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Abstract

Let u be a map from a Riemann surface M to a Riemannian manifold N and α > 1, the α energy functional is defined as

Eα(u) = 1

2

∫
M

[(1 + | � u|2)α − 1]dV.

We call uα a sequence of Sacks–Uhlenbeck maps if uα are critical points of Eα and

sup
α>1

Eα(uα) < ∞.

In this paper, we show the energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps during blowing up, if the 
target N is a sphere SK−1. The energy identity can be used to give an alternative proof of Perelman’s result [15] that the Ricci flow 
from a compact orientable prime non-aspherical 3-dimensional manifold becomes extinct in finite time (cf. [3,4]).
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let M be a compact Riemann surface and N be a compact Riemannian manifold without boundary. By Nash’s 
embedding theorem, N can be embedded isometrically into an Euclidean space RK . For u ∈ H 1,2(M, N), one defines 
the energy of u by
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E(u) = 1

2

∫
M

| � u|2dV.

The critical points of the energy functional are called harmonic maps.
Given a metric h on N and a nontrivial homotopy class [β] ∈ π1(C

0 ∩H 1,2(M, N)), following the usual variational 
principle, we define W(h, [β]) (this is called the width by Colding–Minicozzi in [3]) by

W(h, [β]) = inf
γ∈[β] sup

s∈[0,1]
E(γ (s)). (1.1)

It was proved by J. Jost [8] that there exists a sequence γ j ∈ [β] such that

W(h, [β]) = lim
j→∞ max

s∈[0,1]E(γ j (s)), (1.2)

and there is a sequence sj ∈ [0, 1], a harmonic map u0 from M to N and some harmonic spheres φ1, · · · , φm in N
such that γ j (sj ) → u0 weakly in H 1,2(M, N) and

W(h, [β]) = E(u0) +
m∑

i=1

E(φi). (1.3)

This last identity is called the energy identity.
To get harmonic maps, Sacks–Uhlenbeck [19] considered the perturbed energy functional

Eα(u) = 1

2

∫
M

[(1 + | � u|2)α − 1]dV,

for u ∈ H 1,2α(M, N) where α > 1. The Euler–Lagrange equation for the functional Eα is

�u + (α − 1)〈�2u(�u),�u〉
1 + | � u|2 = A(u)(du, du), (1.4)

where A is the second fundamental form of N in RK .
For any α > 1, the perturbed energy Eα satisfies the Palais–Smale condition ([19]), so there is a map γ α : [0, 1] →

C0 ∩ H 1,2α(M, N) with γ α ∈ [β] such that

Eα(γ α(sα)) = inf
γ∈[β] sup

s∈[0,1]
Eα(γ (s)), (1.5)

where sα ∈ [0, 1]. Sacks–Uhlenbeck proved that there is a sequence αn → 1 as n → ∞ such that un := γ αn(sαn)

converges to a harmonic map u0 outside a finite set of points � which is usually called blow-up set. Rescaling the 
maps near every point in �, one obtains some harmonic spheres φ1, · · · , φm, and shows the energy identity (cf. [3,4], 
[9]).

lim
n→∞E(un) = E(u0) +

m∑
i=1

E(φi).

In this note, we consider a sequence of Sacks–Uhlenbeck maps uα which are critical points of Eα with

sup
α>1

Eα(uα) < ∞.

In [13], they construct a target N and a sequence of Sacks–Uhlenbeck maps such that the energy identity fails to hold. 
In this paper we assume that N = SK−1 is a sphere, and prove the energy identity for a sequence of Sacks–Uhlenbeck 
maps during blowing up. Furthermore, in this case we show that there is no oscillation on the neck domain, this 
phenomenon is called no neck or necklessness. The geometrical meaning is that the image of the base map and all the 
harmonic spheres during blowing up is connected.

Because the blow-up set is a finite set of points, we can choose a finite covering {Ui} of M so that the blow up 
points are away from the boundaries of Ui . We see that it suffices to show the energy identity and necklessness in each 
Ui . Without loss of generality we assume that Ui is an unit disc B1 in R2 and the metric in B1 is Euclidean. Our main 
results are stated in the following theorem.
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Theorem 1.1. Let uα ∈ H 1,2α(B1, SK−1) be a critical point of Eα and

sup
α>1

Eα(uα) = � < ∞.

If uα tends to u weakly in H 1,2(B1, SK−1), then u is harmonic and there exist a subsequence of {uα} (we still denote 
it by {uα}) and some nonnegative integer m. For any j = 1, ..., m, there exist a point xj

α , a positive number rj
α and a 

nonconstant harmonic sphere ψj (which we view as a map from R2 ∪ {∞} → SK−1) such that
(1) xj

α → xj ∈ B1, r
j
α → 0 as α → 1;

(2) limα→1(
ri
α

r
j
α

+ r
j
α

ri
α

+ |xi
α−x

j
α |

ri
α+r

j
α

) = ∞ for any i �= j ;

(3) ψj is a harmonic sphere in SK−1;
(4) Energy identity:

lim
α→1

E(uα) = E(u) +
m∑

j=1

E(ψj ).

