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Abstract

We consider the Cauchy problem for massless Dirac–Maxwell equations on an asymptotically flat background and give a global 
existence and uniqueness theorem for initial values small in an appropriate weighted Sobolev space. The result can be extended via 
analogous methods to Dirac–Higgs–Yang–Mills theories.
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1. Introduction

Let (Mn, g) be a globally hyperbolic spin manifold endowed with a trivial U(1)-principal bundle π : E → M . Let 
A be a connection one-form on π , or equivalently, a U(1)-invariant iR-valued one-form on E. We will assume in 
the following that M is simply-connected and will regard A as a real-valued one-form on M . We denote the standard 
spinor bundle of (M, g) by σ : � → M , by 〈· , ·〉 the pointwise Hermitian inner product on σ and by “·” the pointwise 
Clifford multiplication by vector fields or forms on σ . Recall that the Levi-Civita connection ∇ on T M induces a 
metric covariant derivative on σ that we also denote by ∇ . That covariant derivative together with A define a new 
covariant derivative ∇A on σ via ∇A

X(ψ) := ∇Xψ + iA(X)ψ for any vector field X on M . By definition, the Dirac 
operator associated to A is the Clifford-trace of ∇A, that is, for any local orthonormal frame 

(
ej

)
1≤j≤n

of T M , we 

have DA := i
∑n

j=0 εj ej · ∇A
ej

, where εj = g(ej , ej ) = ±1. Alternatively, we can write DA = D −A·, where D is the 
standard Dirac operator of (M, g) and is obtained as the Clifford-trace of ∇ .

The Dirac–Maxwell Lagrangian density LDM for N particles of masses m1, . . . , mN and charges
sgn(μ1)

√|μ1|, . . . , sgn(μN)
√|μN | is defined by
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LDM(ψ ⊕ A) := 1

4
tr(FA ∧ FA) +

N∑
l=1

1

2
(〈DμlAψl,ψl〉 + 〈ψl,DμlAψl〉) −

N∑
l=1

ml〈ψl,ψl〉,

where ψ = (ψ1, . . . , ψN) is a section of 
⊕N

l=1 σ and A is a real one-form on M . The critical points of the Lagrangian 
are exactly the preimages of zero under the operator PDM given by

PDM(ψ1 ⊕ ... ⊕ ψN ⊕ A) = (Dμ1Aψ1 − m1ψ
1, . . . ,DμNAψN − mNψN,d∗dA − Jψ),

where Jψ(X) := ∑N
l=1 μl · jll(X) and jkl(X) := 〈X · ψk, ψl〉. If ψk and ψl have equal mass and charge, then it is 

easy to see that d∗jkl = 0, thus in particular Jψ is divergence-free for (ψ, A) ∈ P −1
DM(0). In the sequel, we shall call a 

pair (ψ = (ψ1, . . . , ψN), A) as above a solution to the Dirac–Maxwell equation if (ψ, A) ∈ P −1
DM(0), that is, if

DμlAψl = mlψ
l, l = 1, . . . ,N and d∗dA = Jψ.

The massless Dirac–Maxwell equation is the Dirac–Maxwell equation with m1 = . . . = mN = 0.
Let us first shortly review the state of the art on this subject. Considering the fact that the massless Dirac–Maxwell 

equation is in dimension 4 conformally invariant, Christodoulou and Choquet-Bruhat [4] show existence of solutions 
of Dirac–Yang–Mills–Higgs solutions on four-dimensional Minkowski space with initial values small in weighted 
Sobolev spaces, the weights being induced by rescaling via the conformal Penrose embedding Minkowski space into 
the Einstein cylinder. Trying to transfer their result to Maxwell–Dirac Theory, firstly we notice that their method is not 
applicable in any spacetime (M, g) satisfying the timelike convergence condition but not isometric to the Minkowski 
spacetime. The reason is that in this case the positive mass theorem inplies that there is no conformal compactification 
of (M, g), i.e. no sufficiently smooth open conformal embedding with precompact image, and the latter is an important 
ingredient of their proof (see [16]). So some essentially new method is needed here. Secondly, in the next paragraph we 
will see that the resulting statement is only nonempty if we extend their setting to a system of finitely many massless 
particles whose total charge is zero. Psarelli [17], in contrast, treats the question of Dirac–Maxwell equations with or 
without mass on R1,3, not in terms of connections modelling potentials, but in terms of curvature tensors modelling 
field strength,1 with results of the form: If C is any compact subset of a Cauchy surface S of R1,3 then there is a 
number a depending on C such that, if some initial values I with (among others) spinor part supported in C have 
Sobolev norm smaller than a, then there is a global solution with initial values I . In the massless case, this result is of 
course strictly weaker than the weighted Sobolev result.

