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Abstract

We consider a continuously differentiable curve t �→ γ (t) in the space of 2n × 2n real symplectic matrices, which is the solution 
of the following ODE:

dγ

dt
(t) = J2nA(t)γ (t), γ (0) ∈ Sp(2n,R),

where J = J2n
def=
[

0 Idn

− Idn 0

]
and A : t �→ A(t) is a continuous path in the space of 2n ×2n real matrices which are symmetric. 

Under a certain convexity assumption (which includes the particular case that A(t) is strictly positive definite for all t ∈ R), we 
investigate the dynamics of the eigenvalues of γ (t) when t varies, which are closely related to the stability of such Hamiltonian 
dynamical systems. We rigorously prove the qualitative behavior of the branching of eigenvalues and explicitly give the first order 
asymptotics of the eigenvalues. This generalizes classical Krein–Lyubarskii theorem on the analytic bifurcation of the Floquet 
multipliers under a linear perturbation of the Hamiltonian. As a corollary, we give a rigorous proof of the following statement of 
Ekeland: {t ∈ R : γ (t) has a Krein indefinite eigenvalue of modulus 1} is a discrete set.
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1. Introduction

1.1. The introduction of the model and the main assumption

We consider linear Hamiltonian equations in R2n of the following type

dγ

dt
(t) = J2nA(t)γ (t), γ (0) ∈ Sp(2n,R), (1)

where J = J2n
def=
[

0 Idn

− Idn 0

]
and A : t �→ A(t) is a continuous periodic curve in the space of 2n ×2n real matrices 

which are symmetric with the periodicity T . The unique solution is a curve in the space of real symplectic matrices 
such that

γ (t + T )γ (T )−1 = γ (t)γ (0)−1. (2)

The system (1) arises naturally from perturbations of linearized Hamiltonian equations. Indeed, let ε ∈ R be a real
perturbation parameter. Consider

∂γ

∂t
(t, ε) = J2nA(t, ε)γ (t, ε), γ (0, ε) = Id2n, (3)

where t �→ A(t, ε) is a locally integrable periodic curve in the space of 2n × 2n real matrices which are symmetric 
and periodic with the periodicity T . Moreover, we assume that ε �→ (A(t, ε), t ∈ [0, T ]) is a continuously Fréchet-
differentiable curve in L1[0, T ]. Then, for fixed T , as ε varies, the endpoint matrix γ (T , ε) is a C1-curve satisfying (1). 
More precisely,

∂

∂ε
γ (T , ε) = γ (T , ε)J2nC(T , ε) = J2nB(T , ε)γ (T , ε), (4)

where

C(T , ε) = −γ (T , ε)T J2n

∂

∂ε
γ (T , ε) =

T∫
0

γ (t, ε)T
∂

∂ε
A(t, ε)γ (t, ε)dt (5)

and B(T , ε) = (γ (T , ε)−1)T C(T , ε)γ (T , ε)−1, where the superscript “T ” denotes the transpose of matrices. Note 
that both C and B are symmetric real matrices and they are continuous in ε. We refer to Section A for the second 
inequality in (5).

Let us go back to the system (1) and recall that a matrix γ is called stable if supn∈Z ||γ n|| < ∞. We say that 
the system (1) is stable if the matrix γ (T ) is stable. By (2), we have that supt∈R ||γ (t)|| < ∞ if γ (T ) is stable. 
A symplectic matrix γ is called strongly stable if there exists a neighborhood of γ in the space of symplectic matrices 
containing only stable symplectic matrices. We say that the system (1) is strongly stable if γ (T ) is strongly stable as a 
symplectic matrix. In this case, when the system (1) is slightly perturbed, it is still a stable system. The picture is not 
clear in general if we perturb a stable but not strongly stable system.

The stability is closely related to the eigenvalues of a symplectic matrix. We give a brief explanation in the follow-
ing. For more details, please refer to [1, Sections 1.1 and 1.2]. The eigenvalues of a symplectic matrix come in 4-tuple 
like {λ, λ−1, ̄λ, ̄λ−1} and hence it is stable iff it is diagonalizable and all its eigenvalues stay on the unit circle U ⊂C. 
The characterization of strong stability was firstly formulated by Krein [4,5], and later independently by Moser [10], 
as stated in the following: a symplectic matrix γ is strongly stable iff it is stable and all its eigenvalues are Krein 
definite. To be more precise, let G = −√−1J be the Krein form which gives a Hermitian form on C2n via

(x, y)G = √−1

{
n∑

k=1

(xkȳn+k − xn+kȳk)

}
. (6)

Then, an eigenvalue λ ∈ U is said to be Krein positive (resp. negative) definite if the Hermitian form (x, y) �→ (x, y)G
is positive (resp. negative) definite on the invariant space Eλ associated with the eigenvalue λ, see Subsection 2.1 for 
the definition of Eλ. It is called Krein indefinite if the Hermitian form (x, y) �→ (x, y)G is indefinite on Eλ.
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Under the convexity assumption that A(t) is strictly positive definite for all t ∈ R, Ekeland [1, Section 1.3] has 
investigated the system (1) when γ (0) = Id. Among various results, Ekeland has claimed that the following set is 
isolated:

D
def= {t : γ (t) has a Krein indefinite eigenvalue on U}, (7)

see [1, Proposition 4, Section 1.3]. However, later, in [1, Erratum], Ekeland wrote that “The proof of Proposition 4 
(and probably the proposition itself) is wrong”, and he proved a weaker statement for continuous t �→ A(t): D is a 
finite union of isolated sets Dm, where

Dm
def=
{
t ∈ D : all Krein indefinite eigenvalues of γ (T ) have algebraic multiplicity

at most m and one of them having exactly multiplicity m

}
,

see Pages 1 and 2 in [1, Erratum].
We prove that the original statement of Ekeland is still correct under the following weaker assumption on A:

A(t) is strictly positive definite on ker(ω · Id−γ (t)) for all t ∈ R and ω ∈ U. (8)

Theorem 1.1. For the system (1) with continuous (but not necessarily periodic) t �→ A(t), if (8) holds, then the set D
defined in (7) is discrete.

To understand the system (1) and prove Theorem 1.1, we need to study the dynamics of the eigenvalues and the 
associated Krein forms as t varies. There is a rather complete answer for linear perturbations of Hamiltonians of 
Krein positive type. To be more precise, consider the endpoint matrix γ (T , ε) of the system (3) with ε ∈ C and 
A(t, ε) = H(t) + εQ(t), where H(t) and Q(t) are both 2n × 2n Hermitian matrices. The perturbation is said to be of 
Krein positive type if Q is non-negative definite and the equation dx

dt
= JH(t)x has no solution x(t) 	≡ 0 for which 

Q(t)x(t) = 0 (almost everywhere) and x(T ) = ωx(0) with |ω| = 1.
Although ε is complex, by similar arguments, we see that (4) and (5) also hold. And the condition of Krein positive 

type perturbation implies the condition (8) by replacing t by ε, A(t) by B(T , ε) and γ (t) by γ (T , ε). In this special 
case, Krein–Lyubarskii theorem [6] asserts the analytic properties of the eigenvalues and the eigenvectors.

Theorem 1.2 (Krein–Lyubarskii). Consider the system (3) with A(t, ε) = H(t) +εQ(t) and assume the perturbation is 
of Krein positive type. Suppose that ε0 ∈ R and that λ0 ∈ U is an eigenvalue of γ (T , ε0). Then, as ε varies from ε0, λ0
continuously branches into κ-many eigenvalues, where κ = dim ker(λ0 ·Id−γ (T , ε0))

2n is the algebraic multiplicity of 
λ0. These eigenvalues are grouped into m-groups, where m = dim ker(λ0 · Id−γ (T , ε0)) is the geometric multiplicity 
of λ0. Each group of eigenvalues forms a multi-valued analytic function with Puiseux expansions: for i = 1, . . . , m,

λi(ε) − λ0 =
∞∑

k=1

ci,k(ε − ε0)
k
ji ,

where the numbers j1, . . . , jm are the sizes of Jordan blocks associated with the eigenvalue λ0. In each of the expan-
sions, the first coefficient ci,1 (i = 1, . . . , m) is non-zero. For each group of eigenvalues λi(ε), the eigenvalues branch 
from λ0 with tangents as ε ∈ R increases from ε0. These tangents form a ji -star with the same angle between consec-
utive tangents. As ε decreases from ε0, the trajectories of eigenvalues also form another ji-star. These two stars differ 
from each other by a rotation of π

ji
radians. Among these 2ji many tangents, exactly two are tangential to the circle 

at λ0. If the trajectory of an eigenvalue branching from λ0 is tangential to the circle U at λ0 as ε varies, then that 
eigenvalue is Krein definite and moves on the circle U in a definite direction for ε sufficiently close to ε0.

See Fig. 1 for illustrations of a 2-star and a 3-star. The arrows indicate moving directions of the eigenvalues as ε
increases.

Remark 1.1. The eigenvectors also admit expansions in Puiseux series as the eigenvalues, see [12].
In the proof of the above theorem, they also gave a recursive way to calculate ci,1 via the matrix Q and the 

generalized eigenvectors of γ (T , ε) associated with λ0. In the special case that m = 1 or j1 = · · · = jm = 1, such an 
expression were obtained earlier by Gelfand and Lidskii [2]. It also implies that Krein positive (resp. negative) definite 
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Fig. 1. Bifurcation of eigenvalues.

eigenvalues move counter-clockwise (resp. clockwise) on the circle as the perturbation parameter ε increases along 
the real axis. If several eigenvalues collide on the circle from Uc, then, necessarily, a Krein indefinite eigenvalue with 
non-trivial Jordan blocks (Jordan blocks of size ≥ 2) is created. When several eigenvalues of different Krein types 
meet at λ0 on the circle, they will continue their movement along the circle iff the geometric multiplicity of λ0 equals 
to its algebraic multiplicity.

Particularly, Krein–Lyubarskii theorem implies Theorem 1.1 for the curve ε �→ γ (T , ε) given by (3) when A(t, ε) =
H(t) + εQ(t). Indeed, by Krein–Lyubarskii theorem, for all ε0 ∈ R, there exists δ = δ(ε0) > 0 such that for ε ∈
(ε0 − δ, ε0) ∪ (ε0, ε0 + δ), the eigenvalues on the circle are Krein definite.

We would like to obtain a C1-version of Krein–Lyubarskii theorem for the system (1) and prove that D is isolated. 
For general C1-perturbations, the eigenvalues and eigenvectors are no longer multi-valued analytic functions. Instead, 
we aim to give the first order asymptotic of the deviation of eigenvalues and to verify similar qualitative behavior of 
the dynamics of eigenvalues.

The argument of Krein and Lyubarskii doesn’t directly apply. Their proof relies on a key lemma, which interprets 
the perturbation parameter ε as an eigenvalue of a certain self-adjoint integral operator depending on ω ∈ U , see the 
lemma in [6, Section 1]. In this step, the linearity of the perturbation ε �→ H(t) + εQ(t) is crucially used. Beyond 
the scope of linear perturbations of Hamiltonians, if we assume the analyticity of ε �→ A(t, ε) and follow their idea, 
we may encounter self-adjoint integral operators G(ε, ω) depending on two parameters ε ∈ R and ω ∈ U . We have to 
show that {(ω, ε) : 0 is an eigenvalue of G(ε, ω)} is actually the graph of an analytic function in ω, which we regard 
as a difficult question in general. Besides, more seriously, their argument depends heavily on the analyticity of the 
system. This rules out the possibility of studying C1-perturbations of the system by following their argument.

Ekeland has investigated the system (1) when γ (0) = Id, t �→ A(t) is continuous and A(t) is strictly positive 
definite symmetric matrices for all t , see [1]. It was proved that the moving direction of a Krein definite eigenvalue is 
determined by its Krein type: as t increases a bit, the Krein positive (resp. negative) definite eigenvalues of γ (t) move 
counter-clockwise (resp. clockwise). Krein indefinite eigenvalues appear when Krein positive definite eigenvalues 
meet Krein negative definite eigenvalues. He has also described the branching of a Krein indefinite eigenvalue of 
γ (t) when t varies from t0 if γ (t0) = Id: if γ (t0) = Id, then there exists ε0 > 0 such that for t ∈ (t0, t0 + ε0] (resp. 
t ∈ [t0 − ε0, t0)), the eigenvalues of γ (t) are all located on the unit circle, the eigenvalues on the upper semi circle are 
all Krein positive (resp. negative) definite and move counter-clockwise (resp. clockwise), while the eigenvalues on the 
lower part are all Krein negative (resp. positive) definite and move clockwise (resp. counter-clockwise). We remark 
that the condition γ (0) = Id is not essential in the above results of Ekeland. It suffices to have γ (0) ∈ Sp(2n, R).

In the same book, Ekeland has commented that the spirit of the branching mechanism of a Krein indefinite eigen-
value should be the same as in the special case of linear perturbations of Hamiltonians studied by Krein and Lyubarskii. 
Note that a related result can be found in [7] of Kuwamura–Yanagida. However, to the best of our knowledge, there is 
no rigorous proof in general.

