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Abstract

We consider a transversally conformal foliation F of a closed manifold M endowed with a smooth Riemannian metric whose 
restriction to each leaf is negatively curved. We prove that it satisfies the following dichotomy. Either there is a transverse 
holonomy-invariant measure for F , or the foliated geodesic flow admits a finite number of physical measures, which have negative 
transverse Lyapunov exponents and whose basin covers a set full for the Lebesgue measure. We also give necessary and sufficient 
conditions for the foliated geodesic flow to be partially hyperbolic in the case where the foliation is transverse to a projective circle 
bundle over a closed hyperbolic surface.
© 2018 Elsevier Masson SAS. All rights reserved.
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0. Introduction

The existence of a transverse holonomy-invariant measure for a foliation whose leaves have dimension 2 or more 
is a rare phenomenon. The ergodic study of a foliation classically refers to the statistical description of Brownian 
paths tangent to its leaves: see [24]. In this paper we develop a different viewpoint and study the ergodic properties of 
geodesics tangent to the leaves of foliations.

All along this work (M, F ) stands for a smooth (i.e. of class C∞) closed foliated manifold of codimension q
endowed with a smooth Riemannian metric g. Up to passing to a double cover, we will always assume that our 
foliations are oriented. We will make the two following hypotheses
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1. every leaf L has negative sectional curvature for the induced metric g|L;
2. the foliation F is transversally conformal.

The first hypothesis is satisfied for example by every foliation transverse to a fiber bundle over a closed negatively 
curved manifold (see §4.1). Moreover for every foliation by surfaces without transverse holonomy-invariant measure 
there exists a Riemannian metric on the ambient space such that the first hypothesis is satisfied (see Theorem B). The 
second hypothesis is satisfied by every codimension 1 foliation and by (singular) holomorphic foliations on complex 
surfaces. It means that the holonomy pseudogroup of F consists of conformal local diffeomorphisms of Rq (i.e. their 
derivatives at every point are similitudes of the Euclidean space).

We shall denote by M̂ the unit tangent bundle of the foliation F i.e. the set of unit vectors tangent to F . Unit 
tangent bundles of leaves of F form a foliation of M̂ denoted by F̂ . The foliated geodesic flow is the smooth and 
leaf-preserving flow of F̂ denoted by Gt which induces on each leaf its geodesic flow. Since the leaves are negatively 
curved Gt exhibits a weak form of hyperbolicity called foliated hyperbolicity which is defined and analyzed by 
Bonatti, Gómez-Mont and Martínez in [13], and studied by the first author in [3,5,4]. It means that there exist two 
continuous and Gt -invariant subfoliations of F̂ , called stable and unstable foliations and denoted by W s and W u, 
whose leaves are respectively uniformly exponentially contracted and expanded by Gt . This notion resembles the 
classical definition of partial hyperbolicity for flows, which will be defined in §4.3.1, the transverse direction of the 
foliation playing the role of the central direction. But there is a main difference: the contraction, or expansion, in the 
transverse direction does not need to be dominated by the hyperbolicity inside the leaves. We will later discuss this 
matter.

The goal of that paper is twofold. Firstly we wish to describe the ergodic properties of the flow. Secondly we wish 
to discuss the relations between partial hyperbolicity and foliated hyperbolicity through the study of special examples: 
the foliations transverse to a projective circle bundle over a surface.

Finiteness of SRB measures Recall that an SRB measure or physical measure for Gt is a Gt -invariant probability 
measure μ whose basin (the set of v ∈ M̂ such that the averages of Dirac masses along the orbit of v converges to μ
in the weak∗ sense) has positive Lebesgue measure.

They are named after by Sinaı̆, Ruelle and Bowen who introduced them for uniformly hyperbolic dynamics in [42,
40,16]. The question of the existence and finiteness of SRB measures for partially hyperbolic dynamics was studied 
by Bonatti, Viana in [15] and together with Alves in [6]. It is proven in [15] that a partially hyperbolic diffeomorphism 
which is “mostly contracting” in the center direction has a finite number of SRB measures and that the union of their 
basins is full for the Lebesgue measure. Our situation is similar and we propose to prove the following dichotomy.

Theorem A. Let F be a smooth transversally conformal foliation of a closed manifold M . Assume that M is endowed 
with a smooth Riemannian metric such that every leaf is negatively curved for the restricted metric. Then we have the 
following dichotomy

• either there exists a transverse measure invariant by holonomy;
• or F̂ has a finite number of minimal sets each of which supports a unique SRB measure for Gt . These measures 

have negative transverse Lyapunov exponents and the union of their basins is full for the Lebesgue measure.

In the latter case it follows in particular that these SRB measures for Gt are the unique ones and that F has finitely 
many minimal sets as well.

We define the transverse Lyapunov exponent of an ergodic Gt -invariant measure μ as the following limit indepen-
dent of the choice of a μ-typical v ∈ M̂

λ�(μ) = lim
t → ∞

1

t
log ||DvhG[0,t](v)ω||,

where ω ∈ NF = T M/T F , the normal bundle of F , and hG[0,t](v) denotes the holonomy map along the orbit 
segment G[0,t](v). The fact that the number is independent of ω (i.e. that there is a unique transverse exponent) 
follows from the condition that F is transversally conformal (see §1.4.1). The question of knowing what happens 
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when there is more than one transverse Lyapunov exponent (when the foliation is not transversally conformal) seems 
a difficult one. Bonatti, Eskin and Wilkinson treat the case of foliations transverse to a projective CPq-fiber bundle 
over a closed hyperbolic surface in [12].

This dichotomy for foliations is reminiscent of a whole series of works initiated by Furstenberg (see for example 
[23,32,30]) and culminating with Avila–Viana’s invariance principle [8], which develops the following general prin-
ciple. When composing randomly homeomorphisms of certain manifolds (for example the circle) either a probability 
measure is globally preserved, or there is some contraction in the dynamics.

Deroin and Kleptsyn were the first to include foliations inside the family of dynamical systems exhibiting this fea-
ture. In a wonderful paper [20], which motivates the present paper, they proved Theorem A with Garnett’s harmonic 
measures for F (see [24]) instead of SRB measures and they do not need the assumption on the sectional curvatures 
of the leaves. We also mention Fornæss–Sibony’s work on harmonic currents of laminations [22]. In [14] Bonatti, 
Gómez-Mont and Martínez showed how, in the case of foliations by hyperbolic manifolds, to deduce Theorem A from 
Deroin–Kleptsyn’s result and from the bijective correspondence between harmonic measures and a special class of 
invariant measures called Gibbs u-states that we shall define below (see [3,9,36]). Our proof of Theorem A is inde-
pendent of the study of the foliated Brownian motion and uses Pesin’s theory of nonuniformly hyperbolic dynamical 
systems.

Foliations by surfaces It is not clear that for a given foliation there must exist an ambient Riemannian metric inducing 
negatively curved metrics in the leaves.

However, Ghys showed us a nice argument in order to prove that such a phenomenon is quite common in the world 
of two-dimensional foliations. Since it does not appear in the literature we propose to give in Appendix the proof the 
following result that we attribute to Ghys.

Theorem B (Ghys). Let (M, F ) be a closed manifold foliated by hyperbolic Riemann surfaces and g be a smooth 
Riemannian metric on M . Then there exists a Riemannian metric g′ conformally equivalent to g such that the Gaussian 
curvature of every leaf L is negative for the restricted metric g′|L.

We shall define in Appendix what is a foliation by hyperbolic surfaces. Many examples may be found in [1]. Let us 
emphasize that every two-dimensional foliation without transverse invariant measure must be a foliation by hyperbolic 
surfaces: see Proposition 6.3. As a consequence we deduce that for every transversally conformal two-dimensional 
foliation the following dichotomy holds true.

• Either it has a transverse holonomy-invariant measure.
• Or there exists a smooth Riemannian metric of the ambient space such that every leaf is negatively curved for the 

restricted metric. For such a metric the second alternative of Theorem A holds true.

Partially hyperbolic examples We now raise the problem of the relation between partial and foliated hyperbolicities. 
We illustrate it by a detailed study of special examples, namely foliations transverse to a circle bundle over a hyperbolic 
surface with projective holonomy. We propose a link between partial hyperbolicity of the foliated geodesic flow and a 
purely topological condition on the bundle: the value of its Euler number.

Recall that circle bundles over a closed surface � of genus g are classified by an integer, their Euler number, and 
that those admitting a transverse foliation are precisely those whose Euler number is, in absolute value, less than 2g −2
(this is Milnor–Wood’s inequality for which we refer to [37,45]). The Euler number of a circle bundle � : M →� is 
denoted by Eu(�).

A smooth foliation F transverse to a circle bundle � : M →� is obtained from its holonomy representation hol :
π1(�) →Diff∞(S1) by a process called suspension (see [18]). When the foliated bundle has a projective holonomy 
group (i.e. each fiber is identified with the real projective line RP1 and the holonomy representation takes its values in 
the group PSL2(R) of projective transformations of RP1) we say that the data (�, M, �, F ) is a foliated RP1-bundle 
with projective holonomy.

Let (�, M, �, F ) be a foliated RP1-bundle with projective holonomy and suppose � is endowed with a hy-
perbolic metric m. Say a smooth Riemannian metric g on M is admissible if for every leaf L the restriction 
�|L : (L, g|L) →(�, m) is a Riemannian cover. In that case Gt preserves the fibers of the bundle �� : M̂ →T 1�
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induced by the differential of �, and the fiber direction, which as we shall prove is invariant by the flow, is a good 
candidate for being the central direction.

Our next result provides a topological condition on a circle foliated bundle with projective holonomy to possess 
a partially hyperbolic foliated geodesic flow (we refer to §4.3.1 for the definition of partially hyperbolic flows). This 
provides new geometric examples of partially hyperbolic dynamical systems.

Theorem C. Let � be a closed surface of genus g ≥ 2.