(5) Necklessness:

lim
α→1

‖uα(·) − u(·) −
m∑

j=1

[ψj(
· − x

j
α

r
j
α

) − ψj (∞)]‖∞ = 0.

The energy identity of a Sacks–Uhlenbeck sequence can be used to give an alternative proof of Perelman’s result 
that if N is a compact orientable prime non-aspherical 3-dimensional manifold with a Riemannian metric g0, along 
the Ricci flow the metric g(t) must become extinct in finite time ([15]). Perelman used disc-type harmonic maps and 
the curve shortening flow in his proof. Another proof was previously given by Colding–Minicozzi [3,4]. Other results 
related to the energy identity for energy Eα can be found in [9], [12], etc. The energy identity for approximation 
harmonic maps was studied by many authors, for example, Ding–Tian [5], Qing [17], Qing–Tian [18], Lin–Wang 
[14], Li–Zhu [10,11], Zhu [23], etc.

This paper is organized as below. In section 2 we recall some basic lemmas on the Lorentz spaces and the elliptic 
estimates. We prove the energy identity in section 3 and the necklessness in section 4.

Throughout this paper, the letter C denotes a positive constant which maybe depend on �, K and may vary in 
different cases. Furthermore we do not distinguish the sequence of uα and its subsequences for simplicity.

Acknowledgment

The authors thank the referee for his helpful comments and suggestions.

2. Basic lemmas on Lorentz spaces and elliptic equations

We recall the definitions of Lorentz spaces (cf. chapter V of [20]). The distribution of f and the non-increasing 
rearrangement function of f are defined as follows:

λf (s) = |{x; |f (x)| > s}|;
f ∗(t) = inf{s ≥ 0 : λf (s) ≤ t}.

The Lorentz space Lp,q(0 < p, q < ∞) is defined by

{f : ‖f ‖Lp,q = (
q

p

∞∫
0

(t
1
p f ∗(t))q dt

t
)

1
q < ∞}.

One puts factor q here so that the Lp,q -norm of χ[0,1] equals to 1.

p
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For q = ∞, Lp,∞ is defined by

{f : ‖f ‖Lp,∞ = sup
t

t
1
p f ∗(t) < ∞}.

In general ‖ · ‖Lp,q may not be a norm, but when 1 ≤ q ≤ p, it is a norm.
The following Hölder inequality on the Lorentz spaces is often used.

Lemma 2.1. If 1 < p1, p2 < ∞, 1 ≤ q1, q2 ≤ ∞ satisfy 1
p1

+ 1
p2

= 1
q1

+ 1
q2

= 1, then

|
∫

f (x)g(x)dx| ≤ (
p1

q1
)

1
q1 (

p2

q2
)

1
q2 ‖f ‖Lp1,q1 ‖g‖Lp2,q2 .

In this paper we also need the following interpolation theorem which is a special case of Theorem 1.4.19 in [6].

Lemma 2.2. Suppose that 1 ≤ p1 < p2 ≤ ∞ and T is a linear operator on Lp1 + Lp2 . If T is both bounded on Lp1

and on Lp2 , i.e. ‖Tf ‖pi
≤ Ci‖f ‖pi

(i = 1, 2), then for any p, q with p1 < p < p2, 1 ≤ q ≤ ∞, T is bounded on 
Lp,q , i.e.

‖Tf ‖Lp,q ≤ C‖f ‖Lp,q .

Now we recall some elliptic estimates.

Lemma 2.3. Assume that F is supported in B1, if u vanishes at infinity, i.e. u(∞) = lim|x|→∞ u(x) = 0 and solves 
the following equation

�u = div F,

then we have

‖∇u‖2 ≤ ‖F‖2.

Proof. By the divergence theorem and Hölder inequality we obtain

‖∇u‖2
2 =

∫
|∇u|2dx = −

∫
u�udx = −

∫
udiv Fdx =

∫
F∇udx

≤ ‖∇u‖2‖F‖2

which yields that

‖∇u‖2 ≤ ‖F‖2.

The following lemma will be used in section 4.

Lemma 2.4. Assume that F is supported in B1, if u vanishes at infinity and solves the following equation

�u = div F,

then we have

‖∇u‖L2,1 ≤ C‖F‖L2,1 .

