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Abstract

In this paper, we propose an approximation method to study the regularity of solutions to the Isaacs equation. This class of 
problems plays a paramount role in the regularity theory for fully nonlinear elliptic equations. First, it is a model-problem of a 
non-convex operator. In addition, the usual mechanisms to access regularity of solutions fall short in addressing these equations. 
We approximate an Isaacs equation by a Bellman one, and make assumptions on the latter to recover information for the former. 
Our techniques produce results in Sobolev and Hölder spaces; we also examine a few consequences of our main findings.
© 2018 Elsevier Masson SAS. All rights reserved.

MSC: 35B65; 35J60; 35Q91

Keywords: Isaacs equations; Regularity theory; Estimates in Sobolev and Hölder spaces; Approximation methods

1. Introduction

In the present paper, we examine the regularity of the solutions to an Isaacs equation of the form

sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(x)D2u

)]
= f in B1, (1)

where Aα,β : B1 ×A × B → R
d2

is a (λ, �)-elliptic matrix, f ∈ BMO(B1) and A and B are compact, separable and 
countable metric spaces.

We argue by an approximation method, relating (1) to a Bellman equation. As a result, we study the regularity of 
solutions to (1) in Sobolev and Hölder spaces. Further, we investigate a few consequences of our findings.

The primary motivation for the study of the Isaacs equations comes from the two-players, zero-sum, (stochastic) 
differential games. See [18] and [17]. In this context, solutions to (1) are, at least formally, value functions for the 
associated differential game. This fact is consequential on the Dynamic Programming Principle, together with further 
considerations from game theory. Applications of this theory are in problems of competitive advertising, duopolistic 
competition and models of resource extraction; see, for example, [35].
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The theory of viscosity solutions led to important advances regarding (1). We refer the reader to [14], [12] and 
[27]. We emphasize the well-posedness for (1), representation formulas, optimality conditions for the solutions and 
the existence of value functions for the associated game. See [15], [16], [32], [3] and [4] and the references therein. 
Representation formulas for viscosity solutions to (degenerate) parabolic equations is the subject of [19]. For a survey 
on the topic, we refer the reader to [2].

The interest in the regularity of the solutions to (1) is in two aspects. First, it is an example of a non-convex/non-
concave equation; hence, the Evans–Krylov theory does not apply to (1). In fact, the best results holding in general 
are estimates in C1,γ and W 2,μ, for some γ and μ, universal. We refer the reader to [23], [24] and [26]. See further 
[7]. In addition, any fully nonlinear elliptic equation can be written as an Isaacs operator; see [5, Remark 1.5]. This 
fact stems from the ellipticity and the structure of the Pucci’s extremal operators.

The regularity theory for the equations of the form (1) is launched in [5]. In that paper, the authors study

F(D2u) := min
{
F∧(D2u),F∨(D2u)

}
= 0 in B1, (2)

where F∧ and F∨ are, respectively, concave and convex elliptic operators. In this case, they prove that solutions are 
in C2,γ

loc (B1). In addition, the authors establish the existence of solutions to the Dirichlet problem for (2) with merely 
continuous boundary data.

A similar problem is examined in [11]. In that paper, the author produces a priori estimates for the solutions to

F(D2u) := F∧(D2u) + F∨(D2u) = 0 in B1. (3)

In particular, the author shows that classical solutions have estimates in C2,γ .
As regards nonconvex equations, we mention [10]. In that paper, the authors consider an homogeneous fully non-

linear equation governed by a nonconvex operator. Under assumptions on the level sets of the operator the authors 
prove that smooth solutions have estimates in C2,γ .

The regularity of the solutions to (1) in Sobolev spaces is the subject of [20]. The author supposes that Aα,β is 
a diagonal, separable matrix, Lipschitz-continuous with respect to α and β and independent of x. In this setting, he 
proves that classical solutions are in W 2,p(B1) for every p > 1. Since solutions are required to be of class C2, this 
result is closer to the realm of a priori estimates than to the regularity theory. We refer the reader to [30] for a neat 
remark on the distinction between a priori estimates and regularity theory.

Hölder continuity for the gradient of the solutions is the subject of [22]. In that paper, the author proves that 
solutions are in C1,γ

loc (B1), for some universal γ ∈ (0, 1). In addition, the author proves a convergence rate for a 
finite-differences scheme that approximates solutions.

As regards approximating solutions to (1), we mention [9]. In that paper, the authors define a family (Eε)ε∈E of 
approximate operators; these are inspired by the theory of nonlocal equations. The authors prove that solutions uε to 
the PDE governed by Eε are in C1,γ

loc (B1), uniformly in ε > 0. Moreover, uε is a classical solution for every ε > 0. 
Finally, they obtain a convergence rate of the form

‖uε − u‖L∞(B1) ≤ Cεν,

for some small ν > 0, where u solves (1).
In [21], the author examines a very particular example of (1). Under conditions on the geometry of the domain, he 

proves estimates in Hölder and Sobolev spaces.
In spite of significant developments, the regularity theory for the Isaacs equation is far from being complete. In 

[28], the authors produce an example of a singular solution to the Isaacs equation. Then, estimates in C1,1 are not 
available in general.

In [1], the authors consider fully nonlinear (λ, �)-elliptic operators F which are differentiable at the origin. Under 
this assumption, they prove the existence of a number ε = ε(λ, �, d) and a set 	 ⊂ B1 such that: i. solutions to 
F(D2u) = 0 satisfy u ∈ C2,γ (B1 \ 	) and ii. the Hausdorff dimension of 	 is at most d − ε. Unfortunately, this 
(partial) result does not apply to the Isaacs equation, as mentioned by the authors. Being homogeneous of degree one, 
were the Isaacs operator differentiable at the origin, it would be linear.

An important aspect of (1) is that most mechanisms to access regularity fail in the context of this equation. For 
example, consider the geometric method introduced in [6]. In that paper, the author approximates a fully nonlinear 
elliptic operator F(M, x) by its counterpart with fixed coefficients F(M, x0). Then, assumptions are imposed on the 
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latter. The goal is to import regularity from F(M, x0) to the original problem. Typically, the assumptions placed on 
F(M, x0) are satisfied when this operator is convex. In the case of the Isaacs equation, this condition fails to hold for 
the fixed coefficients operator is of the form

sup
α∈A

inf
β∈B

[−Tr
(
Aα,β(x0)M

)]
.