1. If (�, M, �, F ) is a foliated RP1-bundle with projective holonomy satisfying |Eu(�)| < 2g − 2 then there exists 
a hyperbolic metric on � such that for every admissible Riemannian metric on M the foliated geodesic flow of F
is partially hyperbolic.

2. For every hyperbolic metric on � there exists a foliated RP1-bundle with projective holonomy such that for every 
admissible Riemannian metric on M the foliated geodesic flow Gt is partially hyperbolic. Moreover Eu(�) can 
be made arbitrary in {3 − 2g, ..., 0, ..., 2g − 3}.

3. If (�, M, �, F ) is a foliated RP1-bundle with projective holonomy satisfying |Eu(�)| = 2g −2 and � is endowed 
with any hyperbolic metric then for every admissible Riemannian metric on M the foliated geodesic flow of F is 
not partially hyperbolic.

This result is a consequence of a result coming from the field of 3-dimensional Anti-de Sitter geometry proven 
recently and independently by Guéritaud–Kassel–Wolff in [28] and Deroin–Tholozan in [21], as well as Theorem E
which shall be stated and proven in §4.1

Outline of the work In Section 1 we give the necessary material which will be used throughout the text. Section 2
is devoted to the proof of Theorem D, the main technical result used to prove Theorem A. In Section 3 we finish the 
proof of Theorem A. Section 4 is devoted to the presentation of the notion of domination of projective representation 
and to proving Theorem E, the main technical result used to prove Theorem C. Fuchsian foliations are treated in 
Section 5 and Theorem F, which gives the transverse Lyapunov exponent of the unique SRB measure in that case, is 
stated and proven there. In Appendix, we give Ghys’ argument for proving Theorem B.

1. Preliminaries

1.1. Transversally conformal foliations

Notations and definitions Let F be a smooth foliation of a smooth closed manifold M with codimension q . Denote 
by P the holonomy pseudogroup of F associated to a foliated atlas. It consists of local diffeomorphisms of Rq .

The set of vectors tangent to F is a subbundle T F ⊂T M called the tangent bundle of F . The normal bundle of 
F is by definition NF = T M/T F . The choice of a smooth Riemannian metric of M identifies NF with T F⊥.

Transversally conformal foliations Say the foliation F is transversally conformal if elements of P are conformal 
transformations of Rq , meaning that their derivatives are everywhere similitudes of the Euclidian space.

If one prefers that means that there exists |.|, a transverse metric for F , such that for every path c tangent to F , 
every x inside the domain of hc, a holonomy map along c, and every v ∈ NF (x), one has

|Dxhc(v)| = λ|v|,
for some λ > 0 independent of v.

Remark 1.1. Every codimension 1 foliation is transversally conformal.

1.2. Invariant measures

Transverse holonomy-invariant measures Let (Ti)i∈I be a complete system of transversals to the foliation, i.e. a finite 
family of transversals to F whose union meets every leaf. A transverse holonomy-invariant measure (or simply 
transverse invariant measure) is a family of finite nonnegative measures (νi)i∈I satisfying
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1. νi(Ti) > 0 for some i ∈ I ;
2. if for i, j ∈ I there is a holonomy map h : Si →Sj between two open sets Si ⊂Ti and Sj ⊂Tj , then for any Borel 

set Ai ⊂Si we have νi(Ai) = νj (h(Ai)).

Totally invariant measures The Riemannian metric induces a Riemannian structure on each leaf. Hence every leaf is 
endowed with a natural volume form. Assume that the foliation F possesses a transverse invariant measure (νi)i∈I . 
Then, if νi(Ti) > 0, it is possible inside a corresponding foliated chart Ui to integrate the volume of the plaques (i.e. 
the connected components of the intersections of leaves of F with Ui ) against νi . We obtain this way a measure mi

in the chart Ui .
The family of measures (νi)i∈I is holonomy-invariant, so the mi glue together and provide a finite measure m

on M . Such a measure will be from now one called totally invariant.

1.3. The foliated geodesic flow and foliated hyperbolicity

In what follows we assume the existence of a smooth Riemannian metric g on M such that the sectional curvature 
of every leaf L for the restricted metric gL is negative. By compactness of M this implies that the sectional curvatures 
of every leaf L are uniformly pinched between two negative constants −b2 < −a2 < 0.

1.3.1. The foliated geodesic flow
Unit tangent bundle Let M̂ denote the unit tangent bundle of F , i.e. the subbundle of T 1M consisting of those unit 
vectors tangent to F . It is a closed manifold endowed with a smooth foliation denoted by F̂ whose leaves are the 
unit tangent bundles of leaves of F . We will denote by pr : M̂ →M the canonical basepoint projection associating 
its basepoint to each vector v ∈ M̂ . The Sasaki metric induces a metric on M̂ by ĝ. We will denote by L̂v the leaf 
of v ∈ M̂ i.e. T 1Lx where Lx is the leaf of the basepoint x of v. Note that the foliations F and F̂ have the same 
holonomy pseudogroups (see [4, §3.1]) so the following proposition holds.

Proposition 1.2. There exists a transverse invariant measure for F if and only if there exists one for F̂ . The foliation 
F is transversally conformal if and only if F̂ is transversally conformal.

Foliated geodesic flow We call foliated geodesic flow the leaf-preserving flow of (M̂, F̂ ) which induces on each leaf 
L̂ its geodesic flow. This flow will be denoted by (t, v) ∈ R × M̂ 
→ Gt(v). It is smooth since the leafwise geodesic 
equation depends only on the 1-jet of the restricted metric gL.

1.3.2. Foliated hyperbolicity
When all sectional curvatures are negative the foliated geodesic flow exhibit a weak form of hyperbolicity called 

foliated hyperbolicity in [13]. Following [10, Chapter IV], one proves that there are two continuous and DGt -invariant 
subbundles of T F̂ of the same dimension p − 1 (p being the dimension of F ) denoted by Es and Eu, which satisfy 
T F̂ = Es ⊕RX ⊕ Eu (X being the generator of Gt ) and are respectively uniformly contracted and expanded. They 
are called stable and unstable bundles.

As explained in [4,13] the usual Stable Manifold Theorem applies in that case and these bundles are uniquely inte-
grable. We denote by W s and W u the two continuous and Gt -invariant subfoliations of F̂ tangent to the distributions 
Es and Eu. We call them the stable and unstable foliations. Their leaves are denoted by Ws(v) and Wu(v) and are 
called stable and unstable manifolds. The saturations of W s and W u by Gt form two continuous subfoliations of F̂
tangent to Ecs and Ecu called center-stable and center-unstable foliations and denoted by W cs and W cu. The leaves 
of W cs and W cu passing through v ∈ M̂ are denoted by Wcs(v) and Wcu(v) and called respectively the center-stable
and center-unstable manifolds of v.

1.4. Lyapunov exponents

Many bundles are involved in the theory of foliated hyperbolicity. Hence we found useful to include a detailed 
discussion about Oseledets’ splitting. In particular we want to prove that the transverse Lyapunov exponent (see 
§1.4.1) is a “classical” Lyapunov exponents for Gt .
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1.4.1. Transverse Lyapunov exponent
The linear holonomy over the foliated geodesic flow defines a linear cocycle on NF̂ over Gt , so we can apply 

Oseledets’ theorem to that cocycle. Using that the foliation F̂ is transversally conformal (see Proposition 1.2) we 
obtain the following

Proposition 1.3. There exists a Borel set X0 ⊂ M̂ which is Gt -invariant and full for every Gt -invariant measure such 
that for every v ∈ X0 and ω ∈ NF̂ (v) the following number is well defined and independent of ω and of the transverse 
metric |.|

λ�(v) = lim
t → ∞

1

t
log |DvhG[0,t](v)ω|

where hG[0,t](v) denotes the holonomy map along the orbit segment G[0,t](v).

1.4.2. Oseledets’ splitting
Oseledets’ theorem Considering the linear cocycle given by the derivative of G1 : M̂ → M̂ we find a Borel set 
X1 ⊂ M̂ full for every Gt -invariant measure such that for every v ∈ X1 there exists a splitting

TvM̂ = E1(v) ⊕ ... ⊕ Ek(v) (1.1)

which is DGt -invariant and such that for every i ∈ {1, ..., k} and every ω ∈ Ei(v) the Lyapunov exponent

λi(v) = lim
t → ∞

1

t
log ||DvGtω||

is well defined.

Stable and unstable Lyapunov exponents The bundles Es and Eu are DGt -invariant. Oseledets’ theorem applied to 
the restriction of DG1 to these bundles provides a Borel set X2 ⊂X1 full for every Gt -invariant measure such that 
for every v ∈ X2 there exist two splittings

Es(v) = Es
1(v) ⊕ .... ⊕ Es

ks
(v)

Eu(v) = Eu
1 (v) ⊕ ... ⊕ Eu

ku
(v)

which are DGt -invariant and such that, when � = u or s, for every i ∈ {1, ..., k�} and ω ∈ E�
i (v) the Lyapunov 

exponent

λ�
i (v) = lim

t → ∞
1

t
log ||DvGtω||

is well defined.
Note that these numbers belong to the family of Lyapunov exponents (λ1(v), ..., λk(v)). Moreover the “tangential” 

Lyapunov exponents at v ∈ X2 of Gt (i.e. those of the linear cocycle (DGt)|T F̂ ) are precisely (λs
1(v), ..., λs

ks
(v), 0,

λu
1(v), ..., λu

ku
(v)), where 0 corresponds to the flow direction.