In the present paper, we focus on the first order term under the assumption (8) (but without any restriction on the 
multiplicities of the eigenvalues). Naturally, to study the branching of Krein indefinite eigenvalues e

√−1θ0 ∈ U of 
γ (0), we need information on the Jordan blocks associated with e

√−1θ0 . We need to introduce several notations for 
a precise statement of our C1-version of Krein–Lyubarskii theorem. Note that there is a basis {ξi,j }i=1,...,m;j=1,...,ji

of the invariant space E
e
√−1θ0

(γ (0)) = ker(e
√−1θ0 · Id−γ (0))2n associated with the eigenvalue e

√−1θ0 of the matrix 

γ (0) such that m is the number of the Jordan blocks associated with the eigenvalue e
√−1θ0 of the matrix γ (0), 
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j1 ≥ j2 ≥ · · · ≥ jm ≥ 1 are the sizes of the Jordan blocks and {ξi,j }i,j are the corresponding eigenvectors, i.e., for 
i = 1, . . . , m and j = 1, . . . , ji , we have that

γ (0)ξi,j = e
√−1θ0ξi,j − ξi,j−1 for j = 1, . . . , ji , (9)

with ξi,0 = 0 and that

{ξi,j }i=1,...,m;j=1,...,ji
is a linear basis of E

e
√−1θ0

(γ (0)). (10)

Note that j1 ≥ · · · ≥ jm ≥ 1 is not necessarily strictly decreasing. We break the sequence {ji}i at the position where 
a strict decrease occurs. So, there are integers s ≥ 1, m1, . . . , ms ≥ 1, n1 > n2 > · · ·ns ≥ 1 such that for � = 1, . . . , s, 
the integer number n� is the �-th largest size of Jordan blocks (in the strict sense) and there are exactly m� many 
blocks with the same size n�. Hence, the total number of blocks m =∑s

�=1 m� and for � = 1, . . . , s, we have that

ji = n�, for
∑

1≤k<�

mk + 1 ≤ i ≤
∑

1≤k≤�

mk. (11)

Sometimes, it is convenient4 to use the following sequence of vectors {ηi,j }i=1,...,m;j=1,...,ji
instead of the sequence 

{ξi,j }i=1,...,m;j=1,...,ji
, where

ηi,j
def=
(
−√−1e

√−1θ0
)j

ξi,j , (12)

for i = 1, . . . , m and j = 1, . . . , ji . We need to introduce more notations to present our results. Define an m ×m square 
matrix S, which represents the metric 〈A(0)·, ·〉 on the space of eigenvectors associated with e

√−1θ0 :

Si,i′ = 〈A(0)ηi,1, ηi′,1〉 = 〈A(0)ξi,1, ξi′,1〉, i, i′ = 1, . . . ,m. (13)

We define an m × m square matrix X by

Xi,i′ = (ηi,ji
, ηi′,1)G = (−1)ji−1

√−1
ji
e(ji−1)

√−1θ0〈ξi,ji
, J2nξi′,1〉, i, i′ = 1, . . . ,m. (14)

We write S and X in blocks as follows:

S =
⎡
⎢⎣

S(1,1) · · · S(1,s)

...
. . .

...

S(s,1) · · · S(s,s)

⎤
⎥⎦ and X =

⎡
⎢⎣

X(1,1) · · · X(1,s)

...
. . .

...

X(s,1) · · · X(s,s)

⎤
⎥⎦ , (15)

where S(�,�′) and X(�,�′) are m� × m�′ matrices for �, �′ = 1, . . . , s. A nice feature of X is that X is upper triangular in 
block sense and the diagonal blocks are Hermitian, see Corollary 2.4.

Theorem 1.3. Consider the system (1) and assume (8). Suppose that e
√−1θ0 (θ0 ∈ R) is an eigenvalue of γ (0). Recall 

the notations introduced in (9), (10), (11), (13), (14) and (15).

a) As t varies from 0, the eigenvalue e
√−1θ0 branches continuously into 

∑s
�=1 m�n� many eigenvalues with multi-

plicities, namely {λ�,p,q(t)}�=1,...,s;p=1,...,m�;q=1,...,n�
.

For � = 1, . . . , s, reordering {λ�,p,q(t)}q=1,...,n�
if necessary, we have that

λ�,p,q(t) − e
√−1θ0

√−1e
√−1θ0

t→0∼
{

sgn(ta�,p)|a�,pt | 1
n� e

2π
n�

√−1(q−1)
if n� is odd,

|a�,pt | 1
n� e

2π
n�

√−1(q−1)
e

π
2n�

√−1(1−sgn(ta�,p))
if n� is even,

(16)

where sgn denoted the sign function, (a�,p)p=1,...,m�
are non-zero real numbers and they are exactly the roots with 

multiplicities of the following polynomial in z

4 As we shall see in (14), it helps to simplify the definition of X. Besides, the equation (26) is simpler in terms of {ηi,j }: (ηi,j , ηi′,j ′ )G =√−1(ηi,j+1, ηi′,j ′ )G − √−1(ηi,j , ηi′,j ′+1)G .
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det

⎡
⎢⎢⎢⎣

S(1,1) · · · S(1,�−1) S(1,�)

...
. . .

...
...

S(�−1,1) · · · S(�−1,�−1) S(�−1,�)

S(�,1) · · · S(�,�−1) S(�,�) − zX(�,�)

⎤
⎥⎥⎥⎦ . (17)

b) There exists δ0 > 0 such that for t ∈ (−δ0, 0) ∪ (0, δ0), � = 1, . . . , s and p = 1, . . . , m�, (λ�,p,q(t))q=1,...,n�

have different behaviors depending on the parity of n� and the sign of ta�,p: if n� is odd, then the eigenval-
ues (λ�,p,q(t))q=2,...,n�

stay outside of the unit circle U , and λ�,p,1 is Krein positive definite on U (resp. Krein 
negative definite) if ta�,p > 0 (resp. ta�,p < 0). If n� is even and ta�,p < 0, then (λ�,p,q(t))q=1,...,n�

stay outside 
of the unit circle U ; if n� is even and ta�,p > 0, then λ�,p,1(t) ∈ U is Krein positive definite, λ�,p,n�/2+1(t) ∈ U is 
Krein negative definite, and the other λ�,p,q(t) stay outside of U .

Remark 1.2. Note that X(�,�) is Hermitian and non-degenerate, see Corollary 2.4. By Sylvester’s law of inertia, the 
number �{p = 1, . . . , m� : a�,p > 0} equals the positive index of inertia of X(�,�). Hence, the instant moving directions 
of the eigenvalues (when t increases (or decreases) from 0), is purely determined by γ (0) under the assumption (8). 
When t is sufficiently close to 0, the number of the Krein positive (or negative) definite eigenvalues depends only on 
γ (0).

Remark 1.3. If we replace “positive definiteness” by “negative definiteness” in (8), i.e.,

A(t) is strictly negative definite on ker(ω · Id−γ (t)) for all t ∈R and ω ∈ U, (18)

then, all the results still hold under a time reversal t �→ γ (t). But if we remove “positive” from (8), i.e., if we assume

A(t) is strictly definite on ker(ω · Id−γ (t)) for all t ∈ R and ω ∈ U, (19)

then the system is a mixture of positive and negative systems, which is locally decomposable. To be more precise, 
we denote by �+(t) (resp. �−(t)) the eigenvalues ω on the unit circle U such that A(t) is strictly positive (resp. 
negative) definite on ker(ω · Id−γ (t)). Under the condition (19), the Hausdorff distance between the two sets �+(t)

and �−(t) is strictly positive and lower semi-continuous in t . By Lemma B.1, locally as t varies, the eigenvalues 
are separated into two groups. The first group corresponds to a possibly smaller system satisfying (8) and the second 
group corresponds to a system satisfying (18).

The proof of Theorem 1.3 a) is different from previous argument by Krein, Lyubarskii and Ekeland. Besides, our 
argument is direct and elementary. We analyze the asymptotics of coefficients of the characteristic polynomial of 
γ (t). This is linked to the Jordan structure of the symplectic matrix via exterior products of linear maps. By continuity 
of roots depending on the coefficients of a certain properly normalized polynomial, we deduce the asymptotics of 
eigenvalues. This part is some sort of blowup analysis. For the part b) of Theorem 1.3, we use Theorem 1.3 a) together 
with a local C1-approximation of t �→ γ (t) by analytic symplectic paths. Indeed, Theorem 1.3 a) provides an upper 
bound for the number of Krein definite eigenvalues on the circle by first order asymptotics of the eigenvalues. On the 
other hand, the approximation argument provides matching lower bounds. However, such an approximation argument 
alone is not sufficient to predict the movement of eigenvalues. We have to combine it with the monotonicity of a certain 
index function, see Claim 4.1. As an intermediate step, in the appendix, we sketch the argument of Theorem 1.3 when 
t �→ A(t) is real analytic.

1.2. Organization of the paper

We collect definitions and notations, prepare some useful properties in Section 2. We prove Theorem 1.3 a) in 
Section 3 and Theorem 1.3 b) in Section 4. We sketch the argument of Theorem 1.3 for the analytic case in Section C.
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2. Preliminaries

2.1. Notations and definitions

• For two positive integers m and n, we denote by Mm×n(C) (resp. Mm×n(R)) the set of m ×n complex (resp. real) 
matrices. When m = n, we use the notations Mn(C) and Mn(R) for simplicity. For a square matrix, we define its 
size as the number of rows in the matrix.

• For a matrix M , we denote by MT the transpose of M . For a complex matrix M , we denote by M∗ the conjugate 
transpose of M .

• For n ≥ 1, we denote by Idn the n × n identity matrix and define J2n
def=
[

0 Idn

− Idn 0

]
. Then, J ∗

2n = J T
2n = −J2n

and J 2
2n = − Id.

• For a vector space V and a finite number of subspaces {Vi}i∈I , we denote by 
∑

i∈I Vi the sum of the vector spaces ∑
i∈I Vi .

• For vectors v1, . . . , vn in a vector space V , we denote by ∧n
j=1vj the exterior product v1 ∧ v2 ∧ · · · ∧ vn. (Note 

that ∧ is associative.) We denote by �n(V ) the linear span of all such ∧n
j=1vj and denote by �(V ) the direct sum ⊕

n≥0 �n(V ) with the convention that �0(V ) = {0}. For a totally ordered set P = {p1, . . . , pn} with p1 ≺ p2 ≺
· · · ≺ pn and vectors (vp)p∈P indexed by P , we denote by ∧p∈P vp the exterior product vp1 ∧ vp2 ∧ · · · ∧ vpn . 
(Note that �(V ) is a vector space. Hence, if we take (vp)p∈P from the vector space �(V ), then we define the 
exterior products of exterior products in a consistent manner.)

• For m ≥ 1, the inner product 〈·, ·〉 on Cm is defined by

〈x, y〉 =
m∑

j=1

xj ȳj .

Then, for x, y ∈ C
2n,

(x, y)G = √−1〈x,J2ny〉 = −√−1〈J2nx, y〉 = √−1

{
n∑

k=1

(xnȳn+k − xn+kȳk)

}
.

• For n ≥ 1 and a linear subspace V of C2n, we denote by V ⊥G the symplectic orthogonal complement of V , i.e.,

V ⊥G = {x ∈ C
2n : (x, y)G = 0,∀y ∈ V }.

The linear subspace V is symplectic if V ∩ V ⊥G = {0}. When V is a linear subspace of R2n, we replace C2n by 
R

2n in the above definition.
• For a k × k complex valued matrix M and an eigenvalue λ of M , the geometric multiplicity of λ is defined as 

dim ker(λ · Id−M) and the algebraic multiplicity is defined as dimker(λ · Id−M)k . We denote by Eλ = Eλ(M)

the invariant subspace of Ck , i.e.,

Eλ = {x ∈C
k : (λ · Id−M)kx = 0}.

• Denote by p(λ, t) the characteristic polynomial of the matrix γ (t), i.e.,

p(λ, t) = det(λ · Id−γ (t)).

2.2. Exterior powers of linear maps

We recall exterior powers of a linear map A and its relation with its determinant det(A).
Starting from several linear maps on a vector space V , there are many ways to combine them to define multi-linear 

skew symmetric maps (or equivalently, linear maps on the exterior products �m(V ) of V ). We follow the construction 
in [11, Section 3.7]. For natural numbers k ≤ m, the author defines a linear map on �m(V ) by taking certain “skew 
symmetrization” of tensors of k many linear maps A with m − k many identity maps. For our purpose, it suffices to 
take m to be the dimension of V . But we need a slightly generalization to allow the combination of three linear maps 
A1, A2 and the identity map. We introduce these notations in the following definition.
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Definition 2.1. Let A : V → V be a linear map on an n-dimensional vector space V . For k = 0, . . . , n, we define the 
exterior powers 

∧
(n, k, A) : �n(V ) → �n(V ) as a linear map as follows:∧

(n, k,A)(v1 ∧ · · · ∧ vn)
def=

∑
σ∈{0,1}n:∑i σi=k

∧n
i=1(σi · Avi + (1 − σi) · vi).

Similarly, for two linear maps A1, A2 : V → V , for two integers k1, k2 = 0, . . . , n, we define the linear map ∧
(n, k1, k2, A1, A2) : �n(V ) → �n(V ) as follows:∧

(n, k1, k2,A1,A2)(v1 ∧ · · · ∧ vn)

def=
∑

σ∈{0,1,2}n:∑i 1σi=1=k1,
∑

i 1σi=2=k2

∧n
i=1(1σi=1 · A1vi + 1σi=2 · A2vi + 1σi=0 · vi). (20)

Since �n(V ) is 1-dimensional, we identify the 
∧

(n, k, A) (or 
∧

(n, k1, k2, A1, A2)) with the unique scaling factor, 
which is also denoted by 

∧
(n, k, A) (or 

∧
(n, k1, k2, A1, A2)).

In the above definition, for each vector vi , we choose one from the three linear maps Id, A1 and A2 and apply it to 
vi . For the assignment of linear maps to the linear basis, the only constraint is that the map A1 occurs k1 many times 
and the map A2 occurs exactly k2 many times. All these assignments have equal weight.

Note that det(A) is identified with the linear map 
∧

(n, n, A) on the 1-dimensional vector space �n(V ). In partic-
ular, for an eigenvalue λ0 of the matrix γ (0), we have that

p(λ, t) = det(λ · Id−γ (t)) = det((λ − λ0) · Id+(λ0 · Id−γ (0)) − (γ (t) − γ (0)))

=
2n∑

k=0

(λ − λ0)
k

∑
k1+k2=2n−k,k1≥0,k2≥0

(−1)k2 ·
∧

(2n, k1, k2, λ0 · Id−γ (0), γ (t) − γ (0)). (21)

In the above calculation, we express the determinant by wedge powers of the sum of linear maps (λ − λ0) · Id, 
λ0 · Id−γ (0) and γ (0) − γ (t), expand it according to distributive law and collect the terms with the same times of 
occurrence, where k1 is the time of occurrence of λ0 · Id−γ (0) and k2 counts the occurrence of γ (0) − γ (t).

2.3. Continuity of roots of polynomials

Consider a polynomial with complex coefficients of degree at most n. We will need the following lemma on the 
continuity of the roots as the coefficients vary.

