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Abstract

We prove local in time well-posedness for a large class of quasilinear Hamiltonian, or parity preserving, Schrödinger equations 
on the circle. After a paralinearization of the equation, we perform several paradifferential changes of coordinates in order to 
transform the system into a paradifferential one with symbols which, at the positive order, are constant and purely imaginary. This 
allows to obtain a priori energy estimates on the Sobolev norms of the solutions.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Main results

In this paper we study the initial value problem (IVP){
i∂tu + ∂xxu + P ∗ u + f (u,ux,uxx) = 0, u = u(t, x), x ∈ T,

u(0, x) = u0(x)
(1.1)

where T := R/2πZ, the nonlinearity f is in C∞(C3; C) in the real sense (i.e. f (z1, z2, z3) is C∞ as function of 
Re(zi) and Im(zi) for i = 1, 2, 3) vanishing at order 2 at the origin, the potential P(x) =∑j∈Z p̂(j) eijx√

2π
is a function 

in C1(T; C) with real Fourier coefficients p̂(j) ∈ R for any j ∈ Z and P ∗ u denotes the convolution between P and 
u =∑j∈Z û(j) eijx√

2π
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P ∗ u(x) :=
∫
T

P(x − y)u(y)dy =
∑
j∈Z

p̂(j)û(j)eijx . (1.2)

Our aim is to prove the local existence, uniqueness and regularity of the classical solution of (1.1) on Sobolev spaces

Hs := Hs(T;C) :
⎧⎨⎩u(x) =

∑
k∈Z

û(k)
eikx

√
2π

: ‖u‖2
Hs :=

∑
j∈Z

〈j〉2s |û(j)|2 < ∞
⎫⎬⎭ , (1.3)

where 〈j〉 :=√1 + |j |2 for j ∈Z, for s large enough.
Similar problems have been studied in the case x ∈ Rn, n ≥ 1. For x ∈ R, in the paper [23], it was considered the 

fully nonlinear Schrödinger type equation i∂tu = F(t, x, u, ux, uxx); it has been shown that the IVP associated to this 
equation is locally in time well posed in H∞(R; C) (where H∞(R; C) denotes the intersection of all Sobolev spaces 
Hs(R; C), s ∈R) if the function F satisfies some suitable ellipticity hypotheses.

Concerning the n-dimensional case the IVP for quasi-linear Schrödinger equations has been studied in [20] in the 
Sobolev spaces Hs(Rn; C) with s sufficiently large. Here the key ingredient used to prove energy estimates is a Doi’s 
type lemma which involves pseudo-differential calculus for symbols defined on the Euclidean space Rn.

Coming back to the case x ∈ T we mention [8]. In this paper it is shown that if s is big enough and if the size 
of the initial datum u0 is sufficiently small, then (1.1) is well posed in the Sobolev space Hs(T) if P = 0 and f
is Hamiltonian (in the sense of Hypothesis 1.1). The proof is based on a Nash–Moser–Hörmander implicit function 
theorem and the required energy estimates are obtained by means of a procedure of reduction to constant coefficients 
of the equation (as done in [16], [17]).

We remark that, even for the short time behavior of the solutions, there are deep differences between the problem 
(1.1) with periodic boundary conditions (x ∈ T) and (1.1) with x ∈R. Indeed Christ proved in [13] that the following 
family of problems{

∂tu + iuxx + up−1ux = 0

u(0, x) = u0(x)
(1.4)

is ill-posed in all Sobolev spaces Hs(T) for any integer p ≥ 2 and it is well-posed in Hs(R) for p ≥ 3 and s suffi-
ciently large. The ill-posedness of (1.4) is very strong, in [13] it has been shown that its solutions have the following 
norm inflation phenomenon: for any ε > 0 there exists a solution u of (1.4) and a time tε ∈ (0, ε) such that

‖u0‖Hs ≤ ε and ‖u(tε)‖Hs > ε−1.

The examples exhibited in [13] suggest that some assumptions on the nonlinearity f in (1.1) are needed. In this paper 
we prove local well-posedness for (1.1) in two cases. The first one is the Hamiltonian case. We assume that equation 
(1.1) can be written in the complex Hamiltonian form

∂tu = i∇ūH(u), (1.5)

with Hamiltonian function

H(u) =
∫
T

−|ux |2 + (P ∗ u)ū + F(u,ux)dx, (1.6)

for some real valued function F ∈ C∞(C2; R) and where ∇ū := (∇Re(u) + i∇Im(u))/2 and ∇ denotes the L2(T; R)

gradient. Note that the assumption p̂(j) ∈ R implies that the Hamiltonian 
∫
T
(P ∗ u)ūdx is real valued. We denote 

by ∂zi
:= (∂Re(zi ) − i∂Im(zi ))/2 and ∂z̄i

:= (∂Re(zi ) + i∂Im(zi ))/2 for i = 1, 2 the Wirtinger derivatives. We assume the 
following.

Hypothesis 1.1 (Hamiltonian structure). We assume that the nonlinearity f in equation (1.1) has the form

f (z1, z2, z3) = (∂z̄1F)(z1, z2) −
(
(∂z1z̄2F)(z1, z2)z2+

(∂z̄1z̄2F)(z1, z2)z̄2 + (∂z2z̄2F)(z1, z2)z3 + (∂z̄2z̄2F)(z1, z2)z̄3

)
,

(1.7)

where F is a real valued C∞ function (in the real sense) defined on C2 vanishing at 0 at order 3.
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Under the hypothesis above equation (1.1) is quasi-linear in the sense that the non linearity depends linearly on 
the variable z3. We remark that Hypothesis 1.1 implies that the nonlinearity f in (1.1) has the Hamiltonian form

f (u,ux,uxx) = (∂z̄1F)(u,ux) − d

dx
[(∂z̄2F)(u,ux)].

The second case is the parity preserving case.

Hypothesis 1.2 (Parity preserving structure). Consider the equation (1.1). Assume that f is a C∞ function in the 
real sense defined on C3 and that it vanishes at order 2 at the origin. Assume P has real Fourier coefficients. Assume 
moreover that f and P satisfy the following

1. f (z1, z2, z3) = f (z1, −z2, z3);
2. (∂z3f )(z1, z2, z3) ∈ R;
3. P(x) =∑j∈Z p̂(j)eijx is such that p̂(j) = p̂(−j) ∈ R (this means that P(x) = P(−x)).

