies the following statements.

(1) ωf (x) = � for a residual set of points of � (in particular, � is transitive).
(2) The basin of attraction of �, β(�) := {x; ωf (x) ⊂ �}, is an open and dense set.
(3) ∃λ > 0 such that limn→∞ 1

n
log |Df n(x)| = λ for a dense set of points x in �.

(4) Either � is a finite union of intervals or it is a Cantor set.
(5) If � is a finite union of intervals, then ωf (x) = � for a residual set of x in [0, 1].
(6) � is a Cantor set if and only if there is a wandering interval.

Proof. Set � := �(f ) ∩U with U as defined in (7).

(1) Lemma A.1 of Appendix A insures us it is true, as we have transitivity provided by Proposition 6.9.
(2) By Lemma 3.4, the set U = {x ∈ [0, 1] \ {c}; ∃j such that f j (x) ∈ U} is an open and dense set. We claim that 

any point y in this set U is also in β(�). For some k, f k(y) = x ∈ U, and we have two possible situations for a 
point q ∈ ωf (x) = ωf (y). As U is a trapping region, q can be an interior point of U, and then it automatically 
belongs to � = � ∪U. If not an interior point, q ∈ ∂U. In this case, as q ∈ ωf (x), there are infinitely many f nj (x)

accumulating in q . Then, there can be no wandering interval with border q (as images of x keep coming close 
to q). By Corollary 6.7, as q can’t be in the border of a wandering interval, it is not in the border of a connected 
component of U \ �(f ), then it is accumulated by points of this set, that is, q ∈ � = �(f ) ∩U.

(3) Proposition 5.14 says that repeller points p ∈ Per(f ) accumulate in c. As they are in �(f ), the ones that are in 
U are also in �, and it follows from Corollary 6.6 that O−

f (p) is dense in �. Given any point x ∈ O−
f (p), as it is 

eventually periodic, say f j (x) = p (and as there are infinitely many ones, we can pick one such that c is not in 
its pre-orbit, in order to proceed with the following computation), we have

lim
n→∞

1

n
log |D(f n−j ◦ f j )(x)| = lim

n→∞
1

n
log

(|Df n−j (p)|) + lim
n→∞

1

n
log |Df j (x)| =

= lim
n→∞

n − j

n(n − j)
log

(|Df n−j (p)|) = lim
n→∞

1

n − j
log

(|Df n−j (p)|) = expf (p) =: λ.

(4) As � is transitive, ∃x ∈ � = ωf (x), then, by Lemma A.2 of Appendix A, it is a perfect set. We have two 
possibilities: interior(�) = ∅ or not. As � is a subset of R, if it has empty interior, it is totally disconnected. 
Consequently, it will be a Cantor set (as we already proved it is compact and perfect). Suppose, then, interior(�) �=
∅. Let I be an open interval, I ⊂ � and it can’t be a wandering interval, as it is a subset of � ⊂ �(f ). Then, 
by Lemma 3.1, ∃j such that f j (I ) � c, and so, c ∈ interior�. This forbids the existence of wandering intervals. 
Indeed, if there is a wandering interval J , it has to accumulate in the critical point (by Lemma 3.2), but this 
would imply that f n(J ) ∩�(f ) �= ∅ for n sufficiently big. An absurd. So, as we cannot have wandering intervals, 
Corollary 6.7, U \ �(f ) has to be an empty set. As U is an orbit of intervals, it proves the claim of the Theorem.

(5) Let �′ = {x ∈ U; ωf (x) = �}. Observe that x ∈ ⋃
j≥0 f −j (�′) implies that ωf (x) = �. As �′ is residual in U, 

there exist An, n ∈ N, open and dense sets in U such that �′ = ⋂
n∈N An. On the other hand, for every n ∈N we 

have that 
⋃

j≥0 f −j (An) is an open dense set in [0, 1]. Then, 
⋂

n∈N
(⋃

j≥0 f −j (An)
)

is residual in [0, 1]. So we 
have that 

⋃
j≥0 f −j

(
�′) = ⋃

j≥0 f −j
(⋂

n∈N An

) = ⋂
n∈N

(⋃
j≥0 f −j (An)