Proof. By the equation and the divergence theorem we can obtain

∂u

∂xi

(x) =
∫
Rn

xi − yi

|x − y|n �u(y)dy

=
∫
n

xi − yi

|x − y|n div F(y)dy
R
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= −
n∑

j=1

∫
Rn

∂

∂yj

(
xi − yi

|x − y|n )F j (y)dy

=
n∑

j=1

∫
Rn

δi
j |x − y|2 − n(xi − yi)(xj − yj )

|x − y|n+2 Fj (y)dy

=
n∑

j=1

TijF
j (x),

where Tij are classical Calderón–Zygmund singular integral operators, which are bounded in Lp space for any 1 <
p < ∞. By Lemma 2.2 we have

‖TijF
j‖L2,1 ≤ C‖Fj‖L2,1 ≤ C‖F‖L2,1 .

So we obtain that

‖∇u‖L2,1 ≤
n∑

j=1

‖TijF
j‖L2,1 ≤ C‖F‖L2,1 .

The following result is very important in the regularity theory of elliptic equations.

Lemma 2.5. (Wente’s inequality, [21,2]) If f, g ∈ H 1,2(R2), u vanishes at infinity and

�u = ∇f ∇⊥g = ∂1f ∂2g − ∂2f ∂1g,

then ∇f ∇⊥g belongs to the Hardy space H 1(R2) and

‖∇u‖L2,1 ≤ C‖∇f ∇⊥g‖H 1 ≤ C‖∇f ‖2‖∇g‖2.

A similar result is proved by Bethuel.

Lemma 2.6. ([1] Lemma 2) If ∇f ∈ L2,∞(R2), ∇g ∈ L2(R2), u vanishes at infinity and

�u = ∇f ∇⊥g,

then we have

‖∇u‖2 ≤ C‖∇f ‖L2,∞‖∇g‖2.

At last we recall the following embedding theorem.

Lemma 2.7. ([7] p. 137 Theorem 3.3.4) If u vanishes at infinity and ∇u ∈ L2,1(R2), then u ∈ C0(R2). Furthermore, 
one has

‖u‖C0 ≤ C‖∇u‖L2,1 .

3. Proof of the energy identity

The following small energy regularity for Sacks–Uhlenbeck maps was proved in [19].

Lemma 3.1. ([19]) Let uα be the critical points of Eα from a Riemann surface M to a compact manifold N without 
boundary (α > 1). There exists a constant ε0 such that if

sup E(uα,B2) ≤ ε2
0 ,
α>1
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we have

sup
x∈B1

|∇uα(x)| ≤ C‖∇uα‖L2(B2)
.

As a corollary, there exists a subsequence of uα which converges to a harmonic map u in H 1,2(B1, N).

Let uα be a sequence of Sacks–Uhlenbeck maps. It follows from the small energy regularity that the blow-up set S
of uα is a finite set of points. At the blow-up point x ∈ B1 we have, for any r with 0 < r < 1 − |x|,

sup
α

E(uα,B(x, r)) > ε2
0 .

Assume that the target is a sphere SK−1 and uα is a Sacks–Uhlenbeck map from M to SK−1, then uα satisfies the 
Euler–Lagrange equation

�uα + (α − 1) < ∇2uα(∇uα),∇uα >

1 + |∇uα|2 = −uα|∇uα|2. (3.1)

Set Fα = (1 + |∇uα|2)α−1, then

∇Fα = (α − 1)(1 + |∇uα|2)α−2∇2uα(∇uα)

and the equation (3.1) can be rewritten as

�uα + < ∇Fα,∇uα >

Fα

= −uα|∇uα|2,
i.e.

div(Fα∇uα) = −Fαuα|∇uα|2. (3.2)

The proof of the statements (1), (2) and (3) in Theorem 1.1 is standard, we omit it.
By the induction arguments [5], it suffices for us to prove the energy identity (4) and necklessness (5) in the case 

that there is only one bubble during the blowing up. For simplicity, we assume that the unique bubble is produced by 
the sequence vα(x) = uα(rαx), i.e. vα converges to a nonconstant harmonic sphere ψ strongly in H 1,2

Loc(R
2, SK−1).

In this section we shall prove the energy identity (4), that is

lim
α→1

E(uα) = E(u) + E(ψ).

Because

lim
δ→0

lim
α→1

E(uα,R2 \ Bδ) = E(u)

and

lim
R→∞ lim

α→1
E(uα,BrαR) = E(ψ),

it suffices to show that there is no energy loss on the neck domain, i.e.

lim
δ→0

lim
R→∞ lim

α→1
E(uα,Bδ \ BrαR) = 0.