Note that item 1 in Hypothesis 1.2 implies that if u(x) is even in x then f (u, ux, uxx) is even in x; item 3 implies 
that if u(x) is even in x so is P ∗ u. Therefore the space of functions even in x is invariant for (1.1). We assume item 
2 to avoid parabolic terms in the non linearity, so that (1.1) is a Schrödinger-type equation; note that in this case the 
equation may be fully-nonlinear, i.e. the dependence on the variable z3 is not necessary linear.

In order to treat initial data with big size we shall assume also the following ellipticity condition.

Hypothesis 1.3 (Global ellipticity). We assume that there exist constants c1, c2 > 0 such that the following holds. 
If f in (1.1) satisfies Hypothesis 1.1 (i.e. has the form (1.7)) then

1 − ∂z2∂z̄2F(z1, z2) ≥ c1,(
(1 − ∂z2∂z̄2F)2 − |∂z̄2∂z̄2F |2)(z1, z2) ≥ c2

(1.8)

for any (z1, z2) in C2. If f in (1.1) satisfies Hypothesis 1.2 then

1 + ∂z3f (z1, z2, z3) ≥ c1,(
(1 + ∂z3f )2 − |∂z̄3f |2)(z1, z2, z3) ≥ c2

(1.9)

for any (z1, z2, z3) in C3.

The main result of the paper is the following.

Theorem 1.1 (Local existence). Consider equation (1.1), assume Hypothesis 1.1 (respectively Hypothesis 1.2) and 
Hypothesis 1.3. Then there exists s0 > 0 such that for any s ≥ s0 and for any u0 in Hs(T; C) (respectively any u0 even 
in x in the case of Hypothesis 1.2) there exists T > 0, depending only on ‖u0‖Hs , such that the equation (1.1) with 
initial datum u0 has a unique classical solution u(t, x) (resp. u(t, x) even in x) such that

u(t, x) ∈ C0
(
[0, T );Hs(T)

)⋂
C1
(
[0, T );Hs−2(T)

)
.

Moreover there is a constant C > 0 depending on ‖u0‖Hs0 and on ‖P‖C1 such that

sup
t∈[0,T )

‖u(t, ·)‖Hs ≤ C‖u0‖Hs .

We make some comments about Hypotheses 1.1, 1.2 and 1.3. We remark that the class of Hamiltonian equations 
satisfying Hypothesis 1.1 is different from the parity preserving one satisfying Hypothesis 1.2. For instance the equa-
tion

∂tu = i
[
(1 + |u|2)uxx + u2

xū + (u − ū)ux

]
(1.10)

has the form (1.5) with Hamiltonian function



122 R. Feola, F. Iandoli / Ann. I. H. Poincaré – AN 36 (2019) 119–164
H =
∫
T

−|ux |2(1 + |u|2) + |u|2(ux + ūx)dx,

but does not have the parity preserving structure (in the sense of Hypothesis 1.2). On the other hand the equation

∂tu = i(1 + |u|2)uxx (1.11)

has the parity preserving structure but is not Hamiltonian with respect to the symplectic form (u, v) �→ Re
∫
T

iuv̄dx. 
To check this fact one can reason as done in the appendix of [25]. Both the examples (1.10) and (1.11) satisfy the 
ellipticity Hypothesis 1.3. Furthermore there are examples of equations that satisfy Hypothesis 1.1 or Hypothesis 1.2
but do not satisfy Hypothesis 1.3, for instance

∂tu = i(1 − |u|2)uxx. (1.12)

The equation (1.12) has the parity preserving structure and it has the form (1.1) with P ≡ 0 and f (u, ux, uxx) =
−|u|2uxx , therefore such an f violates (1.9) for |u| ≥ 1. Nevertheless we are able to prove local existence for equations 
with this kind of non-linearity if the size of the initial datum is sufficiently small; indeed, since f in (1.1) is a C∞
function vanishing at the origin, conditions (1.9) in the case of Hypothesis 1.2 and (1.8) in the case of Hypothesis 1.1
are always locally fulfilled for |u| small enough. More precisely we have the following theorem.

Theorem 1.2 (Local existence for small data). Consider equation (1.1) and assume only Hypothesis 1.1 (respectively 
Hypothesis 1.2). Then there exists s0 > 0 such that for any s ≥ s0 there exists r0 > 0 such that, for any 0 ≤ r ≤ r0, the 
thesis of Theorem 1.1 holds for any initial datum u0 in the ball of radius r of Hs(T; C) centered at the origin.

Our method requires a high regularity of the initial datum. In the rest of the paper we have not been sharp in 
quantifying the minimal value of s0 in Theorems 1.1 and 1.2. The reason for which we need regularity is to perform 
suitable changes of coordinates and having a symbolic calculus at a sufficient order, which requires smoothness of the 
functions of the phase space.

The convolution potential P in equation (1.1) is motivated by possible future applications. For instance the potential 
P can be used, as external parameter, in order to modulate the linear frequencies with the aim of studying the long 
time stability of the small amplitude solutions of (1.1) by means of Birkhoff Normal Forms techniques. For semilinear 
NLS-type equation this has been done in [9]. As far as we know there are no results regarding quasi-linear NLS-type 
equations. For quasi-linear equations we quote [14], [15] for the Klein–Gordon and [10] for the capillary Water Waves.

1.2. Functional setting and ideas of the proof

Here we introduce the phase space of functions and we give some ideas of the proof. It is useful for our purposes 
to work on the product space Hs × Hs := Hs(T; C) × Hs(T; C), in particular we will often use its subspace

Hs := Hs(T,C2) := (Hs × Hs
)∩ U ,

U := {(u+, u−) ∈ L2(T;C) × L2(T;C) : u+ = u−}, (1.13)

endowed with the product topology. On H0 we define the scalar product

(U,V )H0 :=
∫
T

U · V dx. (1.14)

We introduce also the following subspaces of Hs and of Hs made of even functions in x ∈ T

Hs
e := {u ∈ Hs : u(x) = u(−x)}, Hs

e:= (Hs
e × Hs

e ) ∩ H0. (1.15)

We define the operators λ[·] and λ̄[·] by linearity as

λ[eijx] := λje
ijx, λj := (ij)2 + p̂(j), j ∈Z,

λ̄[eijx] := λ−j e
ijx,

(1.16)

where p̂(j) are the Fourier coefficients of the potential P in (1.2). Let us introduce the following matrices
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E :=
(

1 0
0 −1

)
, J :=

(
0 1

−1 0

)
, 1 :=

(
1 0
0 1

)
, (1.17)

and set

�U :=
(

λ[u]
λ [ū]