)
is residual.
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(6) It follows straightforwardly from the former construction: � being a Cantor set implies that U \ �(f ) has non-
trivial connected components, that Lemma 3.1 says it is a wandering interval. The converse, for as � is compact 
and perfect, if we suppose interior(�) �= ∅, following the same reasoning of (4), there would be an interval I such 
that f j (I ) � c for some j , contradicting the existence of wandering interval. �

Lemma 6.10. Let f : [0, 1] \ {c} → [0, 1] be a C2 non-flat contracting Lorenz map. Suppose that f /∈ LPer ∪LSol ∪
LChe. Then Per(f ) ∩ � = �, with � as obtained in Theorem 1.

Proof. Notice that Per(f ) ∩U= Per(f ) ∩ �, thus � \ Per(f ) = � \ Per(f ) ∩ �. Suppose that � \ Per(f ) �= ∅. 
Let I be connected component of U \ Per(f ) such that I ∩ � �= ∅. As � is perfect and compact we have that 
I ∩ � is uncountable. Moreover, as {x ∈ �; ωf (x) = �} is residual in �, we have that {x ∈ �; ωf (x) = �} ∩ I is 
uncountable. Then, the set of points that return infinitely many times to I (that is, 

⋂
j≥0 f −j (I )) is uncountable. Let 

I∗ = {x ∈ I ; O+
f (f (x)) ∩ I �= ∅} be the set of points that return to I and F : I∗ → I the first return map. Observe that 

the set of points that return infinitely many times to I is given by

{x;#(O+
f (x) ∩ I ) = ∞} =

⋂
j≥0

F−j (I )

This way⋂
j≥0

F−j (I ) is uncountable. (9)

Claim (a). If J is connected component of I ∗, then F(J ) = I .

Proof of the Claim. Let I = (i0, i1). If F(J ) �= I , then let (t0, t1) = F(J ) and in this case t0 �= i0 or t1 �= i1. Suppose 
t0 �= i0 (the other case is analogous). Let n = R(J ). As t0 �= i0, there is 0 ≤ s < n such that f s(t0) = c. Then we have 
that

#
(
Per(f ) ∩ f s(J )

) = #
(
Per(f ) ∩ (c, f s(t1))

) = ∞,

as the periodic points accumulate in both sides of the critical point (Proposition 5.14). Then #
(
Per(f ) ∩ I

) ≥
#
(
Per(f ) ∩ f n(J )

) = ∞, contradicting the fact that I is connected component of U \ Per(f ). �
Claim (b). I ∗ has more than one connected component.

Proof of the Claim. Suppose it isn’t so, then I ∗ is an interval and we will write it as (u, v) and F = f n|(u, v) for 
some n ∈N. This implies, then, that 

⋂
j≥0 F−j (I ) = Fix(f n|(u, v)). But this is an absurd, as by equation (9) this set 

would be uncountable and so the set of periodic points of f would also be uncountable. �
As F has at least two branches covering the full image I , we have it has infinitely many periodic points and, then, 

f also has infinitely many periodic points in I , absurd. �
7. Proof of Theorems B, C and D

Now, we will prove the main theorems: Theorem B, C and D.

Proof of Theorem B. We are supposing f has no attracting periodic orbit. Besides that, let’s consider different 
situations:

(1) Firstly, let us suppose that ∃ε > 0 such that Bε(c) ∩Per(f ) = ∅. Then [0, 1] \Per(f ) has a connected component 
J = (a, b) such that c ∈ J .
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Fig. 6. Interval with non-periodic borders with returns being full branches: it contains a shift with positive entropy.

