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Abstract

This paper is devoted to the study of the wellposedness of the radiative Euler equations. By employing the anti-derivative method,
we show the unique global-in-time existence and the asymptotic stability of the solutions of the radiative Euler equations for the
composite wave of two viscous shock waves with small strength. This method developed here is also helpful to other related
problems with similar analytical difficulties.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The radiative Euler equations are a fundamental system to describe the motion of the compressible gas with radia-
tion heat transfer phenomenon. Mathematically, the radiative Euler equations are a hyperbolic—elliptic coupled system
with the following form:

ot +div(pu) =0,

(pu); +div(pu @ u) + Vp =0,

{,o (e+ %)} +div{pu (e+ %) +pu} + divg =0,
—Vdivg + aq -tl- bVe* =0,

(1.1)
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where p, u, p, e, 0, and g are respectively the mass density, velocity, pressure, internal energy, absolute tempera-
ture, and the radiative heat flux. Positive constants a and b depend only on the concerned gas itself. As the classic
compressible Euler equations, the first three equations in (1.1) stand for the conservation of mass, momentum and
energy respectively. The fourth equation in (1.1) is related to the radiation heat transfer phenomenon, and one can
refer [32,45,53] for more details. System (1.1) can also be derived by the non-relativistic limit (speed of light tending
to +00) from a hyperbolic—kinetic system, where the radiation is described by the photon density. The photon density
satisfies a transport equation with the interaction kernel given by the Stefan—Boltzmann law. Details in this direction
can be found in [1,9,17,30].

Let v =1 be the specific volume, then one can rewrite the one-dimensional radiative Euler equations in the La-
grangian coordinates that

vt_MX:Oa

Ut + px =O9
(1.2)
2

(e + %)t + (pu), +qx =0,

= (%), +avg +b(6"), =0.

In this paper, we will consider the polytropic gas, i.e., the compressible flow satisfies the following thermal relations
that
RO R
P=— 32_0, (1'3)
v y —1
where y > 1 is the adiabatic exponent and R > 0 is the specific gas constant. The solutions satisfy the following initial
data and the far field behaviours that

(v, u,0) (x,0) = (vo, up, o) (x),

(1.4)
(U, u, 07 Q) (j:OO, t) = (Ui, U4, Gi, O) s

where the far field states are given constants and satisfy that vy > 0, 61 > 0, and u+ € R. Then, in this paper, we will
study the global existence and the asymptotic stability of the Cauchy problem (1.2) and (1.4) with the far field states
that (v4, u4, 64, 0).

As far as we know, there are very few results on the wellposedness of the Cauchy problem of the radiative Euler
equations (1.2) due to the complexity and nonlinearity of the governing equations. Almost all the results are related
to the analysis of the global in time stability of the viscous Riemann solutions. More precisely, if the radiation effect
is neglected, the Riemann solution consists of elementary waves such as shock waves, rarefaction waves and contact
discontinuities, which are scaling invariant solutions of the Riemann problem (Euler system):

vy —uy =0,
U + px =0, (1.5)
(e+%) + (=0,

with the Riemann-type initial data

R R AR (v—,u_,0-), x <0,
(v,u,0) (v,0) = (v uff, 6 ) (1) = (1.6)
(vg,uq,04), x>0.
The global in time existence of solutions around a constant state was shown in [19]. For the analysis of the rar-
efaction wave, if the initial data is a small perturbation of a given rarefaction wave, it was proved in [26] that the
solutions converge to the rarefaction wave as ¢t — +o00. Then in [13], the authors showed that when the absorption

coefficient « tends to 400, the solutions converge to the rarefaction wave with the convergence rate a_% [Ino|?, where
the absorption coefficient « is defined by the relationship @ = 3 and b = 4« for positive constants a, b and the
Stefan—Boltzmann constants o . The asymptotic stability of a single viscous contact wave was proved in [46,47]. The
stability of the composite wave of rarefaction waves and a contact wave was investigated in [39,51]. However, for



L. Fan et al. / Ann. I. H. Poincaré — AN 36 (2019) 1-25 3

the analysis of the viscous shock wave, only the shock profile has been studied. The existence of the shock profile
was studied in [27]. The asymptotic stability of the shock profile was studied in [28]. In [34], the authors discussed
the stability for the case of general hyperbolic—elliptic systems including also the nonlinear stability for the radia-
tive gas dynamics. Recently the formation of the Zeldovich spikes, which is the internal maximum in the profile of
temperature, is given in [2,31].

Therefore, there is a natural question: How is the asymptotic stability of the composite wave consisting of two
viscous shock waves for the radiative Euler equations (1.2)? We will give the positive answer on this problem in this
paper. Our analysis is based on the anti-derivative method and energy estimates. As far as we know, it is the first
time to use the anti-derivative method to study the asymptotic stability of the elementary waves for the radiative Euler
equations. Since system (1.2) is less dissipative than other systems which were studied by the anti-derivative method,
[5,12,14-16] for example, we need more subtle estimates to recover the regularity. We also construct a diffusion wave
to eliminate the extra mass, such that (v, u, E) are conserved.

We remark that we are also motivated by the related investigations on the simplified model (Hamer model), which
gives a good approximation to the fundamental system (1.2) in a certain physical situation (see [10]). The stability of
shock waves for the simplified model has been extensively studied in [19-21,24,23,33-38,43]. For the other related
results, one can refer to [3,4,6-8,22,40-42,48-50,52].

The rest of the paper is organised as follows: In Section 2, we construct the viscous shock waves and the diffusion
wave, and state the main results. In Section 3, basic properties of these viscous waves and the anti-derivative method
are introduced. In Section 4, we show the local existence. Finally, in Section 5, the a priori estimates are established
by the energy method.

2. Viscous waves and main theorem
2.1. Viscous shock waves

In this subsection, we will construct the viscous shock waves of (1.2) based on [25,27]. For the shortness, we
only sketch the arguments and omit the details. In this paper, we consider the situation when the Riemann solution
of problem (1.5) and (1.6) consists of two shock waves, i.e., there exists an intermediate state (vy,, U, 8,) such that
(v—,u—_, 6_) connects with (v, u,,, ;) by the 1-shock wave with the shock speed s1 < 0, and (v, , U, 6,,) connects
with (v, uy, 64) by the 3-shock wave with the shock speed s3 > 0.