Moreover one has λs
i (v) < 0 and λu

j (v) > 0 for every v ∈ X2, i ∈ {1, ...ks} and j ∈ {1, ..., ku}. Denote for v ∈ X2

	s(v) =
ks∑

i=1

dimEs
i (v) λs

i (v) < 0 (1.2)

and

	u(v) =
ku∑

j=1

dimEu
j (v) λu

j (v) > 0. (1.3)

Since the foliated geodesic flow preserves the Liouville measure inside the leaves it follows that

	s(v) + 	u(v) = 0. (1.4)
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1.4.3. Lyapunov spectrum
Linear Poincaré flow Recall that X denotes the generator of the foliated geodesic flow. This vector field is every-
where nonzero so we can define the normal bundle NX = X⊥. The linear Poincaré flow 
t defines a linear cocycle 
of NX over Gt (see [7, §2.6]). Recall that for every v ∈ M̂ , we have


t(v) = πGt (v) ◦ DvGt : NX(v)→NX(Gt(v)),

where πv : TvM̂ →NX(v) denotes the orthogonal projection.
Oseledets’ theorem applies for that cocycle and provides a Borel set X3 ⊂X2 full for every Gt -invariant measure 

such that for every v ∈ X3 there is a splitting

NX(v) = F1(v) ⊕ ... ⊕ Fl(v)

which is 
t -invariant and such that for every i ∈ {1, ..., l} and every ω ∈ NX(v) the Lyapunov exponent

χi(v) = lim
t → ∞

1

t
log ||
t(v)ω||

is well defined. Moreover it is noted in [7, §2.7.2.1] that since the variation of the angles between subspaces defining 
Oseledets splitting (1.1) is subexponential along the orbits of Gt , the Lyapunov exponents χi coincide with the Lya-
punov exponents λj off the flow direction and the space Fi coincide with the orthogonal projection to NX of some 
space Ej .

Lyapunov spectrum Now we are ready to conclude our discussion and to identify the Lyapunov spectrum of the 
foliated geodesic flow.

The metric ̂g identifies NF̂ and T F̂⊥. Note that since X is tangent to F̂ we have NF̂ ⊂NX and we can decom-
pose NX = NF̂ ⊕N ′ where N ′ = NX ∩T F̂ is a 
t -invariant bundle. Lyapunov exponents of the cocycle (
t)|N ′
are precisely the stable and unstable Lyapunov exponents defined above. Define


F̂
t (v) = πF̂

Gt (v) ◦ 
t(v) : NF̂ (v)→NF̂ (Gt (v))

and argue as in the previous paragraph in order to get that the Lyapunov exponents of that cocycle are precisely the 
Lyapunov exponents of 
t off the N ′ direction.

Finally remark that the latter cocycle coincides with the linear holonomy over the foliated geodesic flow, i.e. for 
every v ∈ M̂


F̂
t (v) = DvhG[0,t](v)

and hence that cocycle has only one Lyapunov exponent which is the transverse Lyapunov exponent defined in §1.4.1. 
Hence the following proposition follows from our discussion.

Proposition 1.4. There exists a Borel set X ⊂ M̂ full for every Gt -invariant measure such that for every v ∈ X the 
Lyapunov exponents of Gt at v exist and are precisely given by the list

(λs
1(v), ..., λs

ks
(v),0, λu

1(v), ..., λu
ku

(v), λ�(v)),

where a priori λ� can be equal to λs
i , 0 or λu

j .

Definition 1.5. We define the transverse Lyapunov exponent of a Gt -invariant measure μ as the integral

λ�(μ) =
∫
M̂

λ�(v) dμ(v).

The average sums 	s(μ) and 	u(μ) are defined similarly.
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1.5. Gibbs u-states

Definition A Gibbs u-state for Gt is a Gt -invariant probability measure on M̂ whose conditional measures in local 
unstable manifolds are equivalent to the Lebesgue measure.

A Gibbs s-state for Gt is a Gibbs u-state for G−t : its conditional measures in local stable manifolds are equivalent 
to the Lebesgue measure.

A Gibbs su-state is a probability measure on M̂ which is both a Gibbs s-state and a Gibbs u-state.
Gibbs u-states were first introduced by Pesin–Sinaı̆ in [39] and then by Bonatti–Viana in [15] in the context of 

partially hyperbolic dynamics.

Example Suppose F , and therefore F̂ as well, has a family of transverse invariant measures (νi)i∈I . As explained 
in §1.2 this measure can be combined with the Liouville measure in the plaques of F̂ so as to construct a totally 
invariant measure μ on M̂ .

Since Gt preserves the Liouville measure of the leaves it must preserve μ. Moreover by absolute continuity of W s

and W u (see [4]) it must have Lebesgue disintegration in both stable and unstable plaques. Such a measure is a Gibbs 
su-state.

Existence Define the unstable Jacobian at v ∈ M̂ by JacuGt (v) = det(DvGt)|Eu(v). The proof of the next theorem 
follows the line of reasoning of [11, Section 11.2.2]. Recall that we say that a positive function (resp. a family of 
positive functions) is log-bounded (resp. uniformly log-bounded) if it is bounded away (resp. uniformly bounded 
away) from 0 and ∞ (i.e. its logarithm is bounded).

Theorem 1.6. Let (M, F ) be a closed manifold endowed with a smooth Riemannian metric g such that every leaf L
is negatively curved for the induced metric g|L. Then

1. for every v ∈ M̂ and every Borel set Du ⊂Wu
loc(v) with positive Lebesgue measure, any accumulation point of 

the following family of measures, indexed by T ∈ (0, ∞), is a Gibbs u-state

μT = 1

T

T∫
0

Gt∗

(
Lebu|Du

Lebu(Du)

)
dt.

Moreover its densities along unstable plaques, denoted by ψu
w, are uniformly log-bounded and satisfy the follow-

ing for z1, z2 ∈ Wu
loc(w)

ψu
w(z2)

ψu
w(z1)

= lim
t → ∞

JacuG−t (z2)

JacuG−t (z1)
; (1.5)

2. all ergodic components of a Gibbs u-state are Gibbs u-states with local densities in the unstable plaques that are 
uniformly log-bounded and satisfy (1.5);

3. every Gibbs u-state for Gt is a measure whose local densities in the unstable plaques are uniformly log-bounded 
and satisfy (1.5).

2. Transversally mostly contracting foliated geodesic flows

This section is devoted to proving the next theorem. We will then follow the “mostly contracting scenario” devel-
oped by [15] for partially hyperbolic systems, to prove Theorem A (see also [13]).

Theorem D. Let F be a smooth transversally conformal foliation of a closed manifold M . Assume that M is endowed 
with a smooth Riemannian metric such that every leaf L is negatively curved for the restriction gL. Assume that there 
is no transverse holonomy invariant measure for F . Then the transverse Lyapunov exponent of every Gibbs u-state is 
negative.
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Remark 2.1. Let μ be a totally invariant measure (it is a Gibbs u-state). It is easy to prove that λ�(μ) = 0. For 
that purpose, one uses the map ι : v ∈ M̂ 
→ −v and note that λ�(v) = −λ�(ι(v)) for μ-almost every v. This map 
preserves μ (since it preserves the leaves and the Liouville measure in the leaves: see [38, Lemma 1.34]) so, by 
integrating the last equality against μ, we find λ�(μ) = −λ�(μ).

2.1. Existence of transverse invariant measures: proof of Theorem D

The main criterion The following criterion for the existence invariant measure was proven in [4, Theorem A].

Theorem 2.2. Let (M, F ) be a closed foliated manifold by negatively curved manifolds. Then every Gibbs su-state 
for the foliated geodesic flow Gt as defined in §1.5 is totally invariant. In particular if such a measure exists, F̂ and 
F both possess a transverse invariant measure.

Starting with a Gibbs u-state μ with λ�(μ) ≥ 0, we want to use the above criterion and to prove that it has Lebesgue 
disintegration along W s .

In order to do so, our strategy is to prove that the inverse flow satisfies Pesin’s entropy formula 2.6 and finally to 
conclude using Ledrappier–Young’s work [34].

Entropy of Gibbs u-states The first step is to prove the following general proposition about metric entropy of Gibbs 
u-states. Such a statement may be found in [33] in a much more general context. In ours the proof is much shorter and 
shall be postponed until the end of the section.

Proposition 2.3. Let μ be an ergodic Gibbs u-state for Gt . Then

hμ ≥ 	u(μ),

where hμ denotes the metric entropy of Gt for the measure μ.

Proof of Theorem D Let us assume the existence of μ, a Gibbs u-state for Gt whose transverse Lyapunov exponent 
is nonnegative. By Theorem 1.6, ergodic components of Gibbs u-states are Gibbs u states, so we can assume that μ
is ergodic.

From now on μ is supposed to be ergodic. Since it has a nonnegative transverse Lyapunov exponent it follows from 
Proposition 1.4 that the only negative Lyapunov exponents of μ are the Lyapunov exponents in the stable direction 
λs

i (μ). Then Ruelle’s inequality (see [41]) applied to G−t (which has the same measure entropy as Gt ) implies that

hμ ≤ −	s(μ).

Remember that since Gt preserves the Liouville measure of the leaves, we have 	u(μ) = −	s(μ). Hence using 
Proposition 2.3, we see that the following Pesin’s formula holds true

hμ = −	s(μ). (2.6)

By Ledrappier–Young (see [34]), this equality holds if and only if μ is a Gibbs u-state for G−t , or if one prefers, a 
Gibbs s-state for Gt .

As a consequence we find that if μ has nonnegative transverse Lyapunov exponent, then it is a Gibbs su-state and, 
by Theorem 2.2, has to be totally invariant, i.e. locally the product of the Liouville measure by a transverse invariant 
measure, thus concluding the proof of Theorem D.

2.2. Proof of Proposition 2.3

In what follows, μ is an ergodic Gibbs u-state for the foliated geodesic flow.
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Metric entropy according to Katok Define Bowen’s dynamical balls Bt,r (v) as follows. For v ∈ M̂ , t ≥ 0 and r > 0, 
we say that w ∈ Bt,r (v) if for every s ∈ [0, t], dist(Gs(v), Gs(w)) ≤ r .