If ∃n such that f n(a) ∈ J , ∃ε > 0 such that f n(Bε(a)) ⊂ J . As Per(f ) ∩ Bε(a) �= ∅, then Per(f ) ∩ J �= ∅, in 
contradiction with the definition of J . Similarly we show that f j (b) /∈ J , ∀j ∈ N, and so J is a nice interval. 
Lemma 4.3 states that a ∈ Per(f ) or it is accumulated by periodic points pj ∈ J , and the same for b. Then, 
{a, b} ⊂ Per(f ).
We can also state that J is a renormalization interval, for if f period(a)((a, c)) �⊂ (a, b), by Lemma 4.1, ∃d ∈ (a, b)

such that f period(a)((a, d)) = (a, b), that is, f period(a)(d) = (b) and then (d, b) is nice, but again by Lemma 4.3, 
d ∈ Per(f ) or ∃pj ∈ Per(f ), pj ↗ d , which is a contradiction. In the same way, f ((c, b)) ⊂ (a, b) and, so, J
is a renormalization interval.
As there are no attracting periodic orbits and J is a renormalization interval, it follows from Lemma 4.4 that 
ωf (x) � c, ∀x ∈ J . By a renormalization and Lemma A.5 in Appendix A, there is a compact minimal set � such 
that ωf (x) = �, ∀ x ∈ J . Then this is a Cherry map, according to the equivalency provided by [6], as observed 
when we defined Cherry maps. Also, as Lemma 3.4 assures us that {x ; O+

f (x) ∩ J �= ∅} is an open and dense set, 
it is not difficult to conclude that � is a Cherry attractor, and that it attracts a residual set of the interval.
One can observe that all these features of the Cherry attractor could also be obtained using the semi-conjugation 
with an irrational rotation.
It may occur that the semi-conjugacy is not surjective, meaning the Cherry map has a gap, that is, there is a 
wandering interval for the considered map.
For the remaining cases we have, then, that ∀ε > 0 ∃p; p ∈ Bε(c) ∩ Per(f ). Among these, the first situation to 
consider is the one of � being a solenoidal attractor:

(2) As we have defined, there is a set � ⊂ ⋂∞
n=0 Kn, where Kn = ⋃period(pn)

j=0 f j ((pn, c)) ∪ ⋃period(qn)

j=0 f j ((c, qn)), 
Jn = (pn, qn), n ∈N, and J1 ⊃ J2 ⊃ · · · is the chain of renormalization intervals.
It follows from the construction that c ∈ �. Moreover, it follows from Lemma 3.4 that given a renormalization 
interval Jn, the set of points that eventually visit it is an open and dense set, Vn = {x; ∃j such that fj (x) ∈ Jn}. 
There is a residual set 

⋂∞
n=0 Vn of points that eventually fall into any renormalization interval, that is, c ∈ ωf (x), 

∀x ∈ ⋂∞
n=0 Vn and by Theorem A, ωf (x) = �, that is, this residual set belongs to the basin of �, as stated.

(3) Now we come to the situation that f has no periodic attractor, neither Cherry attractor nor Solenoidal attractor. 
It follows from Theorem 1 that ∃� compact, f (�) = �, transitive set such that ωf (x) = � for a residual set of 
points of �, whose basin of attraction β(�) := {x; ωf (x) ⊂ �}, is an open and dense set. Also, ∃λ > 0 such that 
limn→∞ 1

n
log |Df n(x)| = λ for a dense set of points x in �.

Theorem 1 also gives two possibilities for this setting:
(a) either � is a finite union of intervals and ωf (x) = � for a residual set of x in [0, 1]
(b) or it is a Cantor set and there is a wandering interval.
In both cases, all we have to do to complete the proof of the theorem is to show that any of these two is a chaotic 
attractor, and for this, it only remains to prove that periodic orbits are dense in it (Per(f ) ∩ � = �) and that 
its topological entropy htop(f |�) is positive. The condition on the periodic points follows from Lemma 6.10. 
The fact that the topological entropy is positive can be obtained by taking arbitrarily small nice intervals whose 
borders are non-periodic (e.g., pre-periodic points), and by observing that the returns to this interval provide at 
least two full branches, that will create shifts that have positive entropy (see Fig. 6). �
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Proof of Theorem C. The existence of a single topological attractor is given by Theorem 1. If � is a Cherry attractor 
and it does not have a wandering interval, then there is an interval [a, b], such that (identifying a and b) the first return 
map to F : [a, b] → [a, b] is conjugated to an irrational rotation. In particular αf (x) ⊃ αF (x) = [a, b] = ωF (x) ⊂
ωf (x), ∀ x ∈ [a, b]. Furthermore, the attractor for the map f , �, is given by the itinerary of the interval [a, b], that is, 
� = [a, b] ∪ ⋃−1

j=0 f j ([f (a), f (c−)]) ∪ ⋃r−1
j=0 f j ([f (c+), f (b)]), where  and r are the smallest integers such that 

f ((a, c)) ⊂ (a, b) ⊃ f r((c, b)). So,

αf (x) ⊃ � ⊂ ωf (x) ∀x ∈ �.