More recently, and in the spirit of [6], an asymptotic technique was introduced. In [31], the authors consider a fully 
nonlinear elliptic operator F : S(d) →R and define the recession function associated with F as follows:

F ∗(M) := lim
μ→0

μF(μ−1M).

In this approach, assumptions are placed on the recession operator F ∗. In the case of the Isaacs equation, it falls short. 
Because this equation is positive homogeneous of degree one, the recession function recovers the Isaacs operator, 
yielding no further information.

In the present paper, we approximate (1) by a Bellman equation of the form

inf
β∈B

[
−Tr

(
Aβ(x)D2v

)]
= 0 in B1, (4)

where Aβ : B1 ×B → R
d2

is a (λ, �)-elliptic matrix. We work under a smallness regime for the quantity∣∣Aα,β(x) − Aβ(x)
∣∣ ;

distinct smallness regimes yield different regularity results; see Section 2.2.
We observe that, for every x0 ∈ B1, the Bellman equation (4) is convex with respect to the Hessian. Therefore, the 

Evans–Krylov theory is available and solutions are locally of class C2,γ , for some universal γ ∈ (0, 1). At the core of 
our arguments is the idea of importing regularity from a Bellman equation to the Isaacs one.

Our first result regards estimates in Sobolev spaces. It includes operators with explicit dependence on the gradient. 
That is, we study equations of the form

sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(x)D2u

)
− bα,β(x) · Du

]
= f in B1, (5)

where bα,β : B1 ×A ×B → R
d is a given vector field. We prove the following theorem:

Theorem 1.1 (Estimates in Sobolev spaces). Let u ∈ C(B1) be a viscosity solution to (5). Let d < p < q . Suppose that 
Assumptions A1–A4, to be detailed in Section 2.2, are in force. Then, u ∈ W

2,p
loc (B1) and

‖u‖W 2,p(B1/2)
≤ C

(
‖u‖L∞(B1)

+ sup
α∈A

sup
β∈B

∥∥bα,β

∥∥
Lp(B1)

+ ‖f ‖Lp(B1)

)
,

where C > 0 is a universal constant.

The proof of Theorem 1.1 unfolds along three main steps. First, our approximation methods build upon 
W 2,μ-estimates. It produces W 2,p-regularity for the solutions of (1), i.e., the equation without dependence on the 
gradient, for d < p < q . Then, we follow [33] and prove W 1,p-estimates for the solutions of (5). Finally, a reduction 
argument closes the proof. As a consequence of Theorem 1.1, we produce estimates in John–Nirenberg spaces. See 
Remark 3.1.

Our second result regards the borderline case. That is, the regularity of solutions in C1,Log-Lip
loc (B1).

Theorem 1.2 (Estimates in C1,Log-Lip). Let u ∈ C(B1) be a viscosity solution to (1). Suppose that Assumptions A1 and 
A5, to be detailed in Section 2.2, are in force. Let x0 ∈ B1/2. Then, u ∈ C1,Log-Lip

loc (B1) and

sup
x∈Br (x0)

|u(x) − [u(x0) + Du(x0) · x]| ≤ C
(‖u‖L∞(B1)

+ ‖f ‖Lp(B1)

)(−r2 ln r
)

,

where C > 0 is a universal constant and 0 < r ≤ 1/2.
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As regards the borderline case, we use Theorem 1.2 to produce estimates for the gradient in John–Nirenberg spaces. 
This result relies upon the notion of recession function and relates to [9].

Finally, we refine the smallness regime and examine estimates in C2,γ . In this setting, we access distinct regularity 
profiles by imposing further conditions on the source term. Our last theorem reads as follows:

Theorem 1.3 (Estimates in C2,γ ). Let u ∈ C(B1) be a viscosity solution to (1). Suppose that Assumptions A1 and A6, 
to be detailed in Section 2.2, are in force.

1. Then, there exists γ ∈ (0, 1) such that u is of class C2,γ at the origin.
2. If f ≡ 0, u ∈ C2,γ

loc (B1) and there is a universal constant C > 0 such that

‖u‖C2,γ (B1/2)
≤ C ‖u‖L∞(B1)

.

The remainder of this paper is structured as follows: in Section 2.1 we collect preliminary definitions and elemen-
tary facts. Section 2.2 details the main assumptions under which we work. We present the proof of Theorem 1.1 in 
Section 3. The proof of Theorem 1.2 is the subject of Section 4, whereas Section 5 presents the proof of Theorem 1.3.

Acknowledgements: We are grateful to Prof. Andrzej Święch for suggesting the use of approximation methods in the 
study of the Isaacs equation. We also thank Prof. Boyan Sirakov, Prof. Andrzej Święch and Prof. Eduardo Teixeira for 
their interest, suggestions and valuable comments on this material. We are also grateful to an anonymous referee for 
his/her comments and suggestions, which improved substantially the material in this paper. We are partially supported 
by FAPERJ (Grant # E-26.200.002-2018/BBP) and PUC-Rio start-up and baseline funds.

2. Preliminaries and main assumptions

In what follows, we put forward some preliminary notions and material and detail our main assumptions.

2.1. Elementary notions

Next, we collect a number of definitions and elementary results. Throughout the paper, Br denotes the ball of radius 
r > 0 centered at the origin; Q stands for the unit cube in Rd .

Let 0 < λ ≤ �. An operator F : S(d) → R is said to be (λ, �)-elliptic if

λ‖N‖ ≤ F(M + N) − F(M) ≤ �‖N‖,
holds for every M, N ∈ S(d) with N ≥ 0. Analogously, a matrix A : B1 →R

d2
is (λ, �)-elliptic if

λ Id ≤ A(x) ≤ � Id,

for every x ∈ B1. Next we introduce two definitions.

Definition 2.1 (Pucci’s extremal operators). The Pucci’s extremal operators M±
λ,� : S(d) → R are defined as follows:

M+
λ,�(M) := �

∑
ei>0

ei + λ
∑
ei<0

ei and M−
λ,�(M) := �

∑
ei<0

ei + λ
∑
ei>0

ei,

where ei are the eigenvalues of M .

The extremal operators are of paramount importance for the theory of fully nonlinear elliptic equations. In partic-
ular, they allow us to define the class of (λ, �)-viscosity solutions.