Given δ ∈ (0, 1), denote by N(t, r, δ) the minimal number of dynamical balls Bt,r(v) needed to cover a set of 
measure greater than 1 − δ. Katok proved in [29] that we have for every δ ∈ (0, 1)

hμ = lim
r → 0

lim
t → ∞

log N(t, r, δ)

t
. (2.7)

Approaching the Lyapunov exponents Oseledets’ theorem applied to the cocycle DG|Eu : Eu →Eu provides a set 
X u full for μ such that for every v ∈ X u, the following equality holds

lim
t → ∞

1

t
log Jacu Gt(v) = 	u(μ) = 	u.

Fixing ε > 0 and a positive time t , we shall define the following measurable set

X u
t,ε =

{
v ∈ X u;

∣∣∣∣1

t
log JacuGt (v) − 	u

∣∣∣∣ < ε

}
, (2.8)

and notice that limt → ∞ μ(X u
t,ε) = 1 for every ε > 0.

From now on, we fix a small ε > 0, which we will let tend to zero at the end of the proof.

Atlas for the unstable foliation Consider a finite atlas (Ui, φi)i∈I for the unstable foliation such that Ui reads as a 
union of local unstable manifolds Du(vi) = Wu

loc(vi).
Since the foliation W u is continuous in the C∞-topology, we find universal bounds for diameters and volumes of 

the unstable plaques.
For every chart Ui with μ(Ui) > 0, we can disintegrate μ in the local unstable manifolds of Ui . The conditional 

measures have local densities with respect to the volume which are uniformly log-bounded by a constant independent 
of i: see Theorem 1.6.

Unstable volume of dynamical balls The following lemma is a useful consequence of the distortion controls.

Lemma 2.4.

1. There exists a constant r0 > 0 such that for every r < r0, w ∈ M̂ , t ≥ 0 and every measurable set V ⊂ M̂ contained 
in an unstable plaque containing w we have

Bt,r (w) ∩ V = G−t (W
u
r (Gt (w))) ∩ V.

2. There exists a positive constant C0 > 0 such that for every r < r0 and every unstable plaque Du = Du(vi) and 
every w ∈ M̂ we have

Lebu(Bt,r (w) ∩ Du) ≤ C0
Lebu(Wu

r (Gt (w)))

JacuGt (w)
.

Proof. The first part of the lemma follows classically from the fact that Gt expands uniformly the unstable folia-
tion W u.

The second part follows from the first one, from the classical distortion control, as well as from the fact that unstable 
plaques are uniformly bounded. �
Covering the local unstable manifolds Fixing a small δ > 0, we get T0 such that for every t ≥ T0, and every i ∈ I

with μ(Ui) > 0, the relative mass μ(c X u
t,ε ∩ Ui)/μ(Ui) is less that δ (we adopt the notation c X for the complement 

of a set X). In particular, the mass of c X u
t,ε is less that some constant times δ.

Now choose r smaller than the r0 given by Lemma 2.4 and cover X u
t,ε by p dynamical balls Bt,r (wj ), 

w1, ...wp ∈ M̂ . We can assume without loss of generality that all these dynamical balls intersect X u
t,ε. Moreover, 

up to consider dynamical balls associated to 2r instead to r , which doesn’t affect our argument, we can ask that all 
wj belong to Xt,ε . We now have two facts
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• μ(c
⋃p

j=1 Bt,r (wj ) ∩ Ui) ≤ δμ(Ui).
• μ|Ui

has Lebesgue disintegration in the unstable plaques Du(xi) with local densities which are uniformly log-
bounded (see Theorem 1.6).

From this and Lemma 2.4, we find a plaque Du and uniform constants C1, δ1 > 0 such that

Lebu

⎛⎝ p⋃
j=1

Br,t (wj ) ∩ Du

⎞⎠ ≥ (1 − δ1)Lebu(Du). (2.9)

Lebu(Br,t (wj ) ∩ Du) ≤ C1
Lebu(Wu

r (Gt (wj )))

Jacu Gt (wj )
. (2.10)

Putting (2.9) and (2.10) together and using a uniform upper bound for Lebu(Wu
r (v)), we get a constant Cr > 0

depending only on r such that

(1 − δ1)Lebu(Du) ≤
p∑

j=1

Lebu(Br,t (wj ) ∩ Du)

≤ Cr

p∑
j=1

1

Jacu Gt(wj )
.

Since wj ∈ X u
t,ε for every j , we see that by definition of X u

t,ε (see (2.8)) 1
t
Jacu Gt (wj ) ≥ 	u − ε. Finally there exists 

a constant C′
r > 0 depending only on r such that the following lower bound for p holds

C′
r exp

[
t (	u − ε)

] ≤ p. (2.11)

Lower bound (2.11) holds for every open cover by dynamical balls of X u
t,ε, which is of measure ≥ 1 − δ: it also 

provides a lower bound for N(t, r, δ). Finally, we find limt → ∞ t−1 logN(t, r, δ) ≥ 	u − ε. Since ε is arbitrary, we 
deduce that hμ ≥ 	u(μ) as desired. �
3. Finiteness of SRB measures and of minimal sets

Here we prove Theorem A. It remains to prove that if every Gibbs u-state for Gt has negative transverse Lyapunov 
exponent, then Gt has finitely many SRB measures, their transverse Lyapunov exponents are negative and F has 
finitely many minimal sets.

3.1. Finiteness of SRB measures

Proposition 3.1. Let F be a transversally conformal foliation of a closed manifold M . Assume that M is endowed 
with a smooth Riemannian metric such that every leaf is negatively curved. Assume that all Gibbs u-states have 
negative transverse Lyapunov exponent. Then the following assertions hold true.

1. Every ergodic Gibbs u-state is a SRB measure.
2. There is a finite number of Gibbs u-states.
3. The supports of the SRB measures are disjoint minimal sets of W cu.

Proof. The proofs of Items 1. and 2. are given by Bonatti, Gómez-Mont and Martínez in [13, p.16-17]. The idea is 
to use Pesin’s stable manifold theory (which we will introduce later on) as well as the strong similarity between our 
context and that of “mostly contracting” partially hyperbolic diffeomorphisms and to reproduce the line of reasoning 
of [15].

The fact that the supports of two different SRB measures are disjoint can be shown by copying verbatim the proof 
of [15, Lemma 2.9].

Now let us show that the support of every SRB measure μ is a minimal set of W cu. Since μ is a Gibbs u-state, its 
support Supp (μ) is a closed and W cu-saturated set. Let Kcu ⊂Supp (μ) be a W cu-minimal set (which is in particular 
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a Gt -invariant set). Using Theorem 1.6 we construct an ergodic Gibbs u-state μ′ with Supp (μ′) ⊂Kcu. Since we 
proved that the supports of two different ergodic Gibbs u-states are disjoint, it must be the case that μ = μ′ from 
which we deduce that Kcu = Supp (μ). The proposition follows. �
Remark 3.2. The argument shows that every W cu-minimal set is the support of a unique SRB measure.

3.2. A bijective correspondence between minimal sets and ergodic Gibbs u-states

Proposition 3.3. Let us assume the hypotheses of Proposition 3.1. Then every minimal set of F̂ supports a unique 
Gibbs u-state and every ergodic Gibbs u-state is supported inside a minimal set of F̂ .

The rest of the section is devoted to the proof of that proposition which, together with Theorem D and Proposi-
tion 3.1, proves Theorem A.

A geometric property For a set K ⊂ M̂ we denote Ws(K) its stable manifold i.e. the union of the stable manifolds 
Ws(v) of elements v ∈ K . The sets Wu(K), Wc(K), Wcs(K) and Wcu(K) are defined analogously.

Lemma 3.4. The following properties hold true for every v ∈ M̂

1. Wu(Wc(v)) = Wcu(v);
2. Ws(Wcu(v)) has full volume in L̂v .

Proof. The first property is clear because Wcu(v) has been defined as the saturation of Wu(v) in the flow direction 
and because unstable manifolds are invariant by the flow (i.e. Gt(W

u(v)) = Wu(Gt(v))). In order to prove the second 
one, let us work in the universal cover.

Let L be a leaf of F and L̃ be its universal cover. It is compactified by adding the sphere at infinity L̃(∞), defined 
as the set of equivalence classes of geodesic rays for the relation “stay at bounded distance” (see [10, p.28]). Lifts to 
T 1L̃ of stable manifolds of Gt are denoted by W̃ s(.). Manifolds W̃u(.), W̃ cs(.) and W̃ cu(.) are defined analogously. 
In order to prove the second property, it is enough to prove the following equality for every v ∈ T 1L̃

W̃ s(W̃ cu(v)) = T 1L̃ \ W̃ cs(−v), (3.12)

indeed W̃ cs(−v) is a strict submanifold of T 1L̃ and therefore has volume zero.
For v ∈ T 1L̃ denote by v(∞) = limt → ∞ cv(t) ∈ L̃(∞) and v(−∞) = limt → ∞ cv(−t) ∈ L̃(∞), where cv is the 

geodesic directed by v. Clearly, v(−∞) �= v(∞) (the geodesic rays generated by v and −v don’t stay at bounded 
distance). Moreover it is well known that w ∈ W̃ cs(v) (resp. w ∈ W̃ cu(v)) if and only if v(∞) = w(∞) (resp. 
v(−∞) = w(−∞)): see [10, p.72]. This implies that W̃ s(W̃ cu(v)) ∩ W̃ cs(−v) = ∅ for every v ∈ T 1L̃.

Now let ξ = v(−∞). Let w ∈ T 1L̃ and ξ ′ = w(∞). If w /∈ W̃ cs(−v) then ξ ′ �= ξ and there exists a directed 
geodesic starting at ξ and ending at ξ ′. This geodesic is precisely the intersection of W̃ cu(v) with W̃ cs(w). In particular 
it intersects W̃ s(w). This implies that w ∈ W̃ s(W̃ cu(v)). �
Basins of Gibbs u-states We now prove that the intersection between the basin of an ergodic Gibbs u-state and a 
typical leaf is large. Recall that the basin of μ is defined as the set

B(μ) =
⎧⎨⎩v ∈ M̂; 1

T

T∫
0

δGt (v)dt −→
T → ∞μ.