It is well-known that for any given (v—,u_,0_) with v_ > 0, such Riemann solution exists provided that
(v4, u4, 04) is located on a curved surface in a small neighbourhood of (v_, u_, 6_). Let Q_ be the neighbourhood
of (w_,u_,0_),ie.,

Q. :={(v,u,@)’|(v—v_,u—u_,9—9_)|55}, 2.1)

where § is a positive constant depending only on (v_, u_,6_). In order to describe the strength of the shock waves,
let

81=lvm —v_|+ |um —u—_| + |6 — O],

83 = |vm — v | + [y — us| + |0 — 041, (2.2)
and let

& = min{d1, 83}. (2.3)
If § is small, then for (vy,u,0y) € Q_, it holds that (cf. [44]),

8<Cl(vy —v—,uy —u_,04 —0_)|, 2.4)

where C is a positive constant depending only on (v—, u_, 6_). Moreover, we assume that there exists a constant
C > 0, such that

81+ 83 < C8. 2.5)
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Next let us consider the viscous i-shock wave of (1.2) with the form
Zi=Vi,U;,0;, 0))(x —sit), i=1,3.

If i =1, Z; corresponds to the 1-shock wave with the shock speed s; < 0 connecting the far field states z_ =
(v—,u—,0_,0) and z,,, = (U, U, O, 0). Since the decay rate of g, is expected in a higher order, the viscous 1-shock
wave of (1.2) is the solution with the form (v, u, 0, q) = (Vi, U1, ©1, Q1) (&), where & = x — s;1, satisfying the fol-
lowing equation that

—Slvf— U{ =0,
—S1U{ + P{ZO,

U2 / !/
—a(%& + 71) + (P UL = (%@?@/]) :
b 4\/ b 3
01 =g, (©1) =71 €101,
(Vla U15®17 Ql)(—oo)z(v_,u_,e_,()),
(V15U1’®17 Ql)(+oo)=(UM9um79m’O)y

where P = p(V1,01), p+ = p (v+,01),ex = e (0+), pm = p (U, Om), and e, = e (0),). In addition, the shock
speed s1 and the far field states of Z; given in (2.6) must satisfy the Rankine—-Hugoniot condition and the following
entropy condition

M (U=, 0-)=—=/yp_/v— > 51> =YD /Vm = L1 (U, On). 2.7

It is easy to see that the Rankine—Hugoniot condition and entropy condition (2.7) imply that

(2.6)

s VD— d_ v +uv, d-
= 1— , Op=0_1— —— , _ , 2.8
1 U ( l+d_> " < v—  1+d- 0= Um @8
where d_ = VT71 == (). Here we may assume that § is suitably small to assure that |d_| < 1.

By [25,27], we can construct a solution Z 1 of (2.6), which is unique up to the shift of £. We omit the details, since
the arguments can be found in [25,27].

Similarly, if i = 3, Z3 corresponds to the 3-shock wave of system (1.5) with the shock speed s3 > 0 connecting the
far field states z,,, = (Vin, Um, O, 0) and z4+ = (v4, u4, 6+, 0). The solution satisfies the following equation that
—sV{ - U} =0,

—53 Ué + P3/ =0,
s Ee+ L /+(P U3) = (2030 /

307 =793+ 3 3V3) =\awz 7373 ) (2.9)
b 4\ b 3
O3 = Tav; (®3) = _a_V3®l®/3’

(V3, U3, ©3, 03) (—00) = (U, U, O, 0)
(V35 U35 ®37 QS) (+OO) = (v+a u+7 9+7 O) 5

under the entropy condition

A3 (U, O) = V YPm/[Vm > §3 > V yP+/vy =A3(vy, 04).

We omit the details, since the arguments can be found in [25,27] too.

2.2. Diffusion wave

In this subsection, by using the method in [11], we will construct a diffusion wave 74 (x,1)= (vd, ud, 99, qd) (x,1),
which connects the same constant state z,, = (Vp,, U, O, 0) at the positive and negative infinity.
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First, we temporarily (the exact definition will be given in (2.16) and (2.17)) expect that v? and 69 are of the
following form
R - ~
vi=—06, ¢=06
Pm

and the radiative heat flux ¢¢ is

for a function © with the far field states that © (00, 1) = 6,,. Then the first equation of (1.2) is

R = d

—0 | —u;=0. (2.10)

Pm /y

The second and third equations together yield that

R - . 4 (636,
—— O + puuy = — ] . (2.11)
y—1 a v

X

Substituting (2.10) into (2.11), we have a nonlinear diffusion equation for e
~ —14b ~ 5~
&, =L —__Pm (®2®x) . 2.12)
Ry aR x

In order to avoid the nonlinearity of the equation above, we further approximate the equation (2.12) by the following
linear heat equation

- - - — 1 4bp,,62
O, =k,  where O(fo0,1)=0,, k=l ——2Pmm 2.13)
Ry aR
Let constant 3, be
B = /(@(x, 1) — O,)dx. (2.14)
Thus, by employing the heat kernel formulation, the solution of (2.13) is
O=6, + Le_%. (2.15)
JArk(1+t)
Now define 69 to be
- -1 2
97— @ — VZR (ud - um> , (2.16)
and v? and u? to be
R - R -
= =0, ul=uy+—0,. 2.17)
Pm Pm

2.3. Composite wave of two viscous shock waves and a diffusion wave
Based on the construction of the viscous shock waves and the diffusion wave, we can construct a composite wave,
which is the asymptotic states of the solutions of the initial value problem (1.2) and (1.4) as t — oo. Set

_1
VZR W and  m(x.t) = . u E) (x.10). (2.18)

Following the arguments in [29], the asymptotic state is expected to be a composite wave M(x,t) =
(V, U, Eﬂl’}%)—r (x, t), which is given by

E=0+
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V =Vi(x —sit + B1) + Va(x — 3¢ + B3) — vy + 0 (x, 1) — vp),
U=Uj(x —sit+ 1) + Us(x — 53t + B3) — tm + @ (x, 1) — up), (2.19)

Ep gy =Ei(x —s1t+B1) + E3(x —s3t +3) — Epy + (E%(x,1) — En),

_ y—l 2
®=Eﬂ|,ﬂ3—WUv

Q= Q1(x —s1t+ B1)+ Q3(x — 53t + B3) + ¢%(x, 1),

where E; = ©; + L2 U2 (i = 1,3,m) and E9 = 7 + L1 (u®)2. It follows from (2.16) that

~ -1
Ed—Em=(®—9m)+yR (ud—um)um,

and

/ (E* — Ep)dx = .