Flato, Simon and Taflin [11] were the first to show global existence for massive Dirac–Maxwell equations on 
R

1,3 via the construction of explicit approximate solutions and for suitable initial data that are not easy to handle. 
For initial data sufficiently small in some weighted Sobolev norm in R1,3, it is Georgiev [13] who established the 
first global existence result for massless or massive Maxwell–Dirac equations. The core idea of Georgiev’s proof is a 
gauge in which the potential one-form A satisfies tA0 +∑3

i=1 xjAj = 0 in canonical coordinates of Minkowski space, 
implying that after the usual transformation to a Maxwell–Klein–Gordon problem the equations satisfy Klainerman’s 
null condition. The entire construction uses canonical coordinates of Minkowski space, and whereas it seems likely 
that the proof can be generalized to spacetime geometries decaying to Minkowski spacetimes in an appropriate sense, 
the question of global existence in other spacetime geometries remains completely open. Let us mention however that, 
using the complete null structure for Dirac–Maxwell equations from [8], D’Ancona and Selberg can prove [9] global 
existence and well-posedness for Dirac–Maxwell equations on R1,2. The analysis of Dirac–Maxwell equations also 
includes refining decay estimates, see for instance [3] where the authors show peeling estimates for non-zero-charge 
Dirac–Klein–Gordon equations with small initial data on R1,3.

The aim of the present article is to generalize Georgiev’s results to the much more general case of so-called con-
formally extendible spacetimes. This latter notion, explained in greater detail in the next section, is located between
asymptotic simplicity and weak asymptotic simplicity and does not require any asymptotics of the curvature tensor 
along hypersurfaces. Actually, it is easy to construct examples by hand of conformally extendible manifolds that are 
not asymptotically flat. Conversely, maximal Cauchy developments of initial values in a weighted Sobolev neighbour-
hood of initial values are known to possess conformal extensions due to criteria developed by Friedrich and Chruściel.

1 Recall, however, that the Aharanov–Bohm effect shows that rather than the electromagnetic fields, the potentials play the more fundamental 
role in electrodynamics.
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Our main result is the well-posedness of the Cauchy problem for small Lorenz-gauge constrained initial values 
for massless Dirac–Maxwell systems of vanishing total charge. A precise formulation is given in Section 3. Our 
method also applies to other field equations, as long as they display an appropriate conformal behaviour and are 
gauge-equivalent to a semilinear symmetric hyperbolic system admitting a global solution. In particular, Dirac–Higgs–
Yang–Mills systems as in Choquet-Bruhat’s and Christodoulou’s article can be handled similarly. The main ingredient 
in our method — a special kind of “causal induction” — can be found in Section 5 and seems to be completely new.

In a subsequent work, we will furthermore examine the question whether the solutions of the constraint equations 
of fixed regularity intersected with any open ball around 0 always form an infinite-dimensional Banach manifold.

The article is structured as follows: Section 2 reviews the main facts we need about local and global existence 
in time for symmetric hyperbolic systems of first or second order on curved backgrounds. Section 3 introduces the 
concept of conformal extendibility and gives a detailed account of the main result. Section 4 recalls well-known facts 
on transformations under which the Dirac–Maxwell equations display some sort of covariance, proves Proposition 4.3
and derives the constraint equations used in Theorem 3.1, which is proved in Section 5.

Acknowledgements: It is our pleasure to thank Helmut Abels, Bernd Ammann, Yvonne Choquet-Bruhat, Piotr Chruś-
ciel, Felix Finster, Hans Lindblad, Maria Psarelli and András Vasy for fruitful discussions and their interest in this 
work, as well as Rafe Mazzeo and two anonymous referees for valuable remarks on a first version of this article.

2. Brief review of symmetric hyperbolic systems

Let (Mn, g) be any globally hyperbolic spacetime and S ⊂ M be any spacelike Cauchy hypersurface with induced 
Riemannian metric gS . That is, S is intersected exactly once by any C0-inextendible causal curve. Let E

π−→ M

be any vector bundle. A differential operator P of order k ∈ N on π is a fibre-bundle-morphism from the kth jet 
bundle J kπ of π to π . It is called semilinear if [. . . [P, f ·], f ·, . . . , f ·] =: σP (df ) is a vector bundle endomorphism 
for all scalar functions f on M , where f appears k times in the brackets. Generalizing [2, Definition 5.1] to the 
nonlinear case, we define a semilinear symmetric hyperbolic operator of first order acting π as a semilinear first-
order-differential operator P acting on sections of π such that, denoting by σP : T ∗M → End(E) its principal symbol, 
there is an (definite or indefinite) inner product 〈· , ·〉 on E such that for any ξ ∈ T ∗M , the endomorphism σP (ξ) of E
is symmetric/Hermitian and positive-definite in case ξ is future-directed causal.