⎫⎬⎭ .

Lemma 3.5. Let μ be an ergodic Gibbs u-state for Gt . Then there is a Borel set X ⊂ M̂ full for μ such that for every 
v ∈ X , B(μ) ∩ L̂v has full volume in L̂v .

Proof. First notice that B(μ) is W s -saturated. Using the second item of Lemma 3.4 as well as the absolute continuity 
of W s inside leaves of F̂ (see for example [4, Theorem 3.7]) it is enough to prove the existence of a Borel set X full 
for μ such that for every v ∈ X , B(μ) ∩ Wcu(v) has full volume in Wcu(v).
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Denote by X1 ⊂ M̂ the set of points v ∈ M̂ such that Lebcu-almost every point of Wcu
1 (v) belongs to B(μ). Since 

μ is an ergodic Gibbs u-state, X1 is full for μ.
We define X = ⋂

n∈Z Gn(X1). Fix v ∈ X and denote vm = Gm(v) for m ∈ Z.

Claim. For every m ∈ Z the basin B(μ) contains a full volume subset of Wu(G[0,1](vm)).

Establishing the claim suffices to prove the lemma. Indeed by the first item of 3.4 we have Wcu(v) =⋃
m∈Z Wu(G[0,1](vm)).
Let us prove this claim. Note that, if we set χ = Min

∣∣∣∣(DG1)|Eu

∣∣∣∣ > 1, we have for n ≥ −m

Wu
χn+m

(
G[0,1](vm)

)⊂Gn+m

(
Wu

1

(
G[0,1](v−n)

))
,

in such a way that

Wu
(
G[0,1](vm)

) =
⋃
n∈Z

Gn+m

(
Wu

1

(
G[0,1](v−n)

))
.

Since v ∈ X we have v−n ∈ X1 for every n and Lebcu-almost every point of Wu
1 (G[0,1](v−n)) belongs to 

B(μ). Using that B(μ) is Gt -invariant this property also holds for Gn+m(Wu
1 (G[0,1](v−n))). Finally we deduce 

that Lebcu-almost every v ∈ Wu(G[0,1](vm)) belongs to B(μ) and the claim, as well as the lemma, follows. �
Pesin manifolds Assume here that μ is an ergodic Gibbs u-state whose transverse Lyapunov exponent is negative. 
By Proposition 1.4, μ is Pesin-hyperbolic: its Lyapunov exponents are �= 0.

Pesin’s stable manifold theory (see for example [15]) implies that μ-almost every v ∈ M̂ admits a Pesin stable 
manifold Ws

Pes(v) (of dimension dim Ws +codimF ) and that the “foliation” (Ws
Pes(v))v∈M̂ is absolutely continuous 

(see [15, p.164] for the definition).
Pesin center-stable manifold Wcs

Pes(v) is the saturation of Ws
Pes(v) in the flow direction. Note that these manifolds 

are transverse to W u. We denote respectively by W s
P es and W cs

P es the stable and center-stable Pesin foliations.

Lemma 3.6. Let μ be an ergodic Gibbs u-state for Gt with negative transverse Lyapunov exponent. Then there exists 
a Borel set Y ⊂ M̂ full for μ such that for every v ∈ Y there exists a Borel set �v ⊂Wu

loc(v) of full volume such that

1. �v is included in the basin of μ;
2. every point of �v admits a Pesin stable manifold.

Moreover there exists ε = ε(v) > 0 as well as a Borel set �v,ε ⊂�v of positive volume such that for every w ∈ M̂

with dist(v, w) ≤ ε, W s
P es(�v,ε) induces a holonomy map between Wu

1 (v) and Wu
1 (w).

In particular the basin of μ intersects Wu
1 (w) in a set of positive volume whenever dist(v, w) ≤ ε.

Proof. Pesin’s theory and Birkhoff’s theorem imply the existence of Borel subset Y1 ⊂ M̂ included in the basin of μ
such that every point of Y1 possesses a Pesin stable manifold.

Since μ is a Gibbs u-state, inside a foliated chart for W u the conditional measure of μ in local unstable manifolds 
are equivalent to the Lebesgue measure. This implies in particular that there exists a Borel subset Y2 ⊂ M̂ full for μ
such that for every v ∈ Y2, Y1 ∩ Wu

1 (v) has full volume in Wu
1 (v).

The remaining part of the lemma follows directly from the absolute continuity of W cs
P es . �

The key lemma We are now ready to state the main ingredient of the proof of Proposition 3.3. In the sequel we adopt 
the following notation: if X⊂ M̂ then Cl(X) denotes its closure.

Lemma 3.7. Assume that every Gibbs u-state of Gt has a negative transverse Lyapunov exponent. Let μ be an ergodic 
Gibbs u-state. Then for every v ∈ Supp (μ), μ is the only Gibbs u-state for Gt supported inside Cl(L̂v).

Proof. First note that, by Proposition 3.1, Supp (μ) is a minimal set for W cu which implies that for every v ∈ Supp (μ)

we have Supp (μ) ⊂Cl(L̂v). We deduce that Cl(L̂v) does not depend on v ∈ Supp (μ) and in particular we can assume 
that v ∈ X , the set constructed in Lemma 3.5.
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For such a v ∈ X set K = Cl(L̂v) and let μ′ be an ergodic Gibbs u-state satisfying Supp (μ′) ⊂K (see Theo-
rem 1.6). We will prove that μ = μ′, and the lemma will follow.

First note that by hypothesis μ′ has a negative transverse Lyapunov exponent so we can apply Lemma 3.6 to μ′. It 
provides an element v′ ∈ K such that B(μ′) contains a full volume subset of Wu

loc(v
′), each point of which admitting 

a Pesin stable manifold.
Because v ∈ X , Lemma 3.5 provides v′′ ∈ L̂v ∩ B(μ) arbitrarily close to v′.
Using one more time Lemma 3.6 we find that � = B(μ′) ∩ Wu

1 (v′′) has positive volume in Wu(v′′).
The basin of any ergodic Gt -invariant measure is W cs -saturated so Wcs(�) ⊂B(μ′). Finally use the absolute 

continuity of W cs inside L̂v′′ = L̂v to prove that Wcs(�) has positive volume in L̂v . Since by Lemma 3.5 B(μ) has 
full volume in L̂v we conclude that B(μ′) = B(μ) and hence that μ = μ′. �
Proof of Proposition 3.3 We assume in all the following that all Gibbs u-states for Gt have negative transverse 
Lyapunov exponents. We divide the proof of Proposition 3.3 into two halfs.

Lemma 3.8. Let K be a minimal set of F̂ . There exists a unique Gibbs u-state supported inside K .

Proof. A minimal set K is closed and F̂ -saturated. Therefore applying in K the proof of Theorem 1.6 provides 
that Gibbs u-states supported in K exist and that ergodic components of such a measure are also supported in K . 
Lemma 3.7 immediately implies the uniqueness of the Gibbs u-state. �
Lemma 3.9. Every ergodic Gibbs u-state is supported inside a minimal set of F̂ .

Proof. Let μ be an ergodic Gibbs u-state for Gt . We will prove that for every v ∈ Supp (μ), the set Cl(L̂v) is minimal 
for F̂ .

Let v ∈ Supp (μ). The set Cl(L̂v) is closed and F̂ -saturated so it contains K , a minimal set for F̂ . By Lemma 3.8
there is a Gibbs u-state μ′ supported inside K ⊂Cl(L̂v).

But by Lemma 3.7 μ is the unique Gibbs u-state supported inside Cl(L̂v) so it must be the case that μ = μ′. In 
particular μ is supported inside a minimal set of F . �
4. Some partially hyperbolic foliated geodesic flows

In this section, we define the notion of domination of projective representations introduced recently in [21,28], 
prove the following result, and explain how it implies Theorem C.

Theorem E. Let (�, M, �, F ) be a foliated RP1-bundle with projective holonomy over a closed surface � endowed 
with a hyperbolic metric m. Endow M with an admissible Riemannian metric. Let ρ : π1(�) →PSL2(R) denote 
a Fuchsian representation associated to m and hol : π1(�) →PSL2(R) denote the holonomy representation of F . 
Then the foliated geodesic flow Gt is partially hyperbolic if and only if ρ dominates hol.

4.1. The foliated geodesic flow as a projective cocycle

Before proceeding to the proof, let us explain the terms appearing in Theorem E.

Fuchsian representation We will consider the upper half plane H endowed with its Poincaré metric ds2 = (dx2 +
dy2)/y2. The group PSL2(R) is identified with the group of its direct isometries.

Let � be a closed Riemann surface of genus higher than 2. By uniformization, a smooth hyperbolic metric m on 
� gives rise to a Fuchsian representation, i.e. a faithful and discrete representation ρ : π1(�) →PSL2(R) which is 
well defined up to conjugacy by an element of PSL2(R). Say two such metrics on � represent the same point in the 
Teichmüller space if one is the image of the other by a diffeomorphism isotopic to the identity. It is equivalent to 
having their Fuchsian representations conjugated in PSL2(R).
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Holonomy representation Consider a foliated RP1-bundle with projective holonomy (�, M, �, F ). It is obtained 
by the suspension of a representation hol : π1(�) →PSL2(R) (see [18] for the definition of suspension) called the 
holonomy representation of the foliation.

Note that holonomy has the following topological interpretation. If c is a closed path on � and γ ∈ π1(�) denotes 
its homotopy class, then there is, for every x belonging to the fiber of p = c(0) a unique lift of c starting at x. Then 
the ending point of this lift depends only on γ and is equal to hol(γ )−1(x).