Similarly as done in [5], the constant vector (81, B2, 83) is determined by
/ (m(x,0) — M(x,0)) dx =0. (2.20)
R

We remark that (2.20) allows us to apply the anti-derivative method.
2.4. Main theorem

Before stating the main theorem, let us introduce several notations which we will use throughout this paper.
LP(R)(1 < p < oo) represents the Lebesgue space on R with norm ||-||z». Fork € Z,, H kR) represents the Sobolev
space with the norm || - ||¢. It is easy to see that || - |[o = || - || 2. To simplify the notation, we set || - || := |- [lo = || - I| 2.
Finally, we denote by CX(I; HP) the k-times continuously differentiable functions in the interval / with the range in
HP?(R); and denote by L2(I; HP) the space of L? functions in the interval I with the range in H?(R).

We are ready to introduce the main result of this paper. For any fixed (v_,u_,6_,0), we assume that
(V4+,u4,04,0) € Q_ and the Riemann solution of (1.5) and (1.6) with the initial data (v, u4, 6+, 0) consists of
two shock waves. Let

v=Vi(x)+ Va(x) — vy, u=U1(x)+Us(x) —up, (2.21)

_ _ —1
E = E1(x) + E3(x) — En, 9:E—y2R 7, 7=01()+ 03(x).

Suppose the initial data (vo, ug, 6o, qo) satisfies that

vo—10, ug—i, 6o—0 e H>*NL', qo—geH NL. (2.22)

Then (V, U, ©, Q) in (2.19) is well defined and satisfies (2.20). Furthermore, let
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Bo(x) = / [v0(y) — V(. 0)]dy,
Wo(x) = / luo(y) — U(y, 01 dy,
oo (2.23)

Wox) = R 4 % R 0+ 604

O(X)—/ y—1 0+7 (y)—<m +7>()’s ) | dy,
To(x) = / [(vogo) () — (V Q) (v, D)]dy,

and assume that

(Do, Wo, Wo, To) € H. (2.24)

Let
I(UO’ uop, 907 qO) = ||(v0 - V(’ O)a uy — U(a 0)’ 90 - ®(7 0))||H2ﬂL|

+llgo — Q¢ Ol g3pt + I1(Po, Wo, Wo, To)ll 2.

Then, our main result is the following theorem.

Theorem 2.1. Assume that (2.2), (2.22) and (2.24) holds, and 1 < y < 3. Then there exist positive constants 5y and
€o such that if

[(vy —v_,uy —u_,04 —0_)| <4y,
I (vo, uo, 6o, q0) = €0,
then the Cauchy problem (1.2) and (1.4) admits a unique global in time solution (v, u, 0, q) satisfying that
W=V, u—U,0 —0) eCO([O,oo);Hz),q - QeCO([O,oo);H3>
W=V, u—U,0—0) eL2<[0,oo); HZ),q— 0cl? ([0,00);H3>,
and the asymptotic behaviour that

lim sup|(v—V,u—-U,0 —0,q — Q) (x,1)|=0. (2.25)

—o0 x ER
3. Preliminaries and mathematical reformulation

In this section, we will introduce several properties of the viscous shock waves and the diffusion wave, and then
introduce the anti-derivative method to reformulate the problem.

3.1. Preliminaries

In this subsection, we will recall several properties of viscous shock waves and the diffusion wave. First, let us
introduce two notations which will be frequently used throughout this paper. A < B means that there is a constant
C > 0 which does not depend on § such that A < CB. Next, A &~ B means that it holds that

B2

3

(1+1)2

For the properties of viscous shock waves, as the ones listed in Proposition 2.1 of [5], we have

|A — B| 5 526—c3(|x\+t) 4 67% +56_c(|x|+t),



8 L. Fan et al. / Ann. 1. H. Poincaré — AN 36 (2019) 1-25

Proposition 3.1. For any fixed (v—,u_,0_,0), suppose (v4,u+,04,0) € Q_ and suppose the Riemann solution of
(1.5) consists of two shock waves whose strengths satisfy (2.4) and (2.5). Then problems (2.6) and (2.9) admit smooth
solutions (V1,U1, ®O1, Q1) (x — s1t) and (V3, Uz, O3, Q3) (x — s31) respectively which are unique up to the spatial
shift and satisfy the following:

ey
Uix (x — 5it) = —s5; Vix (x —5i1) <0, (3.1
1©ix(x —siD| S Vix(x —sit)], x€R, 1>0, i=13;
(2) There exist positive constants ¢ and C such that fori =1, 3,
(Vi = 0, Ut = tt, ©1 = 6) (x =510 S 81”11l

[(V3 = U, U3 — tty, O3 — Op) (x — s31)| < Szl =371

|(Vix» Uixv ®iXa Vixxa Uixxa ®iva Qi’ Qi)rs Qixx) ()C - Sit)| 5 ajzeicail)Cisitl» (32)
Siz — @ S 5,’.
Um

The first three inequalities are respectively valid in the regions {x > sit, t >0}, {x <s3t, t >0} and {x e R, ¢t > 0}.
Next, for the diffusion wave obtained by (2.16) and (2.17), by the straightforward calculations, we know that vector

74 = (vd, ud, 04, qd) satisfies that

vfl — uﬁ =0,

dy2
(7709 + 2, + (), +f = (R9),. 33
d 4
(%) +avlg?+b (o) =(RY),.

(vda uda 6d5 qd) (:boo’ t) - (vm’ umv O}na 0) .
Note that

y —1 2
Pd—pmz— 20d (”d_um) s

so the errors R‘f, Rg and jo are given by

m 2Rvd 3.4
rd 4bpy (6 — 64 626 y—1<d )2 d+Ra2um6 3-4)
= @, — —— (u —u u Q
2 ar o4 * 204 " DPm -
and
<
4 4], 4bp,, (8 ®"> 3.5
Rd: <9d) —@4 —ns X ( : )
3 [ + aR? e)
By (2.15), for x e R, ¢ > 0, we have that
x2
‘Zd_zm‘gilﬁﬂ ¢~ T (3.6)

(1412
and that
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i 2
(i> (Rf,Rg’,Rg’) < Wl wim, 0<iz<s. 3.7)
dx (1+1)?2
Finally, let us introduce properties of the asymptotic state Z(x,t) = (V, U, 0O, Q)T(x, t) defied by (2.19). Let
(R3), =VQ—ViQ1— V303 — viq?