We first recall the following local existence and uniqueness result for nonsmooth initial data, see e.g. [14] for a 
proof:

Theorem 2.1. Let (Mn, g) be any globally hyperbolic spacetime and S ⊂ M be any spacelike Cauchy hypersurface 
with induced Riemannian metric gS . Let E

π−→ M be any vector bundle with (definite or indefinite) inner product and 
P be any semilinear symmetric hyperbolic operator of first order acting on sections of π . Let k ∈N with k > n−1

2 + 1. 
Then for any f in the Sobolev space Hk,2(S, gS), there exists an open neighbourhood U of S in M such that a unique 
solution u ∈ �C1(U, E) to Pu = 0 with u|S = f exists.

On the global scale, the only kind of result one may generally hope for is an estimate on lifetime for solutions to 
symmetric hyperbolic systems, see e.g. [14] for a proof:

Theorem 2.2. Let (Mn, g) be any globally hyperbolic spacetime with compact Cauchy hypersurface S ⊂ M . Let 
k ∈ N with k > n−1

2 + 1. Let E
π−→ M be any vector bundle with (definite or indefinite) inner product and P be any 

Ck semilinear symmetric hyperbolic operator of first order acting on sections of π with P = L + h, where L is linear 
and h is of order zero with h(0) = 0. Then for each T > 0, there is an ε > 0 such for all initial values u0 on S with 
Hk-norm smaller than ε, the lifetime for the solution u of Pu = 0 with u|S = u0 is greater than T .

Symmetric hyperbolic operators of second order on E
π−→ M are defined as follows: a differential operator P of 

second order on π is called symmetric hyperbolic if there exists a symmetric hyperbolic operator of first order Q — 
called the first prolongation of P — acting on sections of π ⊕T ∗M ⊗π such that Pu = Q(u, ∇u) for every section u
of π . This fits to the restriction to charts — there, ∇u is expressed as ∂u + � where � is an algebraic (actually, linear) 



1648 N. Ginoux, O. Müller / Ann. I. H. Poincaré – AN 35 (2018) 1645–1654
expression in the u variable. Therefore a representation by Q as above entails an analogous expression in each chart. 
Furthermore, common textbook knowledge assures that every operator of the form

Pu = −∂2
t u +

m∑
i,j=1

Aij (t, x) · ∇ij u +
m∑

i=1

Bi(t, x) · ∇iu + c · ∂tu + d · u

(with Aij symmetric and uniformly positive) can be presented as Pu = Q(u, ∇u) as above, and the Laplace–
d’Alembert equation on a compact subset can be brought into the form Pu = 0 for P as above. If P is semilinear, 
so is Q; if P = P0 + p with P0 linear and p of zeroth order with p(0) = 0, then Q = Q0 + q with Q0 linear, q of 
zeroth order and q(0) = 0. The local-in-time existence result for second-order symmetric hyperbolic systems is based 
on Theorem 2.1. It is important to note that, if P has Ck coefficients, then so has Q. However, as the new operator Q
includes a derivative of u, we loose one order of regularity for u, but as we do not care much for the weakest possible 
regularity condition on the initial values anyway, we treat the semilinear operator Q just like a quasilinear operator. 
Notice that there is a folklore theorem mentioned in Taylor’s books stating that semilinear symmetric hyperbolic sys-
tems of first order have a C0-extension criterion, therefore we could avoid the loss of one derivative of u and obtain 
sharper statements for the necessary regularity of the initial values.

3. The notion of conformal extendibility and the precise statement of the result

Let (M, g) and (N, h) be globally hyperbolic Lorentzian manifolds, where g, h are supposed to be Ck metrics for 
some k ∈N \{0} (this reduced regularity is essential for our purposes!). An open conformal embedding f ∈ Ck(M, N)

is said to Ck-extend g conformally or to be a Ck-conformal extension of (M, g) if and only if f (M) is causally 
convex (its intersection with any causal curve is connected) and future compact (its intersection with the causal future 
of any point is compact). A globally hyperbolic manifold (M, g) is, called Ck-extendible for k ∈ N ∪ {∞} if and only 
if there is a Ck-conformal extension of (M, g) into a globally hyperbolic manifold.