Definition 2.2 (Class of viscosity solutions). Let f ∈ C(B1). A function u ∈ C(B1) is in the class of supersolutions 
S(λ, �, f ) if

M−
λ,�(D2u) ≤ f in B1,
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in the viscosity sense. In addition, u ∈ C(B1) is in the class of subsolutions S(λ, �, f ) if

M+
λ,�(D2u) ≥ f in B1,

in the viscosity sense. The class of (λ, �)-viscosity solutions is the set

S(λ,�,f ) := S(λ,�,f ) ∩ S(λ,�,f ).

Let O ⊂R
d be a C1,1 bounded domain. A paraboloid of opening M ∈ R is a function PM : O →R of the form

PM(x) := 
(x) + M

2
|x|2,

where 
 :O →R is an affine function.

Definition 2.3. Let u ∈ C(O). We set

�(u,O)(x) := inf
M∈R

{∃PM |PM(x) = u(x) and PM(y) ≥ u(y), ∀y ∈ O}
and

�(u,O)(x) := inf
M∈R

{∃PM |PM(x) = u(x) and PM(y) ≤ u(y), ∀y ∈ O} .

Finally,

�(u,O)(x) := max
{
�(u,O)(x), �(u,O)(x)

}
.

Definition 2.4. Let O ⊂R
d , u ∈ C(O) and M > 0. We set

GM(u,O) := {x ∈O | ∃PM s.t. PM(x) = u(x) and PM(y) ≥ u(y) ∀y ∈O} ,

GM(u,O) := {x ∈O | ∃PM s.t. PM(x) = u(x) and PM(y) ≤ u(y) ∀y ∈O}
and

GM(u,O) := GM(u,O) ∩ GM(u,O).

In addition, we have

AM(u,O) := O \ GM(u,O), AM(u,O) := O \ GM(u,O)

and

AM(u,O) := O \ GM(u,O).

The next lemma relates the Lp-norms of the function �(u, O) with norms of u in Sobolev spaces.

Lemma 2.1. Let p ∈ (d/2, +∞). If u ∈ W 2,p(O), we have

‖�(u,O)‖Lp(O) ≤ C ‖u‖W 2,p(O) ,

where C = C(d, p) is a nonnegative constant.

Proof. For the proof of Lemma 2.1, we refer the reader to [25, Lemma 2.5]. �
Lemma 2.2. Let O ⊂R

d . Suppose u ∈ W 2,p(O). Then, there exists C > 0 such that

|At(u,O)| ≤ Ct−p.
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Proof. Because u ∈ W 2,p(O), Lemma 2.1 yields �(u, O) ∈ Lp(O). Therefore, there exists C > 0 satisfying

| {x ∈ O |�(u,O) > t} | ≤ Ct−p.

Finally, notice that

At(u,O) ⊂ {x ∈O |�(u,O) > t} . �
We proceed by collecting elementary results on the Calderón–Zygmund decomposition and the maximal function; 

refer to [7].

Lemma 2.3 (Calderón–Zygmund cube decomposition). Let A ⊂ B ⊂ Q be measurable sets and σ ∈ (0, 1). For a 
dyadic cube K , denote by K its (unique) predecessor. If

|A| ≤ σ

and

|A ∩ K| ≥ σ |K| ⇒ K ⊂ B,

then

|A| ≤ σ |B|.

Lemma 2.4. Let h :O →R be a measurable, nonnegative, function. For t > 0, define

μh(t) := | {x ∈O |h(x) > t} |.
Fix ν > 0 and M > 1; for p > 1, define

S :=
∞∑

k=1

Mpkμh(νMk).

Then, h ∈ Lp(O) if and only if S < ∞. Moreover, there exists a positive constant C = C(ν, p, M) such that

C−1S ≤ ‖h‖p

Lp(O)
≤ C (|O| + S) .

In the sequel, we detail the main assumptions under which we work in this paper.

2.2. Principal assumptions

In this section, we detail our main assumptions. We begin with the uniform ellipticity of the operators.

A 1 (Uniform ellipticity). We suppose the matrix Aα,β : B1 ×A ×B →R
d2

is (λ, �)-elliptic.

Our next assumption describes the smallness regime required to prove Sobolev regularity.

A 2 (Smallness regime – Sobolev estimates). We suppose that Aβ : B1 ×B → R
d2

satisfies∣∣Aα,β(x) − Aβ(x)
∣∣ ≤ ε1

uniformly in x, α and β , and

‖f ‖Lp(B1)
≤ ε1,

where ε1 > 0 is a number to be determined further in the paper.

Notice that A1 and A2 imply that Aβ is also (λ, �)-elliptic. Now, we suppose that solutions to our limiting problem 
have estimates in W 2,q , for q > d fixed.
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A 3 (W 2,q -estimates for the approximate problem). Let r ∈ (0, 1) and d < p < q . Let h ∈ C(Br) be a viscosity solution 
to

inf
β∈B

[
−Tr

(
Aβ(x)D2h

)]
= 0 in Br. (6)

Then, h ∈ W 2,q (Br) ∩ C(Br+) and there exists a universal constant C > 0 such that

‖h‖W 2,q (Br )
≤ C.

It is reasonable to suppose that solutions to (6) have estimates in W 2,q(Br). For example, this would follow from 
[7, Theorem 7.1] provided the oscillation of Aβ with respect to its fixed-coefficients counterpart is controlled in the 
Lq -sense. That is, the quantity

�x0(x) := sup
β∈B

∣∣Aβ(x) − Aβ(x0)
∣∣

satisfies a smallness regime of the form⎛⎜⎝ −
ˆ

Br (x0)

∣∣�x0(x)
∣∣d dx

⎞⎟⎠
1
d

� 1/2.

We consider more general formulations of the Isaacs equation, when establishing estimates in Sobolev spaces. The 
following is an assumption on the coefficient of the lower-order terms.

A 4 (Vector field bα,β ). We suppose that bα,β ∈ LP (B1) uniformly. That is,

sup
α∈A

sup
β∈B

∥∥bα,β

∥∥
Lp(B1)

≤ C,

for some C > 0.

We proceed by introducing further smallness regimes. As concerns the source term f , we make assumptions on its 
norms in BMO spaces. Let x0 ∈ B1 and take r0 := dist(x0, ∂B1). We denote by 〈f 〉x0,r0

the following quantity:

〈f 〉x0,r0
:= −

ˆ

Br0 (x0)

|f (x)|dx;

for convenience, we set 〈f 〉0,1 ≡ 〈f 〉.
The next assumption regards the smallness regime used in the study of C1,Log-Lip-regularity for (1).