)
, ∀ U = (u, ū) ∈ Hs . (1.18)

We denote by P the linear operator on Hs defined by

P[U ] :=
(

P ∗ u

P̄ ∗ ū

)
, U = (u, ū) ∈ Hs , (1.19)

where P ∗u is defined in (1.2). With this formalism we have that the operator � in (1.18) and (1.16) can be written as

� :=
(

∂xx 0
0 ∂xx

)
+P. (1.20)

It is useful to rewrite the equation (1.1) as the equivalent system

∂tU = iE�U + F(U), F(U) :=
(

f (u,ux,uxx)

f (u,ux,uxx)

)
, (1.21)

where U = (u, ū). The first step is to rewrite (1.21) as a paradifferential system by using the paralinearization formula 
of Bony (see for instance [21], [24]). In order to do that, we will introduce rigorously classes of symbols in Section 3, 
here we follow the approach used in [10]. Roughly speaking we shall deal with functions T ×R � (x, ξ) → a(x, ξ)

with limited smoothness in x satisfying, for some m ∈R, the following estimate

|∂β
ξ a(x, ξ)| ≤ Cβ〈ξ〉m−β, ∀ β ∈N, (1.22)

where 〈ξ〉 :=√
1 + |ξ |2. These functions will have limited smoothness in x because they will depend on x through 

the dynamical variable U which is in Hs(T) for some s. From the symbol a(x, ξ) one can define the paradifferential

operator OpB(a(x, ξ))[·], acting on periodic functions of the form u(x) =∑j∈Z û(j) eijx√
2π

, in the following way:

OpB(a(x, ξ))[u] := 1

2π

∑
k∈Z

eikx

⎛⎝∑
j∈Z

χ

(
k − j

〈j〉
)

â(k − j, j)û(j)

⎞⎠ , (1.23)

where â(k, j) is the kth-Fourier coefficient of the 2π -periodic in x function a(x, ξ), and where χ(η) is a C∞
0 function 

supported in a sufficiently small neighborhood of the origin. With this formalism (1.21) is equivalent to the paradif-
ferential system

∂tU = iEG(U)[U ] +R(U), (1.24)

where G(U)[·] is

G(U)[·] :=
(

OpB((iξ)2 + a(x, ξ))[·] OpB(b(x, ξ))[·]
OpB(b(x,−ξ))[·] OpB((iξ)2 + a(x,−ξ))[·]

)
,

a(x, ξ) := a(U ;x, ξ) = ∂uxx f (iξ)2 + ∂ux f (iξ) + ∂uf,

b(x, ξ) := b(U ;x, ξ) = ∂ūxx f (iξ)2 + ∂ūx f (iξ) + ∂ūf,

(1.25)

and where R(U) is a smoothing operator

R(·) : Hs → Hs+ρ,

for any s > 0 large enough and ρ ∼ s. Note that the symbols in (1.25) are of order 2, i.e. they satisfy (1.22) with 
m = 2. One of the most important property of being a paradifferential operator is the following: if U is suffi-
ciently regular, namely U ∈ Hs0 with s0 large enough, then G(U)[·] extends to a bounded linear operator from Hs

to Hs−2 for any s in R. This paralinearization procedure will be discussed in detail in Section 4, in particular in 
Lemma 4.1 and Proposition 4.1. Since equation (1.1) is quasi-linear the proofs of Theorems 1.1, 1.2 do not rely on 
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direct fixed point arguments; these arguments are used to study the local theory for the semi-linear equations (i.e. 
when the nonlinearity f in (1.1) depends only on u). The local theory for the semi-linear Schrödinger type equations 
is, nowadays, well understood; for a complete overview we refer to [12]. Our approach is based on the following 
quasi-linear iterative scheme (a similar one is used for instance in [2]). We consider the sequence of linear prob-
lems

A0 :=
{

∂tU0 − iE∂xxU0 = 0,

U0(0) = U(0),
(1.26)

and for n ≥ 1

An :=
{

∂tUn − iEG(Un−1)[Un] −R(Un−1) = 0,

Un(0) = U(0),
(1.27)

where U(0)(x) = (u0(x), u0(x)) with u0(x) given in (1.1). The goal is to show that there exists s0 > 0 such that for 
any s ≥ s0 the following facts hold:

1. the iterative scheme is well-defined, i.e. there is T > 0 such that for any n ≥ 0 there exists a unique solution Un

of the problem An which belongs to the space C0([0, T )]; Hs);
2. the sequence {Un}n≥0 is bounded in C0([0, T )]; Hs);
3. {Un}n≥0 is a Cauchy sequence in C0([0, T )]; Hs−2).

From these properties the limit function U belongs to the space L∞([0, T ); Hs). In the final part of Section 6 we 
show that actually U is a classical solution of (1.1), namely U solves (1.21) and it belongs to C0([0, T ); Hs).

Therefore the key point is to obtain energy estimates for the linear problem in V{
∂tV − iEG(U)[V ] −R(U) = 0,

V (0) = U(0),
(1.28)

where G is given in (1.25) and U = U(t, x) is a fixed function defined for t ∈ [0, T ], T > 0, regular enough and 
R(U) is regarded as a non homogeneous forcing term. Note that the regularity in time and space of the coefficients 
of operators G, R depends on the regularity of the function U . Our strategy is to perform a paradifferential change of 
coordinates W := �(U)[V ] such that the system (1.28) in the new coordinates reads{

∂tW − iEG̃(U)[W ] − R̃(U) = 0,

W(0) = �(U(0))[U(0)], (1.29)

where the operator G̃(U)[·] is self-adjoint with constant coefficients in x ∈ T and R̃(U) is a bounded term. More 
precisely we show that the operator G̃(U)[·] has the form

G̃(U)[·] :=
(

OpB((iξ)2 + m(U ; ξ))[·] 0
0 OpB((iξ)2 + m(U ; ξ))[·]

)
,

m(U ; ξ) := m2(U)(iξ)2 + m1(U)(iξ) ∈R,

(1.30)

with m(U ; ξ) real valued and independent of x ∈ T. Since the symbol m(U ; ξ) is real valued the linear operator 
iEG̃(U) generates a well defined flow on L2 × L2, since it has also constant coefficients in x it generates a flow on 
Hs × Hs for s ≥ 0. This idea of conjugation to constant coefficients up to bounded remainder has been developed 
in order to study the linearized equation associated to quasi-linear system in the context of Nash–Moser iterative 
scheme. For instance we quote the papers [6], [7] on the KdV equation, [17], [18] on the NLS equation and [19], 
[11], [5], [1] on the water waves equation, in which such techniques are used in studying the existence of periodic and 
quasi-periodic solutions. Here, dealing with the paralinearized equation (1.24), we adapt the changes of coordinates, 
for instance performed in [17], to the paradifferential context following the strategy introduced in [10] for the water 
waves equation.
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Comments on Hypotheses 1.1, 1.2 and 1.3.