Lemma 2.1. Let W be a neighborhood of 0. Let Pt(z) =∑n
j=0 cj (t)z

j , where cj (t) ∈ C and t ∈ W . Suppose that 
t �→ cj (t) is continuous for j = 0, . . . , n and t ∈ W . Denote by d(t) the degree of the polynomial Pt . Suppose that 
d(t) = n for t ∈ W \ {0} and d(0) = m ≤ n. Then, there exist m continuous complex valued functions z1, . . . , zm on 
W and n − m continuous complex valued functions zm+1, . . . , zn on W \ {0} such that

• for t 	= 0, z1(t), . . . , zn(t) are roots of Pt ,
• for t = 0, z1(0), . . . , zm(0) are roots of P0,
• for i = m + 1, . . . , n, we have that limt→0 zi(t) = ∞.

Proof. By assumptions, for t0 ∈ W , Pt(z) 
t→t0→ Pt0(z) uniformly for z on compacts. Hence, for any continuous loop �

avoiding the roots of Pt0 , for t sufficiently close to t0, Pt does not vanish on � and

lim
t→t0

1

2π
√−1

∫
�

1

Pt (z)
dz = 1

2π
√−1

∫
�

1

Pt0(z)
dz. (22)

Also, note that for a simple loop avoiding the roots of Pt , 1
2π

√−1

∫
�

1
Pt (z)

dz is precisely the number of roots inside the 
loop. (The interior and exterior region are determined by the orientation of the loop.) Eventually, Lemma 2.1 holds 
since (22) holds for all continuous loops avoiding the roots of Pt0 . �
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2.4. Properties of symplectic matrices

We collect some well-known properties of symplectic matrices in this subsection. The following observations, 
although elementary, are frequently used in some calculation. For a complex number λ, the adjoint of λ · Id under 
(·, ·)G is λ̄ · Id, i.e., ∀x, y ∈C

2n, we have

(λx, y)G = (x, λ̄y)G. (23)

For a symplectic matrix γ , the adjoint of γ under (·, ·)G is γ −1, i.e., ∀x, y ∈C
2n, we have

(γ x, y)G = (x, γ −1y)G. (24)

For all symplectic subspaces V , the restriction of the Hermitian form (·, ·)G on V is non-degenerate. For a symplectic 
subspace V , if it is invariant under the linear symplectic transform γ , then so is its symplectic orthogonal complement 
V ⊥G .

The following criteria on the G-orthogonality of invariant spaces is basically [1, Proposition 5, Section 2, Chap-
ter 1].

Lemma 2.2. Let λ and μ be two eigenvalues of the symplectic matrix γ ∈ Sp(2n, R). If λμ̄ 	= 1, then the invariant 
spaces Eλ and Eμ are G-orthogonal. Consider a partition {P1, . . . , Pk} of the set of eigenvalues of γ such that each 
Pi is stable under the circular reflection z �→ z̄−1. For each i, let Ei = ∪λ∈Pi

Eλ. Then, E1, . . . , Ek is a G-orthogonal 
decomposition of C2n. In particular, when λ ∈ U , we have the following G-orthogonal decomposition of C2n:

C
2n = Eλ ⊕ Fλ, (25)

where Fλ is the direct sum of {Eμ}μ 	=λ. Hence, if λ is a simple eigenvalue on U , it is Krein definite.

The “inner product” under (·, ·)G of the generalized eigenvectors in (9) and (10) must satisfy certain algebraic 
relations:

Lemma 2.3. Suppose that λ is an eigenvalue of the symplectic matrix γ . We use the same notations
{ξi,j }i=1,...,m;j=1,...,ji

and {ηi,j }i=1,...,m;j=1,...,ji
as (9), (10), (11) and (12) for the eigenvalue λ of γ instead of the 

eigenvalue e
√−1θ0 of γ (0). For i, i′ = 1, . . . , m, j = 0, . . . , ji − 1 and j ′ = 0, . . . , ji′ − 1, we have that

(λj ξi,j , λ
j ′

ξi′,j ′)G = (λj+1ξi,j+1, λ
j ′

ξi′,j ′)G + (λj ξi,j , λ
j ′+1ξi′,j ′+1)G, (26)

with the convention that ξi,0 = 0 for all i = 1, . . . , m. In particular, when j + j ′ ≤ max(ji, ji′), we have that

(ηi,j , ηi′,j ′)G = (ξi,j , ξi′,j ′)G = 0.

For fixed i, i′ = 1, . . . , s, we have the same value (ηi,j , ηi′,j ′)G for all j = 1, . . . , ji and j ′ = 1, . . . , ji′ such that 
j + j ′ = max(ji, ji′) + 1.

Proof. Since γ is symplectic, we have that (γ v1, γ v2)G = (v1, v2)G for all v1, v2 ∈ C
2n. By taking v1 = ξi,j+1 and 

v2 = ξi′,j ′+1, we obtain (26). The rest directly follows from (26). �
Note that (x, y)G = (y, x)G. From non-degeneracy of (·, ·)G and Lemmas 2.2 and 2.3, we get

Corollary 2.4. Recall the notations (14) and (15). For � = 1, . . . , s, the matrix X(�,�) is Hermitian and non-degenerate. 
For 1 ≤ �1 < �2 ≤ s, we have that X(�2,�1) = 0.

3. Proof of Theorem 1.3 a)

As the proof of Theorem 1.3 a) is long and technical, we decide to give the sketch of the proof and provide 
some intuitive ideas in advance. Suppose λ0 = e

√−1θ0 ∈ U is an eigenvalue of γ (0). We expand the characteristic
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Fig. 2. Young diagram. Fig. 3. k �→ ϕ(k).

Fig. 4. k → ϕ(k).

Fig. 5. Boundary of the convex hull of {(k̃, ϕ̃) : k̃ = 0, . . . ,2n, ϕ̃ ∈ Z, ϕ̃ ≥ ϕ(k̃)}.

polynomial p(λ, t) = det(λ · Id−γ (t)) at e
√−1θ0 :

p(λ, t) =
2n∑

k=0

ck(t)(λ − e
√−1θ0)k. (27)

In order to study the asymptotics of the eigenvalues as t varies from 0, we study the asymptotics of the coefficients 
{ck(t)}k=0,...,2n in Lemma 3.1 in Subsection 3.1. We will illustrate the results of Lemma 3.1 and explain the way 
to prove Theorem 1.3 a) from Lemma 3.1 by a concrete example. But we will not sketch the technical proof of 
Lemma 3.1.

In Lemma 3.1, we will show that ck(t) = O(tϕ(k)) as t → 0, where ϕ(k) is a certain integer valued function in k. 
Let us precisely give the value of ϕ(k). Denote by N the algebraic multiplicity of λ0. Then, ϕ(k) is simply 0 for 
k ≥ N . For k = 0, . . . , N − 1, the value of ϕ(k) can be obtained graphically via Young diagrams as follows: we list 
the sizes of Jordan blocks associated with λ0 in non-increasing order j1 ≥ j2 ≥ · · · ≥ jm. The sequence {ji}i=1,...,m

forms a partition of N and is represented by a Young diagram. The Young diagram consists of unit squares placed 
side by side. For i = 1, . . . , m, the i-th row has exactly jm+1−i many squares. All these rows are aligned to the left. 
Please see Fig. 2 for the Young diagram associated with the partition 4 + 2 + 2 + 1 = 9. To get the value of ϕ, we fill 
the diagram with integers {0, . . . , N − 1} from the top row to the bottom row. In each row, we fill the diagram from 
the left to the right. Then, each integer k is filled in the ϕ(k)-th row from the bottom, see Fig. 3. Alternatively, from a 
finite non-increasing sequence of integers {ji}i=1,...,m, their partial sums {∑m

i=k ji}k=1,...,m form a strictly decreasing 
sequence, the upper boundary of the corresponding new Young diagram represents the graph of the function ϕ(k), see 
Fig. 4 for the same sizes of Jordan blocks as Figs. 2 and 3. The black and grey points give the graph of ϕ. (Recall that 
ϕ is set to 0 for k ≥ N and N = 9 in the above figures.)

Let us explain the difference between black and grey points in the following. Roughly speaking, the black points 
separate the Jordan blocks with different sizes. Alternatively, the black points are exactly the extremal points of the 
convex hull of the discrete domain {(k̃, ϕ̃) : k̃ = 0, . . . , 2n, ϕ̃ ∈ Z, ϕ̃ ≥ ϕ(k̃)} above the graph of ϕ, see Fig. 5. We 
will prove in Lemma 3.1 that ck(t) = O(tϕ(k)) as t → 0. For general k (corresponding to the grey dots), ϕ(k) is not 
necessarily the exact order of ck(t). However, for those k corresponding to the black dots, the order ϕ(k) is exact and 
we calculate limt→0 ck(t)t

−ϕ(k) in (35) of Lemma 3.1.
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Fig. 6. Generic intersection. Fig. 7. α = 1
2 .

Next, we sketch the proof of Theorem 1.3 a) from Lemma 3.1. We will carry out certain blow up analysis at t = 0
and λ = λ0. Take w = λ−λ0

tα
for α > 0.5 After a change of variable, we obtain another polynomial qα(w, t) from 

p(λ, t), where qα(w, t) =∑2n
k=0 ck(t)t

αkwk . Note that limt→0 qα(w, t) = 0. To obtain a non-trivial limit, we need to 
divide qα(w, t) by tβ(α), where β(α) = min{ϕ(k) + αk : k = 0, . . . , 2n}. We are interested in the limiting polynomial

rα(w) =
2n∑

k=0

lim
t→0

ck(t)t
αk−β(α) · wk.

In order to obtain limt→0
λ(t)−λ0

tα
by using Lemma 2.1, we need to answer the following questions: does rα(w) vanish? 

If not, how to describe the roots of rα(w)?
Note that the possible minimizers of ϕ(k) + αk are important to us since

lim
t→0

ck(t)t
αk−β(α) =

{
0 if k is not a minimizer,
lim
t→0

ck(t)t
−ϕ(k) if k is a minimizer.

Denote by Lα the line through the origin with the slope −α. To find the minimizers, we translate Lα upwards until 
Lα has non-empty intersection with the graph of ϕ(k) for the first time. The k-coordinates of the intersection points 
are precisely the minimizers. The intersection must contain black points since the black points are extremal points of 
the convex hull of the discrete domain above the graph of ϕ, see Fig. 5. For the k-coordinates of the black intersection 
points, the limit limt→0 ck(t)t

αk−β(α) = limt→0 ck(t)t
−ϕ(k) 	= 0. In particular, rα(w) 	≡ 0.

When 1
α

is different from the sizes of Jordan blocks associated with λ0, the minimizer kmin is the single black 
intersection point, see Fig. 6 for α = 3

4 and the same sizes of Jordan blocks as in Fig. 2. In this case, the limiting 
polynomial rα(w) consists of a single term and its roots must be zero. When 1

α
equals the size of a Jordan block 

associated with λ0, there are exactly m(α) + 1 many minimizers, where m(α) equals the number of Jordan blocks 
(associated with λ0) of the size 1

α
, see Fig. 7. The minimizers have equal distance 1

α
between each other (since the 

intermediate grey points separate Jordan blocks of the same size). By Lemma 3.1, the coefficients of the limiting 
polynomial r correspond to the sum of certain principle minors. Finally, we write r as a certain determinant and the 
asymptotics of eigenvalues are determined by the sizes of Jordan blocks and the roots of the limiting polynomial r . 
For instance, in Fig. 7, N = 9, the sizes of Jordan blocks are 4, 2, 2 and 1, and α = 1

2 corresponds to the Jordan blocks 
of size 2. The minimizers are 1, 3 and 5 and ϕ(1) = 3, ϕ(3) = 2 and ϕ(5) = 1. By Lemma 3.1, the limiting polynomial

r 1
2
(w) =

∑
k=1,3,5

lim
t→0

ck(t)t
−ϕ(k) · wk

= c9(0)w

⎛
⎝
∣∣∣∣∣∣
d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

∣∣∣∣∣∣+ w2
(∣∣∣∣d1,1 d1,2

d2,1 d2,2

∣∣∣∣+
∣∣∣∣d1,1 d1,3
d3,1 d3,3

∣∣∣∣
)

+ w4d1,1

⎞
⎠

= c9(0)w

∣∣∣∣∣∣
d1,1 d1,2 d1,3

d2,1 d2,2 + w2 d2,3

d3,1 d3,2 d3,3 + w2

∣∣∣∣∣∣ ,

5 For α = 0, the following argument simply yields the continuity of the eigenvalues of γ (t) as t varies from 0.
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where the 4 × 4 matrix d equals SX−1�, where � is a diagonal matrix with diagonal elements −λ4
0, λ2

0, λ2
0 and √−1λ0 from the top to the bottom. (Recall the definition of S and X in (13) and (14).) A non-trivial root of r 1
2
(w)

corresponds to a non-zero finite limit of limt→0
λ(t)−λ0

t
1
2

where λ(t) is an eigenvalue of γ (t). It is Hölder- 1
2 continuous 

at t = 0. The trivial root 0 of r 1
2
(w) corresponds to the zero limit of limt→0

λ(t)−λ0

t
1
2

, where λ(t) corresponds to a certain 

Jordan block of strictly smaller size and has better regularity at t = 0. The non-trivial roots of rα(w) are important 
and they are also the roots of the polynomial Q(w), where

Q(w) =
∣∣∣∣∣∣
d1,1 d1,2 d1,3

d2,1 d2,2 + w2 d2,3

d3,1 d3,2 d3,3 + w2

∣∣∣∣∣∣ . (28)

Write the matrices d , S, X and � as in (15) with s = 3:

d =

⎛
⎜⎜⎝

d1,1 d1,2 d1,3 d1,4

d2,1 d2,2 d2,3 d2,4
d3,1 d3,2 d3,3 d3,4

d4,1 d4,2 d4,3 d4,4

⎞
⎟⎟⎠ , � =

⎛
⎜⎜⎝

−λ4
0 0 0 0

0 λ2
0 0 0

0 0 λ2
0 0

0 0 0
√−1λ0

⎞
⎟⎟⎠ ,

S =

⎛
⎜⎜⎝

S1,1 S1,2 S1,3 S1,4

S2,1 S2,2 S2,3 S2,4
S3,1 S3,2 S3,3 S3,4

S4,1 S4,2 S4,3 S4,4

⎞
⎟⎟⎠ , X =

⎛
⎜⎜⎝

X1,1 X1,2 X1,3 X1,4

0 X2,2 X2,3 X2,4
0 X3,2 X3,3 X3,4

0 0 0 X4,4

⎞
⎟⎟⎠ .