A 5 (Smallness regime – estimates in C1,Log-Lip).

1. We suppose that, for every x0 ∈ B1,

sup
x∈Br0

∣∣Aα,β(x) − Aβ(x0)
∣∣ ≤ ε2,

uniformly in α and β .
2. Furthermore, the source term satisfies

sup
r∈(0,r0]

−
ˆ

Br (x0)

∣∣f (x) − 〈f 〉r0,x0

∣∣p dx ≤ ε
p
2 ,

for every x0 ∈ B1. As before, ε2 > 0 will be determined further in the paper.

Lastly, we describe the smallness regime required to produce estimates in C2,γ for the solutions of (1).
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A 6 (Smallness regime – estimates in C2,γ ). We suppose that

sup
x∈Br

sup
α∈A

sup
β∈B

∣∣Aα,β(x) − Aβ

∣∣ ≤ ε3r
γ .

Moreover, the source term satisfies

−
ˆ

Br

|f (x)|pdx ≤ ε
p

3 rγp.

As before, ε3 > 0 will be determined further in the paper.

3. Estimates in Sobolev spaces

In this section, we present the proof of Theorem 1.1. We start with a result on the regularity in W 2,p for the solutions 
to (1). That is, the equation without dependence on the gradient. In this setting, we prove the following proposition.

Proposition 3.1. Let u ∈ C(B1) be a viscosity solution to (1). Let d < p < q . Suppose A1–A3 are in force. Then, 
u ∈ W

2,p
loc (B1) and

‖u‖W 2,p(B1/2)
≤ C

(‖u‖L∞(B1) + ‖f ‖Lp(B1)

)
,

where C > 0 is a universal constant.

After that, we argue as in [33] and prove W 1,p estimates for (5).

Theorem 3.1 (Estimates in W 1,p). Let u ∈ C(B1) be a viscosity solution to (5). Suppose A1–A4 are in force. Then, for 
every p ∈ (1, ∞), we have u ∈ W

1,p
loc (B1) and there exists C > 0 such that

‖u‖W 1,p(B1/2)
≤ C

(‖u‖L∞(B1)
+ ‖f ‖Lp(B1)

)
.

To conclude the proof of Theorem 1.1, we resort to a reduction argument. Next, we detail the proof of Proposi-
tion 3.1.

3.1. Proof of Proposition 3.1

We proceed with an estimate in W 2,μ.

Lemma 3.1. Let u ∈ C(B1) be a viscosity solution to (1). Then, there exist universal constants C > 0 and μ > 0 such 
that

|At(u,B1) ∩ Q| ≤ Ct−μ, (7)

for every t > 0.

The first version of Lemma 3.1 has appeared in [26] and addressed the linear case. In [7, Lemma 7.4] the authors 
have proven the result for fully nonlinear elliptic operators. Next, an approximation lemma relates the solutions of (1)
to an auxiliary function. Regularity properties for the latter imply a refinement of the decay rate in (7).

Proposition 3.2 (First Approximation Lemma). Let u ∈ C(B1) be a viscosity solution to (1). Suppose A1–A3 are in 
force. Then, there exists h ∈ W 2,q(B7/8) ∩ C(B8/9) such that

‖h‖W 2,q (B7/8)
≤ C

and

‖u − h‖L∞(B7/8)
≤ C1

(
ε
γ

1 + ‖f ‖L∞(B1)

)
,

where C1 = C1(d, λ, �, C, q, p) and γ = γ (d, λ, �, C, q, p) are nonnegative constants.
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Proof. Consider the function h ∈ C(B8/9), solution to{
infβ∈B

[−Tr
(
Aβ(x)D2h

)] = 0 in B8/9

h = u on ∂B8/9.

Because of A3, we have

‖h‖W 2,q (B7/8)
≤ C.

In addition, standard results in interior Hölder regularity imply

‖u‖Cγ (B8/9)
≤ C

(‖u‖L∞(B1)
+ ‖f ‖Lp(B1)

)
(8)

and

‖h‖
C

γ
2 (B8/9)

≤ C
(‖u‖L∞(B1)

+ ‖f ‖Lp(B1)

)
, (9)

for some γ ∈ (0, 1).
Next, we fix δ ∈ (0, 1/2) and take x0 ∈ B8/9−δ ; clearly Bδ(x0) ⊂ B8/9. Take x1 ∈ ∂Bδ(x0); by applying 

W 2,q -estimates to the function h(x) − h(x1) in Bδ(X0), we conclude∥∥∥D2h

∥∥∥
Lq(Bδ/2(x0))

≤ Chδ
d−2q

q ‖h − h(x1)‖L∞(∂Bδ(x0))

≤ Cδ
d−2q

q
+ γ

2
(‖u‖L∞(B1)

+ ‖f ‖Lp(B1)

)
,

where the second inequality follows from (9); therefore,∥∥∥D2h

∥∥∥
Lq(B8/9−δ)

≤ Cδ
d−2q

q
+ γ

2 −d (‖u‖L∞(B1) + ‖f ‖Lp(B1)

)
.

By A2 we obtain∣∣∣∣sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(x0)D

2h(x0)
)]∣∣∣∣≤ C(d)ε1

∥∥∥D2h(x0)

∥∥∥ ,

for x0 ∈ B8/9−δ . Then,∥∥∥∥sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(x)D2h(x)

)]∥∥∥∥
Lp(B8/9−δ)

≤ C(d)ε1

∥∥∥D2h

∥∥∥
Lq(B8/9−δ)

≤ C(d)ε1δ
d−2q

q
+ γ

2 −d (‖u‖L∞(B1)
+ ‖f ‖Lp(B1)

)
. (10)

We combine (8) and (9) to obtain

‖u − h‖L∞(B8/9−δ)
≤ Cδ

γ
2
(‖u‖L∞(B1)

+ ‖f ‖Lp(B1)

)
. (11)

By gathering the information in (10) and (11) and using the maximum principle, we get

‖u − h‖L∞(B8/9−δ)
≤ Cδ

γ
2
(‖u‖L∞(B1)

+ ‖f ‖Lp(B1)

)+ C ‖f ‖Lp(B8/9−δ)

+ C(d)ε1δ
d−2q

q
+ γ

2 −d (‖u‖L∞(B1) + ‖f ‖Lp(B1)

)
≤
(

Cδ
γ
2 + C(d)ε1δ

d−2q
q

+ γ
2 −d

)(‖u‖L∞(B1) + ‖f ‖Lp(B1)

)
+ C ‖f ‖Lp(B1)

.