Consider the following linear system

∂tV − iEL(x)∂xxV = 0, (1.31)

where L(x) is the non constant coefficient matrix

L(x) :=
(

1 + a2(x) b2(x)

b2(x) 1 + a2(x)

)
, a2 ∈ C∞(T;R), b2 ∈ C∞(T;C). (1.32)

Here we explain how to diagonalize and conjugate to constant coefficients the system (1.31) at the highest order, we 
also discuss the role of the Hypotheses 1.1, 1.2 and 1.3. The analogous analysis for the paradifferential system (1.28)
is performed in Section 5.

First step: diagonalization at the highest order. We want to transform (1.31) into the system

∂tV1 = iE
(
A

(1)
2 (x)∂xxV1 + A

(1)
1 (x)∂xV1 + A

(1)
0 (x)V1

)
, (1.33)

where A(1)
1 (x), A(1)

0 (x) are 2 × 2 matrices of functions, and A(1)
2 (x) is the diagonal matrix of functions

A
(1)
2 (x) =

(
1 + a

(1)
2 (x) 0

0 1 + a
(1)
2 (x)

)
,

for some real valued function a(1)
2 (x) ∈ C∞(T; R). See Section 5.1 for the paradifferential linear system (1.28). The 

matrix EL(x) can be diagonalized through a regular transformation if the determinant of EL(x) is strictly positive, 
i.e. there exists c > 0 such that

det
(
EL(x)

)
= (1 + a2(x))2 − b2(x)2 ≥ c, (1.34)

for any x ∈ T. Note that the eigenvalues of EL(x) are λ1,2(x) = ±√
detEL(x). Let �1(x) be the matrix of functions 

such that

�1(x)
(
EL(x)

)
�−1

1 (x) = EA
(1)
2 (x),

where (1 + a
(1)
2 (x)) is the positive eigenvalue of EL(x). One obtains the system (1.33) by setting V1 := �1(x)V .

Note that condition (1.34) is the transposition at the linear level of the second inequality in (1.8) or (1.9). Note also 
that if ‖a2‖L∞, ‖b2‖L∞ ≤ r then condition (1.34) is automatically fulfilled for r small enough.

Second step: reduction to constant coefficients at the highest order. In order to understand the role of the first bound 
in conditions (1.8) and (1.9) we perform a further step in which we reduce the system (1.33) to

∂tV2 = iE
(
A

(2)
2 ∂xxV2 + A

(2)
1 (x)∂xV2 + A

(2)
0 (x)V2

)
, (1.35)

where A(2)
1 (x), A(2)

0 (x) are 2 × 2 matrices of functions, and

A
(2)
2 =

(
m2 0
0 m2

)
,

for some constant m2 ∈ R, m2 > 0. See Section 5.3 for the reduction of the paradifferential linear system (1.28). In 
order to do this we use the torus diffeomorphism x → x +β(x) for some periodic function β(x) with inverse given by 
y → y +γ (y) with γ (y) periodic in y. We define the following linear operator (Au)(x) = u(x +β(x)), such operator 
is invertible with inverse given by (A−1v)(y) = v(y +γ (y)). This change of coordinates transforms (1.33) into (1.35)
where

A
(2)
2 (x) =

(
A[(1 + a

(1)
2 (y))(1 + γy(y))2] 0

0 A[(1 + a
(1)
2 (y))(1 + γy(y))2]

)
. (1.36)

Then the highest order coefficient does not depend on y ∈ T if

(1 + a
(1)

(y))(1 + γy)
2 = m2,
2
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with m2 ∈ R independent of y. This equation can be solved by setting

m2 :=
⎡⎢⎣2π

⎛⎜⎝∫
T

1√
1 + a

(1)
2 (x)

dx

⎞⎟⎠
−1⎤⎥⎦

2

,

γ (y) := ∂−1
y

⎛⎝√ m2

1 + a
(1)
2 (y)

− 1

⎞⎠ ,

(1.37)

where ∂−1
y is the Fourier multiplier with symbol 1/(iξ), hence it is defined only on zero mean functions. This justifies 

the choice of m2. Note that m2, γ in (1.37) are well-defined if (1 + a
(1)
2 (x)) is real and strictly positive for any x ∈ T. 

This is the first condition in (1.8) and (1.9).
Third step: reduction at lower orders. One can show that it is always possible to conjugate system (1.35) to a 

system of the form

∂tV3 = iE
(
A

(3)
2 ∂xxV2 + A

(3)
1 (x)∂xV2 + A

(3)
0 (x)V2

)
, (1.38)

where A(3)
2 ≡ A

(2)
2 and

A
(3)
1 :=

(
m1 0
0 m1

)
,

with m1 ∈ C and A(3)
0 (x) is a matrix of functions up to bounded operators. See Sections 5.2, 5.4 for the analogous 

reduction for paradifferential linear system (1.28).
It turns out that no extra hypotheses are needed to perform this third step. We obtained that the unbounded term in 

the r.h.s. of (1.38) is pseudo-differential constant coefficients operator with symbol m(ξ) := m2(iξ)2 + m1(iξ). This 
is not enough to get energy estimates because the operator A(3)

2 ∂xx + A
(3)
1 ∂x is not self-adjoint since the symbol m(ξ)

is not a-priori real valued.
This example gives the idea that the global ellipticity hypothesis Hypothesis 1.3 (or the smallness of the initial 

datum), are needed to conjugate the highest order term of G in (1.28) to a diagonal and constant coefficient operator. 
Of course there are no a-priori reasons to conclude that G̃ is self-adjoint. This operator is self-adjoint if and only if 
its symbol m(U ; ξ) in (1.30) is real valued for any ξ ∈ R. The Hamiltonian Hypothesis 1.1 implies that m1(U) in 
(1.30) is purely imaginary, while the parity preserving Assumption 1.2 guarantees that m1(U) ≡ 0. Indeed it is shown 
Lemma 4.2 that if f is Hamiltonian (i.e. satisfies Hypothesis 1.1) then the operator G(U)[·] is formally self-adjoint 
w.r.t. the scalar product of L2 × L2. In our reduction procedure we use transformations which preserve this structure. 
On the other hand in the case that f is parity preserving (i.e. satisfies Hypothesis 1.2) then, in Lemma 4.3 it is shown 
that the operator G(U)[·] maps even functions in even functions if U is even in x ∈ T. In this case we apply only 
transformations which preserve the parity of the functions. An operator of the form G̃ as in (1.30) preserves the 
subspace of even function only if m1(U) = 0.
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2. Linear operators

We define some special classes of linear operators on spaces of functions.