Whereas Choquet-Bruhat and Christodoulou work with the Penrose embedding which is a C∞-conformal exten-
sion of the entire spacetime, it turns out that, in order to generalize the result by Choquet-Bruhat and Christodoulou, 
we have to generalize our notion of conformal compactification in a twofold way. First, only the timelike future of a 
Cauchy surface will be conformally embeddable with open image; furthermore, we have to relax the required regular-
ity of the metric of the target manifolds from C∞ to Ck . The reason for the second generalization is that we want to 
include maximal Cauchy developments (g, �) of initial values for Einstein–Klein–Gordon theories that satisfy decay 
conditions at spatial infinity only for finitely many derivatives (controlled by a single weighted Sobolev norm). Thus 
one cannot control higher derivatives at future null infinity. This is why we need a version of the standard existence 
and uniqueness theorems for solutions to symmetric hyperbolic systems of finite regularity presented in Section 2.

The second need for modification comes from the fact that the extension via the Penrose embedding into the 
Einstein cylinder can, of course, be generalized in a straightforward manner to every compact perturbation of the 
Minkowski metric. But compact perturbations of Minkowski metric are physically rather unrealistic, as (with interac-
tions like Maxwell theory satisfying the dominant energy condition) a nonzero energy–momentum tensor necessarily 
entails a positive mass of the metric. A positive mass of the metric, in turn, is an obstacle to a smooth extension at 
spacelike infinity i0, for a discussion see [15, pp. 180–181]. Thus we necessarily have a singularity in the surrounding 
metric at i0, so that we have to restrict to the timelike future of a fixed Cauchy surface.

Results by Anderson and Chruściel (cf. [1, Theorems 5.2, 6.1 & 6.2]), improving earlier results by Friedrich [12]
imply that, apart from the — physically less interesting — class of compact perturbations of Minkowski space, there 
is a rich and more realistic class of manifolds which is C4-extendible in the sense above, namely the class of all 
static initial values with Schwarzschildian ends and small initial values in an appropriate Sobolev space — see also 
Corvino’s article on this topic [5]. This space of initial values is quite rich, which can be seen by the conformal 
gluing technique of Corvino and Schoen [6]. This holds in any even dimension. And in the case of a four-dimensional 
spacetime, there is, in fact, an even larger class of initial values satisfying the conditions of our global existence 
theorem which is given by a smallness condition to the Einstein initial values in a weighted Sobolev space encoding 
a good asymptotic decay towards Schwarzschild initial data, cf. the remark following Theorem 6.2 in [1] and the 
remarks following Theorem 2.6 in [7]. The maximal Cauchy development of any such initial data set carries even a 
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Cauchy temporal function t such that, for all level sets Sa := t−1({a}) of t , both I±(Sa) are C4-extendible and thus 
satisfy even the stronger assumption of Theorem 3.2 below.2

The central insight presented in this article is that the above mentioned weakened notion of conformal extension 
suffices to establish — however slightly less explicit — weighted Sobolev spaces of initial values allowing for a global 
solution. In particular, we do not impose asymptotic flatness: the theorem is, e.g., applicable to any precompact open 
subset of de Sitter spacetime whose closure is causally convex. In order to formulate the main theorem, we need to 
introduce the constraint equations arising from the transformation of the Dirac–Maxwell equations into a symmetric 
hyperbolic system. Since we shall consider conformal embeddings of an open subset of the original spacetime (M, g)

into another spacetime (N, h), we must fix a Cauchy hypersurface S of N as well as a Cauchy time function t
on N with t−1 ({0}) = S. Denoting by h = −βdt2 + gt the induced metric splitting and by Sτ := t−1 ({τ }), we let 
A0, A1 ∈ �(T ∗M|S0

) and ψl
0 ∈ �(σ|S0

), 1 ≤ l ≤ N , be initial data for the Dirac–Maxwell equations. We call constraint 

equations for A0, A1, ψl
0 the following identities:

0 = 1

β
A1(

∂

∂t
) −

3∑
j=1

(∇ej
A0)(ej ) (3.1)

and

0 = −(∇ tan)∗∇ tanA0(
∂

∂t
) −

3∑
j=1

∇ej
A1(ej ) − 1

2β
trgt (

∂gt

∂t
)A1(

∂

∂t
) + 1

β
A1(gradgt

(β(t, ·)))

+ 1

2β
∇gradgt

(β(t,·))A0(
∂

∂t
) + 1

2
gt (∇ tanA0,

∂gt

∂t
) + ricM(

∂

∂t
,A

�
0) +

N∑
l=1

μljψl
0
(

∂

∂t
), (3.2)

where 
(
ej

)
j

is a local h-orthonormal basis of T M , (∇ tan)∗∇ tan := ∑n−1
j=1 ∇∇St

ej
ej

− ∇ej
∇ej

and the spinors for two 

conformally related metrics are identified as usual.
Every solution in Lorenz gauge, when restricted to a Cauchy hypersurface, satisfies the constraint equation (see 