We divide the proof into some steps.
Step 1 (The estimate of L2,∞ quasi-norm of ∇uα on the neck domain)
Given any 0 < ε < ε0, one has

E(ψ,R2 \ BR
2
) + E(u,B4δ) <

ε2

2
,

for R sufficiently large and δ sufficiently small. By the standard blow up argument one shows that there exists α0 such 
that
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E(uα,B2t \ Bt) < ε2, (3.3)

for any t with rαR
2 < t < 2δ and any α with 1 < α < α0. Otherwise we will have another bubble which contracts to 

the assumption that there is only one bubble.
It follows from (3.3) that for any x ∈ Bδ \ BrαR , 1 < α < α0

|∇uα(x)| ≤ Cε

|x|
which implies that

‖∇uα‖L2,∞(Bδ\BrαR) ≤ Cε. (3.4)

Step 2 (The construction of ̃uα and the Hodge decomposition)
Choose ϕ ∈ C∞

0 (B2) with ϕ = 1 on B1 and let ϕt (x) = ϕ(x
t
). Set

u1
α = 1

|B2δ \ Bδ|
∫

B2δ\Bδ

uα(x)dx,

u2
α = 1

|B2rαR \ BrαR|
∫

B2rαR\BrαR

uα(x)dx

and

ũα(x) = ϕδ(x)((1 − ϕrαR(x))(uα(x) − u2
α) + u2

α − u1
α).

It is clear that ̃uα is supported in B2δ and ̃uα(x) = u2
α − u1

α for |x| < rαR.
In the following lemma, we derive the C0-estimate of Fα .

Lemma 3.2. There exists a constant A independent of α such that

sup
1<α<α0

‖Fα‖C0 < A

where α0 − 1 is sufficiently small.

Proof. It follows from (3.4) in step 1 that, as R big enough and δ small enough,

|∇uα(x)| ≤ Cε

|x|
for any x ∈ Bδ \ BrαR , 1 < α < α0 where α0 − 1 is small enough.

On the other hand, there exists a λ > 0 such that E(ψ, B(y, 2λ)) < ε2
0 for any y ∈ BR . Because vα converges to ψ

strongly in H 1,2
Loc(R

2, SK−1) and E(ψ, B(y, 2λ)) < ε2
0 , by Lemma 3.1, when α − 1 small enough, we obtain

|∇vα(y)| ≤ C
√

E(vα,B(y,2λ))

λ
≤ C

√
E(ψ,B(y,2λ))

λ
≤ C

which yields that for x ∈ BrαR ,

|∇uα(x)| ≤ r−1
α |∇vα(r−1

α x)| ≤ Cr−1
α .

By a similar argument one shows that for x ∈ B1 \ Bδ ,

|∇uα(x)| ≤ Cδ−1.

So, when α − 1 small enough, we have

‖∇uα‖C0(B ) ≤ Cr−1
α . (3.5)
1
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For any R > 0, by direct computations we obtain∫
BR

|∇vα(x)|2αdx = r2α
α

∫
BR

|∇uα(rαx)|2αdx

= r2α−2
α

∫
BrαR

|∇uα(x)|2αdx

≤ Cr2α−2
α

∫
BrαR

[(1 + |∇uα(x)|2)α − 1]dx

≤ Cr2α−2
α �.

On the other hand, since

lim
α→1

‖∇vα‖C0 < ∞,

one has

lim
R→∞ lim

α→1

∫
BR

|∇vα(x)|2αdx = lim
R→∞

∫
BR

lim
α→1

|∇vα(x)|2αdx

= lim
R→∞

∫
BR

|∇ψ(x)|2dx

= 2E(ψ)

≥ 2ε2
0 .

So we get

ε2
0 ≤ C� lim

α→1
r2α−2
α

which implies that when 1 < α < α0,

r2−2α
α ≤ C�

ε2
0

. (3.6)

By (3.5) and (3.6), we have

‖Fα‖C0 ≤ (1 + ‖∇uα‖2
C0(B1)

)α−1 ≤ (1 + Cr−2
α )α−1 ≤ Cr2−2α

α ≤ C�

ε2
0

,

when 1 < α < α0 with α0 − 1 small enough. This completes the proof of this lemma. �
By the Hodge decomposition we get

Fα∇ũα = ∇Dα + ∇⊥Qα

where Dα, Qα ∈ H 1,2(B1) vanish at infinity.
Step 3 (The estimate of ‖∇Qα‖2)
By the Hodge decomposition and direct computations we obtain

�Qα = curl ∇⊥Qα

= curl (Fα∇ũα − ∇Dα)

= ∇⊥Fα∇ũα

= −∇Fα∇⊥ũα

= −∇(Fα − 1)∇⊥ũα

= −div((Fα − 1)∇⊥ũα). (3.7)
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Because ̃uα is supported in B2δ and Qα vanishes at infinity, by Lemma 2.3 and Lemma 3.2 we obtain