Definition 2.1. Let A : Hs → Hs′
, for some s, s′ ∈R, be a linear operator. We define the operator A as

A[h] := A[h̄], h ∈ Hs. (2.1)
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Definition 2.2 (Reality preserving). Let A, B : Hs → Hs′
, for some s, s′ ∈ R, be linear operators. We say that a 

matrix of linear operators F is reality preserving if has the form

F :=
(

A B

B A

)
, (2.2)

for A and B linear operators.

Remark 2.1. Given s, s′ ∈ R, one can easily check that a reality preserving linear operator F of the form (2.2) is such 
that

F : Hs → Hs′
. (2.3)

Given an operator F of the form (2.2) we denote by F∗ its adjoint with respect to the scalar product (1.14)

(FU,V )H0 = (U,F∗V )H0 , ∀ U, V ∈ Hs .

One can check that

F∗ :=
(

A∗ B
∗

B∗ A
∗
)

, (2.4)

where A∗ and B∗ are respectively the adjoints of the operators A and B with respect to the complex scalar product on 
L2(T; C)

(u, v)L2 :=
∫
T

u · v̄dx, u, v ∈ L2(T;C).

Definition 2.3 (Self-adjointness). Let F be a reality preserving linear operator of the form (2.2). We say that F is 
self-adjoint if A, A∗, B, B∗ : Hs → Hs′

, for some s, s′ ∈R and

A∗ = A, B = B∗. (2.5)

We have the following definition.

Definition 2.4 (Parity preserving). Let A : Hs → Hs′
, for some s, s′ ∈ R be a linear operator. We say that A is parity

preserving if

A : Hs
e → Hs′

e , (2.6)

i.e. maps even functions in even functions of x ∈ T. Let F : Hs → Hs′
be a reality preserving operator of the form 

(2.2). We say that F is parity preserving if the operators A, B are parity preserving operators.

Remark 2.2. Given s, s′ ∈ R, and let F : Hs → Hs′
be a reality and parity preserving operator of the form (2.2). One 

can check that

F : Hs
e → Hs′

e . (2.7)

We note that � in (1.18) has the following properties:

• the operator � is reality preserving (according to Definition 2.2).
• the operator � is self-adjoint according to Definition 2.3 since the coefficients p̂(j) for j ∈Z are real;
• under the parity preserving assumption Hypothesis 1.2 the operator � is parity preserving according to Defini-

tion 2.4, since p̂(j) = p̂(−j) for j ∈ Z.
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Hamiltonian and parity preserving vector fields Let F be a reality preserving, self-adjoint (or parity preserving 
respectively) operator as in (2.2) and consider the linear system

∂tU = iEFU, (2.8)

on Hs where E is given in (1.17). We want to analyze how the properties of the system (2.8) change under the 
conjugation through maps

� : Hs → Hs ,

which are reality preserving. We have the following lemma.

Lemma 2.1. Let X : Hs → Hs−m, for some m ∈R and s > 0 be a reality preserving, self-adjoint operator according 
to Definitions 2.2, 2.3 and assume that its flow

∂τ�
τ = iEX�τ , �0 = 1, (2.9)

satisfies the following. The map �τ is a continuous function in τ ∈ [0, 1] with values in the space of bounded linear 
operators from Hs to Hs and ∂τ�

τ is continuous as well in τ ∈ [0, 1] with values in the space of bounded linear 
operators from Hs to Hs−m.

Then the map �τ satisfies the condition

(�τ )∗(−iE)�τ = −iE. (2.10)

Proof. First we note that the adjoint operator (�τ )∗ satisfies the equation ∂τ (�
τ )∗ = (�τ )∗X (−iE). Therefore one 

can note that

∂τ

[
(�τ )∗(−iE)�τ

]
= 0,

which implies (�τ )∗(−iE)�τ = (�0)∗(−iE)�0 = −iE. �
Lemma 2.2. Consider a reality preserving, self-adjoint linear operator F (i.e. which satisfies (2.2) and (2.5)) and a 
reality preserving map �. Assume that � satisfies condition (2.10) and consider the system

∂tW = iEFW, W ∈ Hs . (2.11)

By setting V = �W one has that the system (2.11) reads

∂tV = iEYV, (2.12)

Y := −iE�(iE)F�−1 − iE(∂t�)�−1, (2.13)

and Y is self-adjoint, i.e. it satisfies conditions (2.5).

Proof. One applies the changes of coordinates and one gets the form in (2.13). We prove that separately each term of 
Y is self-adjoint. Note that by (2.10) one has that (−iE)� = (�∗)−1(−iE), hence −iE�(iE)F�−1 = (�∗)−1F�−1. 
Then (

(�∗)−1F�−1
)∗ = (�−1)∗F[(�∗)−1]∗, (2.14)

since F is self-adjoint. Moreover we have that (�−1)∗ = (�∗)−1. Indeed again by (2.10) one has that

�−1 = (iE)�∗(−iE), (�−1)∗ = (iE)�(−iE), �∗ = (−iE)�−1(iE)

Hence one has

(�−1)∗�∗ = (iE)�(−iE)(−iE)�−1(iE) = −(iE)(iE) = 1. (2.15)

Then by (2.14) we conclude that (−iE)�iE�−1 is self-adjoint. Let us study the second term of (2.13). First note that
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∂t [�∗] = −(�∗)(−iE)(∂t�)�−1(iE), (∂t�)∗ = �∗(iE)(∂t (�
∗))∗�−1(iE) (2.16)

then (
(−iE)(∂t�)(�−1)

)∗ = (�−1)∗(∂t�)∗(iE) = (−iE)(∂t (�
∗))∗�−1. (2.17)

By (2.16) we have ∂t (�
∗) = (∂t�)∗, hence we get the result. �

Lemma 2.3. Consider a reality and parity preserving linear operator F (i.e. (2.2) and (2.7) hold) and a map � as in 
(2.2) which is parity preserving (see Definition 2.4). Consider the system

∂tW = iEFW, W ∈ Hs . (2.18)

By setting V = �W one has that the system (2.11) reads

∂tV = iEYV, (2.19)

Y := −iE�(iE)F�−1 − iE(∂t�)�−1, (2.20)

and Y is reality preserving and parity preserving, i.e. satisfies condition (2.2) and (2.7).