To conclude the proof, we set

δ := ε

q
dq + 2q − d

1 and γ := γ q

2(dq + 2q − d)

and observe that B7/8 ⊂ B8/9−δ . �



62 E.A. Pimentel / Ann. I. H. Poincaré – AN 36 (2019) 53–74
Lemma 3.2. Let u ∈ C(B1) be a viscosity solution to (1). Suppose that A1–A3 are in force. Suppose further that

−|x|2 ≤ u(x) ≤ |x|2 in B1 \ B6/7.

Then, there exist M > 1 and σ ∈ (0, 1) such that

|GM(u,B1) ∩ Q| ≥ 1 − σ.

Proof. Let h be the approximate function from Proposition 3.2. Extend h outside B7/8 to have

h ≡ u in B1 \ B8/9

and

‖u − h‖L∞(B1) = ‖u − h‖L∞(B7/8) .

A standard application of the maximum principle yields ‖h‖L∞(B7/8)
≤ 1. Therefore,

−2 − |x|2 ≤ h(x) ≤ |x|2 + 2 in B1 \ B7/8. (12)

In addition, we conclude from Proposition 3.2 that h ∈ W 2,q (B7/8). By combining this fact with (12), we secure the 
existence of a constant C > 0 for which

|At(h,B1) ∩ Q| ≤ Ct−q . (13)

Next, define the auxiliary function

v := u − h

2C1ε
γ

1

.

We have that

v ∈ S

(
λ,�,

f

2C1ε
γ

1

)
satisfies the assumptions of Lemma 3.1. Hence,

|At(u − h,B1) ∩ Q| ≤ Cε
γμ

1 t−μ.

Write M ≡ 2t to obtain

|AM(u,B1) ∩ Q| ≤ |AM/2(u − h,B1) ∩ Q| + |AM/2(h,B1) ∩ Q|

≤ Cε
γμ

1

(
M

2

)−μ

+ C

(
M

2

)−q

.

By taking ε1 small enough and choosing M appropriately, we conclude the proof. �
We notice that, because d < p < q , there will always exist a constant M allowing us to conclude the proof of 

Lemma 3.2. This is a rigorous instance where the (intuitive) requirement p < q is binding for the theory.

Lemma 3.3. Let u ∈ C(B1) be a viscosity solution to (1). Suppose A1–A3 hold. Let Q be a cube such that Q ⊂ Q. If

G1(u,B1) ∩ Q �= ∅,

we have

|GM(u,B1) ∩ Q| ≥ 1 − σ,

for some M > 1.
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Proof. Because G1(u, B1) ∩ Q is nonempty, there exists x0 ∈ B1 and an affine function 
(x) such that

−|x − x0|2
2

≤ u(x) − 
(x) ≤ |x − x0|2
2

in B1. Next, choose C3 > 0 to guarantee that

v(x) := (u − 
)(x)

C3

satisfies ‖v‖L∞(B1)
≤ 1 and

−|x|2 ≤ v(x) ≤ |x|2 in B1 \ B6/7.

Therefore, Lemma 3.2 yields

|GM(v,B1) ∩ Q| ≥ 1 − σ.

Set M := C3 M ; we conclude that

|GM(u,B1) ∩ Q| = |GC3M
(u,B1) ∩ Q| = |GM(v,B1) ∩ Q| ≥ 1 − σ,

which finishes the proof. �
We note that, in the remainder of this section, the constant M refers to M := C3M .

Lemma 3.4. Let u ∈ C(B1) be a viscosity solution to (1). Suppose A1–A3 are in force. Extend f by zero outside of B1
and set

A := AMk+1(u,B1) ∩ Q

and

B := (
AMk(u,B1) ∩ Q

) ∪
{
x ∈ Q |m (f p

) ≥
(
CMk

)p}
.

Then,

|A| ≤ σ |B|.

Proof. In what follows, we make use of the Calderón–Zygmund decomposition. Lemma 3.2 yields

|GMk+1(u,B1) ∩ Q| ≥ |GM(u,B1) ∩ Q| ≥ |GC3M
(u,B1) ∩ Q| ≥ 1 − σ.

The definition of A implies then

|A| ≤ σ.

Set K := Q1/2i (x0) and denote by K the predecessor of K . To conclude the proof we must verify(|AMk+1(u,B1) ∩ K| = |A ∩ K| > σ |K|) ⇒ K ⊂ B. (14)

We proceed by contradiction; suppose K �⊂ B . Then, there exists x1 satisfying both

x1 ∈ K ∩ GMk(u,B1) (15)

and

m(f p)(x1) < (CMk)p. (16)

We introduce an affine transformation T : Q → K , given as follows:

T (y) := x0 + y

i
.

2
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Then, consider the auxiliary function

u(y) := 22i

Mk
(u ◦ T )(y) = 22i

Mk
u
(
x0 + y

2i

)
.

We proceed by verifying that u satisfies the assumptions of Lemma 3.3. Notice that

D2u(y) = 1

Mk
D2u

(
x0 + y

2i

)
;

therefore,

sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β

(
x + y

2i

)
D2u

)]
= f in B1,

where

f (y) := f (x0 + 2−iy)

Mk
.

We have∥∥f ∥∥p

Lp(B2−i )
= 2i(2−d)

Mkp

ˆ

B2−i (x0)

|f (x)|pdx ≤ ε
p

1 ,

where the last inequality stems from (16). From (15) we infer that

G1(u,B2−i (x0)) ∩ Q �= ∅.

As a consequence, we obtain

|GM(u,B2−i (x0)) ∩ Q| ≥ (1 − σ)|Q|.
That is,

|GMk+1(u,B1) ∩ K| ≥ (1 − σ)|K|,
which contradicts (14) and finishes the proof. �

Next, we complete the proof of Proposition 3.1.

Proof of Proposition 3.1. To prove the proposition, it suffices to verify that

∞∑
k=1

Mpk|AMk(u,B1/2)| ≤ C, (17)

for some constant C > 0. Consider the quantities

ak := |AMk(u,B1) ∩ Q| and bk :=
∣∣∣{x ∈ Q |m(f p)(x) ≥ (CMk)p

}∣∣∣ .
The following inequality is due to Lemma 3.4:

ak+1 ≤ ak + bk.