By calculation in blocks, we get that⎛
⎝ d1,1 d1,2 d1,3

d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

⎞
⎠=

⎛
⎝ S1,1 S1,2 S1,3

S2,1 S2,2 S2,3
S3,1 S3,2 S3,3

⎞
⎠
⎛
⎝X1,1 X1,2 X1,3

0 X2,2 X2,3
0 X3,2 X3,3

⎞
⎠

−1⎛
⎝−λ4

0 0 0
0 λ2

0 0
0 0 λ2

0

⎞
⎠ .

Write the above equation by d̃ = S̃X̃−1�̃. Denote by Ĩ the 3 × 3 square matrix 
(

0 0
0 Id2

)
. Then, we have that

Q(w) = det(d̃ + w2Ĩ ) = det(S̃X̃−1�̃ + w2Ĩ ) = det �̃

det X̃
· det(S + w2Ĩ �̃−1X̃).

Hence, the roots of Q coincide with the root of Q̃(w), where

Q̃(w) = det(S + w2Ĩ �̃−1X̃) = det

⎧⎨
⎩
⎛
⎝ S1,1 S1,2 S1,3

S2,1 S2,2 S2,3
S3,1 S3,2 S3,3

⎞
⎠+ w2λ−2

0

⎛
⎝ 0 0 0

0 X2,2 X2,3
0 X3,2 X3,3

⎞
⎠
⎫⎬
⎭ . (29)

The above method also works in general case as we shall see in Subsection 3.2. In the formal proof, we will replace 
the geometric arguments by explicit and rigorous analysis.

We state and prove Lemma 3.1 in Subsection 3.1, where we use the exterior powers of linear maps. We deduce 
Theorem 1.3 a) from Lemma 3.1 in Subsection 3.2. The reader may firstly skip the technical proof of Lemma 3.1 and 
go directly to the proof of Theorem 1.3 a).

3.1. Proof of Lemma 3.1

Lemma 3.1. Consider the solution γ (t) ∈ Sp(2n, R) of (1) without assuming (8). Recall the notations (9), (10), (11), 
(13), (14) and (27). Denote by N = N(e

√−1θ0) the dimension of the invariant space E
e
√−1θ0

(γ (0)). (Note that N =∑m
i=1 ji .) Then, we have that

cN(0) = lim√−1θ

p(λ,0)√−1θ0 N
. (30)
λ→e 0 (λ − e )
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For k = 0, . . . , N − 1, as t → 0,

ck(t) = (−t)ϕ(k) ·
∧

(2n,2n − k − ϕ(k),ϕ(k), e
√−1θ0 · Id−γ (0),

dγ

dt
(0)) + o(tϕ(k)), (31)

where

ϕ(k) = ϕ(k, γ (0))
def= min

{
i = 1, . . . ,m :

i∑
i′=1

ji′ ≥ N − k

}

= min

⎧⎨
⎩i = 1, . . . ,m :

∑
i<i′≤m

ji′ ≤ k

⎫⎬
⎭ . (32)

(Consider the Jordan blocks associated with the eigenvalue e
√−1θ0 . Then, ϕ(k) is precisely the minimal number of 

blocks such that their total size is not less than N − k. By definition, we have that k ≥∑i>ϕ(k) ji .) In particular, when 
k =∑i>ϕ(k) ji , as t → 0,

ck(t) = (−1)N−ktϕ(k)cN(0)
∑
I∈Ik

det
[
(di,i′)i,i′∈I

]+ o(tϕ(k)), (33)

where6

Ik
def=
{
I ⊂ {1, . . . ,m} : �I = ϕ(k); ∀i ∈ I, ji ≥ jϕ(k)

and ∀i ∈ {1, . . . ,m} \ I, ji ≤ jϕ(k)

}

and for i, i′ = 1, . . . , m,7

di,i′
def= (−1)ji′−1(

√−1e
√−1θ0)ji′ (SX−1)i,i′ . (34)

Particularly, if k = ∑
�′>� m�′n�′ for some � = 1, . . . , s (or equivalently, ϕ(k) = ∑�′≤� m�′ ), we have that Ik ={

{1, . . . ,
∑�

�′=1 m�′ }
}

and as t → 0,

ck(t) = (−1)N−ktϕ(k)cN(0)det
[
(di,i′)i,i′=1,...,ϕ(k)

]+ o(tϕ(k)). (35)

Remark 3.1. Lemma 3.1 is valid without (8). However, to get the exact order of asymptotics, we need to ensure that 
the determinant in (35) does not vanish, which follows from (8).

Proof of Lemma 3.1. Note that

p(λ,0) = det(λ · Id−γ (0)) = (λ − e
√−1θ0)N

∏
μ 	=e

√−1θ0

((λ − e
√−1θ0) + (e

√−1θ0 − μ)),

where μ is an eigenvalue of γ (0). Comparing this with the expansion of p(λ, 0) at e
√−1θ0 in (27), we conclude that 

ck(0) = 0 for k = 0, . . . , N − 1 and cN(0) is given by (30). Next, we will estimate ck(t) for k = 0, . . . , N − 1. We 
will expand ck(t) by using exterior powers of linear maps, identify and calculate the major terms. For simplicity of 
notation, we give the proof for N = n and e

√−1θ0 	= ±1. The argument for the general case is quite similar. We briefly 
explain necessary modifications in Remark 3.2 and omit the details.

In this case, we see that

cN(0) = (e
√−1θ0 − e−√−1θ0)n.

Recall the definitions and (21) in Subsection 2.2. Note that

6 To get the quantity on the right hand side of (33), we select the biggest ϕ(k)-many Jordan blocks. However, due to possible presence of Jordan 
blocks of equal size, such a selection is not unique and Ik is introduced to represent all such choices.

7 By Corollary 2.4, X is invertible.
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ck(t) =
∑

k1+k2=2n−k,
k1,k2≥0

(−1)k2 tk2ck1,k2(t), (36)

where

ck1,k2(t) =
∧

(2n, k1, k2, e
√−1θ0 · Id−γ (0),

1

t
(γ (t) − γ (0))).

Note that t �→ ck1,k2(t) is continuous and

ck1,k2(0) =
∧

(2n, k1, k2, e
√−1θ0 · Id−γ (0),

d

dt
γ (0)).

To calculate ck(t) and ck1,k2(t), we need to fix a basis of C2n. Recall the notations given by (9) and (10). Then, ∑m
i=1 ji = N = n. By taking complex conjugates, we see that {ξ̄i,j }i,j is a basis of the invariant space E

e−√−1θ0
(γ (0))

associated with the eigenvalue e−√−1θ0 of the matrix γ (0) with properties similar to (9). Moreover, by Lemma 2.2
and non-degeneracy of (·, ·)G, {ξi,j , ξ̄i,j }i,j is a basis of C2n.

Before we proceed with the expansion of ck1,k2(t), let us firstly fix several notations. We define M0 = Id, M1 =
e
√−1θ0 · Id−γ (0) and M2 = 1

t
(γ (t) − γ (0)). Let P = {(i, j) : i = 1, . . . , m; j = 1, . . . , ji}. Then, the generalized 

eigenvectors {ξi,j }i,j are indexed by P . We fix the lexicographic order on P so that P is totally ordered. In the 
definition of ck1,k2(t), for each vector ξp (p ∈ P ), we apply to it some linear map selected from the three different 
linear maps M0, M1 and M2, and then multiply the resulting vectors via wedge products. Let � = {0, 1, 2}P . Then, 
the choice of linear maps is represented by an element in �. For instance, for σ = (σp)p∈P ∈ �, for a vector ξp , we 
apply to it the map Mσp . For the vectors {ξ̄p}p∈P , we use the similar notations σ̃ . In the definition of ck1,k2(t), we 
don’t sum over all possible assignment σ, σ̃ ∈ �. The requirement is that we use k1 times the map M1, k2 times the 
map M2 and 2n − k1 − k2 times the map M0. To count the number of occurrence of a particular map Mi (i = 0, 1, 2), 
we introduce the following notation: for σ ∈ �, a subset of indices Q ⊂ P and α = 0, 1, 2, we define

Nα(σ,Q) =
∑
p∈Q

1σp=α.

For q1 + q2 ≤ n, we define

�q1,q2

def= {σ ∈ � : N1(σ,P ) = q1,N2(σ,P ) = q2}.
Then, we express ck1,k2(t) as follows:∑

q1+q̃1=k1,
q2+q̃2=k2

∑
σ∈�q1,q2 ,

σ̃∈�q̃1,q̃2

(∧p∈P Mσpξp

)∧ (∧p∈P Mσ̃p
ξ̄p

)
= ck1,k2(t)

(∧p∈P ξp

)∧ (∧p∈P ξ̄p

)
.

At the first sight, the above expression may seem to be impractical as it evolves lots of terms. However, not all the 
terms in the above summation contribute to ck1,k2(t). For instance, if we apply M1 to an eigenvector associated with 
the eigenvalue e

√−1θ0 of γ (0), then we immediately get a zero. The other possibility to get a zero contribution is 
due to the skew-symmetry of the wedge product. For instance, for an eigenvector v1 and a generalized eigenvector 
v2 such that M1v2 = v1 and M1v1 = 0, we see that M1v2 ∧ M0v1 = 0. We will combine these two observations 
and give a necessary condition for non-trivial contributions. For i = 1, . . . , m, we define Pi = {(i, 1), . . . , (i, ji)}
with the lexicographic order. The index set Pi corresponds to the generalized eigenvectors associated with the i-th 
Jordan block. Note that for i = 1, . . . , m, we have that ∧p∈Pi

Mσpξp = 0 if N2(σ, Pi) = 0 and N1(σ, Pi) ≥ 1. So, 

roughly speaking, in order that the term 
(∧p∈P Mσpξp

)∧ (∧p∈P Mσ̃p
ξ̄p

)
is not vanishing, the following condition is 

necessary: for the generalized eigenvectors corresponding to some Jordan block, if we don’t apply M2 to them, then 
we have to apply M0 to all these vectors. In this sense, we need a certain minimal amount of M0 available. To be 
more precise, if the number of M2 available is strictly less than the total number m of the Jordan blocks associated 
with e

√−1θ0 , then at least m − N2(σ, P) blocks are free of M2 and we have to apply M0 to all the corresponding 
generalized eigenvectors. The minimum of the total size of m − N2(σ, P) many Jordan blocks is 

∑
i>N2(σ,P ) ji . 

Hence, in order to get non-zero contribution, we need that N0(σ, P) ≥∑i>N (σ,P ) ji . Noting that N2(σ, P) ≤ k2 and 

2
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2n − k1 − k2 = N0(σ, P) + N0(σ̃ , P) ≥ N0(σ, P), we need that 2n − k1 − k2 ≥∑i>k2
ji , which is equivalent to 

k2 ≥ ϕ(2n − k1 − k2). Hence, for k = 2n − k1 − k2, we have that

ck1,k2(t) = 0 if k2 < ϕ(k). (37)

By (36) and (37), for k = 0, . . . , n − 1, as t → 0,

ck(t) =
2n−k∑

k2=ϕ(k)

(−t)k2c2n−k−k2,k2(t) = (−t)ϕ(k)c2n−k−ϕ(k),ϕ(k)(0) + o(tϕ(k)), (38)

which is precisely Eq. (31).
Next, we will calculate c2n−k−ϕ(k),ϕ(k)(0) when k = ∑i>ϕ(k) ji . For simplicity of notation, let K0 = e

√−1θ0 ·
Id−γ (0) and �0 = dγ

dt
(0). (We decide to abandon the use of notations M0, M1 and M2 since we would like to 

emphasize the difference between K0 and �0.) We have that

c2n−k−ϕ(k),ϕ(k)(0) =
∧

(2n,2n − k − ϕ(k),ϕ(k),K0,�0),

which can be expanded as before. From previous discussion above (37), to get non-zero contributions, there aren’t 
many choices for the assignments of the maps Id, K0 and �0: for the vectors ξ̄i,j , we apply K0 to them; for the 
generalized eigenvectors of the biggest ϕ(k) Jordan blocks associated with e

√−1θ0 , we apply �0 to each eigenvector 
and K0 to the remainder so that we use only one �0 for each big Jordan blocks; for the generalized eigenvectors of 
the remainder small Jordan blocks associated with e

√−1θ0 , we apply the map Id to them. Accordingly, we have that∑
I∈Ik

(∧m
i=1ωi,I

)∧ (∧p∈P K0ξ̄p

)= c2n−k−ϕ(k),ϕ(k)(0)
(∧p∈P ξp

)∧ (∧p∈P ξ̄p

)
, (39)

where Ik represents different choices of the biggest ϕ(k) many Jordan blocks and

ωi,I = 1i∈I · �0ξi,1 ∧ (∧ji

j=2K0ξi,j ) + 1i /∈I · ∧ji

j=1ξi,j .

By (9), for i = 1, . . . , m and j = 1, . . . , ji , we have that

K0ξi,j = ξi,j−1 and K0ξ̄i,j = (e
√−1θ0 − e−√−1θ0)ξ̄i,j + ξ̄i,j−1

where ξi,0 = 0. Hence, we have that

∧p∈P K0ξ̄p = (e
√−1θ0 − e−√−1θ0)n · ∧p∈P ξ̄p = cN(0) · ∧p∈P ξ̄p (40)

and that

ωi,I = 1i∈I · �0ξi,1 ∧ (∧ji−1
j=1 ξi,j ) + 1i /∈I · ∧ji

j=1ξi,j .