Proof. It follows straightforward by the Definitions 2.4 and 2.2. �
3. Paradifferential calculus

3.1. Classes of symbols

We introduce some notation. If K ∈ N, I is an interval of R containing the origin, s ∈ R+ we denote by 
CK

∗R(I, Hs(T, C2)), sometimes by CK
∗R(I, Hs), the space of continuous functions U of t ∈ I with values in Hs(T, C2), 

which are K-times differentiable and such that the k-th derivative is continuous with values in Hs−2k(T, C2) for any 
0 ≤ k ≤ K . We endow the space CK

∗R(I, Hs) with the norm

sup
t∈I

‖U(t, ·)‖K,s , where ‖U(t, ·)‖K,s :=
K∑

k=0

∥∥∥∂k
t U(t, ·)

∥∥∥
Hs−2k

. (3.1)

Moreover if r ∈R+ we set

BK
s (I, r) :=

{
U ∈ CK

∗R(I,Hs) : sup
t∈I

‖U(t, ·)‖K,s < r

}
. (3.2)

Definition 3.1 (Symbols). Let m ∈ R, K ′ ≤ K in N, r > 0. We denote by �m
K,K ′ [r] the space of functions 

(U ; t, x, ξ) �→ a(U ; t, x, ξ), defined for U ∈ BK
σ0

(I, r), for some large enough σ0, with complex values such that 

for any 0 ≤ k ≤ K − K ′, any σ ≥ σ0, there are C > 0, 0 < r(σ) < r and for any U ∈ BK
σ0

(I, r(σ )) ∩ Ck+K ′
∗R (I, Hσ )

and any α, β ∈ N, with α ≤ σ − σ0∣∣∣∂k
t ∂α

x ∂
β
ξ a(U ; t, x, ξ)

∣∣∣≤ C ‖U‖k+K ′,σ 〈ξ〉m−β, (3.3)

for some constant C = C(σ, ‖U‖k+K ′,σ0
) depending only on σ and ‖U‖k+K ′,σ0

.

Remark 3.1. In the rest of the paper the time t will be treated as a parameter. In order to simplify the notation we 
shall write a(U ; x, ξ) instead of a(U ; t, x, ξ). On the other hand we will emphasize the x-dependence of a symbol a. 
We shall denote by a(U ; ξ) only those symbols which are independent of the variable x ∈ T.

Remark 3.2. If one compares the latter definition of class of symbols with the one given in Section 2 in [10] one note 
that they have been more precise on the expression of the constant C in the r.h.s. of (3.3). First of all we do not need 
such precision since we only want to study local theory. Secondly their classes are modeled in order to work in a small 
neighborhood of the origin.
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Lemma 3.1. Let a ∈ �m
K,K ′ [r] and U ∈ BK

σ0
(I, r) for some σ0. One has that

sup
ξ∈R

〈ξ〉−m‖a(U ; ·, ξ)‖K−K ′,s ≤ C ‖U‖K,s+σ0+1 . (3.4)

for s ≥ 0.

Proof. Assume that s ∈N. We have

‖a(U ;x, ξ)‖K−K ′,s ≤ C1

K−K ′∑
k=0

s−2k∑
j=0

‖∂k
t ∂

j
x a(U ; ·, ξ)‖L∞

≤ C2〈ξ〉m
K−K ′∑
k=0

‖U‖k+K ′,s+σ0,

(3.5)

with C1, C2 > 0 depend only on s, K and ‖U‖k+K ′,σ0
, and where we used formula (3.3) with σ = s + σ0. Equation 

(3.5) implies (3.4) for s ∈ N. The general case s ∈ R+, follows by using the log-convexity of the Sobolev norm by 
writing s = [s]τ + (1 − τ)(1 + [s]) where [s] is the integer part of s and τ ∈ [0, 1]. �

We define the following special subspace of �0
K,K ′ [r].

Definition 3.2 (Functions). Let K ′ ≤ K in N, r > 0. We denote by FK,K ′ [r] the subspace of �0
K,K ′ [r] made of those 

symbols which are independent of ξ .

3.2. Quantization of symbols

Given a smooth symbol (x, ξ) → a(x, ξ), we define, for any σ ∈ [0, 1], the quantization of the symbol a as the 
operator acting on functions u as

Opσ (a(x, ξ))u = 1

2π

∫
R×R

ei(x−y)ξ a(σx + (1 − σ)y, ξ)u(y)dydξ. (3.6)

This definition is meaningful in particular if u ∈ C∞(T) (identifying u to a 2π -periodic function). By decomposing u
in Fourier series as u =∑j∈Z û(j) eijx√

2π
, we may calculate the oscillatory integral in (3.6) obtaining

Opσ (a)u := 1

2π

∑
k∈Z

⎛⎝∑
j∈Z

â
(
k − j, (1 − σ)k + σj

)
û(j)

⎞⎠ eikx, ∀ σ ∈ [0,1], (3.7)

where â(k, ξ) is the kth-Fourier coefficient of the 2π -periodic function x �→ a(x, ξ). In the paper we shall use two 
particular quantizations:

Standard quantization We define the standard quantization by specifying formula (3.7) for σ = 1:

Op(a)u := Op1(a)u = 1

2π

∑
k∈Z

⎛⎝∑
j∈Z

â
(
k − j, j

)
û(j)

⎞⎠ eikx; (3.8)

Weyl quantization We define the Weyl quantization by specifying formula (3.7) for σ = 1
2 :

OpW(a)u := Op 1
2
(a)u = 1

2π

∑
k∈Z

⎛⎝∑
j∈Z

â
(
k − j,

k + j

2

)
û(j)

⎞⎠ eikx. (3.9)
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Moreover one can transform the symbols between different quantization by using the formulas

Op(a) = OpW(b), where b̂(j, ξ) = â(j, ξ − j

2
). (3.10)

In order to define operators starting from the classes of symbols introduced before, we reason as follows. Let n ∈ Z, 
we define the projector on n-th Fourier mode as

(�nu) (x) := û(n)
einx

√
2π

; u(x) =
∑
n∈Z

û(n)
eijx

√
2π

. (3.11)

For U ∈ BK
s (I, r) (as in Definition 3.1), a symbol a in �m

K,K ′ [r], and v ∈ C∞(T, C) we define

Op(a(U ; j))[v] :=
∑
k∈Z

⎛⎝∑
j∈Z

�k−j a(U ; j)�jv

⎞⎠ . (3.12)

Equivalently one can define OpW(a) according to (3.9).
We want to define a paradifferential quantization. First we give the following definition.