Hence,

ak ≤ σk +
k−1∑
i=0

σk−ibi .

It is clear that f q ∈ Lp/q(B1); as regards the maximal function, it implies m(f q) ∈ Lp/q(B1) and∥∥m(f q)
∥∥

p/q ≤ C ‖f ‖q
p ≤ C,
L (B1) L (B1)
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for some C > 0. Elementary properties of the maximal functions imply

∞∑
k=0

Mpkbk ≤ C.

We have found that

∞∑
k=1

Mpkak ≤
∞∑

k=1

(σMp)k +
∞∑

k=1

k−1∑
i=0

σk−iMp(k−i)Mpibi

≤
∞∑

k=1

(σC3M
p
)k +

∞∑
k=1

k−1∑
i=0

σk−iMp(k−i)Mpibi

≤
∞∑

k=1

2−k +
( ∞∑

i=0

Mpibi

)⎛⎝ ∞∑
j=1

2−j

⎞⎠
≤ C.

This finishes the proof. �
Now, we continue with the proof of Theorem 3.1. We follow closely the arguments in [33].

3.2. Proof of Theorem 3.1

We start with an approximation lemma:

Proposition 3.3 (Second Approximation Lemma). Let u ∈ C(B1) be a viscosity solution to (5). Suppose A1–A3 and A4
are in force. For every δ > 0 it is possible to choose ε1 > 0 so that there exists h ∈ W

2,q
loc (B1) satisfying{

infβ∈B
[−Tr

(
Aβ(x)D2h(x)

)] = 0 in B8/9

h = u on ∂B8/9,
(18)

with

‖h‖W 2,q (B1/2)
≤ C (19)

and

‖u − h‖L∞(B7/8) ≤ δ,

for some C > 0, universal.

Proof. We prove the proposition by contradiction. Suppose its statement is false. There would be a sequence 
(An

α,β)n∈N of matrices An
α,β : B1 ×A ×B → R

d2
, a sequence (bn

α,β)n∈N of vector fields bn
α,β : B1 ×A ×B → R

d and 
sequences of functions (un)n∈N and (fn)n∈N satisfying

sup
α∈A

inf
β∈B

[
−Tr

(
An

α,β(x)D2un

)]
= fn in B1, (20)

with ∣∣∣An
α,β(x) − Aβ(x)

∣∣∣ +
∥∥∥bn

α,β

∥∥∥
Lp(B1)

+ ‖fn‖Lp(B1)
<

1

n

such that

‖un − h‖L∞(B7/8) > δ0

for some δ0 > 0 and every solution h to
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inf
β∈B

[
−Tr

(
Aβ(x)D2h

)]
= 0 in B8/9.

The regularity theory available for (20) implies that un converges, through a subsequence if necessary, to a function 
u∞ in the Cν -topology; see, [33, Lemma 1.9]. Standard results on the stability of viscosity solutions yield

inf
β∈B

[
−Tr

(
Aβ(x)D2u∞

)]
= 0 in B8/9;

see, for example, [33, Lemma 1.7]. Because of A3, we have u∞ ∈ W
2,q
loc (B1). By setting h ≡ u∞ we obtain a contra-

diction and complete the proof. �
In the sequel, Proposition 3.3 builds upon scaling properties of (5) to produce integral estimates for the gradient of 

solutions.

Proof of Theorem 3.1. The proof is similar to the one in [33, Theorem 2.1]. We omit the details here. �
Theorem 3.1 is instrumental in proving Theorem 1.1. It shows that estimates in W 1,p can be accessed through 

approximations by a Belllman operator.

3.3. Proof of Theorem 1.1

Here, we conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. We know that u solves (5) pointwise a.e. in B1; see [8]. Set

g(x) := sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(x)D2u(x)

)]
.

We have

|g(x)| ≤ sup
α∈A

sup
β∈B

∣∣bα,β(x)
∣∣ + |f (x)| ∈ Lp(B1),

because of Theorem 3.1. Standard results on the equivalence of solutions imply that u solves

sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(x)D2u(x)

)]
= g(x) in B1

in the viscosity sense. We refer the reader to [33, Corollary 1.6]; see also [13, Theorem 3.3]. The result follows from 
Proposition 3.1. �
Remark 3.1. Once regularity in W 2,p is available, it is possible to produce estimates for the Hessian of the solutions 
in John–Nirenberg spaces. It amounts to establishing the existence of a universal constant C > 0 for which

sup
r

−
ˆ

Br

∣∣∣D2u −
〈
D2u

〉
r

∣∣∣p dx ≤ C
(‖u|L∞(B1)

+ ‖f ‖Lp(B1)

)
.

The former estimate follows from two main ingredients. First, notice that Proposition 3.3 can be easily adapted to 
produce a value of ε1 > 0 and a constant 0 < ν � 1/2 so that

sup
x∈Bν

|u(x) − Pν(x)| < ν2,

where Pν is a paraboloid satisfying ‖Pν‖ ≤ C. Then, an induction argument builds upon the previous inequality to 
prove the existence of a sequence of approximating polynomials. We refer the reader to [31], [34] and [29] for further 
details.
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Remark 3.2. We observe that Theorem 1.1 also implies estimates for the solutions to (5) in Hölder spaces. Since 
D2u ∈ L

p
loc(B1) for d < p < q , it yields u ∈ C1,γ ∗

loc (B1), with

γ ∗ := min

{
γ0, 1 − d

q

}
,

where γ0 is the exponent from the Krylov–Safonov theory. Therefore, the regularity of the approximate problem 
prevents γ ∗ = min

{
γ0,1−}.

4. Estimates in C1,Log-Lip
loc (B1)

Next, we examine the regularity of solutions to (1) in C1,Log-Lip
loc (B1). We start with an approximation lemma.

Proposition 4.1. Let u ∈ C(B1) be a viscosity solution to (1). Suppose A1 and A5.1 are in force and ‖f ‖Lp(B1)
� 1. 

For every δ > 0, it is possible to choose ε2 = ε2(δ) > 0 to ensure the existence of h ∈ C2,γ

loc (B1) satisfying{
infβ∈B

[−Tr
(
Aβ(0)D2h

)] = 0 in B8/9

h = u in ∂B8/9,
(21)

with

‖h‖C2,γ (B1/2)
≤ C (22)

and

‖u − h‖L∞(B7/8)
≤ δ.

Moreover, the constants C > 0 and γ ∈ (0, 1) are universal.