‖∇Qα‖2 ≤ ‖(Fα − 1)∇⊥ũα‖2

= ‖Fα − 1

Fα

Fα∇⊥ũα‖2

≤ (1 − 1

A
)‖Fα∇ũα‖2. (3.8)

Therefore one gets

‖Fα∇ũα‖2 ≤ ‖∇Dα‖2 + ‖∇Qα‖2

≤ ‖∇Dα‖2 + (1 − 1

A
)‖Fα∇ũα‖2

which implies that

‖Fα∇ũα‖2 ≤ A‖∇Dα‖2. (3.9)

Step 4 (The estimate of ‖∇Dα‖2)
In this step the assumption that the target is a sphere is essential. The arguments have been used in our proof of 

necklessness for a sequence of approximate harmonic maps to a sphere ([11,22]).
By direct computations we obtain

∇ũα(x) = ∇(ϕδ(x)((1 − ϕrαR(x))(uα(x) − u2
α) + u2

α − u1
α))

= ∇ϕδ(x)((1 − ϕrαR(x))(uα(x) − u2
α) + u2

α − u1
α)

+ ϕδ(x)(∇(1 − ϕrαR(x))(uα(x) − u2
α) + (1 − ϕrαR(x))∇uα(x))

= ∇ϕδ(x)(uα(x) − u1
α) − ∇ϕrαR(x)(uα(x) − u2

α)

+ ϕδ(x)(1 − ϕrαR(x))∇uα(x).

So we get

div(Fα∇ũα) = div(Fαϕδ(1 − ϕrαR)∇uα) + div(Fα(∇ϕδ(uα − u1
α) − ∇ϕrαR(uα − u2

α))). (3.10)

Note that |uα| ≡ 1, we have

K∑
j=1

uj
α∇uj

α = 1

2
∇

K∑
j=1

(uj
α)2 = 0.

Now the equation (3.2) can be rewritten as

div(Fα∇ui
α) = −Fα

K∑
j=1

ui
α|∇uj

α|2

=
K∑

j=1

Fα(uj
α∇ui

α − ui
α∇uj

α)∇uj
α.

Therefore we have

div[Fαϕδ(1 − ϕrαR)∇ui
α]

= ϕδ(1 − ϕrαR)div(Fα∇ui
α) + Fα∇ui

α∇(ϕδ(1 − ϕrαR))

= ϕδ(1 − ϕrαR)

K∑
j=1

Fα(uj
α∇ui

α − ui
α∇uj

α)∇uj
α + Fα∇ui

α∇(ϕδ(1 − ϕrαR))

=
K∑

Fα(uj
α∇ui

α − ui
α∇uj

α)∇(ϕδ(1 − ϕrαR)uj
α)
j=1
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−
K∑

j=1

Fα(uj
α∇ui

α − ui
α∇uj

α)uj
α∇(ϕδ(1 − ϕrαR)) + Fα∇ui

α∇(ϕδ(1 − ϕrαR))

=
K∑

j=1

Fα(uj
α∇ui

α − ui
α∇uj

α)∇(ϕδ(1 − ϕrαR)uj
α) −

K∑
j=1

Fα(uj
α)2∇ui

α∇(ϕδ(1 − ϕrαR))

+ Fα∇ui
α∇(ϕδ(1 − ϕrαR))

=
K∑

j=1

Fα(uj
α∇ui

α − ui
α∇uj

α)∇(ϕδ(1 − ϕrαR)uj
α) − Fα∇ui

α∇(ϕδ(1 − ϕrαR))

+ Fα∇ui
α∇(ϕδ(1 − ϕrαR))

=
K∑

j=1

Fα(uj
α∇ui

α − ui
α∇uj

α)∇(ϕδ(1 − ϕrαR)uj
α). (3.11)

Because

div[Fα(uj
α∇ui

α − ui
α∇uj

α)]
= uj

αdiv(Fα∇ui
α) + Fα∇uj

α∇ui
α − ui

αdiv(Fα∇uj
α) − Fα∇ui

α∇uj
α

= −uj
αui

α|∇uα|2 + ui
αuj

α|∇uα|2
= 0,

we can find Gα,ij ∈ H 1,2(R2) such that

Fα(uj
α∇ui

α − ui
α∇uj

α) = ∇⊥Gα,ij on B1. (3.12)

Using the idea in the construction of ̃uα in step 2, we construct G̃α . Set

G
1
α = 1

|B4δ \ B2δ|
∫

B4δ\B2δ

Gα(x)dx,

G
2
α = 1

|BrαR \ BrαR
2

|
∫

BrαR\B rαR
2

Gα(x)dx

and

G̃α(x) = ϕ2δ(x)((1 − ϕrαR
2

(x))(Gα(x) − G
2
α) + G

2
α − G

1
α).