In particular,

αf (x) ⊃ (a, b) ⊂ ωf (x) ∀x ∈ �.

Considering V(a,b) = {x ∈ [0, 1] ; ∃j such that f j (x) ∈ (a, b)}, Lemma 3.4 assures us that this set is open and 
dense, and then we get αf (x) = [0, 1], ∀ x ∈ �.

If � is a Solenoid, then � ⊂ ⋂∞
n=0 Kn, where

Kn =
( period(an)⋃

j=0

f j ([an, c))

)
∩

( period(bn)⋃
j=0

f j ((c, bn])
)

and {Jn = (an, bn)}n is an infinite nested chain of renormalization intervals. Given any x ∈ KJn and y ∈ �Jn , there 
are w ∈ Jn and  ∈ N such that f (w) = x. By Lemma 5.9, for any given ε > 0, ∃z ∈ Bε(y) such that f k(z) = x for 
some k > 0. Then, αf (x) ⊃ �Jn , ∀n ∈N. If f does not have any wandering interval, it is easy to show that 

⋃
n≥0 �Jn

is dense in [0, 1]: suppose it isn’t, then ∃U open interval U ∈ [0, 1] \ ⋃
n≥0 �Jn . If ∃j such that f j (U) � c, take j

minimum with this property. As f j (U) is an open neighborhood of c, then it contains Jm for m big enough, where 
Jm is a renormalization interval. Then, ∃s and t ∈ U such that f j (s) = am and f j (t) = bm, which is in contradiction 
with the definition of U , as {s, t} ⊂ �Jm . As αf (x) ⊃ �Jn and 

⋃
n≥0 �Jn is dense in [0, 1], we have proved that 

αf (x) = [0, 1], ∀ x ∈ �.
Finally, if � is not a Cherry or a Solenoid attractor, the proof follows from Corollary 6.4 and items (4) and (6) of 

Theorem B. Indeed, as we are assuming that f does not have wandering intervals, it follows from items (4) and (6) 
of Theorem B that � is a cycle of intervals. By Corollary 6.4 and the fact that � = U∩ �(f ), we get αf (x) ⊃ �. 
As � contains an open neighborhood of c, it follows that the set of x ∈ [0, 1] such that O+

f (x) ∩ � �= ∅ contains 

an open and dense set. Thus, 
⋃

j≥0 f −j (�) is dense and so αf (x) is dense ∀ x ∈ U. As the α-limit is a closed set, 

αf (x) = [0, 1] for all x ∈ U. If � = U∩ �(f ) = U ∩ �(f ) ⊂ U, the proof is done. On the other hand, if � �⊂ U, 
then � \ U ⊂ (O+

f (c−) ∩ O+
f (c+)). But, as it was defined in the beginning of Section 2, c ∈ f −1(f (c−)) and also 

c ∈ f −1(f (c+)). Thus, αf (� \U) ⊃ αf (c) = [0, 1] (because c ∈ U). �
Proof of Theorem D. The first statement of the theorem follows straightforwardly from Proposition 3.3. Items (1), 
(2) and (3) repeat what is said in Theorem B. In the case (4), we have the existence of wandering intervals, so let’s 
consider V the union of all wandering intervals. Lemma 3.6 says this set is open and dense in [0, 1], and Corollary 3.7
gives the structure of the set �. �
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Appendix A

Lemma A.1. If f : U → X is a continuous map defined in an open and dense subset U of compact metric space X, 
then either �x ∈ U such that ωf (x) = X or ω(x) =X for a residual set of x ∈X.
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Proof. Suppose that O+
f (p) is dense in X for some p ∈ ⋂

j≥0 f −j (U). Write p = f (p). For each  ∈ N there is 

some kn, such that {p, · · · , f kn, (p)} is (1/2n)-dense. As f is continuous and U open, there is some rn, > 0 such 
that f j (Brn,

(p)) ⊂ B1/2n(f
j (p)), ∀ 0 ≤ j ≤ kn,. Thus, {y, · · · , f kn, (y)} is (1/n)-dense ∀ y ∈ Brn,

(p). Let

Xn = {x ∈ X ; O+
f (x) is (1/n) − dense}.