Proof. Except for minor modifications, the result follows along the same lines as in the proof of Proposition 3.3. �
Proposition 4.2. Let u ∈ C(B1) be a viscosity solution to (1). Suppose A1 and A5 are in force. There exists 0 < ρ � 1
and a sequence of polynomials (Pn)n∈N, given by

Pn(x) := an + bn · x + 1

2
xT Cnx,

satisfying:

inf
β∈B

Tr
(
Aβ(0)Cn

) = 〈f 〉 , (23)

sup
Bρn

|u(x) − Pn(x)| ≤ ρ2k (24)

and

|an − an−1| + ρn−1|bn − bn−1| + ρ2(n−1)|Cn − Cn−1| ≤ Cρ2(n−1), (25)

for all n ≥ 0.

Proof. For ease of presentation, we split the proof in four steps.

Step 1

We prove the result by induction in n ∈N. Set P−1 = P0 = (1/2)xT Qx, where Q is such that

inf
[−Tr

(
Aβ(0)Q

)] = 〈f 〉 .

β∈B
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The case n = 0 is clear. Suppose the case n = k has been verified. We consider the case n = k + 1. Define an auxiliary 
function vk : B1 →R as

vk(x) := (u − Pk)(ρ
kx)

ρ2k
.

Notice that

D2vk(x) = D2u(ρkx) − Ck.

Therefore, vk solves

sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(ρkx)(D2vk + Ck)

)]
= fk in B1, (26)

and

fk(x) := f (ρkx).

Step 2

In what follows, we examine (26). Our goal is to approximate vk by suitable functions. We use A5 to conclude

‖fk − 〈fk〉‖p

Lp(B1)
= 1

|ρkd |
ˆ

B
ρk

∣∣f (y) − 〈f 〉ρk

∣∣p dy

≤ sup
r∈(0,1]

−
ˆ

Br

∣∣f (y) − 〈f 〉r
∣∣p dy

≤ ε
p
2 .

Furthermore, we note that∣∣∣Aα,β(ρkx) − Aβ(0)

∣∣∣ ≤ ε2.

Consider next a function v ∈ C(B1), viscosity solutions to

inf
β∈B

[
−Tr

(
Aβ(0)D2v

)]
= 0;

due to the Evans–Krylov theory, we have v ∈ C2,γ

loc (B1), with

‖v‖C2,γ (B1/2)
≤ C∗.

However,

inf
β∈B

[−Tr
(
Aβ(0)Ck

)] = 〈f 〉 .

Therefore, solutions to

inf
β∈B

[
−Tr

(
Aβ(0)(D2h + Ck)

)]
= 〈f 〉 in B1

also satisfy h ∈ C2,γ

loc (B1), with

‖h‖C2,γ (B1/2)
≤ C = C(〈f 〉 ,C∗).
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Step 3

We verify, consequential on Step 2, that Proposition 4.1 is available for vk . I.e., there exists a function h ∈ C2,γ

loc (B1)

such that

‖vk − h‖L∞(B1/2)
≤ δ.

Set

P k(x) := h(0) + Dh(0) · x + 1

2
xT D2h(0)x

and apply the triangular inequality to find that

sup
Bρ

|vk(x) − P k(x)| ≤ δ + Cρ2+γ . (27)

Now, we make the following (universal) choices for both δ and ρ:

δ := ρ2

2
and ρ :=

(
1

2C

) 1
γ

. (28)

By combining (27) with (28), we obtain

sup
Bρ

|vk(x) − P k)| ≤ ρ2,

which amounts to

sup
B

ρk+1

∣∣∣u(x) − [Pk(x) + ρkP k(x)]
∣∣∣ ≤ ρ2(k+1). (29)

Finally, set

Pk+1(x) := Pk(x) + ρkP k(x − x0).

Step 4

The definition of Pk+1 together with (29) produces the k + 1-th step for (24). In addition, Ck+1 = Ck + D2h(0); 
therefore,

inf
β∈B

Tr
(
Aβ(0)Ck+1

) = 〈f 〉 ,

which verifies the case n = k + 1 for (23). To conclude the proof, we note that

ak+1 = ak + ρ2kh(0), bk+1 = bk + ρkDh(0) and Ck+1 = Ck + D2h(0);
hence, the (k + 1)-th step for (25) amounts to ensure that

|h(0)| + |Dh(0)| + |D2h(0)| ≤ C.

However, this inequality follows from the regularity of h. �
Proof of Theorem 1.2. Without loss of generality, we prove the result at the origin. The proof is consequential on the 
following observation. From (25) we conclude that (an)n∈N and (bn)n∈N are convergent sequences. Moreover,

|an − u(0)| ≤ Cρ2n and |bn − Du(x)| ≤ Cρn;
hence, an → u(x0) whereas bn → Du(x0). As regards, the sequence (Cn)n∈N, we claim that

|Cn| ≤ nC;
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in fact,

|C1| = |C1 − C0| ≤ C.

If the case n = k has been verified, we have

|Ck+1| ≤ C + |Ck| ≤ C + kC = (k + 1)C.

Let r ∈ (0, 1/2) be given. Choose k ∈N so that ρk+1 < r ≤ ρk . The previous computations yield

sup
Br(0)

|u(x) − [u(0) + Du(0) · x]| ≤ ρ2k + |u(0) − ak| + ρ|Du(0) − bk|

+ ρ2k|Ck|
≤ Cr2 ln r−1,

producing the result at the origin. A change of variables concludes the proof. �
Remark 4.1. Minor modifications to the ideas in Remark 3.1 build upon Theorem 1.2 to yield p−BMO regularity for 
Du. The key aspect in this setting is to produce a sequence of approximating affine functions, instead of approximating 
polynomials. Refer to [34] for further details.

5. Estimates in C2,α
loc (B1)

In this section, we detail the proof of Theorem 1.3. We start with a proposition.

Proposition 5.1. Let u ∈ C(B1) be a viscosity solution to (1). Suppose A1 and A6 are in force. There exists a sequence 
of polynomials (Pn)n∈N, of the form

Pn(x) := an + bn · x + 1

2
xT Cnx,

with P0 ≡ P−1 ≡ 0, and a number ρ ∈ (0, 1/2) satisfying

inf
β∈B

[−Tr
(
AβCn

)] = 0, (30)

‖u − Pn‖L∞(Bρn ) ≤ ρn(2+γ ) (31)

and

|an − an−1|+ρn−1|bn − bn−1| + ρ2(n−1) ‖Cn − Cn−1‖ ≤ Cρ(n−1)(2+γ ), (32)

for every n ≥ 0.