The vector �0ξi,1 can be uniquely expressed as a linear combination of the basis (ξi,j , ξ̄i,j )i,j . We denote by d̃i,i′ the 
coefficient of �0ξi,1 before ξi′,ji′ . Denote by SI all permutations of the set I ⊂ {1, . . . , m} and by Sgn(g) the signature 
of a permutation g. Then, we have that

∧m
i=1wi,I =

∑
g∈SI

∧m
i=1(1i∈I · (−1)ji−1 · d̃i,g(i) · (∧ji−1

j=1 ξi,j ) ∧ ξg(i),jg(i)
+ 1i /∈I · ∧ji

j=1ξi,j ) (mod ∧p∈P ξ̄p)

= (−1)
∑

i∈I (ji−1)
∑
g∈SI

(−1)Sgn(g)
∏
i∈I

d̃i,g(i) · ∧m
i=1(∧ji

j=1ξi,j ) (mod ∧p∈P ξ̄p)

= (−1)
∑

i∈I (ji−1) · det(d̃i,i′)i,i′∈I · ∧m
i=1(∧ji

j=1ξi,j ) (mod ∧p∈P ξ̄p)

By definition of Ik , for k =∑i>ϕ(k) ji and I ∈ Ik , we have that �I = ϕ(k) and 
∑

i∈I (ji − 1) = N − k −ϕ(k). Hence, 
we obtain that

∧m
i=1wi,I = (−1)N−k−ϕ(k) · det(d̃i,i′)i,i′∈I · ∧m

i=1(∧ji ξi,j ) (mod ∧p∈P ξ̄p). (41)
j=1
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Next, we will show that d̃i,i′ equals di,i′ defined by (34). On one hand, since �0 = J2nA(0)γ (0), J ∗
2nJ2n = Id2n and 

γ (0)ξi,1 = e
√−1θ0ξi,1, we have that

〈�0ξi,1, J2nξi′,1〉 = 〈J2nA(0)γ (0)ξi,1, J2nξi′,1〉 = e
√−1θ0〈A(0)ξi,1, ξi′,1〉 = e

√−1θ0Si,i′ . (42)

On the other hand, by Lemmas 2.2 and 2.3, we see that 〈ξ̄i,j , J2nξi′,1〉 = 0 for all i, i′ = 1, . . . , m and j = 1, . . . , ji , 
and that 〈ξi,j , J2nξi′,1〉 = 0 for all i = 1, . . . , m and j = 1, . . . , ji −1. Hence, together with the definition of the matrix 
X given by (14), we get that

〈�0ξi,1, J2nξi′,1〉 =
m∑

i′′=1

d̃i,i′′ 〈ξi′′,ji′′ , J2nξi′,1〉 = e
√−1θ0

m∑
i′′=1

(−1)1−ji′′ (
√−1e

√−1θ0)−ji′′ d̃i,i′′Xi′′,i′ . (43)

Combining (42) and (43), we see that the expression of d̃ is given by (34).
Together with (39), (40) and (41), we get that

c2n−k−ϕ(k),ϕ(k)(0) = cN(0)(−1)N−k−ϕ(k)
∑
I∈Ik

det
[
(di,i′)i,i′∈I

]
, (44)

where d is given by (34). Then, (33) follows from (38) and (44). Particularly, when k = ∑�′>� m�′n�′ for some 
� = 1, . . . , s, we have that Ik = {{1, . . . , ϕ(k)}} and (35) follows. �

The above proof is written for the case N = n. We briefly explain the modifications for N 	= n in the following 
remark.

Remark 3.2. Instead of the eigenvectors {ξ̄i,j }i,j , for each eigenvalue μ 	= e
√−1θ0 with algebraic multiplicity N(μ), 

we take generalized eigenvectors {ξ (μ)
k }k=1,...,N(μ) as {ξi,j }i,j for the eigenvalue e

√−1θ0 . Then, instead of (40), we 
have that

K0ξ
(μ)
1 ∧ · · · ∧ K0ξ

(μ)

N(μ) = (e
√−1θ0 − μ)N(μ)ξ

(μ)
1 ∧ · · · ∧ ξ

(μ)

N(μ).

Instead of 〈ξ̄i,j , J2nξi′,1〉 = 0, we use the G-orthogonality of the invariant spaces Eμ and E
e
√−1θ0

for μ 	= e
√−1θ0 .

3.2. Proof of Theorem 1.3 a) from Lemma 3.1

Recall the notations introduced in (9), (10), (11), (13), (14) and (15). As t varies from 0, the continuous branching 
of the eigenvalue e

√−1θ0 follows from the continuity of t �→ p(λ, t) = det(λ · Id−γ (t)) and Lemma 2.1.
Next, note that S is Hermitian and strictly positive definite, X(�,�) is Hermitian (see Corollary 2.4). Hence, the roots 

of the polynomial (17) are non-zero real numbers.
We prove the asymptotic of eigenvalues when t > 0. The proof for t < 0 is similar.
By Lemma B.1, without loss of generality, we assume that the eigenvalues of γ (t) are e

√−1θ0 and e−√−1θ0 . 
There are two possibilities: e

√−1θ0 ∈ U \ R or e
√−1θ0 = ±1. Again, the proofs in both cases are quite similar and 

we only present the proof for the first case, which appears to be a bit more complicated. In this case, p(λ, 0) =
(λ − e

√−1θ0)n(λ − e−√−1θ0)n.
Suppose that λ(t) ∈C is a root of the polynomial p(λ, t). For � = 1, . . . , s and t > 0, we consider

w�(t)
def= t

− 1
n� (λ(t) − e

√−1θ0). (45)

By (27), it is a root of the polynomial 
∑2n

k=0 ck(t)t
k
n� wk in w. Since the polynomial p has 2n roots, there are 2n

continuous curves t �→ w(t) for t 	= 0. We will show that there are exactly n�m� many curves with non-zero limits as t
tends to 0, there are exactly 

∑
�<�′≤s m�′n�′ many curves with the limit 0 as t tends to 0, and the remainder tends to ∞

as t tends to 0. So, there are exactly n curves t �→ λ(t) of eigenvalues of γ (t) tending to e−√−1θ0 and the remainder 
tends to e

√−1θ0 with possibly different speeds. Roughly speaking, each Jordan block associated with e
√−1θ0 of the 
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size n� corresponds to n� many curves of eigenvalues, these curves are exactly Hölder- 1
n�

continuous at t = 0 and they 

form an n�-star at e
√−1θ0 .

Our task is to find the limit of (45) by applying Lemma 2.1. Although w(t) is a root of the polynomial ∑2n
k=0 ck(t)t

k
n� wk , we cannot apply Lemma 2.1 directly to that polynomial since it has a trivial limit 0 as t → 0. 

Instead, we will divide that polynomial by certain fractal powers t τ (�)/n� of t , which is “the biggest common fac-

tor” of {ck(t)t
k
n� }k , and obtain a new polynomial q(w, t) with the same roots and a non-trivial limit as t → 0. To 

get the exponent τ(�)/n�, we will use the asymptotics of t �→ ck(t) summarized in Lemma 3.1. By Lemma 3.1, for 
k = 0, . . . , n, if k =∑�′>� m�′n�′ + un� for some u = 0, 1, . . . , m�, then ϕ(k) defined in (32) equals 

∑
�′≤� m�′ − u

and

ck(t)t
k
n� = t

τ(�)
n� (−1)

∑
�′≤� m�′n�′−un�(e

√−1θ0 − e−√−1θ0)n
∑

I∈I�,u

det(di,i′)i,i′∈I + o(tτ(�)/n�),

where τ(�) def= ∑s
�′=1 m�′ min (n�′, n�) and

I�,u
def=
⎧⎨
⎩I ⊂ {1,2, . . . ,

∑
�′≤�

m�′ } : �I =
∑
�′≤�

m�′ − u, {1,2, . . . ,
∑
�′<�

m�′ } ⊂ I

⎫⎬
⎭ .

Otherwise, for k /∈ {∑�′>� m�′n�′ , 
∑

�′>� m�′n�′ + n�, . . . , 
∑

�′>� m�′n�′ + m�n�},
ck(t)t

k
n� = o(tτ(�)/n�) as t → 0.

Hence, we define

q(w, t) =
2n∑

k=0

ck(t)t
k−τ (�)

n� wk. (46)

Note that the limiting polynomial q(w, 0) def= limt→0 q(w, t) exists and

q(w,0) = (−1)
∑

�′≤� m�′n�′ (e
√−1θ0 − e−√−1θ0)nw

∑
�′>� m�′n�′

m�∑
u=0

(−w)un�
∑

I∈I�,u

det(di,i′)i,i′∈I . (47)

We write d in block matrix as S and X in (15), i.e., d =
⎡
⎢⎣

d(1,1) · · · d(1,s)

...
. . .

...

d(s,1) · · · d(s,s)

⎤
⎥⎦. (For 1 ≤ �1, �2 ≤ s, we note that 

d(�1,�2) is an m�1 × m�2 -matrix.) For I ∈ I�,u, (di,i′)i,i′∈I is the square matrix obtained by deleting u elements on the 

diagonal of d(�,�) together with the rows and columns containing them from the matrix 

⎡
⎢⎣

d(1,1) · · · d(1,�)

...
. . .

...

d(�,1) · · · d(�,�)

⎤
⎥⎦. When 

we sum over I�,u in (47), we sum over all such choices of principle minors. Hence, we see that

q(w,0) = (−1)
∑

�′≤� m�′n�′ (e
√−1θ0 − e−√−1θ0)nw

∑
�′>� m�′n�′ Q�(w), (48)

where

Q�(w) = det

⎡
⎢⎢⎢⎣

d(1,1) · · · d(1,�−1) d(1,�)

...
. . .

...
...

d(�−1,1) · · · d(�−1,�−1) d(�−1,�)

d(�,1) · · · d(�,�−1) d(�,�) + (−w)n� · Idm�

⎤
⎥⎥⎥⎦ . (49)

By expanding the determinant Q�(w) in polynomials of w, we find that (47) and (48) coincide. Similarly to the 
calculation from (28) to (29), by the relation (34) between the matrices d , S and X and the fact that X is upper 
triangular in the block sense (Corollary 2.4), we get that Q�(w) = 0 iff w is the root of the polynomial
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Q̃�(w)
def= det

⎡
⎢⎢⎢⎣

S(1,1) · · · S(1,�−1) S(1,�)

...
. . .

...
...

S(�−1,1) · · · S(�−1,�−1) S(�−1,�)

S(�,1) · · · S(�,�−1) S(�,�) − wn�(
√−1e

√−1θ0)−n�X(�,�)

⎤
⎥⎥⎥⎦ . (50)

Hence, there are m�n� many roots {ω�,p,q}p=1,...,m�;q=1,...,n�
such that for fixed � and p, 

{
ω�,p,q√−1e

√−1θ0

}
q=1,...,n�

are the n�-th roots of a�,p with multiplicities. (Recall that a�,p are the roots of (17).) By Lemma 2.1, there are 

corresponding w�,p,q(t) and λ�,p,q(t) = e
√−1θ0 + t

1
n� w�,p,q(t) for p = 1, . . . , m� and q = 1, . . . , n� such that 

w�,p,q(0) = limt→0 w�,p,q(t) exists and (w�,p,q(0))p=1,...,m�;q=1,...,n�
are roots of Q̃�(w). Or equivalently, (16) holds.

Remark 3.3. During the proof of Theorem 1.3 a), the only purpose of assuming (8) is to ensure that Q̃�(w) has 
non-zero roots. Hence, Theorem 1.3 a) still holds under the following weaker condition:

det

⎡
⎢⎣

S(1,1) · · · S(1,�)

...
. . .

...

S(�,1) · · · S(�,�)

⎤
⎥⎦ 	= 0 for all � = 1, . . . , s. (51)

Or equivalently in the following coordinate-free form: the Hermitian form 〈A(0)·, ·〉 is non-degenerate on the spaces 
V� for all integer �, where

V� = ker(e
√−1θ0 · Id−γ (t)) ∩ (e

√−1θ0 · Id−γ (t))�
(

ker(e
√−1θ0 · Id−γ (t))2n

)
.

4. Proof of Theorem 1.3 b)

Our proof strategy is to approximate the continuous curve t �→ A(t) by analytic curves. To prove Theorem 1.3 b), 
we use Theorem 1.3 a) proved in Section 3 and Theorem 1.3 for the analytic case. We present a sketch of Theorem 1.3
when t �→ A(t) is real analytic in Section C.

We choose to present the proof for n� odd, t > 0 and a�,p > 0. The proofs for other cases are similar and we left 
them to the reader. By Theorem 1.3 a), we see that (λ�,p,q(t))q=2,...,n�

are outside of U for sufficiently small t . It 
remains to prove that λ�,p,1(t) is a Krein positive definite eigenvalue on U . By Theorem 1.3 a), we have that

lim
t↓0

λ�,p,1(t) − e
√−1θ0

√−1e
√−1θ0 t

1
n�

> 0.

Hence, as t increases from 0, tangent to the circle and counter-clockwise, λ�,p,1(t) continuously branches from 
e
√−1θ0 . We need to show that λ�,p,1(t) ∈ U for sufficiently small t .

We define8

I+ =
{

(�,p, q) : lim
t↓0

λ�,p,q(t) − e
√−1θ0

√−1e
√−1θ0 t

1
n�

∈ (0,+∞)

}
,

I− =
{

(�,p, q) : lim
t↓0

λ�,p,q(t) − e
√−1θ0

√−1e
√−1θ0 t

1
n�

∈ (−∞,0)

}
,

J+(t) = {(�,p, q) : λ�,p,q(t) is a Krein positive definite eigenvalue on U},
J−(t) = {(�,p, q) : λ�,p,q(t) is a Krein negative definite eigenvalue on U},
K+(t) =

{
(�,p, q) : λ�,p,q(t) ∈ U \ {e

√−1θ0} and it is on the counter-clockwise side of e
√−1θ0

}
,

8 When t is sufficiently close to 0, λ�,p,q (t) locates near e
√−1θ0 . Thus, it makes sense to use the notions “counter-clockwise side” and “clockwise 

side”.
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K−(t) =
{
(�,p, q) : λ�,p,q(t) ∈ U \ {e

√−1θ0} and it is on the clockwise side of e
√−1θ0

}
.