= 01 [Vs =)+ (v =) ]+ @3 [V = w) + (87 = 0 )| + 01OV = 0) + (V3 = w1

Then one has
~(%), +avorse),
+aViQ1 +aV3Q3 +avig? +b(®4)x _ (%)
X
st (of + 0t -6 — () -4)

X

Therefore, it follows from (2.6), (2.9) and (3.3), that Z(x, t) approximately satisfies (1.2) with errors in the following
way

V[_Ux =0,
U[+P.X=(R1)_Xa

(A0 +4) +(PU)L+ 00 =R, (38)

_ (QT)X +aVQ+b(0%) =(R3),,

where (V, U, ®, Q) (+oo,t) = (v, us,6+,0), P = @, and the errors R, Ry and R3 are given by

Ri=P=[Pi+Ps=put(p* = pu)]+RI,

R2 = PU — |:P1U1 + P3U3 — PmUm + (pdud — pmum>] + Rg, (39)

— 4 d
R3:aR3+b{@4—(@)‘,‘+®§‘—93,)—[(9d) —9,‘,‘,“—(%—%—%—3—;).

For the errors, we can show the estimates that

3\ : .
(5) (Rj)~0, j=1,2,3, 0<i<3. (3.10)

Without loss of the generality, we only show the estimate of R; when i = 0, since the proof of the other estimates
is similar. Note that

0= 6 +03 6, + (64— 6,)
_VTTl [(Ul — ) Uz —up) + Uy —uy) (ud — Mm) + (U3 —up) (ud — btm)] :

Then we have the estimate that

RIS Uud — i

2
+1Z1 = 2nl1Z3 = znl + (121 = 2nl + 123 = 2n]) ]zd—zmﬂ +|i|. @3.11)

The wave interaction terms at the right hand side of (3.11) can be estimated by applying Proposition 3.1 and (3.6),
since we can see that

1Z1 = 2l | Z3 — 2| < 8153 (6*051(\x|+1)+051\ﬂ1| 4 efc'83(IX\+t)+c63Iﬁ3l> 7
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and

CXZ
12— 2l 24 = 2| S srementenvesipd V2L ot g et =1, 3),
(141

Note that 1 and §3 are small in the same order by (2.5), so
1Z1 = 2m|1Z3 — 2| S 8%~ P10,

B2
3

(1412

(.')CZ
‘(Zl —zm)2?, (Z3— zm)Zd‘ S 8% 4 R

|Z1x(Z5 — zm)s Z3x(Z1 — zm)| S 83O+, (3.12)

2
< s2emedtettn ¢ P2l 8 g petnitn,

‘Zixzd’ (Z1 —zm)2d, (23— 2m)2S _
(I+1)2

It means that

ex?
|R]| 5 Bze—cé(lx\ﬂ) + Lue_m +8€_C(|x|+t), (313)
(1+1)}

By the definition of &, estimate (3.13) is equivalent to that Ry ~ 0.
3.2. Anti-derivative method

In this subsection, we will introduce the anti-derivative method by reformulating the Cauchy problem (1.2) and
(1.4) into an integrated system of (1.2). Set

d(x,t) = f v—=V)(y,0)dy,

W(x,t)= / w—U)(y, t)dy,

—00

— [[( R u? R U2 (3.14)
Wx,t)= / [(me—f—?)—(ﬁ@‘i‘?)](y’t)dy,

y =1 —
Wi, 1= ——W - U1,
Fx. 1) = / (vg =VO)(y, 1) dy.

Obviously,

V-V =0, 0-0=W,+ 1 (U,¥-1e2),
(3.15)
u—U=W,, q-0=qyi5 [x—00y),

where we expect (&, ¥, W,T") € C([0, 00); H3). Then, substituting (3.15) to (1.2), subtracting (3.8), and integrating
the deduced system with respect to x, we have the integrated system for (®, ¥, W, I') that
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q)t—‘-yx:O,
O+ W+ (u,v— 1) e
\II[+R X R(X ZX)__ :—Rl,
V4o, %
R O+ W, + L (U, v — Ly?
— W, 4+ UV +R <+ (Us %) v,
y—1 V4o,
Iy —Q0®, (3.16)
=R +UR — — =%
2 VR g
ar+ 1 (Fx - Qq>x> _ qu>x
V4o, \ V+o, /. V(V+d,

-1 1 4
- {|:®+WX+YT(UX\D—§\P§>} —@4}—R3,

with the initial data that

(&, W, W,T)(0) = (o, Wo, Wo, To) € H. (3.17)
Then we only need to study the Cauchy problem (3.16) and (3.17) instead of problem (1.2) and (1.4) to finish the
proof of Theorem 2.1.
4. Local existence

In this section, we will consider the local existence of the Cauchy problem (3.16) and (3.17). For any interval

I C Ry, define the solution set X () as

X(I) = [(cb, W, W, w) € C(I; H)| (By, Wy, Wy, Ty) € L*(I; HY), w € LA(I; H3)} :

where

V_l 1 2 Fx_Qq)x
=0—-0=W,+ — (U, ¥V — =V* |, =qg—-Q=—"—"-.
§ "+R<" plx ) w=am 0=y
We further choose a positive constant 8o for the given (v_, u_,6_,0) such that if § < 8o, then
1
sup |(V—v_,U—u_,®—9_)(x,t)|Szmin(v_,é‘_), 4.1)

xeR,t>0

where § is given by (2.3). By the definition of Q in (2.19), it holds that

~ C.’CZ
sup 10,0 S sup (|Q)] +]05| + [Bx]) S 82e Wt 4 Mol =15 <541, (4.2)
xeR,t>0 xeR, >0 (1+1)2

We also choose a positive constant €q (< % min(v_, 6_)) such that if |(®, ¥, W, T')(?)]||2 < €9, then

~1 1 Iy — Qd 1
(@, wow,+ L (Ux\y - —wi) , xiQx) (x.1)| < 3 min(v_.0-). 4.3)

sup
xeR

R 2 V+ o,
Then we have the following proposition about the local existence of the Cauchy problem (3.16) and (3.17).

Proposition 4.1. (Local existence) For any fixed (v—,u—_,0_,0), there exist positive constants €| (< €y) and
C1 (C1€, < &y) such that the following statements hold. Under the assumption that § < 8o and that M € (0, &),
there exists a positive constant ty = to(M), such that if |[(P(-,7), ¥(, 1), W(, 1), w(, ) |lg3 < M, then the
Cauchy problem (3.16) with the initial condition (3.17) via replacing t =0 by t = t, admits a unique solution
(@, ¥, W,w) € X([t, T + to]) satisfying

Sup ||(q>9 "I'Iv W’ w)(‘vt)”:;SClM'

te[r,t+1]
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Proof. Since the main ideas and techniques are similar as the ones in [5], we sketch the process and only list the
difference here for the shortness. Without loss of the generality, we only consider the case that T = 0. First note that
C1M < C1é| < & is suitable small, then the Sobolev’s inequality with (4.1)—(4.3) together implies the local solutions
constructed in Proposition 4.1 satisfy that