Note that ϕδ(1 − ϕrαR)u
j
α is supported in B2δ \ BrαR and G̃α = Gα on B2δ \ BrαR , by (3.10), (3.11) and (3.12) we 

obtain

div(Fα∇ũα)

= div(Fαϕδ(1 − ϕrαR)∇uα(x)) + div(Fα(∇ϕδ(uα − u1
α) − ∇ϕrαR(uα − u2

α)))

=
K∑

j=1

Fα(uj
α∇uα − uα∇uj

α)∇(ϕδ(1 − ϕrαR)uj
α)

+ div(Fα(∇ϕδ(uα − u1
α) − ∇ϕrαR(uα − u2

α)))

= ∇⊥Gα∇(ϕδ(1 − ϕrαR)uα) + div(Fα(∇ϕδ(uα − u1
α) − ∇ϕrαR(uα − u2

α)))

= ∇⊥G̃α∇(ϕδ(1 − ϕrαR)uα)

+ div(Fα(∇ϕδ(uα − u1
α) − ∇ϕrαR(uα − u2

α))). (3.13)
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We estimate the L2,∞ quasi-norm of ∇G̃α . For any t with rαR
2 ≤ t ≤ 2δ, it is easy to see that

‖∇Gα‖L2(B2t\Bt )
= ‖∇⊥Gα‖L2(B2t\Bt )

≤
∑
i,j

‖Fα(uj
α∇ui

α − ui
α∇uj

α)‖L2(B2t\Bt )

≤ C‖Fα‖C0‖uα‖C0‖∇uα‖L2(B2t\Bt )

≤ C‖∇uα‖L2(B2t\Bt )

≤ Cε.

It follows from (3.4) that

‖∇Gα‖L2,∞(B2δ\BrαR) ≤ C‖∇uα‖L2,∞(B2δ\BrαR) ≤ Cε.

So, by the Poincaré inequality we can get

‖∇G̃α‖L2,∞ ≤ C(‖∇G̃α‖L2(R2\B2δ)
+ ‖∇G̃α‖L2,∞(B2δ\BrαR) + ‖∇G̃α‖L2(BrαR))

≤ C(‖∇(ϕδ(Gα − G
1
α))‖L2(B4δ\B2δ)

+ ‖∇Gα‖L2,∞(B2δ\BrαR) +
‖∇((1 − ϕrαR)(Gα − G

2
α))‖L2(BrαR\B rαR

2
))

≤ C(‖∇Gα‖L2(B4δ\B2δ)
+ ‖(Gα − G

1
α)∇ϕδ‖L2(B4δ\B2δ)

+ ε

+ ‖(Gα − G
2
α)∇ϕrαR‖L2(BrαR\B rαR

2
) + ‖∇Gα‖L2(BrαR\B rαR

2
))

≤ C(‖∇Gα‖L2(B4δ\B2δ)
+ ε + ‖∇Gα‖L2(BrαR\B rαR

2
))

≤ Cε. (3.14)

We solve the following equations with �1, �2 = 0 at infinity

��1 = ∇⊥G̃α∇(ϕδ(1 − ϕrαR)uα);
��2 = div(Fα(∇ϕδ(uα − u1

α) − ∇ϕrαR(uα − u2
α))).

By Lemma 2.6 and (3.14) we obtain

‖∇�1‖2 ≤ C‖∇G̃α‖L2,∞‖∇(ϕδ(1 − ϕrαR)uα)‖2

≤ Cε(‖∇uα‖2 + ‖∇(ϕδ(1 − ϕrαR))‖2)

≤ Cε. (3.15)

By Lemma 3.1 we have

|uα(x) − u1
α| ≤ Cε,x ∈ B2δ \ Bδ; |uα(x) − u2

α| ≤ Cε,x ∈ B2rαR \ BrαR.

It follows from Lemma 2.3 that

‖∇�2‖2 ≤ ‖Fα((uα − u1
α)∇ϕδ − (uα − u2

α)∇ϕrαR)‖2

≤ A(‖(uα − u1
α)∇ϕδ‖2 + ‖(uα − u2

α)∇ϕrαR‖2)

≤ Cε(‖∇ϕδ‖2 + ‖∇ϕrαR‖2)

≤ Cε. (3.16)

Since �Dα = div (Fα∇ũα) = ��1 + ��2 and Dα = 0 at infinity, we have Dα = �1 + �2. It follows from (3.15)
and (3.16) that

‖∇Dα‖2 ≤ ‖∇�1‖2 + ‖∇�2‖2 ≤ Cε. (3.17)
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By (3.9) and (3.17) we get

‖∇uα‖L2(Bδ\B2rαR) ≤ ‖∇ũα‖2

≤ ‖Fα∇ũα‖2

≤ A‖∇Dα‖2

≤ Cε.