Therefore 
⋃

∈N Brn,
(p) ⊂ Xn is an open and dense set. Furthermore,⋂

n∈N

⋃
∈N

Brn,
(p)

is a residual set contained in 
⋂

n∈NXn = {x ∈X ; ωf (x) = X}. �
Lemma A.2. Let X be a compact metric space and f : U → X be a continuous map defined in a subset U . If 
x ∈ ⋂

n≥0 f −n(U) and x ∈ ωf (x), then either O+
f (x) is a periodic orbit (in this case ωf (x) = O+

f (x)) or ωf (x) is a 
perfect set.

Proof. Suppose ∃p ∈ ωf (x) an isolated point, say Bε(p) ∩ ωf (x) = {p}, with ε > 0. As x ∈ ωf (x) and f is 
continuous on O+

f (x), we have O+
f (x) ⊂ ωf (x). Thus, O+

f (x) ∩ (Bε(p) \ {p}) = ∅. As p ∈ ωf (x) ⇒ ∃ sequence 
nj ↗ ∞ such that f nj (x) → p. Taking j big enough we have f nj (x) ∈ Bε(p), then f nj (x) = p, ∀j big and, then, 
f nj+1−nj (f nj (x)) = p = f nj (x), that is, f nj (x) is periodic. As x ∈ ωf (x) = ω(f nj (x)) = O+(f nj (x)), we have 
that x is periodic. �
Corollary A.3. Let f : [0, 1] \ {c} → [0, 1] be a contracting Lorenz map. If c− ∈ ωf (c−), then either f has a super-
attractor containing c− or ωf (c−) is a perfect set. Analogously, if c+ ∈ ωf (c+), then either f has a super-attractor 
containing c+ or ωf (c+) is a perfect set.

Proof. Suppose that f does not have a super-attractor containing c−. Thus, v1 := f (c−) /∈ O−
f (c). In this case, 

O+
f (c−) = {c} ∪ O+

f (v1) (recall the definition of O+
f (c−) in the beginning of Section 2). Note that v1 ∈ ωf (v1), 

because c− ∈ ωf (c−). As v1 can not be a periodic orbit and as v1 ∈ ⋃
n≥0 f −n([0, 1] \{c}), it follows from Lemma A.2

that ωf (v1) is a perfect set. As ωf (c−) = ωf (v1) (because c ∈ ωf (v1) ∩ (0, c)), we finish the proof. �
Corollary A.4. Let f : [0, 1] \ {c} → [0, 1] be a contracting Lorenz map without periodic attractors. Suppose 
ωf (c−) � c ∈ ωf (c+). If O+

f (p) ∩ (0, c) � c ∈ (c,1) ∩O+
f (p), p ∈ (0, 1) \ {c}, then ωf (p) is a perfect set and 

ωf (p) ∩ (0, c) � c ∈ (c,1) ∩ ωf (p).

Proof. It follows from Corollary A.3 that ωf (c−) and ωf (c+) are perfect sets. Furthermore, ωf (c−) ∩ (0, c) � c ∈
(c,1) ∩ ωf (c+). If O+

f (p) ∩ (0, c) � c ∈ (c,1) ∩O+
f (p) then ωf (p) ⊃ ωf (c−) ∪ ωf (c+) and so, ωf (p) ∩ (0, c) �

c ∈ (c,1) ∩ ωf (p).
Now suppose that ωf (p) is not perfect. Thus, there is q ∈ ωf (p) and δ > 0 such that Bδ(q) ∩ ωf (p) = {q}. Let 

J = (a, b) be the connect component of [0, 1] \ (
ωf (p) \ {q}) containing q . Note that a, b ⊂ (

ωf (x) ∪ {0, 1}). �
A.0.1. The attractor for Cherry maps

Lemma A.5. Let f : [0, 1] \ {c} → [0, 1] be a contracting Lorenz map without super-attractors. If c ∈ ωf (x), ∀ x ∈
(0, 1), then there exists a compact set � ⊂ (0, 1) such that ωf (x) = �, ∀ x ∈ (0, 1). In particular, � is a minimal set.