We will show that

lim
t↓0

J+(t) = lim
t↓0

K+(t) = I+ and lim
t↓0

J−(t) = lim
t↓0

K−(t) = I−. (52)

The continuity of t �→ det(λ · Id−γ (t)) implies the continuity of the eigenvalues as t varies. Also, by the first order 
asymptotics in Theorem 1.3 a), we see that e

√−1θ0 is no longer an eigenvalue of γ (t) if t varies from 0 a bit. Hence, 
there exist r > 0 and δ > 0 such that for t ∈ (0, δ], (λ�,p,q(t))�=1,...,s;p=1,...,m�;q=1,...,n�

are located in the punctured 

open disk B(e
√−1θ0, r) \ {e

√−1θ0} centered at e
√−1θ0 with the radius r < 0.1, and the other eigenvalues of γ (t)

stay outside of B(e
√−1θ0 , r). Shrinking δ if necessary, for t ∈ (0, δ], for (�, p, q) ∈ I+ (resp. (�, p, q) ∈ I−), λ�,p,q(t)

stays on the counter-clockwise side (resp. clockwise side) of e
√−1θ0 , and for (�, p, q) /∈ I− ∪I+, λ�,p,q(t) /∈ U . Hence, 

K+(t) ⊂ I+ and K−(t) ⊂ I− for t ∈ (0, δ].
Next, we prove that limt↓0 �K+(t) ≥ �I+ and limt↓0 �K−(t) ≥ �I−. For that purpose, we approximate the contin-

uous curve t �→ A(t) by analytic curves for t ∈ [−1, 1] by using Bernstein polynomials. For positive integers M , we 
define

A(M)(t) =
M∑

k=−M

A

(
k

M

)(
2M

M + k

)(
1 − t

2

)M−k (1 + t

2

)M+k

.

As a polynomial in t , the function t �→ A(M)(t) is analytic. By classical results on Bernstein polynomials, for contin-
uous t �→ A(t), A(M)(t) converges to A(t) as M → ∞ uniformly for t ∈ [−1, 1]. Hence, the corresponding solution 
γ (M)(t) of (1) (with the same initial condition) also converges to γ (t), uniformly for t ∈ [−1, 1].

We wish to use Krein–Lyubarskii theorem for approximated analytic systems, see Section C for a proof in analytic 
case. For that purpose, we need to verify the condition (8) for large enough M . By taking a subsequence, we may 
assume that (8) holds for each M and t ∈ [−1, 1]. Otherwise, if (8) is violated for infinitely many M , then there 
exist sequences {Mn}n, {tn}n, {ξn}n and {λn}n such that limn→+∞ Mn = +∞, {tn}n is bounded and for all n, λn ∈ U , 
||ξn||2 = 1, γ (Mn)(tn)ξn = λnξn and 〈A(Mn)(tn)ξn, ξn〉 = 0. By compactness, taking subsequence if necessary, we may 
further assume that limn→+∞ tn = t , limn→+∞ ξn = ξ and limn→+∞ λn = λ. Then, by taking the limit, we see that 
||ξ ||2 = 1, λ ∈ U , γ (t)ξ = λξ and 〈A(t)ξ, ξ 〉 = 0, which contradicts with the assumption (8) on the continuous curve 
t �→ γ (t).

In the following, we assume that (8) holds for each M .
For approximated systems, we analogously define the notations {λ(M)

�,p,q(t)}�=1,...,s;p=1,...,m�;q=1,...,n�
, I (M)

+ , I (M)
− , 

J
(M)
+ (t), J (M)

− (t), K(M)
+ (t), K(M)

− (t) and D(M) (see (7)). In the following, we take M large enough such that 

(λ
(M)
�,p,q(t))�=1,...,s;p=1,...,m�;q=1,...,n�

are located in B(e
√−1θ0, r) for t ∈ (0, δ]. For t /∈ D(M), we define an index

ν
(M)
+ (t) = �(K

(M)
+ (t) ∩ J

(M)
+ (t)) − �(K

(M)
+ (t) ∩ J

(M)
− (t)).

Since (D(M))c is dense, for t ∈ D(M), we may define ν(M)
+ (t) = lim sups↑t,s /∈D(M) ν

(M)
+ (s). Direct approximation argu-

ment relying on the convergence limM→∞ γ (M) = γ is not sufficient to conclude the desired result. Instead, we will 
crucially use the following feature of ν(M)

+ (t) in the argument.

Claim 4.1. For large enough M , as t increases from 0 to δ, the index ν(M)
+ (t) is non-decreasing and integer-valued.

We focus on the application of Claim 4.1 and postpone its proof in the end of this section.
Since limM→∞ K

(M)
+ (t) = K+(t), to prove limt↓0 �K+(t) ≥ �I+, it suffices to show that for M large enough, for 

all t ∈ (0, δ), �K(M)
+ (t) ≥ I+. By upper semi-continuity9 of t �→ �K

(M)
+ (t), it suffices to show the inequality for t in a 

dense set of (0, δ), say (0, δ) \ D(M). By definition of ν(M)
+ (t), �K(M)

+ (t) ≥ ν
(M)
+ (t) for t ∈ (0, δ) \ D(M). Hence, it is 

9 Note that �K(M)
+ (t) counts the multiplicity.
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enough to show that inf{ν(M)
+ (t) : t ∈ (0, δ)} ≥ �I+. By Claim 4.1, we see that inf{ν(M)

+ (t) : t ∈ (0, δ)} equals the right 
limit ν(M)

+ (0+) of ν(M)
+ at 0. Hence, it suffices to show that ν(M)

+ (0+) ≥ �I+. Note that limt↓0 �(K
(M)
+ (t) ∩J

(M)
+ (t)) =

�I
(M)
+ and limt↓0 �(K

(M)
+ (t) ∩ J

(M)
− (t)) = 0 by Theorem 1.3 in the analytic case. Moreover, by Remark 1.2, since 

γ (M)(0) = γ (0) by construction, we have that limM→∞ �I
(M)
+ = �I+. Hence, ν(M)

+ (0+) precisely equals �I+ for M
large enough. Therefore, for M large enough, we have that

�K+(t) ≥ �I+ for t ∈ (0, δ), (53)

and similarly, we see that �K−(t) ≥ �I−.
Hence, together with the inclusion K+(t) ⊂ I+ and K−(t) ⊂ I− for small enough t > 0, we get that K+(t) = I+

and K−(t) = I−. From the argument for (53), for t ∈ (0, δ) with δ small enough, ν(M)
+ (t) = �I+ as long as M is large 

enough such that �K(M)
+ (t) = �K+(t).

To finish the proof of (52), consider the invariant space W+(t) (resp. W−(t)) spanned by the invariant spaces 

associated with the eigenvalues indexed by K+(t) (resp. K−(t)), i.e., W+(t) def= ∑
(�,p,q)∈K+(t) Eλ�,p,q (t) (resp. 

W−(t) def= ∑
(�,p,q)∈K−(t) Eλ�,p,q (t)). We use similar notations W(M)

+ (t) and W(M)
− (t) for the approximated systems. 

By Lemma 2.2, the Krein form (·, ·)G is non-degenerate on these spaces. It suffices to show that the negative index 
of (·, ·)G|W+(t) is zero and the positive index of (·, ·)G|W−(t) is zero for small enough t > 0. Again, we will use the 
same approximated systems, analyze the analytical systems and pass to the limit in the end. The non-degeneracy of 
the Krein forms is an important sufficient condition for the continuity of indices.

In the following, we will give the proof for W+(t). The other part is similar and is left to the reader. Note that 
there exists small enough δ > 0 such that K(M)

+ (t) = I+ for M large enough and t ∈ (0, δ], K+(t) = I+ for t ∈ (0, δ]
and t �→ W+(t) is continuous10 for t ∈ (0, δ]. By non-degeneracy of the Krein form on W+(t), the positive and 
negative indices are invariant for t ∈ (0, δ]. Note that ∪M∈ND(M) is countable. Hence, by decreasing δ if necessary, 
we assume that δ /∈ ∪M∈ND(M). We will show that the Krein form is strictly positive definite on W+(δ). Note that 
limM→∞ K

(M)
+ (δ) = I+ = K+(δ) and hence, limM→∞ W

(M)
+ (δ) = W+(δ) (in certain Grassmannian). Therefore, as 

M → ∞, the positive and negative indices of the restriction of the Krein form (·, ·)G on W(M)
+ (δ) converge to those 

of W+(δ). As δ /∈ D(M), the positive index of (·, ·)G|
W

(M)
+ (δ)

is precisely �(K(M)
+ (δ) ∩ J

(M)
+ (δ)), which is not less than 

ν
(M)
+ (δ) by definition. Recall that ν(M)

+ (t) is non-decreasing and limt↓0 ν
(M)
+ (t) = �I

(M)
+ . Hence, the positive index 

of (·, ·)G|
W

(M)
+ (δ)

is at least �I (M)
+ . On the other hand, dimW

(M)
+ (δ) = �K

(M)
+ (δ) ≤ �I

(M)
+ . Hence, the positive and 

negative index of W(M)
+ (δ) are respectively �I (M)

+ and 0. Also, recall that limM→∞ �I
(M)
+ = �I+. Therefore, for M

sufficient large, the positive and negative index of W(M)
+ (δ) are respectively �I+ and 0. Hence, by taking M → ∞, 

the Krein form (·, ·)G must be strictly positive definite on W+(t) for t ∈ (0, δ].

We finish this section by verifying Claim 4.1.

Proof of Claim 4.1. Note that ν(M)
+ (t) is integer-valued by definition. It remains to prove its monotonicity, which 

follows from Theorem 1.3 for the analytic case.
Firstly, let us recall the definition of the index of an eigenvalue on U (cf. [1, Section 1.3]). For t0 ∈ R and an 

eigenvalue λ ∈ U of γ (M)(t0), we will define an index ind(M)(λ, t0) as in [1, Section 1.3]. As t varies from t0, the 
eigenvalue λ branches into N eigenvalues. (For instance, when no bifurcation occurs, we have that N = 1.) Among 
these eigenvalues we denote by pt the number of Krein positive definite eigenvalues and by qt the number of Krein 
negative definite eigenvalues. For t close to t0, t /∈ D(M). Thus, (pt , qt ) is defined in a punctured neighborhood 
of t0. By Corollary 5 in [1, Section 1.3], the difference pt − qt is locally constant near t0. (Alternatively, we can 
deduce that from Theorem 1.3 in the analytic case. For instance, one can check this for each group of eigenvalues 
{λ�,p,q(t)}q=1,...,n�

forming an n�-star, see (16).) The index ind(M)(λ, t0) is defined to be the integer pt − qt for t
close to t0. For a Krein positive definite eigenvalue, its index is simply its algebraic (and geometric) multiplicity. For 

10 See e.g. [3, Section 5.1, Chapter 2].
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Fig. 8. arc+ .

a Krein negative definite eigenvalue, the index is the opposite of its algebraic (and geometric) multiplicity. Hence, if 
an eigenvalue λ branches into several ones, the sum of the indices of the eigenvalues branched from λ must equal to 
the index of λ (in the analytic case).

Note that ν(M)
+ (t) = ∑

(�,p,q)∈K
(M)
+ (t)

ind(M)(λ�,p,q , t), i.e., it is the sum of the indices of eigenvalues indexed 

by K+(t). Recall that the eigenvalues λ(t) branched from e
√−1θ0 are located in a small disk B(e

√−1θ0 , r) for t ∈
(0, δ]. In the following, we assume that M is sufficient large such that γ (M)(t) has no eigenvalue on the boundary 
of B(e

√−1θ0, r) for t ∈ (0, δ]. The part of U inside B(e
√−1θ0, r) is an arc with a mid-point at e

√−1θ0 . The point 
e
√−1θ0 separates the arc into two smaller arcs. We denote by arc+ the open half arc on the counter-clockwise side of 

e
√−1θ0 , see Fig. 8. Then, for t ∈ (0, δ), ν(M)

+ (t) is the sum of indices of eigenvalues in the interior of arc+. By the 
local constancy on the sum of the indices of branched eigenvalues, we see that ν(M)

+ (t) doesn’t vary around t0 ∈ (0, δ)
except that γ (M)(t0) has an eigenvalue on the boundary of arc+. In the exceptional case, γ (M)(t0) has no eigenvalue 
on the boundary of the disk B(e

√−1θ0, r) and e
√−1θ0 is an eigenvalue of γ (M)(t0). By Theorem 1.3 for the analytic 

case, when t increases through t0, the eigenvalues entered in arc+ from e
√−1θ0 must move counter-clockwise and be 

Krein positive definite, the eigenvalues left arc+ from e
√−1θ0 must move clockwise and be Krein negative definite. 

Hence, ν(M)
+ (t) strictly increases in this case. Thus, we see that t �→ ν

(M)
+ (t) is non-deceasing for t ∈ (0, δ) for M

sufficiently large. �
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Appendix A. Alternative expression for C(t, ε)

We verify the second equality in (5).

Lemma A.1. Let C(t, ε) def= −γ (t, ε)T J2n
∂
∂ε

γ (t, ε). Then,

C(t, ε) =
t∫

0

γ (u, ε)T
∂

∂ε
A(u, ε)γ (u, ε)du.

Proof. Note that for all ε, γ (0, ε) = Id. Hence, ∂
∂ε

γ (0, ε) = 0 and C(0, ε) = 0. Thus, it remains to show that

∂

∂t
C(t, ε) = γ (t, ε)T

∂

∂ε
A(t, ε)γ (t, ε).

By a standard contraction argument with Grönwell’s inequality, we have that
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∂

∂t

∂

∂ε
γ (t, ε) = J2n

∂

∂ε
A(t, ε)γ (t, ε) + J2nA(t, ε)

∂

∂ε
γ (t, ε). (A.1)

By (3) and the symmetry of A, we have that

∂

∂t
γ (t, ε)T = (J2nA(t, ε)γ (t, ε))T = γ (t, ε)T A(t, ε)J T

2n. (A.2)

Hence, combining the definition of C, (A.1) and (A.2), we obtain that

∂

∂t
C(t, ε) = − ∂

∂t
γ (t, ε)T J2n

∂

∂ε
γ (t, ε) − γ (t, ε)T J2n

∂

∂t

∂

∂ε
γ (t, ε)

= γ (t, ε)T
∂

∂ε
A(t, ε)γ (t, ε),

which completes the proof. �
Appendix B. Dimension reduction

The following lemma helps to simplify certain notations and proofs (since it allows us to focus on one eigenvalue 
and to reduce the dimension in many cases). Besides, it is of independent interest. Therefore, we choose to present it 
here.