%v_ < (V4+d)(x,1) < %v_, %0_ <(O+8&)(x,1) < %9_. 4.4)

Differentiate (3.16) with respect to x, and introduce the new variables (¢, ¥, £, w) that

1
p=>0,, £E=0-0= w,+ L= (U\p— —u),

2
Fx - Qq)x
V4+d,
System (3.16) can be rewritten as follows

®l=¢7

vi=— (v - 75) - R,

4.5)
Y=V, w=q-0=

Vv %
+é +é 4.6)

W+ U, =82y —w+ UR - Ry,

[y _ 1 0¢ Ox¢ 4 4
“F+m<m>x—m(m) + vt — PO +6T -0 - Ry,

with the initial data

(@, ¥, W, N (x,0) = (P, Vo, Wop, I'p)(x). 4.7)

Moreover, (3.16) again can be rewritten as the following quasi-linear system of (¢, ¥, &, w)
¢t - 1//x = 0,

RO+8
(V+¢)2 ¢x F](¢7é’¢)€7éx)’

RO+8 438)
_1§[+ V+¢ wx—Fz(‘Pafal/fx’wx)»

1 Wy

aw——(
Vo 'V+o

Vi —

)x = F3(¢,§, ¢x, 5x),

where

Pep _ Re  RE—PH

Vg V+o (V+o)? *

F . _RE-P¢ _

200, &, ¢, w) := —wy, Vo Uy +URjx — Ray,
4b(© + £)3 4b(© +£)3

F3(¢,&, ¢x, 6x) = — V +¢) Ex + @2(V+¢)

1 [ Q.9 ]_a(®+«§)5Q[ V+o _V}
V4o L(V+)V ], V+¢ O®+&)°5 65

Fi(¢.8, ¢x,6x) =

1x»

(4.9)

20 +£)0,¢&

The initial data is

(9. ¥, &, w)(x,0) = (¢o, Y0, &0, wo) (x)

_ -1 14,2 2
= (o, Wo. Wou + 15 (U W - 93,) ) € H2. (4.10)

Tor — 0D
w(x,0) = 70;_“%0 LIPS ES
X
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Therefore, we only need to look for the existence of solutions of (4.8)—(4.10) for ¢ € [0, #y] with the estimate that

Moy = sup (I|(¢>,¢,$)(t)||§+IIw(t)||§> < €o.

te[0, 1]

Note that the left hand side of (4.8) for (¢, ¥, &) is strictly hyperbolic, and the right hand side of (4.8) can be re-
garded as the lower order terms. Therefore, applying the method in [18,46], for any given function w (or I') with
My < €y, we can show the local existence and uniqueness of solution (¢, ¥, §) € C([0, 1], H 2) for a suitably small
to = to(Mp) > 0, provided that ||(D, W, W, w)(¢) ||% < My < € small. The remaining equation, the last equation of
(4.8) is a second order differential equation, so plugging the obtained solution (¢, ¥, £) into (4.8)4, we can easily have
a solution w € C([0, 19], H>). Therefore, by applying the fixed point theorem and a straightforward argument, we can
obtain a unique solution (¢, ¥, &) € C([O0, o], Hz) and w € C([0, 1], H3) for a suitably small time #y = fo(Mp) > 0.

Next, we can put (¢, ¥, &, w) into (4.6) and obtain the unique existence of solution (&, ¥, W, w) € C ([0, #o], H3)
of (4.6) and (4.7). So we complete the proof of this proposition. 0O

5. The a priori estimates and the global existence

Based on the local existence, Proposition 4.1, we should next establish an a priori estimate for the solution of
(3.16) and (3.17) to show the global in time existence.
Let

N = sup (1@, %, W.DOIP+ 16, . OO + lw®13).
t€l0,T]

In this section, we will show the a priori estimate as follows.
Proposition 5.1. (a priori estimates) Under the same assumptions in Theorem 2.1, there exist positive constants

80 (< 80) and €y (< &), such that if (&,¥,W,T') e X([0, T]) is the solution of (3.16) and (3.17) for some T > 0,
|B2] 4+ 8 < 8o, and N(T) < €, then for t € [0, T), it holds that,

t

1 2
v+ (H(|U]x| +1Us D (8, W)@+ I T, Wx)(r)nz) dr
0

t

+ [ (16,0 O@ B+ w@B) dr 5 (N0 +54 + 1521 (5.1)

0

First, we remark that based on Proposition 5.1, one can complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Choosing &y, and N(T) < € suitably small, we can construct the global solution for
(@, v, W, T') € X([0, +00]) by combining Propositions 4.1 and 5.1, and can show the estimate (5.1) holds for all
t € [0, +00). Furthermore, it holds

o0 o0

d
fn(cbx,wx,rx, W (Ol dr + E/ I(Dy, Wy, T, W) (0)I* dt < 400, (5.2)
0 0

which together with the Sobolev inequality yields the asymptotic behaviour of the solution that

lim sup [(®, ¥, W, T, ®,, V., W,,Ty)(x,1)| =0. (5.3)

l*)OOxER

Therefore, we obtain the global in time solution as in Theorem 2.1 with the asymptotic behaviour (2.25). O

Therefore, the remaining task is to show the a prior estimate, Proposition 5.1.
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Let (&, W, W,T) € X ([0, T1]) be a solution of (3.16) for some T > 0, § < 8y (< 8p), and N(T) < €y (< &), where
€o and § are suitably small and will be chosen later. By the Sobolev’s inequality with (4.1)-(4.3) together, V, V + ®,,
®, and ® + £ are uniformly positive on [0, T], and satisfy that

. 3v_ . v_ . 36_ . 60—
l)cf}thET, I)Cf}tf(v+©x)27, lxr’ltf(")ET, lxntf(®+f)27
In order to derive the a prior estimate (5.1), we rewrite system (3.16) as
o, — ¥, =0,
U — § O+ FWe + AUV =N, — Ry,
AW+ PU A+ U W 5 — 925 = Ny — Ry + UR, (5:4)

all — (ﬂ> +4bO3 (Wy + L U W) = N3 — R,
X

where

N=2 "1y rilo _Rp_o)
1=y T2 v Ty ’

Dy
Ny = (P —p)¥, — Ty — 0®,),
vV

0Py 33/_1 2 2
N3y= ——= =2bO° — " + ,
3 vV R x+oD)

RO y—1 1
p=—, v=V+o,, $=9_®=WX+T UX\I’—E\I'X .
v

The initial data is

(®, W, W, ) (x,0) = (Do, Vo, Wo, [p) (x). (5.5)
Notice that if ||(®, ¥, W)||3 is small, we have that

Ny = 0(1) (@2 + W2 + W2 + Uy |9?),

Na= 0(1) (P + W2 + W2+ |U |92 + | D, [T ])

N3 = O0(1) (|Q«|®x| + V2 + W2 + |U,|V?).