Definition 3.3 (Admissible cut-off functions). We say that a function χ ∈ C∞(R × R; R) is an admissible cut-off 
function if it is even with respect to each of its arguments and there exists δ > 0 such that

suppχ ⊂ {(ξ ′, ξ) ∈R×R; |ξ ′| ≤ δ〈ξ〉} , ξ ≡ 1 for |ξ ′| ≤ δ

2
〈ξ〉.

We assume moreover that for any derivation indices α and β

|∂α
ξ ∂

β

ξ ′χ(ξ ′, ξ)| ≤ Cα,β〈ξ〉−α−β, ∀α, β ∈ N.

An example of function satisfying the condition above, and that will be extensively used in the rest of the paper, 
is χ(ξ ′, ξ) := χ̃ (ξ ′/〈ξ〉), where χ̃ is a function in C∞

0 (R; R) having a small enough support and equal to one in a 
neighborhood of zero. For any a ∈ C∞(T) we shall use the following notation

(χ(D)a)(x) =
∑
j∈Z

χ(j)�ja. (3.13)

Proposition 3.1 (Regularized symbols). Fix m ∈R, p, K, K ′ ∈N, K ′ ≤ K and r > 0. Consider a ∈ �m
K,K ′ [r] and χ

an admissible cut-off function according to Definition 3.3. Then the function

aχ(U ;x, ξ) :=
∑
n∈Z

χ (n, ξ)�na(U ;x, ξ) (3.14)

belongs to �m
K,K ′ [r].

For the proof we refer the reader to the remark after Definition 2.2.2 in [10].
We define the Bony quantization in the following way. Consider an admissible cut-off function χ and a symbol a

belonging to the class �m
K,K ′ [r], we set

OpB(a(U ;x, j))[v] := Op(aχ (U ;x, j))[v], (3.15)

where aχ is defined in (3.14). Analogously we define the Bony–Weyl quantization

OpBW(b(U ;x, j))[v] := OpW(bχ(U ;x, j))[v]. (3.16)

The definition of the operators OpB(b) and OpBW(b) is independent of the choice of the cut-off function χ modulo 
smoothing operators that we define now.
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Definition 3.4 (Smoothing remainders). Let K ′ ≤ K ∈ N, ρ ≥ 0 and r > 0. We define the class of remainders 
R−ρ

K,K ′ [r] as the space of maps (V , u) �→ R(V )u defined on BK
s0

(I, r) × CK
∗R(I, Hs0(T, C)) which are linear in the 

variable u and such that the following holds true. For any s ≥ s0 there exists a constant C > 0 and r(s) ∈]0, r[ such 
that for any V ∈ BK

s0
(I, r) ∩ CK

∗R(I, Hs(T, C2)), any u ∈ CK
∗R(I, Hs(T, C)), any 0 ≤ k ≤ K − K ′ and any t ∈ I the 

following estimate holds true∥∥∥∂k
t (R(V )u) (t, ·)

∥∥∥
Hs−2k+ρ

≤
∑

k′+k′′=k

C
[
‖u‖k′′,s ‖V ‖k′+K ′,s0

+ ‖u‖k′′,s0
‖V ‖k′+K ′,s

]
, (3.17)

where C = C(s, ‖V ‖k′+K ′,s0
) is a constant depending only on s and ‖V ‖k′+K ′,s0

.

Lemma 3.2. Consider χ1 and χ2 admissible cut-off functions. Fix m ∈R, r > 0, K ′ ≤ K ∈ N. Then for a ∈ �m
K,K ′ [r], 

we have Op(aχ1 − aχ2) ∈ R−ρ

K,K ′ [r] for any ρ ∈N.

For the proof we refer the reader to the remark after the proof of Proposition 2.2.4 in [10].
Now we state a proposition describing the action of paradifferential operators defined in (3.15) and in (3.16).

Proposition 3.2 (Action of paradifferential operators). Let r > 0, m ∈ R, K ′ ≤ K ∈ N and consider a symbol 
a ∈ �m

K,K ′ [r]. There exists s0 > 0 such that for any U ∈ BK
s0

(I, r), the operator OpBW(a(U ; x, ξ)) extends, for any 

s ∈ R, as a bounded operator from the space CK−K ′
∗R (I, Hs(T, C)) to CK−K ′

∗R (I, Hs−m(T, C)). Moreover there is a 
constant C > 0 depending on s and on the constant in (3.3) such that

‖OpBW(∂k
t a(U ;x, ·))‖L(Hs,Hs−m) ≤ C‖U‖k+K ′,s0 , (3.18)

for k ≤ K − K ′, so that∥∥∥OpBW(a(U ;x, ξ))(v)

∥∥∥
K−K ′,s−m

≤ C ‖U‖K,s0
‖v‖K−K ′,s , (3.19)

for any v ∈ CK−K ′
∗R (I, Hs(T, C)).

For the proof we refer to Proposition 2.2.4 in [10].

Remark 3.3. Actually the estimates (3.18) and (3.19) follow by∥∥∥OpBW(a(U ;x, ξ))(v)

∥∥∥
K,s−m

≤ C1 sup
ξ∈R

〈ξ〉−m‖a(U ; ·, ξ)‖K−K ′,s0‖v‖K−K ′,s ,

where C1 > 0 is some constant depending only on s, s0 and Remark 3.1.

Remark 3.4. We remark that Proposition 3.2 (whose proof is given in [10]) applies if a satisfies (3.3) with |α| ≤ 2
and β = 0. Moreover, by following the same proof, one can show that

‖OpW(∂k
t aχ (U ;x, ·))‖L(Hs,Hs−m) ≤ C‖U‖k+K ′,s0, (3.20)

if χ(η, ξ) is supported for |η| ≤ δ〈ξ〉 for δ > 0 small. Note that this is slightly different from the Definition 3.3 of 
admissible cut-off function since we are not requiring that χ ≡ 1 for |η| ≤ δ

2 〈ξ〉.

Remark 3.5. Note that, if m < 0, and a ∈ �m
K,K ′ [r], then estimate (3.18) implies that the operator OpBW(a(U ; x, ξ))

belongs to the class of smoothing operators Rm
K,K ′ [r].