Lemma B.1. For all n ≥ 2, let �(t0) and �̃(t0) be a division of the eigenvalues of γ (t0) for t0 ∈ R, where t �→ γ (t)

is the solution of (1). Assume that �(t0) is closed under the conjugation λ → λ̄ and the circular reflection λ �→ λ̄−1

with respect to U . There exists ε > 0 such that for t ∈ [t0 − ε, t0 + ε], there exists a division of the eigenvalues of 
γ (t) into �(t) and �̃(t) such that �(t) is closed under the conjugation λ �→ λ̄ and the circular reflection λ �→ λ̄−1, 
and �(t) (resp. �̃(t)) converges to �(t0) (resp. �̃(t0)) as t tends to t0. Denote by Et (resp. Ẽt ) the sum of invariant 
spaces (Eλ)λ∈�(t) (resp. (Eλ)λ∈�̃(t)). Then, by decreasing ε if necessary, we also require that dim(Et ) = dim(Et0), 

dim(Ẽt ) = dim(Ẽt0) for t ∈ [t0 − ε, t0 + ε] and limt→t0 Et = Et0 . Moreover, there exists a C1 curve t �→ Q(t) ∈
M2n×2k(R) where 2k = dim(Et0) such that

• the column vectors of Q(t) form a basis of Et and Q∗(t)J2nQ(t) = J2k , i.e., the column vectors of Q form a 
symplectic basis of Et ,

• γ (t)Q(t) = Q(t)MQ(t) uniquely determines a C1 curve t �→ MQ(t) ∈ Sp(2k, R),
• dMQ/dt = J2kQ

∗(t)A(t)Q(t)MQ(t).

Remark B.1. Note that the eigenvalues of MQ(t) are precisely those in �(t).

Remark B.2. Under the assumption of Lemma B.1, similar to Q(t) and MQ(t), we may take Q̃(t) and M
Q̃

(t) for �̃(t)

and Ẽt . Write Q(t) into two 2n × k blocks: Q(t) = (Q1(t) Q2(t)
)
. Similarly, we write Q̃(t) = (Q̃1(t) Q̃2(t)

)
. 

Define Y(t) = (Q1(t) Q̃1(t) Q2(t) Q̃2(t)
)
. Then, Y(t) ∈ Sp(2n, R) and γ (t)Y (t) = Y(t)(MQ(t) � M

Q̃
(t)), 

where “�” denotes the symplectic summation (cf. [8,9]). To be more precise, we write MQ(t) =
(

M11
Q (t) M12

Q (t)

M21
Q (t) M22

Q (t)

)
, 

where the four sub-matrices are of equal size. We divide M
Q̃

(t) in a similar way. The symplectic sum of MQ(t) and 
M

Q̃
(t) is defined to be the square matrix⎛
⎜⎜⎜⎜⎜⎝

M11
Q (t) 0 M12

Q (t) 0

0 M11
Q̃

(t) 0 M12
Q̃

(t)

M21
Q (t) 0 M22

Q (t) 0

0 M21
Q̃

(t) 0 M22
Q̃

(t)

⎞
⎟⎟⎟⎟⎟⎠ .

Then, the original system is decomposed into two sub-systems. Moreover, these two sub-systems satisfy (8) if the 
original system satisfies such condition.
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Proof of Lemma B.1. Since �(t) is closed under conjugation, we have that Et =C ⊗ (R2n ∩Et). In this sense, Et ⊂
R

2n and we replace Et by Et ∩R
2n in the following context. By continuity, there exists ε > 0 such that for t ∈ [t0 −

ε, t0 + ε], there exists a simple smooth curve � surrounding all �(t) and separating �(t) from �̃(t). Then, we may 
take P(t) = 1

2π
√−1

∫
�
(z · Id−γ (t))−1 dz, which projects R2n onto Et , see e.g. [3, Section 1.4, Chapter 2]. Note that 

Et0 is a symplectic subspace. We choose a symplectic basis (ξ1, . . . , ξk, η1, . . . , ηk) of Et0 such that 〈ξi, J2nηj 〉 = 1i=j

and 〈ξi, J2nξj 〉 = 〈ηi, ηj 〉 = 0 for i, j = 1, . . . , k. Decreasing ε if necessary, (P (t)ξ1, . . . , P(t)ξk, P(t)η1, . . . , P(t)ηk)

is a linear basis for Et for t ∈ [t0 − ε, t0 + ε]. However, it is in general no longer a symplectic basis. Nevertheless, by 
shrinking ε if necessary, after Gram–Schmidt operation, we obtain a time dependent symplectic basis of Et , which 
forms a 2n × 2k matrix T (t). Note that t �→ T (t) is continuously differentiable and that

T ∗J2nT = J2k. (B.1)

In general, we should not take Q = T . We consider the following ODE where the solution corresponds to a dynamic 
change of symplectic basis:

dV

dt
= J2kT

∗J2n

dT

dt
V , V (t0) = Id . (B.2)

By differentiating both sides of (B.1), we get that T ∗J2n
dT
dt

is self-adjoint, which implies that t �→ V (t) is a symplectic 

path, see e.g. [1, Prop. 3, Section 1, Chapter 1]. We define Q def= T V . By symplecticity of V and (B.1), we see that 
Q(t)∗J2nQ(t) = J2k . Also, the equation

γ (t)Q(t) = Q(t)MQ(t) (B.3)

uniquely determines a C1 curve t �→ MQ(t) ∈ Sp(2k, R). Indeed, by multiplying Q(t)∗J2n on both sides of (B.3), we 
obtain that MQ(t) = −J2kQ(t)∗J2nγ (t)Q(t). By taking the derivatives and using (B.3), we obtain that

dMQ

dt
= J2kBQMQ, (B.4)

where

BQ = Q∗AQ −
(

dQ

dt

)∗
J2nQ − Q∗J2nγ

dQ

dt
M−1

Q . (B.5)

By Q = T V and (B.2), we get that

dQ

dt
= dT

dt
V + T J2kT

∗J2n

dT

dt
V . (B.6)

Hence, together with (B.1), Q = T V and J2n + J ∗
2n = 0, we get that(

dQ

dt

)∗
J2nQ = V ∗

(
dT

dt

)∗
J2nT V + V ∗

(
dT

dt

)∗
J ∗

2nT J ∗
2kT

∗J2nT V = 0. (B.7)

It remains to prove that

Q∗J2nγ
dQ

dt
M−1

Q = 0. (B.8)

By multiplying (V ∗)−1 on the left and MQV −1 on the right, using Q = T V and (B.6), we find that (B.8) is equivalent 
to

(T ∗J2nγ + T ∗J2nγ T J2kT
∗J2n)

dT

dt
= 0.

It would be sufficient to prove that

T ∗J2nγ T J2kT
∗J2n = −T ∗J2nγ.

Note that γ T = T MT uniquely determines a symplectic 2k ×2k matrix MT since T ∗J2nT = J2k and γ is symplectic. 
Indeed, we have that M∗

T J2kMT = M∗
T T ∗J2nT MT = T ∗γ ∗J2nγ T = T ∗J2nT = J2k . By symplecticity of MT , we 

have that
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γ T J2kT
∗γ ∗ = T MT J2kM

∗
T T ∗ = T J2kT

∗. (B.9)

By writing J2n as γ ∗J2nγ , using (B.9) and (B.1), we see that

T ∗J2nγ T J2kT
∗J2n = T ∗J2nγ T J2kT

∗γ ∗J2nγ = T ∗J2nT J2kT
∗J2nγ = −T ∗J2nγ,

which implies (B.8). By (B.4), (B.5), (B.7) and (B.8), we get that dMQ

dt
= J2kQ

∗AQMQ. �
Appendix C. Analytic Krein–Lyubarskii theorem

In this subsection, we provide a proof of Theorem 1.3 when t �→ A(t) is real analytic. We partially follow the 
argument in [12] for (3) when ε �→ A(t, ε) is affine in ε. The connection between the first order asymptotics of the 
eigenvalues and the Jordan structure has already been established in Section 3. We will only prove the analyticity of 
the eigenvalues as t varies and the part b) of Theorem 1.3.

By analytic continuation, the real parameter t of (1) is extended to the complex parameter z ∈ C around 0:

d

dz
γ (z) = J2nA(z)γ (z), γ (0) ∈ Sp(2n,R). (C.1)

By analyticity of z �→ A(z), z �→ γ (z) is analytic. Since the zero set of an analytic function is isolated, the following 
two equations are extended to complex z: AT (z) = A(z) and γ (z)T J2nγ (z) = J2n.

In [12], they crucially used the key feature of the system that when γ (z) has eigenvalue ω on U , the parameter z
has to be real. (Roughly speaking, the reason is that z happens to be the eigenvalue of a self-adjoint operator when 
ω ∈ U .) Such a phenomenon also appears for our general system (C.1), as stated in the following lemma.

Lemma C.1. Consider the ODE (C.1). We assume that z �→ γ (z) is analytic (or equivalently, z �→ A(z) is analytic), 
A(t) is real symmetric for t ∈ R and for any eigenvector ξ of γ (0) associated with an eigenvalue on U , 〈A(0)ξ, ξ 〉 > 0. 
Then, there exists δ > 0, for all z ∈ C \R and |z| < δ, γ (z) has no eigenvalue on U .

To prove Lemma C.1, we need to modify the argument in [12, Section 4.1].

Proof of Lemma C.1. It suffices to prove the following cannot happen: there exist non-real complex numbers zn

tending to 0 such that for each zn, γ (zn) has an eigenvector ξn with ||ξn||2 = 1 associated with some eigenvalue 
λn ∈ U . We write zn in polar coordinate as rne

√−1θn with rn > 0 and θn ∈ (−π, 0) ∪ (0, π). By taking subsequence if 
necessary, we assume that limn→+∞ λn = λ, limn→+∞ ξn = ξ and limn→+∞ θn = θ .

We expand A(z) in Taylor series as 
∑

j≥0 zjA(j) around 0. Since A(t) is real symmetric for t ∈ R, A(j) are real 

symmetric for all j ≥ 0. For r ≥ 0 and θ ∈ R, we define A1(re
√−1θ ) =∑j≥0 cos(jθ)rjA(j) and A2(re

√−1θ ) =∑
j≥1 sin(jθ)rjA(j). Then, A1(z) and A2(z) are real symmetric matrices and A(z) = A1(z) +

√−1A2(z). Moreover, 
there exists C = C(A) < ∞ such that for all r ∈ [0, C−1) and θ ∈ [−π, π], for all ξ ∈C

2n with ||ξ ||2 = 1,∣∣∣〈A2(re
√−1θ )ξ, ξ 〉

∣∣∣≤ C · r · | sin(θ)|, (C.2)

where 〈·, ·〉 denotes the standard inner product on C2n, which is linear in the first vector.
For ρ ∈ U , we denote by X(γ (0), ρ) the space of analytic paths y : [0, 1] → C

2n with the boundary condition 
γ (0)y(1) = ρy(0). Define three functions L0, L1 and L2 on ∪ρ∈UX(γ (0), ρ) × X(γ (0), ρ) as follows: for y1, y2 ∈
X(γ (0), ρ),

L0(y1, y2) =
1∫

0

〈
J2n

d

ds
y1(s), y2(s)

〉
ds,

L1,z(y1, y2) =
1∫
〈A1(sz)y1(s), y2(s)〉 ds,
0
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L2,z(y1, y2) =
1∫

0

〈A2(sz)y1(s), y2(s)〉 ds.

Note that L0(y1, y2) = L0(y2, y1), L1,z(y1, y2) = L1,z(y2, y1) and L2,z(y1, y2) = L2,z(y2, y1). Hence, for y ∈
X(γ (0), ρ), L0(y, y), L1,z(y, y), L2,z(y, y) ∈ R.

Define xn(s) = γ (szn)ξn for s ∈ [0, 1]. Then, xn ∈ ∪ρ∈UX(γ (0), ρ). By (C.1), we have that

L0(xn, xn) + zn(L1,zn(xn, xn) + √−1L2,zn(xn, xn)) = 0. (C.3)

Necessarily, the argument θn of zn and the argument ψn of L1,zn(xn, xn) +
√−1L2,zn(xn, xn) differ by a multiple of 

π , or equivalently,

| sin(θn)| = | sin(ψn)|. (C.4)

By (C.2), there exists C = C(A) < ∞ such that for large enough n,

L2,zn(xn, xn) ≤ C · rn| sin(θn)|.
By continuity, limn→+∞ L1,zn(xn, xn) = 〈A(0)ξ, ξ 〉 > 0. Hence, as n → +∞, ψn and | sin(ψn)| are of the order 
rn| sin(θn)|, which contradicts with (C.4) since limn→+∞ rn = 0. �

Consider the characteristic polynomial p(λ, z) = det(λ · Id−γ (z)). Assume that λ0 = e
√−1θ0 ∈ U is an eigenvalue 

of γ (0). By Weierstrass’s preparation theorem of the local form of analytic functions in multi-variables, there exist 
integers � and M such that for (λ, z) close to (λ0, 0), we have that

p(λ, z) = (λ − λ0)
�(zM + aM−1(λ)zM−1 + · · · + a0(λ))b(λ, z),

where b(λ, z) is non-zero and analytic, {ai}i=0,...,M−1 are analytic in λ and vanish at λ0. Note that � = 0 and hence,

p(λ, z) = (zM + aM−1(λ)zM−1 + · · · + a0(λ))b(λ, z). (C.5)

(Otherwise, λ0 is an eigenvalue of γ (z) as long as z is sufficient close to 0, which contradicts with Lemma C.1. 
Alternatively, we could see that from the first order asymptotics in Theorem 1.3 a) proved in Section 3. Or simply 
follow the argument of [1, Proposition 2, Section 3, Chapter 1].) The solution of p(λ, z) = 0 coincides with the 
solution of zM + aM−1(λ)zM−1 + · · · + a0(λ) = 0, which is the union of the graphs of several multi-valued analytic 
functions {zi(λ)}

i=1,...,M̃
(M̃ ≤ M) in λ. By Lemma C.1, when λ is on U , zi(λ) must lie on R. This forces that each 

zi is actually single-valued analytic functions and M̃ = M , see the lemma in [12, Section 1.5, Chapter 3]. Hence,

zM + aM−1(λ)zM−1 + · · · + a0(λ) =
M∏
i=1

(z − zi(λ)). (C.6)

Let

zi(λ) =
∑
k≥ji

ei,k(λ − λ0)
k, ei,ji

	= 0 (C.7)

be the Taylor expansion of zi(λ). Inverting that expansion, we see that λ = λ0 +hi(z
1
ji ), where hi is analytic, hi(0) = 0

and h′
i (0) 	= 0. Note that λ − λ0

z→0∼ h′
i (0)z

1
ji . Compared with (16), we need to show that {ji}i=1,...,M are exactly the 

sizes of Jordan blocks of γ (0) associated with λ0. Then, {h′
i (0)}i=1,...,M will be given by (16).