We will endow M with an admissible metric, i.e. a smooth Riemannian metric on M whose restriction in each leaf 
is locally isometric to m. Such a metric is conformally equivalent to the usual angle metric in the fibers because the 
codimension of F equals 1.

Foliated geodesic flow as a cocycle The differential of � induces an RP1-bundle �∗ : M̂ →T 1� which is transverse 
to the foliation F̂ . For w ∈ T 1� we set F∗,w = �−1∗ (w).

Since � is a local isometry when restricted to the leaves, it sends geodesics of the leaves on geodesics of the base. 
As a consequence the foliated geodesic flow Gt : M̂ → M̂ projects down via �∗ to the geodesic flow of T 1� which 
we denote by gt : T 1� →T 1�. In particular it preserves the fibers of �∗ and for every w ∈ T 1� and t ∈ R the map

At(w) = (Gt )|F∗,w : F∗,w →F∗,gt (w)

identifies with the holonomy along the orbit segment g[0,t](w) and therefore belongs to PSL2(R). Moreover it satisfies 
the cocycle relation

At1+t2(w) = At1(gt2(w))At2(w).

All this implies that the foliated geodesic flow Gt is a projective cocycle over the geodesic flow gt .

4.2. Domination of representations

Recently a notion of domination of representations appeared in the theory of 3-dimensional Anti-de Sitter geometry 
[21,28].

Domination The translation length of an element P ∈ PSL2(R) is by definition

lP = Inf
z∈Hdist(P z, z) ≥ 0.

Remark 4.1. If P is an elliptic element (i.e. conjugated to a rotation) it has a fixed point in H and lP = 0.
If P is a parabolic or hyperbolic element of PSL2(R) (i.e. respectively conjugated to a translation or a homothety) 

then lP coincide with the modulus of the logarithm of the derivative at any of its fixed points. In particular it vanishes 
in the case P is parabolic.

Lemma 4.2. Let P, Q ∈ PSL2(R) such that Q is hyperbolic. Then for every k ∈ Z \ {0}
lP k

lQk

= lP

lQ
.

Proof. It is a fairly direct application of Remark 4.1 that for every P ∈ PSL2(R) and k ∈ Z, lP k = klP . The lemma 
follows. �

The marked length spectrum of a projective representation φ : π1(�) →PSL2(R) is by definition the collection 
�φ = (lφ(γ ))γ∈π1(�). Say φ1 dominates φ2 if there exists κ < 1 such that �φ2 < κ�φ1 .

Domination by a Fuchsian representation We will make use of the following theorem proven independently and 
with different methods by Guéritaud–Kassel–Wolff in [28] (to which we refer for details about the Euler class) and 
by Deroin–Tholozan in [21].
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Theorem 4.3. Let � be a closed Riemann surface of genus g ≥ 2.

1. Let hol : π1(�) →PSL2(R) be a projective representation with |Eu(hol)| < 2g − 2. Then it is dominated by a 
Fuchsian representation ρ : π1(�) →PSL2(R).

2. Reciprocally any Fuchsian representation ρ : π1(�) →PSL2(R) dominates some non-Fuchsian representation 
whose Euler class can be prescribed in {3 − 2g, ..., 0, ..., 2g − 3}.

This theorem, together with Theorem E gives the first two items of Theorem C. Proving the last one will be the 
goal of §5. First we need to define partial hyperbolicity.

4.3. Partially hyperbolic foliated geodesic flows

4.3.1. Partially hyperbolic flows
Definition A non-singular flow �t : N →N on a Riemannian manifold N generated by a vector field X is said to be 
partially hyperbolic if there exists a decomposition of the normal bundle of X of the form

NX = Es
N ⊕ Ec

N ⊕ Eu
N

and two constants C, λ > 0 such that

1. the bundles Es
N , Ec

N , Eu
N are continuous and invariant by the linear Poincaré flow 
t : NX →NX of �t ;

2. for x ∈ N , t ≥ 0 and every vs ∈ Es
N (x) and vu ∈ Eu

N (x),

||
t(x)vs || ≤ C exp(−λt)||vs ||
||
−t (x)vu|| ≤ C exp(−λt)||vu||;

3. the decomposition is dominated in the sense that for every t > 0, x ∈ N and vs ∈ Es
N (x), vc ∈ Ec

N (x) and 
vu ∈ Eu

N (x)

||
t(x)vc||
||
t(x)vu|| ≤ C exp(−λt) and

||
−t (x)vc||
||
−t (x)vs || ≤ C exp(−λt).

Criterion for domination We will give a criterion for partial hyperbolicity due to Mañé [35] (see also [31, Proposition 
3.4] for a similar statement).

Lemma 4.4. Suppose the linear Poincaré flow 
t : NX →NX preserves a decomposition NX = E ⊕ F such that for 
every �t -invariant probability measure μ

λ+
E(μ) < λ−

F (μ),

where λ+
E(μ) and λ−

F (μ) stand respectively for the greatest Lyapunov exponent of μ along E and the lowest Lyapunov 
exponent of μ along F .

Then the decomposition NX = E ⊕ F is dominated.

Proof. This argument is quite classical so we only give a glimpse of the proof. Using the invariance and the continuity 
of the decomposition it is enough to prove that it is dominated for 
1.

Claim. For every x ∈ N there exists a integer nx > 0 such that for every v ∈ E(x) and w ∈ F(x)

||
nx (x)v||
||
nx (x)w|| <

1

2
.

Proving the previous claim clearly suffices to prove the domination: use the continuity of the Poincaré flow to 
prove that nx is locally constant and the compactness of N to give a uniform upper bound for nx . The domination 
then follows easily.
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Suppose the claim does not hold for some x ∈ N . Then for every integer n > 0 we have

1

n
log |||
n(x)|E(x)||| − 1

n
logm(
n(x)|F(x)) ≥ − log 2

n
, (4.13)

where |||.||| and m(.) stand respectively for the operator norm and conorm associated to the norm ||.||.
Consequently there exists a strictly increasing sequence of integers (nk)k≥0 and a �1-invariant measure η such that

1

nk

nk∑
i=0

δ�i(x) →η. (4.14)

Setting h1(x) = log |||
1(x)|E(x)||| and h2(x) = logm(
1(x)|F(x)) which are continuous functions of x ∈ N we 
see that

1

nk

log |||
nk
(x)|E(x)||| ≤ 1

nk

nk−1∑
i=0

h1 ◦ �i(x), (4.15)

1

nk

logm(
nk
(x)|F(x)) ≥ 1

nk

nk−1∑
i=0

h2 ◦ �i(x). (4.16)

Putting together (4.13), (4.14), (4.15) and (4.16) it follows that

λ+
E(η) − λ−

F (η) =
∫
N

h1(x)dη(x) −
∫
N

h2(x)dη(x) ≥ 0,

where λ+
E(η) and λ−

F (η) represent respectively the greatest and lowest Lyapunov exponents along E and F of the 
diffeomorphism �1 for η.

This does not contradict yet our hypothesis. But if μ denotes the average of the measures �t∗η, for t ∈ [0, 1] one 
easily proves using the commutation formula �s ◦ �t = �t ◦ �s that μ is �t -invariant for every t and has the same 
Lyapunov exponents as η. Hence μ is an invariant measure which does not satisfy the hypothesis of the lemma. This 
proves the claim by contradiction. �
4.4. Domination of representations implies partial hyperbolicity

Here we prove the first half of Theorem E by showing that if hol is dominated by ρ then the corresponding foliated 
geodesic flow Gt : M̂ → M̂ is partially hyperbolic. So let us assume that ρ, hol : π1(�) →PSL2(R) are projective 
representations such that ρ is Fuchsian and dominates hol.

Domination along periodic orbits Let v ∈ M̂ be a periodic point for the foliated geodesic flow and μv be the 
Gt -invariant measure supported by the corresponding periodic orbit.

Lemma 4.5. If ρ dominates hol and if κ ∈ (0, 1) denotes the domination constant, we have

|λ�(μv)| ≤ κ.

Proof. Let T0 > 0 be the period of v. The projection of the orbit O(v) of v is a periodic orbit O(w) for gt where 
w = �∗(v).

The free homotopy class of O(w) is the conjugacy class of some element γ ∈ π1(�) and the holonomy map τw

over O(w) is conjugated to hol(γ )−1. In particular it lies in PSL2(R) and, since O(v) is closed, has a periodic point 
in RP1: it has to be conjugated to a rational rotation, a parabolic or hyperbolic element. In the first case the holonomy 
over O(w) is conjugated to an isometry and we clearly have λ�(μv) = 0. In the remaining cases, this implies that v, 
which is periodic for τw, has to be a fixed point of τw.

We deduce two things. Firstly the orbits O(v) and O(w) have the same length which is equal to T0. Secondly the 
holonomy map hG[0,T ](v) of F̂ along the closed orbit G[0,T0](v) is conjugated to hol(γ )−1.
0
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By definition of ρ the length of the closed geodesic O(w) is lρ(γ ) = lρ(γ )−1 . By Remark 4.1 the logarithm of the 
derivative at the fixed point v of hol(γ )−1 is ±lhol(γ )−1 (note that these quantities are constant on the conjugacy class 
of γ ).

Using the domination of hol by ρ one sees that there exists κ ∈ (0, 1) independent of γ ∈ π1(�) such that we have 
lhol(γ )−1 < κlρ(γ )−1 .