Then the proof of Proposition 5.1 is divided into the proof of the following six lemmas.

Lemma 5.1. Under the conditions listed in Proposition 5.1, if 8o and €q are suitably small, it holds that

t
1@ 0 WO + [ [ {001+ 10201 (92 4 W) + 124 12 dxde
0 R
t
< (1(@o. Wo, W) I +387 + |82l ) + (60 + 80) / (@ W, W) (D) d. (5.6)
0

Proof. Multiplying equation (5.4); by ® and (5.4), by %‘If respectively, and adding together, we have that

L Vel VY iyl s cow, + Bwow= Yo — Ry (5.7)
2 2P |, 2p), " P F T p T p T T A ‘

Multiplying equation (5.4)3 by %W and (5.4)4
together, we obtain

by WF respectively, and adding all the resulted equations
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R? 5 R*P, _, R R R
— W +—W+ 5 W+ Sz UWY + o5 OW D,

2(y —1HP? (y —hHP3
aV ., Ti—Qdi( V r,—Q0d, V R
r r) — r rw
twres T <4bR®5 )X ( v wres ). T vpz (T,
2 ere Y r v — Ry + W, — Ry+ URY) (5.8)
VP2 YT T apres T VT pp TR TR v '

Combining (5.7) and (5.8) together, we get

{@2 Vo, R? 2} ) R2P, ) av. ,
— WP W AV 4 r
2 2P 2(y — 1) P? , (y —1)P3 4bRO>
+—F2+{—q>\11—rx_QcD" . R rw+5ww} + Ji
4bRvOS * v 4bRO3 v P2 P .
ZK‘I/(Nl—R1)+£W(N2—R2+UR1)+ 4 I'(N3 — R3) 5.9
P P2 4bRO> ’
where
A=) + 55
2P
g = RB U,W\IJ+ R owe +( R > rw+ Y=Ly er
P2 P2 vp? VP2 vp2 ot
_ V F Qq)x+ x_Q<Dx< V )
4bROS " v v 4bROS
_ RRicyy o R oW +<i> rw+ Y=Ly er
P2 VP2 t\ve?), vp2 ot

~ 4bROS Y v 4bROS
We estimate the terms A and J; one by one. By (3.7), (3.9) and (3.10), it holds that

14 1—,Qq))c_+_l_‘)c_QcI>)c< Vv )

P~ P+ Py, Py=RPix+ Py, Uy=Upx+ Usy.

Therefore

an |- (2 2y - (2 —i—y_lU — A+ A
~ 2P1 . Py 1x 2P3 PS 3x | = A1 3.

By (3.8) and (3.10), we know that

Py = —s; Piy ~ 5;Uiy = 57 (=Ujx) > 0.
Then it follows from Proposition 3.1 and (3.8) that
ﬁ ViPy y—1
2P 2Pi2 P;

~ Y2y _,p S
~ 3p [(s?vi—vP)+G=P]
lUI[3 = ¥)pm = €8]

Since y € (1, 3), choosing §p suitably small, we have that there exists a positive constant ¢, such that

A= —

Ui X

v

A% > c(|Uy| + Uz NW? — RV, (5.10)

where and also in the followings R stands for some error function which satisfies that R ~ 0.
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Next, for Ji, note that
Q= Q1x + Q3 + 05

4b©° 4b@3 4b(6°)
= - Olx — ——— 03¢ — Qx
aVy aV3 av¢
~ Oy + O3y, CRYY

where we use the fact that (Qf )2~ 0 and Ry x =~ 0. Then by the fact that | Q| < 8o, we have

J1Z2 =|QW,| — |U V| = [T, QPx| = O(D)(Vy, O) [T +TW + QT d |

v

v

—8o (r2 +r2 4 cpﬁ) — C8o (|U1s] + U ]) (\pz + W2> —R (xpz n W2) . (5.12)

Next let us consider WN|, WN, and ' N3, which are the terms at the right hand side of (5.8) and (5.9). From the
condition N (T') < ¢g and the Sovolev’s inequality, it easily follows that

N < e [q>§ F W2+ W2+ (U] + [Use]) qﬂ] + R2,
IWN2| < €0(D2 + W2 + W2 4+ £% + (|Urx | + U3 ) ¥?) + RV, (5.13)
ITN3| < €o(®@F + &2 + ®3).

Finally, for all the error terms like RUW,, RV and RW at the right hand side of (5.7) and (W2 + W2)R at the right
hand side of (5.8)—(5.12), recalling the fact that Ry ~ 0 and R ~ 0 by (3.10) and the definition of “~”, we know that
all the integrations of such terms on R x (0, ¢) are estimated by

1
50/ Wy, W) (D)1 dT + 82 + |Bal. (5.14)
For example, for the terms R YW, and 1%\11, we have that

//|R|(|\IIWXI+|\I/|)dxdt<80/||W I dr+//|R||xp|dxdr (5.15)

0 R 0 R

t t
//|I§||\Il|dxdrg//&ze_"‘s(lx‘”)hllldxdr
0 R

t t
CX2
+// ] H—r|\p|dxdr+c//5e—0<‘xl+f>|w|dxdz
(1 +r)2
0 R 0 R

t

and

<

~

8%e"‘3’||\11||dr+/ 162 — | W|dT + 6
(1+7)1

_o\

S 82 + B2l (5.16)

The other error terms can be similarly estimated. We omit the details for the shortness.
Combining all the estimates (5.8)—(5.14), integrating (5.7) on R x (0, #) and choosing €g and §¢ suitably small, we
have the desired estimate (5.6). This completes the proof of Lemma 5.1. O

We remark that in order to show (5.10), we need the assumption that y € (1, 3).
In order to derive the estimates of higher order derivatives, we recall that from the perturbation equation (3.16), the
equations of (¢, ¥, &, w)(x, t) are
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¢t_wx:(),

P R
wi- (o) +(5e) =-ru
v X v X

R RE P¢ 5.17)
y— 1'§I+p1/fx+ <T - T) Uy +wy =URjx — Ry,

£ §0: O (we Oud\  a® (vg VO _,
)., 00 405\ v WV ). 4b\6> ©5) 7

with the conditions that

(@, ¥, &, w)(x,0) = (do. ¥o. &0, wo) (x),

(¢, ¥, &, w)(£oo,1)=1(0,0,0,0).