Proposition 4.2). Our main theorem is that, conversely, small constrained initial values can be extended to global 
solutions:

Theorem 3.1 (Main theorem). Let (M, g) be a 4-dimensional globally hyperbolic spacetime with a Cauchy hy-
persurface S ′ such that I+(S′) is C4-extendible in a globally hyperbolic spacetime (N, h). Let PDM be the 
massless Dirac–Maxwell operator for a finite number of fermion fields. Then, for any Cauchy hypersurface S ⊂
I+(S′) of (M, g), there is a weighted W 4,∞-neighbourhood U of 0 in π |S such that for every initial value (
A0 = A|S0

,A1 = ∇A
∂t |S0

,ψl
0 = ψl|S0

)
in U with zero total charge w.r.t. S and satisfying the constraint equations (3.1)

and (3.2) there is a solution (ψ, A) of PDM(ψ, A) = 0 in all of I+(S). The weight is explicitly computable from the 
geometry.

Remark 1. The result and its proof still work if we replace the Dirac–Maxwell system by a general Dirac–Higgs–
Yang–Mills systems in the sense of Choquet-Bruhat and Christodoulou, if the Yang–Mills group G is a product of a 
compact semisimple group and an abelian group and if the Yang–Mills G-principal bundle is trivial.

Remark 2. In case β = 1, which can be assumed without loss of generality by the existence of Fermi coordinates 
w.r.t. h in a neighbourhood of S, the constraint equations (3.1) and (3.2) simplify to

0 = ∂

∂t

(
A(

∂

∂t
)

)
+ d∗

S(AS) + (n − 1)H · A(
∂

∂t
)

2 This is a remarkable fact as it is a first approach to the question whether Einstein–Dirac–Maxwell theory is stable around zero, as the stability 
theorems imply that Einstein–Maxwell theory is stable around zero initial values for given small Dirac fields, and our main result implies that 
Maxwell–Dirac Theory is stable around zero for maximal Cauchy developments of small Einstein initial values.
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0 = − �S

(
A(

∂

∂t
)

)
+ d∗

S

(∇A

∂t S

)
− 3gt (∇SAS,W) + A(d∗

SW) + 2|W |2A(
∂

∂t
) + ricM

(
∂

∂t
,A�

)

+
N∑

l=1

μljψl
0
(

∂

∂t
),

where AS := ι∗SA ∈ �(T ∗S), ∇A
∂t S

:= ι∗S
∇A
∂t

∈ �(T ∗S), W := 1
2g−1

t
∂gt

∂t
is the Weingarten map of ιS : S ↪→ M , H :=

1
n−1 tr(W) is its mean curvature and ψl

0 := ψl|S ∈ �(σ|S ).

Remark 3. An inspection of the proof shows that the assumption of C4-extendibility of I+(S) could be replaced by 
the weaker assumption of weak C4-extendibility, defined as follows: A globally hyperbolic manifold (A, k) is weakly 
Cl-extendible if there is a sequence of smooth spacelike hypersurfaces (not necessarily Cauchy) of (A, k) such that 
Sn ⊂ I+(Sn+1), A = ⋃

i∈N I+(Sn) and I+(Sn) is Cl-extendible, for all n ∈N. This generalization could be interesting 
applied to (A, k) = I+

M(S) for an asymptotically flat spacetime M and hyperboloidal subsets Sn.

We can derive as an immediate corollary for the case that M has a Cauchy temporal function t all of whose level 
sets are “extendible in both directions”. Here it is important to note that every conformal extension I induces a pair 
of constraint equations CI as above. Then we obtain:

Theorem 3.2. Let (M, g) be a 4-dimensional globally hyperbolic manifold with a Cauchy temporal function t such 
that for all level sets Sa := t−1({a}) of t , I±(Sa) are both C4-extendible by a conformal extension I±(a). Then for 
every Cauchy surface S such that t |S is bounded, and for any initial values satisfying the neutrality and the constraint 
equations CI−(e), CI+(f ) for e > sup t (S), f < inf t (S) and small in the respective Sobolev spaces, there is a global 
solution on M to the massless Dirac–Maxwell system above extending those initial values. �

For the physically interested reader, we make a little more precise what would have to be done to connect our 
setting to proper QED. First of all, one should build up the n-particle space as the vector space generated by exterior 
products of classical solutions that are totally antisymmetric under permutations of different spinor fields of equal 
mass and charge to obtain the usual fermionic commutation relations. Expanding in a basis of Span(ψ1, . . . , ψN)

orthonormal w.r.t. the conserved L2-scalar product (ψ, φ) := ∫
S
jψ,φ(ν) (where ν is the normal vector field to a 