This implies that for every positive integer k we have by Lemma 4.2∣∣∣∣ 1

kT0
log DvhG[0,kT0](v)

∣∣∣∣ = lhol(γ k)−1

lρ(γ k)−1
= lhol(γ )−1

lρ(γ )−1
≤ κ. (4.17)

Since the left hand side of (4.17) tends to λ�(μv) as k tends to infinity, the lemma follows. �
Partial hyperbolicity Note that the Poincaré linear flow 
t of Gt preserves a decomposition

NX = Es
N ⊕ Ec

N ⊕ Eu
N ,

where Ec
N denotes the tangent space of the fibers, and Es

N , Eu
N represent respectively the orthogonal projections on 

NX of the stable and unstable directions of the flow. These bundles are 1-dimensional.
As we saw in §1.4.1 the Lyapunov exponent at v along Ec

N is precisely λ�(v).
Moreover, since the metric on the leaves is of constant curvature −1, it is clear from the commutation relations 

between horocyclic and geodesic flows that for every v ∈ M̂ we have

λu(v) = −λs(v) = 1.

In order to prove the partial hyperbolicity of the flow Gt we are going to use the criterion stated in Lemma 4.4. It 
is enough to prove the

Lemma 4.6. There exists κ ∈ (0, 1) such that for every ergodic Gt -invariant probability measure μ we have

|λ�(μ)| ≤ κ.

Proof. It is clear that it suffices to treat the case where μ is an ergodic Gt -invariant measure with λ�(μ) �= 0. In that 
case the measure μ is an ergodic hyperbolic measure in the sense of Pesin: all its Lyapunov exponents are non zero.

Since the flow Gt is C∞ we can use Katok’s closing lemma (see [29]). In that case there exists a sequence (vk)k≥0
of periodic points for Gt such that

μvk
−→

k → ∞μ,

in the weak∗-sense, where we recall that μvk
is the Gt -invariant measure supported by the periodic orbit O(vk).

The transverse Lyapunov exponent of a Gt -invariant measure ν is in our case given by an integral

λ�(ν) =
∫
M̂

log |||
1(v)|Ec
N (v)|||dν(v),

in particular it varies continuously with ν and we have by Lemma 4.5

|λ�(μ)| = lim
k → ∞|λ�(μk)| ≤ κ. �

4.5. Partial hyperbolicity implies domination of representations

End of the proof of Theorem E. We assume here that the foliated geodesic flow Gt is partially hyperbolic. We want 
to find κ < 1 so that for every γ ∈ π1(�), lhol(γ ) ≤ κlρ(γ ). It is obvious from Remark 4.1 that it is enough to treat the 
case where hol(γ ) is hyperbolic because otherwise lhol(γ ) = 0.

Let γ ∈ π1(�) be such that hol(γ ) is hyperbolic. There exists a unique periodic orbit of the geodesic flow of T 1�, 
denoted by O(w), whose free homotopy class is the conjugacy class of γ . As we have already noticed, the length of 
the orbit equals lρ(γ ).
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The holonomy τw over O(w) is conjugated to hol(γ )−1 and in particular it is a hyperbolic element of PSL2(R)

with the same translation length as hol(γ )−1. It implies that τw has a repelling fixed point v, which is also fixed by all 
of its powers. By Remark 4.1 the logarithm of the derivative of τ k

w at v equals lhol(γ k)−1 . Now the partial hyperbolicity 
at v implies the existence of uniform C, λ > 0 such that if T0 = lρ(γ ) = lρ(γ )−1 denotes the period of w we have for 
every k > 0

Dτk
w(v)

ekT0
≤ Ce−kλT0 .

Note that logDτk
w(v) = lhol(γ k)−1 = klhol(γ )−1 and kT0 = k lρ(γ )−1 . Taking the logarithm, dividing by k and denoting 

κ = 1 − λ < 1 provides

lhol(γ )−1 ≤ logC

k
+ κlρ(γ )−1 ,

for every γ ∈ π1(�) and k > 0. We deduce that hol is dominated by γ . Theorem E then follows. �
5. Foliations associated to Fuchsian representations

We now turn to the case where the holonomy representation has extremal Euler number. Recall that by [27] this 
happens if and only if the holonomy representation is Fuchsian. We prove that in that case the foliated geodesic flow is 
not partially hyperbolic. We go further by computing the transverse Lyapunov exponent of the unique SRB measure.

Theorem F. Let (�, M, �, F ) be a foliated RP1-bundle with projective holonomy over a closed surface � endowed 
with a hyperbolic metric m. Endow M with an admissible Riemannian metric. Let ρ : π1(�) →PSL2(R) denote 
a Fuchsian representation associated to m and hol : π1(�) →PSL2(R) denote the holonomy representation of F . 
Assume that hol is Fuchsian and let χ ≥ 1 be the associated average reparametrization of the geodesic flow. Then the 
transverse Lyapunov exponent λ� of the unique SRB measure equals −χ ;

In particular when ρ and hol are not conjugated we find |λ�| > 1.

We start by defining what we call average reparametrization of the geodesic flow.

5.1. Reparametrization of the geodesic flow of a hyperbolic surface

Oriented triples The geodesic flow of T 1
H shall be denoted by G̃t There is an identification between T 1

H and the 
set of oriented triples of RP1, denoted by S(3), that associates to every vector v the triple (pr+(v), pr0(v), pr−(v))

where

• pr+(v) ∈ RP
1 is the extremity of the geodesic ray determined by −v;

• pr−(v) ∈ RP
1 is the extremity of the geodesic ray determined by v;

• pr0(v) ∈ RP
1 is the extremity of the geodesic orthogonal to v which satisfies pr+(v) < pr0(v) < pr−(v) for the 

orientation.

This identification is an equivariance for the actions of π1(�) given on T 1
H by differentials of hyperbolic isome-

tries, and on S(3) by the diagonal action.
Moreover, the geodesic starting at pr+(v) and ending at pr−(v) is parametrized by the point pr0(v). More pre-

cisely, as v evolves according to the geodesic flow, the point pr0(v) evolves along the differential equation given by 
the vector field Yv obtained by pulling back the vector field x∂x of RP1 by the unique Möbius transformation sending 
respectively pr+(v), pr0(v), pr−(v) on 0, 1, ∞.

Orbit equivalence of the geodesic flows There exists a unique homeomorphism h : RP1 →RP
1 which conjugates 

the actions of ρ and hol i.e. for every γ ∈ π1(�)

h ◦ ρ(γ ) = hol(γ ) ◦ h.
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We call h the boundary correspondence: it is bihölder and orientation preserving (see Section 5.9 of Thurston’s notes 
[43] for all these facts). By evaluating h on triples of points, we get an equivariant and bihölder homeomorphism 
H : S(3) →S(3) which descends to the quotient and provides an orbit equivalence between the geodesic flows on the 
unit tangent bundles corresponding respectively to the metrics m1 and m2. We will conveniently identify H with a 
homeomorphism of T 1

H.

Average reparametrization of the geodesic flow Define the function a :R ×T 1
H 
→ R defined for (t, v) ∈R ×T 1

H:

H ◦ G̃t (v) = G̃a(t,v) ◦ H(v).

It can be proven that a descends to a Liouville-integrable (for m1) additive cocycle of T 1�. Birkhoff’s addi-
tive ergodic theorem then ensures the existence of the following number, that will be referred to as the average 
reparametrization of the geodesic flow, for Liouville almost every v ∈ T 1�

χ = lim
t → ∞

a(t, v)

t
> 0. (5.18)

Theorem 5.1 (Thurston, see [44]). Let m1, m2 be two hyperbolic metrics on a closed surface �. Then χ ≥ 1 with 
equality if and only if the two hyperbolic metrics represent the same Teichmüller class.

5.2. Non-partially hyperbolic foliated geodesic flows

Canonical foliated geodesic flow Assume for the moment that ρ = hol. By suspension of hol we obtain the so-called 
canonical foliation (Mcan, F can) that we endowed with an admissible Riemannian metric. We can look at the foliated 
geodesic flow denoted by Gcan

t acting on M̂can. It can be lifted as a flow of T 1
H × RP

1 still denoted by G̃t . It is 
possible to consider three sections ̃σ�,can : T 1

H →T 1
H ×RP

1, � = +, 0, − defined by

σ̃ �,can = (Id,pr�).

One can prove that these sections descend to the quotient and provide three sections σ�,can : T 1� → M̂can, � =
+, 0, −. The sections σ+,can and σ−,can commute with the geodesic flows and are respectively the sections of largest 
expansion and contraction defined in [14].

Trivialization As in [14] (see also Section VIII.1.3 of the first author’s thesis [2] for the precise construction in 
this particular context), we can find an equivariant and fiber preserving analytic map �̃ : T 1

H ×RP
1 →T 1

H ×RP
1

which:

• sends respectively the sections σ̃+,can, ̃σ 0,can, ̃σ−,can on the sections corresponding to the constant functions 
respectively equal to 0, 1 and ∞;

• sends the vector field Yv defined above on the vector field x∂x .

For this consider �̃(v, x) = (v, Pv(x)) for (v, x) ∈ T 1
H × RP

1, where Pv denotes the unique Möbius transform 
sending the triple (pr+(v), pr0(v), pr−(v)) on (0, 1, ∞)

Horizontal and vertical components Define on T 1
H ×RP

1 the vector field X̃ which generates the lift to T 1
H ×RP

1

of the canonical geodesic flow, which is still denoted by G̃t .
The vertical component of X̃ is by definition the vector field Ỹ on T 1

H × RP
1 which is tangent to the fibers 

{v} × RP1 and induces on any such fiber the vector field Yv = P ∗
v (x∂x) where Pv has been defined above. The 

following lemma is essentially due to Bonatti, Gómez-Mont and Vila (see [14, §8.2]), we give below a glimpse of its 
proof in our context.

Lemma 5.2.