Firstly, let us show that M is precisely the number of Jordan blocks associated with λ0. By multiplying the first 
order asymptotics of the eigenvalues in (16), we see that p(λ0, t) is of the order tm as t → 0, where m is the geometric 
multiplicity of λ0, or equivalently, m is the number of Jordan blocks. On the other hand, by (C.5), p(λ0, z) is of the 
order zM as z → 0. Hence, M equals m.

Next, we show that {ji}i=1,...,M are the sizes of the Jordan blocks. Again, by Weierstrass preparation theorem, the 
analytic function gi(λ, z) = z − zi(λ) in variables λ and z has the following local form near (λ0, 0):
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z − zi(λ) = z�i

(
(λ − λ0)

j̃i + c
i,j̃i−1(z)(λ − λ0)

j̃i−1 + · · · + ci,0(z)
)

bi(λ, z), (C.8)

where �i and j̃i are integers, the analytic function bi(λ, z) doesn’t vanish near (λ0, 0) and the analytic functions 
{ci,k(z)}k=0,...,j̃i−1 vanish at 0. Clearly, �i is zero. Otherwise, the set of eigenvalues of γ (0) would contain an open 

neighborhood of λ0. Taking z = 0 and compare with the expansion (C.7) of zi(λ), we find that j̃i = ji . Combining 
(C.5), (C.6) and (C.8), we get that

p(λ, z) =
m∏

i=1

pλ0,i (λ, z) · f (λ, z), (C.9)

where f (λ, z) = b(λ, z) 
∏m

i=1 bi(λ, z) and

pλ0,i (λ, z) = (λ − λ0)
ji + ci,ji−1(z)(λ − λ0)

ji−1 + · · · + ci,0(z).

Taking z = 0, we see that 
∑m

i=1 ji equals the algebraic multiplicity of λ0. Moreover, for z close to 0, the roots of 
p(λ, z) near λ0 coincide with those of 

∏m
i=1 pλ0,i (λ, z) with multiplicities. Comparing (16) with the asymptotics 

λ − λ0 ∼ h′
i (0)z

1
ji of the roots of {pλ0,i (λ, z)}i=1,...,m, we conclude that {ji}mi=1 are precisely the sizes of Jordan 

blocks. This completes the argument for the analyticity of eigenvalues and their first order asymptotics when t varies 
from 0.

Next, we prove the part b) of Theorem 1.3. We only present the proof for the case that t increases from 0. The 
other case is essentially the same and is left to the reader. Together with the first order asymptotics in (16), it suffices 
to show that for t close to 0,

i) the eigenvalues moving tangential to the circle at t = 0 actually move along the circle for a period of time,
ii) they are Krein definite.

By Theorem 1.3 a), i) implies the semi-simplicity of these eigenvalues on the circle for non-zero real t close to 0.
If i) fails, then there exist an integer j , a real number v, an analytic function h and a sequence (tn, λn) such that 

tn decreases to 0 as n increases to infinity, λn /∈ U , λn is an eigenvalue of γ (tn), λn − λ0 = h(t
1
j
n ) and λn − λ0

n→∞∼
√−1λ0 · v · t

1
j
n . For each n, let us consider the eigenvalues λ0 + h(t

1
j
n e

√−1ϕn/j ) of γ (tne
√−1ϕn). As ϕn increases from 

−π to π , they rotate around λ0 for roughly 2π
j

radians. By first order estimates of the eigenvalues, for n sufficient large, 

there exists φn /∈ πZ such that γ (tne
√−1φn) has an eigenvalue on U . (Indeed, φn → 0 as n → ∞.) This contradicts 

with Lemma C.1 since tne
√−1φn /∈ R.

Next, we show that the eigenvalues moving on the circle are Krein definite when t is sufficiently close to 0 with 
their Krein types determined by their moving directions.

Let us verify the statement as t increases from 0. The other case is similar and we left the proof to the reader. We 

have seen that the eigenvalue λ(t) = λ0 + h(t
1
j ) for a certain integer j and a certain analytic function h. Note that 

λ′(t) = 1
j
h′(t

1
j )t

1
j
−1. By continuity of h′ and h′(0) 	= 0, we see that the eigenvalue on U has a deterministic moving 

direction along U as t increases from 0 a bit. If the eigenvalue on U situates on the counter-clockwise direction of 
λ0 in the local sense, then the eigenvalue moves counter-clockwise along the circle as t slightly increases from 0. 
Hence, by Theorem 1.3 a), there is no Krein indefinite eigenvalue on U situating on the counter-clockwise side of λ0. 
Together with their moving direction, by Theorem 1.3 a), we see that those eigenvalues must be semi-simple and Krein 
positive definite. (Otherwise, if there exists t1 > 0 such that one of those eigenvalues on the circle is Krein indefinite, 
then according to the branching mechanism described in Theorem 1.3 a) together with the fact that no eigenvalue 
entrances or escapes U during this period of time, there must exist eigenvalues with different moving directions on 
the counter-clockwise side of λ0 on U , which is a contradiction.) Similarly, if an eigenvalue on U situates on the 
clockwise side of λ0, then it is Krein negative definite and moves clockwise along the circle.

Finally, we will see that the eigenvalues of γ (z) branching from λ0 are semi-simple for z in a small enough punc-
tured disk of 0. Moreover, the corresponding eigenvectors are also multi-valued analytic functions and admit Puiseux 
expansion. To see this, it suffices to prove that there exist m C

2n-valued analytic functions {vi}i=1,...,m such that 
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{vi(z
1
ji )}i=1,...,m is a set of 

∑m
i=1 ji many linearly independent vectors for sufficiently small z and for i = 1, . . . , m, 

we have that

γ (zji )vi(z) = (hi(z) + λ0)vi(z). (C.10)

Define a family of operators analytic in z:

Ti(z)
def= (γ (zji )T − (λ̄0 − hi(z̄)) · Id)(γ (zji ) − (λ0 − hi(z)) · Id).

Note that Ti(z)
∗ = Ti(z) for real valued z. Such a family of operator is said to be symmetric. By perturbation theo-

ries of symmetric operators [3, Sections 6.1 and 6.2, Chapter 2], eigenvalues and corresponding eigenvectors of Ti

are analytical for real z. More precisely, there exist m analytic complex-valued functions μi,1, μi,2, . . . , μi,m and m
analytic C2n-valued functions ζi,1, . . . , ζi,m such that ζi,1, . . . , ζi,m are orthonormal and Ti(t)ζi,k(t) = μi,k(t)ζi,k(t)

for k = 1, . . . , m and real t close to 0. Since non-zero analytic functions have isolated zeros, there exist δ > 0
and an integer g := g(i) = g(hi) such that μi,1, . . . , μi,g are identically zero and μi,g+1, . . . , μi,m are non-zero on 
[−δ, 0) ∪ (0, δ]. Note that Ti(t)ζi,k(t) = 0 iff

γ (tji )ζi,k(t) = (hi(t) + λ0)ζi,k(t). (C.11)

Hence, for real and sufficiently small t , g(i) equals to the geometric multiplicity of the eigenvalue hi(t) + λ0 of the 
matrix γ (tji ).

We define an equivalence relation on the set {1, . . . , m}: i ∼ i′ if either i = i′ or ji = ji′ and hi(z) =
hi′(ze2k(i,i′)π

√−1/ji ) for some integer k(i, i′). Then, i ∼ i′ iff hi(z
1
ji ) and hi′(z

1
j
i′ ) are the same multi-valued ana-

lytic functions. In particular, i ∼ i′ implies that ji = ji′ .
Let us firstly consider a special (yet generic) case that the equivalence relation “∼” coincides with the standard one 

“=”. Since non-zero analytic functions have isolated zeros, for different i and i′, hi(z
1
ji ) and h′

i (z
1
ji ) are disjoint in a 

punctured neighborhood of 0. In this case, together with the first order asymptotics in (16), we see that the eigenvalues 
of γ (z) branching from λ0 have algebraic multiplicity 1 as z varies from 0. For i = 1, . . . , m, we take vi to be the direct 
analytic continuation of ζi,1. Then, they satisfy (C.10). Moreover, for z in a small enough punctured neighborhood of 

0, the set {vi(z
1
ji )}i=1,...,m is linearly independent since they are the eigenvectors of different eigenvalues of γ (z).

The general case is more complicated. For the set of eigenvectors {vi(z
1
ji )}i=1,...,m, we wish to take all ζi,k(z

1
ji )

for i = 1, . . . , m and k ≤ g(i). However, there exist duplications: if i ∼ ĩ, then hi(z
1
ji ) and hi′(z

1
j
i′ ) are the same 

multi-valued analytic functions and hence, the linear spaces Span{ζi,k(z
1
ji ) : k ≤ g(i)} and Span{ζi′,k(z

1
j
i′ ) : k ≤ g(i′)}

are identical. Instead of collecting vectors ζi,k(z
1
ji ) for each i = 1, . . . , m, we collect vectors for each equivalence class 

[i], where we denote by [i] the equivalence class of i with respect to the equivalence relation ∼. We will show that 
for i = 1, . . . , m, g(i) equals the cardinality �[i] of [i] so that we have the correct number of eigenvectors, i.e., ∑

[i] g(i)ji =∑m
i=1 ji . Clearly, g(i) ≤ �[i] since the algebraic multiplicity dominates the geometric multiplicity. To 

get the converse inequality, recall that the eigenvalues branching from λ0 are semi-simple for real t close to 0, which 
implies that g(i) = �[i] if hi(t) ∈ U for real t close to 0. To obtain the inequality in the general case, we may perform 
a rotation t �→ te2�π

√−1/ji in (C.11) for some properly chosen integer �. Eventually, for i = 1, . . . , m, we define vi in 
the following way.

1) Take the equivalence class [i] of i and list the integers in [i] in increasing order.
2) Find the smallest element �(i) in [i] and define k(i) = �{i′ ∈ [i] : i′ ≤ i}.
3) Define vi to be the direct analytic continuation of ζ�(i),k(i).

The linear independence of the set of vectors {vi(z
1
ji )}i=1,...,m is left to the reader.

References

[1] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics 
and Related Areas (3)), vol. 19, Springer-Verlag, Berlin, 1990.

http://refhub.elsevier.com/S0294-1449(18)30040-4/bib456B656C616E644D5231303531383838s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib456B656C616E644D5231303531383838s1


102 Y. Chang et al. / Ann. I. H. Poincaré – AN 36 (2019) 75–102
[2] I.M. Gel’fand, V.B. Lidskiı̆, On the structure of the regions of stability of linear canonical systems of differential equations with periodic 
coefficients, Am. Math. Soc. Transl. 2 (8) (1958) 143–181.

[3] T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995, reprint of the 1980 edition.
[4] M.G. Kreı̆n, A generalization of some investigations of A. M. Lyapunov on linear differential equations with periodic coefficients, Dokl. Akad. 

Nauk SSSR (N.S.) 73 (1950) 445–448.
[5] M.G. Kreı̆n, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Akad. Nauk 

SSSR. Prikl. Mat. Meh. 15 (1951) 323–348.
[6] M.G. Kreı̆n, G.J. Ljubarskiı̆, Analytic properties of the multipliers of periodic canonical differential systems of positive type, Izv. Akad. Nauk 

SSSR, Ser. Mat. 26 (1962) 549–572.
[7] M. Kuwamura, E. Yanagida, Krein’s formula for indefinite multipliers in linear periodic Hamiltonian systems, J. Differ. Equ. 230 (2) (2006) 

446–464, https://doi .org /10 .1016 /j .jde .2006 .08 .005.
[8] Y. Long, Bott formula of the Maslov-type index theory, Pac. J. Math. 187 (1) (1999) 113–149, https://doi .org /10 .2140 /pjm .1999 .187 .113.
[9] Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, vol. 207, Birkhäuser Verlag, Basel, 2002.

[10] J. Moser, New aspects in the theory of stability of Hamiltonian systems, Commun. Pure Appl. Math. 11 (1958) 81–114, https://doi .org /10 .
1002 /cpa .3160110105.

[11] S. Winitzki, Linear Algebra via Exterior Products, 2010, lulu .com.
[12] V.A. Yakubovich, V.M. Starzhinskii, Linear Differential Equations with Periodic Coefficients. 1, 2, Halsted Press [John Wiley & Sons], New 

York–Toronto, Ont., 1975, Israel Program for Scientific Translations, Jerusalem–London, translated from Russian by D. Louvish.

http://refhub.elsevier.com/S0294-1449(18)30040-4/bib47656C66616E644C6964736B69694D5230303931333930s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib47656C66616E644C6964736B69694D5230303931333930s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib4B61746F4D5231333335343532s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib4B7265696E4D5230303336333739s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib4B7265696E4D5230303336333739s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib4B7265696E4D5230303433393830s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib4B7265696E4D5230303433393830s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib4B7265696E4C7975626172736B69694D5230313432383332s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib4B7265696E4C7975626172736B69694D5230313432383332s1
https://doi.org/10.1016/j.jde.2006.08.005
https://doi.org/10.2140/pjm.1999.187.113
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib4C6F6E674D5231383938353630s1
https://doi.org/10.1002/cpa.3160110105
http://lulu.com
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib59616B75626F76696368537461727A68696E736B69694D5230333634373430s1
http://refhub.elsevier.com/S0294-1449(18)30040-4/bib59616B75626F76696368537461727A68696E736B69694D5230333634373430s1
https://doi.org/10.1002/cpa.3160110105

	On bifurcation of eigenvalues along convex symplectic paths
	1 Introduction
	1.1 The introduction of the model and the main assumption
	1.2 Organization of the paper

	2 Preliminaries
	2.1 Notations and deﬁnitions
	2.2 Exterior powers of linear maps
	2.3 Continuity of roots of polynomials
	2.4 Properties of symplectic matrices

	3 Proof of Theorem 1.3 a)
	3.1 Proof of Lemma 3.1
	3.2 Proof of Theorem 1.3 a) from Lemma 3.1

	4 Proof of Theorem 1.3 b)
	Conﬂict of interest statement
	Acknowledgements
	Appendix A Alternative expression for C(t,ε)
	Appendix B Dimension reduction
	Appendix C Analytic Krein-Lyubarskii theorem
	References