This completes the proof of the energy identity.

4. Proof of the necklessness

By the induction arguments [5], it suffices for us to prove the result in the case that there is only one bubble, i.e.

lim
α→1

‖uα(·) − u(·) − [ψ(
· − xα

rα
) − ψ(∞)]‖∞ = 0. (4.1)

It follows from Lemma 3.1 that uα → u in C∞(R2 \ Bδ) for any δ > 0 which implies that

lim
α→1

‖uα(·) − u(·) − [ψ(
· − xα

rα
) − ψ(∞)]‖L∞(R2\Bδ)

≤ lim
α→1

(‖uα(·) − u(·)‖L∞(R2\Bδ)
+ ‖ψ(

· − xα

rα
) − ψ(∞)‖L∞(R2\Bδ)

)

= 0.

Similarly, for any R > 0 we obtain

lim
α→1

‖uα(·) − u(·) − [ψ(
· − xα

rα
) − ψ(∞)]‖L∞(BrαR)

≤ lim
α→1

‖uα(·) − ψ(
· − xα

rα
)‖L∞(BrαR) + |u(0) − ψ(∞)|

= 0.

On the other hand, it is easy to see that

lim
R→∞ lim

α→1
‖ψ(

· − xα

rα
) − ψ(∞)‖L∞(R2\BrαR) = 0.

To obtain (4.1), it is only left to show that

lim
δ→0

lim
R→∞ lim

α→1
‖uα(·) − u(·)‖L∞(Bδ\B2rαR) = 0.

Since uα and u are continuous and

lim
δ→0

lim
α→1

‖uα(·) − u(·)‖L∞(R2\Bδ)
= 0,

we need only to prove that

lim
δ→0

lim
R→∞ lim

α→1
sup

x,y∈Bδ\B2rαR

|uα(x) − uα(y)| = 0, (4.2)

i.e. there is no oscillation on the neck domain.
From the construction of ̃uα , we see that ̃uα = uα on Bδ \ B2rαR . By Lemma 2.7 we get that

sup
x,y∈Bδ\B2rαR

|uα(x) − uα(y)| ≤ sup
x,y

|̃uα(x) − ũα(y)|

≤ ‖ũα‖C0

≤ C‖∇ũα‖L2,1 .
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In this section we shall prove

lim
δ→0

lim
R→∞ lim

α→1
‖∇ũα‖L2,1 = 0 (4.3)

which yields the necklessness (4.1).
As in section 3, we divide the proof into some steps.
Step 1 (The Hodge decomposition)
In section 3, we showed that, for any ε > 0 there exist δ > 0, R > 0 and α0 > 1 such that

‖∇uα‖L2(B2δ\B rαR
2

) < ε; ‖∇ũα‖2 < ε (4.4)

when 1 < α < α0.
By the Hodge decomposition Fα∇ũα = ∇Dα + ∇⊥Qα we have

‖∇ũα‖L2,1 ≤ ‖Fα∇ũα‖L2,1 ≤ ‖∇Dα‖L2,1 + ‖∇Qα‖L2,1 . (4.5)

Step 2 (The estimate of ‖∇Qα‖L2,1 )
Because we have already proved the energy identity, we have the following identity ([12]). For completeness, we 

sketch the proof below.

Lemma 4.1. With the same notations and assumptions in section 3, we have

lim
α→1

‖Fα‖C0 = 1.

Proof. By an argument similar to the one used in obtaining Monotonicity inequality of stationary harmonic maps 
[16], we get∫

∂Bt

(1 + |∇uα|2)α−1(|∂uα

∂r
|2 − 1

2α
|∇uα|2)ds0

= α − 1

αt

∫
Bt

(1 + |∇uα|2)α−1|∇uα|2dx + O(t). (4.6)

Integrating t from rαR to δ, we get∫
Bδ\BrαR

Fα(|∂uα

∂r
|2 − 1

2α
|∇uα|2)dx

=
δ∫

rαR

α − 1

αt

∫
Bt

Fα|∇uα|2dxdt + δO(δ).