Cauchy surface S), we see we can assume that the spinor fields form a (· , ·)-orthogonal system. If we have initial 
values on S in appropriate Sobolev spaces satisfying this condition, so will the restrictions of the solution to any other 
Cauchy surface due to the divergence-freeness of the jψ,φ . The neutrality condition 

∫
S
Jψ(ν) = 0 is in the case of an 

orthonormal system of spinors equivalent to the condition 
∑N

l=1 μl = 0. Moreover, in that case, Jψ can be seen as 
the expectation value of the quantum-mechanical Dirac current operator, cf. [10, Sec. 3]. In the end, one would also 
need to quantize the bosonic potential A. Furthermore, one should consider the sum of all n-particle spaces to include 
phenomena like particle creation, particle annihilation, and also possibly the Dirac sea.

4. Invariances of the Dirac–Maxwell equations

We first recall the well-known invariances of the Dirac–Maxwell equation, see e.g. [14] for a proof:

Lemma 4.1. Let (ψ, A) be a solution of the Dirac–Maxwell equations on a spin spacetime (Mn, g).

1. (Gauge invariance) For any f ∈ C∞(M, R), the pair (ψ ′ := (e−iμ1f ψ1, . . . , e−iμNf ψN), A′ := A + df ) solves 
again the Dirac–Maxwell equations on (Mn, g).

2. (Conformal invariance) If n = 4, then for any u ∈ C∞(M, R), the pair (ϕ := e− 3
2 uψ, A) solves DμlA

g ϕl =
mle

−uϕl and d∗
gdA = ∑n

l=1 μljϕl on (Mn,g := e2ug), where ψ �→ ψ , SgM ⊗ E → SgM ⊗ E, denotes the 
natural unitary isomorphism induced by the conformal change of metric. In particular, in dimension 4, the 
Dirac–Maxwell equations are scaling-invariant and the massless Dirac–Maxwell equations are even conformally 
invariant.
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The Dirac-wave operator PDW is defined by

PDW(ψ1 ⊕ ... ⊕ ψN ⊕ A) := (DAψ1 − m1ψ
1, . . . ,DAψN − mNψN,�A − Jψ),

and the Dirac-wave equation is just the equation PDW(ψ, A) = 0, where � := dd∗ + d∗d .

Proposition 4.2 (Lorenz gauge). Let (M, g) be as above.

i) For any solution (ψ, A) of the Dirac-wave equation, �(d∗A) = 0 holds on M . In particular d∗A = 0 on M if and 
only if (d∗A)|S0

= 0 = (
∂
∂t

d∗A
)
|S0

.

ii) Given any solution (ψ, A) to the Dirac-wave equation, the equations (d∗A)|S0
= 0 = (

∂
∂t

d∗A
)
|S0

are equivalent 
to

0 = 1

β
A1(

∂

∂t
) −

3∑
j=1

(∇ej
A0)(ej ) (4.1)

0 = −(∇ tan)∗∇ tanA0(
∂

∂t
) −

3∑
j=1

∇ej
A1(ej ) − 1

2β
trgt (

∂gt

∂t
)A1(

∂

∂t
) + 1

β
A1(gradgt

(β(t, ·)))

+ 1

2β
∇gradgt

(β(t,·))A0(
∂

∂t
) + 1

2
gt (∇ tanA0,

∂gt

∂t
) + ricM(

∂

∂t
,A

�
0) +

N∑
l=1

μljψl
0
(

∂

∂t
), (4.2)

where A0 := A|S0
∈ �(T ∗M|S0

), A1 := ∇A
∂t |S0

∈ �(T ∗M|S0
) and ψl

0 := ψl|S0
∈ �(σ|S0

).

For a proof, we refer to [14]. Another important property of solutions to the Dirac–Maxwell equation is charge 
conservation, see e.g. [14] for a proof:

Proposition 4.3. Let (ψ = (ψ1, . . . , ψN), A) be any classical solution to the Dirac–Maxwell equation such that, 
along a given (smooth, spacelike) Cauchy hypersurface S with future-directed unit normal ν, the 1-form dA(ν, ·) is 
compactly supported. Then 

∫
S′ Jψ(ν′) = 0 for all Cauchy hypersurfaces S′ of M with future unit normal vector ν′. In 

particular, for N = 1 and μ1 �= 0, we can conclude ψ1 = 0.

Proposition 4.3 implies that if the initial data allow for a conformal extension and are not pure Maxwell theory, 
then the system has vanishing total charge.