1. The vector field Ỹ , as well as the sum Z̃ = X̃ + Ỹ , are invariant by the diagonal action of π1(�) on T 1
H ×RP

1

and commute with X̃.
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2. The vector field �̃∗Ỹ is tangent to the fibers {v} ×RP
1 and induces the vector field x∂x in these fibers;

3. The flow of �̃∗Z̃ preserves the fibers and sends fiber to fiber as the identity.

Proof. In order to prove the first item it is enough to see that Ỹ commutes with the foliated geodesic flow, which is a 
direct consequence of the definition of the three sections: we only have to check that Yv = YG̃t (v) for every v ∈ T 1

H

(this is left to the reader).
The second item is a trivial consequence of the definition of Ỹ .
In order to prove the third item it is enough to prove that the flow Z̃t of Z̃ is fiber preserving and commutes with 

the three sections ̃σ�,can, � = +, 0, −. Indeed under these conditions the flow of �̃∗Z̃ preserves the fibers (since �̃ is 
fiber preserving) and sends fiber to fiber as a Möbius transformation fixing 0, 1 and ∞. As a consequence it has to be 
transversally the identity.

Since X̃ and Ỹ commute, and since their flows both send fibers on fibers we get that Z̃t does as well.
Since σ̃±,can are zeros of Yv for every v and since G̃t commutes with these sections, one easily gets that Z̃t

commutes as well with these sections.
By definition Ỹt (̃σ

0,can(v)) = (v, pr0(G̃t (v))) and G̃t (̃σ
0,can(v)) = (G̃t (v), pr0(v)). Since Ỹ and X̃ commute we 

have

Z̃t (̃σ
0,can(v)) = Ỹt ◦ G̃t (̃σ

0,can(v)) = (G̃t (v),pr0(G̃t (v))) = σ̃ 0,can(G̃t (v)),

and the lemma follows. �
All the objects above are equivariant for the diagonal action of π1(�): they all descend to the quotient (the notation 

of these objects is doing just by omission of the “tilde”-character). The foliated geodesic flow of M̂can then satisfies 
for every time t ∈R Gcan

t = Y−t ◦ Zt .

The SRB measure The unique SRB measure for Gcan
t is precisely μ+,can = σ+,can ∗Liouv (see [14, Theorems 1.1 

and 1.6]). With the description made above, we can prove the following

Proposition 5.3. The transverse Lyapunov exponent of the canonical foliated geodesic flow for its unique SRB measure 
is equal to −1.

Proof. First the value of the transverse Lyapunov of the SRB measure is independent of the choice of a transverse 
metric. We are going to use the pullback by � of the usual metric of the fibers (identified with RP1) in order to 
compute it.

It follows from the discussion above that we can write Gcan
t = Y−t ◦ Zt where, after the smooth fiber-preserving 

change of coordinates �, Yt coincide in each fiber with the flow (x, t) 
→ etx and Zt induces the identity map between 
fibers. The metric of the fibers is by definition sent onto the usual metric of RP1.

A typical point for the SRB measure is given by σ+,can(v). To compute the transverse Lyapunov at this point, it is 
enough to compute the Lyapunov exponent at 0 of (x, t) 
→ e−t x, which is −1. �
General Fuchsian foliation We now turn to the case of two a priori different Fuchsian representations ρ, hol. Con-
sider H : T 1

H →T 1
H, the reparametrization of the geodesic flow. It gives an equivariant bihölder orbit equivalence 

(H, Id) : T 1
H ×RP

1 →T 1
H ×RP

1 between foliated geodesic flow corresponding to hol and the canonical one.
This in turn provides a bihölder orbit equivalence Ĥ : M̂ → M̂ such that for every v ∈ M̂ and t ∈ R:

Gt(v) = Ĥ−1 ◦ Gcan
a(t,v) ◦ Ĥ (v) = Ĥ−1 ◦ Y−a(t,v) ◦ Za(t,v) ◦ Ĥ (v).

Using now that Ĥ , although being only Hölder continuous in the horizontal direction, is smooth in the fiber direc-
tion, and the easy fact that the SRB measure of Gt is precisely given by μ+ = Ĥ∗μ+,can, we conclude the proof of 
Theorem F:

The transverse Lyapunov exponent of Gt for its unique SRB measure is equal to −χ .
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6. Appendix. Negatively curved metrics in the leaves of a foliation by surfaces

In this paragraph M is a closed manifold endowed with a smooth foliation by surfaces F and with a smooth 
Riemannian metric g. Our goal is to prove Ghys’ Theorem B: we want to find in the conformal class of g a metric 
whose restriction to each leaf has negative Gaussian curvature.

6.1. Harmonic measures and Gauss–Bonnet theorem

Harmonic measures There is well defined foliated Laplace–Beltrami operator defined on the space C0,2(M) of 
continuous functions φ : M →R which are of class C2 inside the leaves that we denote by �F . By definition for 
every x ∈ M and φ ∈ C0,2(M) we have �F φ(x) = �Lx φ(x) where Lx is the leaf of x and �Lx denotes the Laplace 
operator for the restricted metric gLx .

Definition 6.1 (Harmonic measures). A harmonic measure for F is a probability measure m on M such that for every 
φ ∈ C0,2(M)∫

M

�F φ dm = 0. (6.19)

Garnett proved in [24] the existence of harmonic measures.

Remark 6.2. Note that since M is compact, by using a partition of unity and convolution, we can find for every 
φ ∈ C0,2(M) a sequence (φn)n∈N of smooth functions on M converging uniformly to φ and whose derivatives of first 
and second orders inside the leaves converge uniformly to those of φ. This means in particular that �Fφn →�F φ

uniformly. Hence to prove that m is harmonic it is enough that it vanishes on the Laplacians of smooth functions, i.e. 
that (6.19) holds for every φ ∈ C∞(M).

The reader will notice that this remark, together with Candel’s simultaneous uniformization theorem [19] proves 
Theorem B. We will carry on the presentation of Ghys’ argument which we believe has the merit of being simple and 
independent of that theorem.

Foliations by hyperbolic surfaces Using isothermal coordinates the metric g gives F a structure of Riemann surface 
foliation (see [19, Theorem 3.2.] for more details).

Say F is a foliation by hyperbolic surfaces if the universal cover of every leaf is conformally equivalent to the unit 
disc D. As noted in [19] the property of being a foliation by hyperbolic surfaces is topological and is independent of 
the choice of a metric g. It comes from [26, Lemma 2.1] that

Proposition 6.3. Let (M, F ) be a closed manifold foliated by surfaces and g be a Riemannian metric on M . If M
does not possess a transverse invariant measure, then all of its leaves are hyperbolic.

Gauss–Bonnet theorem Hereafter we let κ(x) denote the Gaussian curvature at x of the leaf Lx . This is a continuous 
function of x ∈ M .

Even if a priori we don’t have κ < 0 everywhere, Ghys proved in [25] the following foliated analogue of Gauss–
Bonnet theorem.

Theorem 6.4 (Ghys). Let (M, F ) be a foliated manifold foliated by hyperbolic surfaces and g be a Riemannian 
metric on M . Then for every harmonic measure m we have∫

M

κ dm < 0.
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6.2. Proof of Theorem B

Conformal change of metric Let (M, F ) be a closed manifold foliated by surfaces and g be a Riemannian metric. 
Let φ : M →R be a smooth function and g′ = e2φg. The Gaussian curvature of g′ at x of Lx , denoted by κ ′(x), is 
related to κ(x) by the following formula (see [25])

κ ′(x) = e−2φ(x)
(
κ(x) − �F φ(x)

)
. (6.20)

Recall that we want to prove Theorem B which states the existence of a metric g′ conformally equivalent to g
such that κ ′ < 0 everywhere. Theorem B is then a consequence of the following key lemma (see [25,26] and [20, 
Lemma 3.5]).

Lemma 6.5 (Ghys). Assume that all leaves of F are hyperbolic. Then there exists a smooth function φ : M →R such 
that for every x ∈ M

κ(x) − �F φ(x) < 0.

Proof. Let C = C0(M) denote the Banach space of continuous functions of M endowed with the supremum norm 
||.||∞. Let H be the closure in C of the space { �F φ; φ ∈ C∞(M)}. This is a closed subspace of a Banach space so 
the quotient C /H is naturally a Banach space and � : C →C /H is continuous and open.

Claim. The space H ar of harmonic measures is identified with the space of positive and continuous linear forms of 
C /H .

Proof of the claim. Define the orthogonal complement of H as the closed space of continuous linear forms m de-
fined in C such that m(h) = 0 for every h ∈ H . This space identifies isometrically with the topological dual of 
C /H .

A harmonic measure is a Radon measure vanishing on every element �Fφ, φ ∈ C∞(M) so it must vanish on 
every element of H , which is by definition a uniform limit of such functions. Now by Riesz representation theorem, 
positive elements of the orthogonal complement of H are Radon measures vanishing in particular on every laplacian 
�F φ, φ ∈ C∞(M): they are harmonic measures by Remark 6.2. �

Consider now the open cone 	− ⊂C of negative continuous functions and its projection 	̂− = �(	−) ⊂C /H . 
Let κ̂ = �(κ) ∈ C /H .

Claim. We have κ̂ ∈ 	̂−.

Proof of the claim. Suppose the contrary. By continuity and openness of �, 	̂− is a nonempty open convex subset 
of the normed vector space C /H and κ̂ /∈ 	̂−. Hahn–Banach’s theorem (see [17, Lemme I.3]) states that there exists 
m ∈ (C /H )′ and a ∈R such that for every u ∈ 	̂−, m(u) < a = m(κ̂).

Let us evaluate m on elements of the form λu, u ∈ 	̂−, λ > 0. Letting λ tend to infinity we see that m ≤ 0 on 	̂−. 
Letting λ tend to zero we see that a ≥ 0.

Hence the linear form m, correspond to an element of the orthogonal complement of H which is nonpositive on 
nonpositive functions.

Using the first claim we see that we found a harmonic measure m such that 
∫
M κ dm = a ≥ 0: this contradicts 

Ghys’ Gauss–Bonnet Theorem 6.4. �
Finally to conclude the proof of Lemma 6.5 note that the previous claim implies that there exists h ∈ H such that 

κ −h ∈ 	− i.e. κ −h < 0 on M . Now by definition of H there must exist a smooth function φ such that κ −�F φ < 0
on M . �
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