It is clear that

δ∫
rαR

α − 1

αt

∫
Bt

Fα|∇uα|2dxdt

≥
δ∫

rαR

α − 1

αt

∫
BrαR

|∇uα|2dxdt

= 2(α − 1)
ln

δ
E(uα,BrαR).
α rαR
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Letting α → 1, one obtains

lim
α→1

δ∫
rαR

α − 1

αt

∫
Bt

Fα|∇uα|2dxdt

≥ C lim
α→1

α − 1

α
ln

δ

rαR
E(ψ)

= C lim
α→1

(α − 1)(ln
δ

R
− ln rα)E(ψ)

= C lim
α→1

ln r1−α
α E(ψ). (4.7)

On the other hand, it follows from (4.4) and Lemma 3.1 that∫
Bδ\BrαR

Fα(|∂uα

∂r
|2 − 1

2α
|∇uα|2)dx

≤ 2AE(uα,Bδ \ BrαR)

≤ Cε2. (4.8)

By (4.7) and (4.8) we have

lim
α→1

ln r1−α
α E(ψ)

≤ C lim
α→1

δ∫
rαR

α − 1

αt

∫
Bt

Fα|∇uα|2dxdt

≤ C(

∫
Bδ\BrαR

Fα(|∂uα

∂r
|2 − 1

2α
|∇uα|2)dx + δO(δ))

≤ C(ε2 + δ)

which yields that

lim
α→1

ln r1−α
α = 0,

that is

lim
α→1

r1−α
α = 1. (4.9)

Using the same arguments as that in the proof of Lemma 3.2, by (3.5) and (4.9), we can get

1 ≤ lim
α→1

‖Fα‖C0

≤ lim
α→1

(1 + Cr−2
α )α−1

= lim
α→1

r2−2α
α

= 1.

So the lemma is proved. �
By the same computations as that in (3.7) we obtain

�Qα = −div((Fα − 1)∇⊥ũα). (4.10)
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Because ̃uα is supported in B2δ and Qα vanishes at infinity, by Lemma 2.4 one can get

‖∇Qα‖L2,1 ≤ C‖(Fα − 1)∇⊥ũα‖L2,1

= C‖(1 − 1

Fα

)Fα∇ũα‖L2,1 .

It follows from Lemma 4.1 that

‖∇Qα‖L2,1 ≤ 1

2
‖Fα∇ũα‖L2,1

when α − 1 small enough, which implies that

‖Fα∇ũα‖L2,1 ≤ 2‖∇Dα‖L2,1 . (4.11)

Step 3 (The estimate of ‖∇Dα‖L2,1 )
Here we use the same notations and the similar arguments as that in step 4 of section 3.
We first estimate ‖∇G̃α‖2. By the definition of Gα, ̃Gα and the same computations as that in (3.14) we get

‖∇G̃α‖2 ≤ C‖∇Gα‖L2(B2δ\B rαR
2

)

= C‖∇⊥Gα‖L2(B2δ\B rαR
2

)

≤ C
∑

i

∑
j

‖Fα(uj
α∇ui

α − ui
α∇uj

α)‖L2(B2δ\B rαR
2

)

≤ C‖∇uα‖L2(B2δ\B rαR
2

).

By (4.4) we have

‖∇G̃α‖2 ≤ Cε. (4.12)

In section 3, using the special structure of the sphere we have derived

div(Fα∇ũα) = ∇⊥G̃α∇(ϕδ(1 − ϕrαR)uα)

+ div(Fα(∇ϕδ(uα − u1
α) − ∇ϕrαR(uα − u2

α))). (4.13)

Let �1, �2 be the solutions of the following equations with �1, �2 = 0 at infinity,

��1 = ∇⊥G̃α∇(ϕδ(1 − ϕrαR)uα);
��2 = div(Fα(∇ϕδ(uα − u1

α) − ∇ϕrαR(uα − u2
α))).

By Lemma 2.5 and (4.12) we get

‖∇�1‖L2,1 ≤ C‖∇G̃α‖2‖∇(ϕδ(1 − ϕrαR)uα)‖2

≤ Cε(‖∇uα‖2 + ‖∇(ϕδ(1 − ϕrαR))‖2)

≤ Cε. (4.14)

On the other hand, since

|uα(x) − u1
α| ≤ Cε,x ∈ B2δ \ Bδ; |uα(x) − u2

α| ≤ Cε,x ∈ B2rαR \ BrαR,

by Lemma 2.4 and Lemma 3.2 we have

‖∇�2‖L2,1 ≤ C‖Fα((uα − u1
α)∇ϕδ − (uα − u2

α)∇ϕrαR)‖L2,1

≤ C(‖(uα − u1
α)∇ϕδ‖L2,1 + ‖(uα − u2

α)∇ϕrαR‖L2,1)

≤ Cε(‖∇ϕδ‖L2,1 + ‖∇ϕrαR‖L2,1)

≤ Cε. (4.15)
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Note that Dα = �1 + �2, we see that (4.14) and (4.15) imply

‖∇Dα‖L2,1 ≤ ‖∇�1‖L2,1 + ‖∇�2‖L2,1 ≤ Cε. (4.16)

It follows from (4.11) and (4.16) that

‖∇ũα‖L2,1 ≤ ‖Fα∇ũα‖L2,1

≤ 2‖∇Dα‖L2,1

≤ Cε

which implies (4.3). This proves that there is no oscillation on the neck domain.
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