Then we have the following lemma.

Lemma 5.2. Under the conditions listed in the Proposition 5.1, if 8o and €g are suitably small, it holds that

t
||<¢,w,s>(r>||%+/||<w,wx,wxx)(r>||2dr
0

t
< (o, Yo, £ 13 + 87 + 1Bl + (60+50)/ (P, ¥, &) ()| 3dx. (5.18)
0

Proof. Multiplying (5.17); by %qb, (5.17)2 by ¥, (5.17)3 by %, and (5.17)4 by w respectively, and combining the
results together, we get

{P ,  Y? RE?2

-+ + w? + v w?
2 2(y — 1o ), 4b05v *  4bH3

H{er-Tovrsu- n (- 22)) 4
v v 0 N

T

405\ v WV

=—Ruy + % (UR1x — Roy),

(5.19)
where
Pv, P\ , &(RE P¢ ® wy Ox¢
h=|——— ~\———|U — — -
2 (21}2 2v>¢ +9<v v ) X+<4b95)xw<v vV)
Ouw, Ox¢p Ofw a®Qw® [ v % n RO, 52
4b65 vV e b 405 46053 2(y — B2

> —C(e0 +do) (¢>2+52+w2+w§).

Note that the terms at the right hand side of (5.19) can be dealt with in the same way as (5.16), such that

t
f/{—Rw+§<UR1x—R2x>}dxdr58%+|ﬂz|.
0 R

Integrating (5.19) on R x (0, ¢), and choosing €y and §p suitably small, we have the desired estimate that
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t
2 2
(@, ¥, &) +/ | (w, we)(D)[7dz
0

t
< 1@o. Vo. 8012 + 3% + |Ba| +(60+80)/ 1($, ¥, £)(D)]%dr.
0

Similarly, multiplying (5.17)1x by %q‘)x, (5.17)2x by ¥y, (5.17)35 by %, and (5.17)4x by wy respectively, combining
the results together, we get that

P, Y2 R ® , aBv
{2v¢x+ 2 T2 =0 |, T apese e T a3

& OQwy (wy Oyx¢ R P
*Ké)x T 065 (7 B Wl - (?f B ?“’>x %}x

=—Ryux¥x + % (URix — R2x)x > (5.20)

wf+J3

where
& e Wy 0x¢ Owyy | VxWy Ox¢
3= =0 — = -
=gt g5 ) P\ T ) T e | T v ),

O, a®Q (v V a®v R Ex
i {_ 66 ' ab (9_5 - @> }x o <W> e (?>x§%x Franey

> ~C(eo+0) (62 + 93 +wl +wl, +&2+ 82 +97).

Integrating (5.20) on R x (0, ¢) and choosing €p and §¢ suitably small, we have the estimate that
t
(s e, ED D + / l(wx, wer) (O d7
0

t
< I (@o, Yo, E0)IIT +82 + 1Bl + (€o+5o)f 16, ¥, &) (@)l 7d. (5:21)
0

Combining all the results together, we have the desired estimate (5.18). This completes the proof of Lemma 5.2. O
For the estimate of second order derivatives, it holds that

Lemma 5.3. Under the conditions listed in the Proposition 5.1, if §o and €y are suitably small, it holds that
t
I @xxs Y, E) DI + / lwsxx (0117 dz
0

1
< ||(¢o,wo,§o)||§+6% + |82l +(€o+5o)/ 1, ¥, £)(D)l13d. (5.22)
0

Proof. Multiplying (5.17)1,x by (%q&x)x, (5. 17)2xx bY Yxx, (5.17)35x by %TX, and (5.17)4xx by wyx respectively, we
get
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REZ,

{£¢2 4 Xy } w> +Js+J5
20 2(y — 1o, 4p95y
§ Owyy [ Wy 0x¢ P R
* {<§)m RCRTYVE <T 7 )xx - (Fd’ - ?é)m 1/f”}x
= _Rlxxxlmcx + (URlx - RZx)xx %’ (523)
where
(B g b, [0 (g _ VO _to,
Jy = (2v>t¢xx + Cpx¥ax + PxxV¥x) 9 + |:4b < 3 @5 ) 00 ] Wy
R& P¢ Exx Owyxx 1 1 0x¢
H(T-7) U*L 5+ T 2o (5)x o (5>m (% )J
—sz —Cuw?
16b05y ™
—C (e0+80) [ 19, 9, &, W) + 1@, Vs 10 P + B, Yrows e we) P
and
P éxvx 1
JS = <;> ¢I/fxxx +2< ) ¢xl/fxxx I/fxx)c R$ <_> \[/xxx
XX xUx 2v2 xUx
= (P ol 2 )¢>wm+2( ) PR Ré LA
v v U v
202 RE—P R P
- RE % 1/fxxx u Vxx 1/f)wcx s ¢ ¢xx WXxx
v U
6 .
=) % (5.24)
i=1
where
5 2 _
Z {{( Pov 202 )¢+2<£> bet Rsxvx L ke ZPd)VM]%}
= v2 v/, v .
_{(Pxx 211 >¢+2<P> ¢x Rngx—RSZL—‘ru x} WXxs
v v U X
R P
== ¢¢”¢m

_ M¢,2 _(RE=P9 2
2v2 XX ; 2U2 ; XXx°
Y. Note that system (1.2) is less dissipative, so we need more careful

Here we have used the equation that ¢, =
estimates on the terms contain ¥y, in Js. Integrating J4, J5 on R x (0, ) and choosing ¢y and &g suitably small, we

have the estimate

Jo JaUa + J5)dxdr > — 16b95 / lwers (Dd7 — C / lwar (D)2

— C(€0 4 80)l|r (1) — Cleo + 50)/ 18, ¥, & w) (@) [3d. (5.25)
0

Therefore, integrating (5.23) on R x (0, t) and choosing € and 8y, the terms on the right hand side of (5.23) can also
be dealt with in the same way as (5.16) to get (5.22). This completes the proof of Lemma 5.3. O
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Next, we should deal with the term f(; (@, ¥)(T) ||%dr.