5. Proof of the main theorem

In a first geometric step, we choose a Ck extension F of (I+(S′), g) to a globally hyperbolic manifold (N, h) and 
consider the chosen Cauchy surface S ⊂ I+(S′). Note that U := N \ J−(S) is a future subset of N and thus globally 
hyperbolic; let us choose a Cauchy temporal function T on U , and consider a sequence of Cauchy hypersurfaces Sn :=
T −1(rn) of (U, h). The exact values of the ri will be specified later. Note that the Sn are never Cauchy hypersurfaces 
of F(I+(S′)). In the following we adopt the convention of denoting different spatio-temporal regularities related to 
the splitting induced by the temporal function T . The term ClHk in this notation refers to an object which is Cl

regular in the time coordinate and Hk-regular in spatial direction.
The general strategy in the following is to find appropriate bounds on the initial values in different subsets of 

F(S) (or, equivalently, corresponding bounds on S) implying that there is a global solution of a certain regularity. 
In our main theorem, we assume the initial Lorenz gauge condition on F(S) (see Proposition 4.2) and therefore 
can use the first prolongation (for the definition, see end of Appendix, after Corollary 2.2) P̃DW of the Dirac-wave 
operator PDW in N instead of PDM. We are first interested in regularity C1H 4, as the degree of the operator PDW
is 2 and as the critical regularity of the associated symmetric hyperbolic operator defined as a first prolongation is 
k = 4 satisfying k−1

2 = 3/2. Due to the lifetime estimate in Theorem 2.2, which is a generalization of the well-known 
extension/breakdown criterion for smooth coefficients, there is a positive number δ such that for initial values u1 on 
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Fig. 1. Construction of the sequence A
(n)
i

.

S1 with ‖u1‖Hs(S1,h) < δ there is a global solution on D+(S1) ∩ F(I+(S)) in N . In a second step, we have to manage 
the “initial jump” from S∞ := F(S) to S1, that is, we have to define sufficient conditions on S∞ such that initial values 
satisfying those conditions induce solutions u reaching S1 and satisfying ‖u‖Hs(S1,h) < δ there, so we get a global 
solution on D+(F (S)), where D+ is the future domain of dependence. In the end, by conformally back-transforming 
the solution, we obtain a solution on J+(S) for the given initial values on S.

Due to the unavoidable divergence of the conformal structure, we have to “avoid spatial infinity” in all computa-
tions, in the following sense: We transport sufficient H 4 bounds from S1 down to S∞ in regions of a certain distance 
from the boundary of D+(F (S)) ⊂ N , while closer to the boundary we only transport them “halfway down” from one 
hypersurface Sn to the next hypersurface Sn+1. More exactly, we choose a compact exhaustion of S∞, i.e. a sequence 
of open sets Cn in S∞ such that Cn is compact, such that Cn ⊂ Cn+1 and 

⋃∞
i=1 Ci = S∞. Furthermore, we define 

Kn := D+(Cn) as their future domains of dependence. We choose r1 < sup(T (D+(C1))). Inductively, by compact-
ness of the possibly empty subset

Vn := J+(Cn) ∩ ∂Kn+1,

we find τn := min{T (x)|x ∈ Vn} > −∞ and define rn+1 := min{rn − 1, τn} and Sn+1 := T −1(rn+1). With this choice, 
limn→∞ rn = −∞ and

J−(Sn+1 \ Kn+1) ∩ Cn = ∅. (5.1)

Now we construct inductively a locally finite family of subsets Aj of F(S) and a sequence b such that if u∞ is 
an initial value on S∞ with ‖u∞|Aj

‖C4 < bj then there is a global C1 solution u on D+(S∞) of P̃DWu = 0 with 
u|S∞ = u∞. This sequence b will be constructed via a corresponding sequence a for the H 4 norms, which in turn 

is constructed as a limit of finite sequences a(m) ∈ R
m+1 that are stable in the sense that a(m)

n = a
(m′)
n whenever 

n ≤ m − 2, m′ − 2, so that, for n fixed, the sequence m �→ a
(m)
n is eventually constant, thus we will, indeed, be able to 

define ai := limm→∞ a
(m)
i > 0.

We define, for n ≥ 1, a finite set of subsets {A(n)
1 , ...A(n)

n+1} of D+(F (S)) by (see Fig. 1)

A
(n)
1 := C1, A

(n)
i+1 := J−(Si \ Ki) ∩ Ci+1 ∀1 ≤ i ≤ n − 1, A

(n)
n+1 := J−(Sn \ Kn) ∩ Sn+1.

Note that the first n subsets are in S∞ whereas the last one is in Sn+1. Note furthermore that the sequence stabilizes 
in the sense that A(n)

i = A
(m)
i if m, n > i + 1, and the limit sequence is A1 := C1, Ai+1 := J−(Si \Ki) ∩Ci+1 ∀i > 1.