Proof. We present the proof in four steps. As before, we argue by induction in n ≥ 0. The case n = 0 is obvious. 
Suppose we have established the case n = k. Next we study the case n = k + 1.

Step 1

Consider the function vk : B1 →R defined by

vk(x) := (u − Pk)(ρ
kx)

ρk(2+γ )
.

Notice that vk solves

1

ργk
sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(ρkx)(ργ kD2vk(x) + Ck)

)]
= fk(x) (33)
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with

fk(x) := f (ρkx)

ργ k
.

Step 2

In what follows, we approximate vk by a suitable function. Set Mk := ργkM + Ck and compute∣∣∣∣sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(ρkx)Mk

)]
− inf

β∈B
[−Tr

(
AβMk

)]∣∣∣∣
≤ sup

α∈A
sup
β∈B

∣∣∣Tr
[(

Aα,β(ρkx) − Aβ

)
Mk

]∣∣∣
≤ sup

x∈B1

sup
α∈A

sup
β∈B

∣∣∣Aα,β(ρkx) − Aβ

∣∣∣ ∥∥∥ργkM + Ck

∥∥∥
≤ C(d)ε3ρ

γk
∥∥∥ργkM + Ck

∥∥∥
≤ C(d)ε3ρ

γk (‖M‖ + ‖Ck‖) ,

where the third inequality follows from A6. Because (32) has been checked for n = k, we have

‖Ck‖ ≤ C(1 − ρk−1)

1 − ρ
≤ C

1 − ρ
≤ C̃.

Hence,

1

ργk

∣∣∣∣sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(ρkx)Mk

)]
− inf

β∈B
[−Tr

(
AβMk

)]∣∣∣∣
≤ C(d)C̃ε3 (1 + ‖M‖) . (34)

In addition, A6 yields

‖fk‖p

Lp(B1)
= 1

ργk

ˆ

B1

∣∣∣f (ρkx)

∣∣∣p dx = 1

ργk
−
ˆ

B
ργ k

|f (y)|p dy ≤ ε
p
3 . (35)

In the sequel, we gather (34) and (35) with standard stability results for viscosity solutions. Then, we conclude that 
for every δ > 0 there is a choice of ε3 = ε3(δ) that ensures the existence of h ∈ C(B8/9) solving{

1
ργ k infβ∈B

[−Tr
(
Aβ(ργ kD2h(x) + Ck)

)] = 0 in B8/9

h = vk on ∂B8/9,
(36)

with

‖vk − h‖L∞(B8/9)
≤ δ. (37)

The (universal) choice of δ in the next step of this proof determines ε3 in A6.
Following, we examine the regularity of h. We notice that

inf
β∈B

[
−Tr

(
Aβ

Ck

ργ k

)]
= 1

ργk
inf
β∈B

[−Tr
(
AβCk

)] = 0, (38)

where the second equality follows from (30) together with the induction hypothesis. Moreover,

0 = 1

ργk
inf
β∈B

[
−Tr

(
Aβ

(
ργkD2h + Ck

))]
= inf

β∈B

[
−Tr

(
Aβ

(
D2h + Ck

ργk

))]
.

The Evans–Krylov theory implies that
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inf
β∈B

[
−Tr

(
AβD2v

)]
= 0 in B8/9

has C2,γ -estimates with

‖v‖C2,γ (B1/2)
≤ C,

where γ ∈ (0, 1) and C > 0 are universal constants. Combining this fact with (38), we conclude that h ∈ C2,γ

loc (B1)

with

‖h‖C2,γ (B1/2)
≤ C.

Then,∥∥∥∥h −
[
h(0) + Dh(0) · x + 1

2
xT D2h(0)x

]∥∥∥∥
L∞(Bρ)

≤ Cρ2+γ . (39)

Step 3

Now we combine (37) with (39) and use the triangular inequality to show that∥∥∥∥vk −
[
h(0) + Dh(0) · x + 1

2
xT D2h(0)x

]∥∥∥∥
L∞(Bρ)

≤ δ + Cρ2+γ .

By setting

δ := ρ2+γ

2
, ρ :=

(
1

2C

) 1
γ−γ

and

P k(x) := h(0) + Dh(0) · x + 1

2
xT D2h(0)x,

we obtain∥∥vk − P k

∥∥
L∞(Bρ)

≤ ρ2+γ . (40)

Step 4

In what follows, we define the polynomial Pk+1 and conclude the proof. In light of the definition of vk, (40) leads 
to

sup
x∈B

ρk+1

∣∣∣u(x) − Pk(x) − ρk(2+γ )P k(ρ
−kx)

∣∣∣ ≤ ρ(k+1)(2+γ ).

Therefore, by setting Pk+1(x) := Pk(x) + ρk(2+γ )P k(ρ
−kx), we get

‖u − Pk+1‖L∞(B
ρk+1 ) ≤ ρ(k+1)(2+γ ).

This verifies (31). As regards (30), notice that Ck+1 = Ck + ργkD2h(0); hence, (36) implies

inf
β∈B

[−Tr
(
AβCk+1

)] = 0.

To verify (32), observe that

|ak+1 − ak| ≤ ρk(2+α)h(0),

ρk |bk+1 − bk| ≤ ρk(2+α)Dh(0),

and

ρ2k ‖Ck+1 − Ck‖ ≤ ρk(2+α)D2h(0);
finally, use the C2,γ -estimates available for h. This finishes the proof. �
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We close this section with the proof of Theorem 1.3.

Proof of Theorem 1.3. We first prove Assertion 1.; in view of Proposition 5.1, there exists a polynomial P ∗ such that 
Pn → P ∗, uniformly in B1. The regularity of the approximate function h ensures that

|DP ∗(0)| +
∥∥∥D2P ∗(0)

∥∥∥ ≤ C.

Moreover, for every n ∈N we have∥∥u − P ∗∥∥
L∞(Bρn )

≤ Cρn(2+γ );
see [7, Chapter 8; p.76]. For Assertion 2., we notice the result follows from a change of variables argument. This 
concludes the proof of the theorem. �
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[32] A. Święch, Another approach to the existence of value functions of stochastic differential games, J. Math. Anal. Appl. 204 (3) (1996) 884–897.
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