Lemma 5.4. Under the conditions listed in the Proposition 5.1, if 8¢ and €g are suitably small, it holds that

t t
/ 1. )@ I3 dr S N©) + 8% + || + / 1€ 2 dr. (5.26)
0 0

Proof. Multiplying the equation (5.4), by —gCDx, (5.4)3 by Wy, and (5.4)4 by %2@3 W, respectively, and adding the
resulted equations, we have )

R ww PCD v 4 PCD v Wy
G- 2", 27" -,
P2 , RP R , P,
+W®x_W(DXWx+7WX+5\I’x+J6
P R R?
= Equ-l-me (N1—R1)+\IJX(N2—R2)—|—WWX(N3—R3), (5.27)
where
Py P y—1 r,w, O, v,
Jo = —— V¥ —yvd, — —PU VD U, yvvw —
6 ) x + ) X vV X x + Us x+ % vV

-1 R?
+(ar —w, +4p03Y U, w W,
R V4bO3

> = (@F+ W3+ W) = e (Unal + Uz W2 + T 4w,
By the positivity of P and V/, it holds that
P? , RP R* s o
WCD" — W(DXWX + VWX >c(®P; + Wy).
Then integrating (5.27) and choosing &g, 1 suitably small, we have

t
[ [ (934924 w2) dxdr £ 100 W, 00 w001 + W0 Wo. @0, W00l
0 R

t
+ //[(lUl,xl+|U3,x|)\D2+F2+w§]dxdz
0 R
t

+//[(|<I>x|+|wx|)|1v]—R1|+|\vx||N2—R2|
0 R
+ Wil IN3 = Rs| + RV dxdr. (5.28)

Following the proof of Lemma 5.1 and also using (5.16) to control the last term of (5.28), (5.28) can be further
estimated such that:

1
fo Jr (@2 + W2 + W2)dxdt < [[(o, Wo, Wo)I* + ll(¢o, Yo, E0)IIT + 82 + |82

t
+(60+50)/||(¢>,1/f,§)(f)llfdf' (5.29)
0

Similarly, multiplying (5.17)2 b —gqﬁx, (5.17)3 by ¥y, (5.17)2.x b —§¢m, and (5.17)3 x by v, respectively,
adding them all and integrating the resulted formula, we can also get
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t t
[ [ (03402402 +v2)andr sN@ 485+ 1ol +- o+ ) [ 16, E)D B
0 R 0

Putting the results together and taking §p and € suitably small, we have the desired estimate (5.26) immediately. This
completes the proof of Lemma 5.4. O

Now combining all the three lemmas above, we have the estimate that

t

1@, W WYOI + 1. ¥.£) D)5 + / (1@, @13 + lw@3) dr

0

1
2
+/[H<|Uu|+|u3x|>5<w, w@| + i Fx,wxxr)nz} d
0

t
SNO) +8 ++1Ba +(€0+50)/ 1&(0)l3d. (5.30)
0

Then we need to deal with the term fé 1€ (T) ||%dr.

Lemma 5.5. Under the conditions listed in the Proposition 5.1, if 8o and € are suitably small, it holds that
!
1
/II%(I)II%dTSN(O)vL(W+|/32|~ (5.31)
0

Proof. Since

—1 1 2
£2 = [WX n ”T (UX\II - Empﬁ)} sc(Wl+uivt+ wi),

and by (5.30), we have that
t t t
[reonar < [ [ [0+ 10200 w2+ wEande + e [ 19,01 de
0 0 R 0

1
SN@O) +82 ++lpal + (60+50)/ IE@)l5d. (5.32)
0

On the other hand, by (5.17)4, we get

EE,  E2O, O [(w, Q¢ a®uv a®Q (v V
_ 55 W _ _ _ — ). 5.33
= e T 4b04( v oV ), be* T a4 \g5 6 (5.33)
Multiplying equation (5.33) above by &, we get
EE2 £%£,0 O (wy Q¢ a®v a®Q (v V
= o o) e wE - o e s )
) 60 404\ v vV /| b6 406 \65 ©
1
< Z&? + (€0 + o) (SZ +¢? + qﬁ) - (w2 +w? + wix) . (5.34)

Integrating (5.34), we have that
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t t t
/Iléx(f)llzdf §/||w(t)||%dr+(éo+5o)/II(E,¢,¢X)(f)|I2dT
0 0 0

t
< N(0) +57 + B2l + (o +30)/ @3 d.
0

Similarly, taking derivative d, on (5.33) and multiplying the resulted equation by &, we have

t t
/nsxx(r)uzdr <NO)+82 + 2] + (e +30)/ €3 dr.
0 0

(5.35)

(5.36)

Putting (5.32), (5.35) and (5.36) together and taking &g and €p suitably small, we have the desired estimate (5.31)

immediately. This completes the proof of Lemma 5.5. O
Finally, we will give the estimate of ||w(¢) |I§.

Lemma 5.6. If §o and €q are suitably small, it holds that
1
ITOIT+ lw @13 S N©O) +82 + 182l

Proof. Multiplying the equation (5.4)4 by T, it yields that

I, —Qd 2 o, I
ar? — <X7er> + 5O eser g (v — Ry
v . v v

Integrating the equation above by x, we get

2 o,

/andx+f—xdx =/(Q XX —4b®3§F+(N3—R3)I‘)dx
v v

R R R

(i)~ )

By (5.30) and (5.31), it holds that

2
+IE N+ Cleo +8) (¢, v, E)I3 .

IT) 12 < N(O) + 57 + |Bal.

On the other hand, (5.17)4 can be rewritten as

avw — (%) - (%) — aQd — 4bO3E, — 4b (93 _ @3) O, w — Rs,.

Multiplying the equation above by w and integrating it, we have

2

/avwzdﬁfﬂdx =/[_<Q"¢> a0 — 460, —4b (6° ~ ) ®xw—R3x} wdx
v LA

R R R

4
By (5.30) and (5.31), it holds that

1
lwl? < N©) +82 +|al.

Differentiating (5.41) with respect to x, one has

(@vw); — (%)” - [— <%§/¢) —aQ¢ — 4b03, — 4b (93 - @3) Ow — R3x] .

1
< (— +€0) I, woll? + (117 + 1, ©)13) + (eo +8) @, v )13

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)
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Multiplying equation (5.44) by —wyx, and integrating it, we have

w?
/avw)%xdx—i—/%dx

R
1 1
=< / |:2avxwxwxx +ave, Wwyy +2 (‘) WxxWxxx + (‘) wxwxxx] dx
5 V/ U/ xx

+f[<QX¢) +aQp +4b6%, +4b (67 - ©°) @xw+R3x] —
vV X x

8
Therefore it follows that

1
S (— +60> s w12+ (1013 + 1w, 6, ©)13) + (0 + ) 16, v, )13 (5.45)

2 1
lwex 7 S NO) +82 + |Bal. (5.46)
Combining (5.40), (5.43) and (5.46) together, we have (5.37). This completes the proof of Lemma 5.6. O

Now combining Lemma 5.1-Lemma 5.6 together, we have (5.1) and then finish the proof of the Proposition 5.1.
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