Let us call a finite positive sequence a(n)
1 , ..., a(n)

n+1 a control sequence at step n iff every C1H 4 solution u of 

P̃DWu = 0 in J+(S∞) ∩J−(Sn+1) with ‖u|
A

(n)
i

‖H 4 < a
(n)
i for all i ∈N ∩[0, n +1] extends to a global C1H 4 solution 

on D+(S∞) = F(I+(S)).

Lemma 1. For every n ≥ 2, there is a control sequence a(n)
i at step n, and the sequences stabilize in the sense that 

a
(n) = a

(m) if m, n > i + 1.
i i
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Proof of the lemma. Obviously, for n = 1, we only have to ensure that ||u||H 4(S1)
≤ δ. The lifetime estimate of 

Theorem 2.2 in the region K1 implies that there is a positive constant a(2)
1 such that ||u||H 4(C1)

< a
(2)
1 ensures that 

u extends up to S1 ∩ K1 and ||u||H 4(S1∩K1)
< δ/2. Moreover, the lifetime estimate in I+(S2) ∩ I−(S1 \ K1) implies 

that there is a second constant a(2)
2 such that ||u||H 4(S2∩J−(S1\K1))

< a
(2)
2 implies ||u||H 4(S1\K1)

< δ/2. Then it is 
straightforward to show that if both conditions are satisfied, the solution u fulfills ||u||H 4(S1)

< δ, and therefore the 
solution extends to all of F(J+(S)).

Each induction step is again done by applying the lifetime estimate in two regions. Now assume that there is 
a control sequence at step n. We have to look for an appropriate sequence of H 4 bounds (a(n+1)

1 , . . . , a(n+2)
n+2 ) on 

A
(n+1)
1 , . . . , A(n+1)

n+2 . First we define

a
(n+1)
i := a

(n)
i ∀1 ≤ i ≤ n

To ensure the H 4-bound on A(n)
n+1, we divide A(n)

n+1 into its inner part I (n)
n+1 := A

(n)
n+1 ∩ Kn+1 and its outer part 

O
(n)
n+1 := A

(n)
n+1 \ Kn+1 = Sn+1 \ Kn+1. We want to ensure the H 4-bound a(n)

n+1 on both parts. To guarantee the H 4

bound a(n)
n+1 on the inner part there is a sufficient H 4 bound a(n+1)

n+1 on

J−(I
(n)
n+1) ∩ S∞ = J−(Sn \ Kn) ∩ Cn+1 = A

(n+1)
n+1 ,

whereas for the H 4 bound a(n)
n+1 on the outer part, an H 4 bound a(n+1)

n+2 on

J−(O
(n)
n+1) ∩ Sn+2 = J−(Sn+1 \ Kn+1) ∩ S+

n+2 = A
(n+1)
n+2

is sufficient. Thus a(n+1)
i is a control sequence at step n + 1, and indeed the sequences stabilize in the sense above by 

definition. �
As the sequences stabilize, we can define the (infinite, positive) limit sequence ai . Now there are bi > 0 such 

that ‖u0‖H 4(Ai)
< ai is satisfied if ‖u0‖C4(Ai)

< bi . Now, the condition (5.1) ensures that for the annular regions 
Di := Ci+1 \ Ci , with D0 := C0 and for every i ∈ N we have Di ∩ Aj �= ∅ only if j = i or j = i + 1. So on every Di

we have to satisfy only two C4 bounds bi for all control sequences to be satisfied; let bi be the minimum of those two 
bounds. For initial values u0 with

||u0||C4(Di)
< bi, (5.2)

and given any point q ∈ F(M), we want to show that q is contained in a domain of definition for a C1 solution u of 
P̃DWu = 0 with u|S∞ = u0. To that purpose, we choose an i such that q ∈ Ki and choose fi ∈ C∞(S∞, [0, 1]) with 
fi(Ci) = {1} and supp(fi) ⊂ S∞ \ Ci+1. Then we solve the initial value problem for u(i) = fi · u0. Applying the ith 
step in the induction above, we get a solution u[i] on a domain of definition including q . Locality implies that any 
local solution with initial value u0 coincides with u[i] on Ki . This is, the domain of definition of a maximal solution 
includes q . Note that Eq. (5.2) corresponds to a bound in a weighted C4-space on S.

As usual, we show higher regularity by bootstrapping, i.e. considering the differentiated equation (which is a linear 
equation in the highest derivatives again). Consider the highest derivatives in a Sobolev Hilbert space as independent 
variables and show that they are in the same Sobolev Hilbert space as the coefficients, thereby gaining one order of 
(weak) differentiability. Finally we use Sobolev embeddings in the usual way. �
Conflict of interest statement

There is no conflict of interest.

References
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