Proof. As f does not have super-attractor and c ∈ ωf (x), ∀ x ∈ (0, 1), we get

Per(f ) = {0,1}.
Note also that f ([0, c)) � c ∈ f ((c, 1]), because c ∈ ωf (x), ∀ x ∈ (0, 1). By Lemma 4.5, we conclude that O+

f (x) ∩
(0, c) �= ∅ �= (c, 1) ∩O+(x), ∀ x ∈ (0, 1). So, by Lemma 4.7 we get
f



1432 P. Brandão / Ann. I. H. Poincaré – AN 35 (2018) 1409–1433
O+
f (x) ∩ (0, c) � c ∈ (c,1) ∩O+

f (x), ∀x ∈ (0,1). (10)

As a consequence,

ωf (x) ⊃ ωf (c−) ∪ ωf (c+), ∀x ∈ (0,1). (11)

In particular,

c− ∈ ωf (c−) and c+ ∈ ωf (c+).

Thus, it follows from Corollary A.4 that

ωf (x) ∩ (0, c) � c ∈ (c,1) ∩ ωf (x) ∀x ∈ (0,1). (12)

Now we will prove that ωf (p) = ωf (q), ∀ p, q ∈ (0, 1). If this is not true, then there exist p, q ∈ (0, 1) such that 
ωf (p) \ωf (q) �= ∅. Let y ∈ ωf (p) \ωf (q). Set [α, β] = [

minωf (p), maxωf (p)
]

(indeed, [α, β] = [f (c+), f (c−)]). 
It is easy to see that f ([α, β]) = [α, β]. As c ∈ (α, β) (by (10)) and as c ∈ ωf (x), ∀ x, we get ωf (x) ⊂ [α, β], 
∀ x ∈ (0, 1). As a consequence, y ∈ (α, β).

Let J = (a, b) be the connected component of [0, 1] \ωf (p) containing q . As y ∈ (α, β), we get a, b ∈ ωf (p). As 
y ∈ ωf (q) ∩ J , one can find 0 ≤ n1 < n2 such that f n1(q), f n2(q) ∈ (a, b). We may suppose that f n1(q) < f n2(q)

(the case f n1(q) > f n2(q) is analogous).
Let T := (t, f n1(q)] be the maximal interval contained in (a, f n1(q)] such that f n2−n1 |T is a homeomorphism and 

that f n2−n1(T ) ⊂ (a, f n2(q)].

Claim 1. f n2−n1(T ) = (a, f n2(q)].

Proof of the Claim. If not, there are two possible cases: (1) f s(t) = c for some 0 ≤ s < n2 − n1 or (2) t = a and 
a < f n2−n1(a) < f n2(q). As a < f n2−n1(a) < f n2(q) will imply that ωf (p) ∩ J �= ∅, and this contradicts the fact 
that J ⊂ [0, 1] \ ωf (p), we have only to analyze the first case.

Thus, f s(T ) ∩ ωf (p) = (c, f s(f n2−n1)(q)) ∩ ωf (p) �= ∅ (because of (12)). But this implies that J ∩ ωf (x) ⊃
f n2−n1(T ) ∩ ωf (x) ⊃ f n2−n1−s(f s(T ) ∩ ωf (x)) �= ∅. An absurd, as J ⊂ [0, 1] \ ωf (x). �

It follows from the claim above that f n2−n1(T ) = (a, f n2(q)] ⊃ T . This implies that f has a periodic point in T
(because f n2−n1 |T is a homeomorphism). But this is a contradiction with the fact that Per(f ) ∩ (0, 1) = ∅. �
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