We consider paradifferential operators of the form:

OpBW(A(U ;x, ξ)) := OpBW

(
a(U ;x, ξ) b(U ;x, ξ)

b(U ;x,−ξ) a(U ;x,−ξ)

)

:=
(

OpBW(a(U ;x, ξ)) OpBW(b(U ;x, ξ))

OpBW(b(U ;x,−ξ)) OpBW(a(U ;x,−ξ))

)
, (3.21)
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where a and b are symbols in �m
K,K ′ [r] and U is a function belonging to BK

s0
(I, r) for some s0 large enough. Note that 

the matrix of operators in (3.21) is of the form (2.2). Moreover it is self-adjoint (see (2.5)) if and only if

a(U ;x, ξ) = a(U ;x, ξ) , b(U ;x,−ξ) = b(U ;x, ξ), (3.22)

indeed conditions (2.5) on these operators read(
OpBW(a(U ;x, ξ))

)∗ = OpBW
(
a(U ;x, ξ)

)
, OpBW(b(U ;x, ξ)) = OpBW

(
b(U ;x,−ξ)

)
. (3.23)

Analogously, given R1 and R2 in R−ρ

K,K ′ [r], one can define a reality preserving smoothing operator on Hs(T, C2) as 
follows

R(U)[·] :=
(

R1(U)[·] R2(U)[·]
R2(U)[·] R1(U)[·]

)
. (3.24)

We use the following notation for matrix of operators.

Definition 3.5 (Matrices). We denote by �m
K,K ′ [r] ⊗M2(C) the matrices A(U ; x, ξ) of the form (3.21) whose com-

ponents are symbols in the class �m
K,K ′ [r]. In the same way we denote by R−ρ

K,K ′ [r] ⊗M2(C) the operators R(U) of 

the form (3.24) whose components are smoothing operators in the class R−ρ

K,K ′ [r].

Remark 3.6. An important class of parity preserving maps according to Definition 2.4 is the following. Consider a 
matrix of symbols C(U ; x, ξ), with U even in x, in �m

K,K ′ [r] ⊗M2(C) with m ∈N, if

C(U ;x, ξ) = C(U ;−x,−ξ) (3.25)

then one can check that OpBW(C(U ; x, ξ)) preserves the subspace of even functions.
Moreover consider the system{

∂τ�
τ (U)[·] = OpBW(C(U ;x; ξ))�τ (U)[·],

�0(U) = 1.

If the flow �τ is well defined for τ ∈ [0, 1], then it defines a family of parity preserving maps according to Defini-
tion 2.4.

3.3. Symbolic calculus

We define the following differential operator

σ(Dx,Dξ ,Dy,Dη) = DξDy − DxDη, (3.26)

where Dx := 1
i ∂x and Dξ, Dy, Dη are similarly defined. If a is a symbol in �m

K,K ′ [r] and b in �m′
K,K ′ [r], if U ∈

BK
s0

(I, r) with s0 large enough, we define

(a�b)ρ(U ;x, ξ) :=
ρ−1∑
�=0

1

�!
(

i

2
σ(Dx,Dξ ,Dy,Dη)

)�

[a(U ;x, ξ)b(U ;y,η)]|x=y; y=η
, (3.27)

modulo symbols in �m+m′−ρ

K,K ′ [r]. Assume also that the x-Fourier transforms â(η, ξ), b̂(η, ξ) are supported for |η| ≤
δ〈ξ〉 for small enough δ > 0. Then we define

(a�b)(x, ξ) := 1

4π2

∫
R2

eix(ξ∗+η∗)â(η∗, ξ + ξ∗

2
)b̂(ξ∗, ξ − η∗

2
)dξ∗dη∗. (3.28)

Thanks to the hypothesis on the support of the x-Fourier transform of a and b, this integral is well defined as a distri-
bution in (ξ∗, η∗) acting on the C∞-function (ξ∗, η∗) �→ eix(ξ∗+η∗). Lemma 2.3.4 in [10] guarantees that according to 
the notation above one has
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OpBW(a) ◦ OpBW(b) = OpW(c), c(x, ξ) := (aχ�bχ )(x, ξ), (3.29)

where aχ and bχ are defined in (3.14). We state here a Proposition asserting that the symbol (a�b)ρ is the symbol of 
the composition up to smoothing operators.

Proposition 3.3 (Composition of Bony–Weyl operators). Let a be a symbol in �m
K,K ′ [r] and b a symbol in �m′

K,K ′ [r], 
if U ∈ BK

s0
(I, r) with s0 large enough then

OpBW(a(U ;x, ξ)) ◦ OpBW(b(U ;x, ξ)) − OpBW((a�b)ρ(U ;x, ξ)) (3.30)

belongs to the class R−ρ+m+m′
K,K ′ [r].

For the proof we refer to Proposition 2.3.2 in [10]. In the following we will need to compose smoothing operators 
and paradifferential ones, the next Proposition asserts that the outcome is another smoothing operator.

Proposition 3.4. Let a be a symbol in �m
K,K ′ [r] with m ≥ 0 and R be a smoothing operator in R−ρ

K,K ′ [r]. If U belongs 
to BK

s0
[I, r] with s0 large enough, then the composition operators

OpBW(a(U ;x, ξ)) ◦ R(U)[·] , R(U) ◦ OpBW(a(U ;x, ξ))[·]
belong to the class R−ρ+m

K,K ′ [r].

For the proof we refer to Proposition 2.4.2 in [10]. We can compose smoothing operators with smoothing operators 
as well.

Proposition 3.5. Let R1 be a smoothing operator in R−ρ1
K,K ′ [r] and R2 in R−ρ2

K,K ′ [r]. If U belongs to BK
s0

[I, r] with s0

large enough, then the operator R1(U) ◦ R2(U)[·] belongs to the class R−ρ

K,K ′ [r], where ρ = min(ρ1, ρ2).

We need also the following.

Lemma 3.3. Fix K, K ′ ∈ N, K ′ ≤ K and r > 0. Let {ci}i∈N a sequence in FK,K ′ [r] such that for any i ∈N∣∣∣∂k
t ∂α

x ci(U ;x)

∣∣∣≤ Mi ‖U‖k+K ′,s0
, (3.31)

for any 0 ≤ k ≤ K − K ′ and |α| ≤ 2 and for some s0 > 0 big enough. Then for any s ≥ s0 and any 0 ≤ k ≤ K − K ′
there exists a constant C > 0 (independent of n) such that for any n ∈N∥∥∥∥∥∂k

t

[
OpBW

( n∏
i=1

ci(U ;x)
)
h

]∥∥∥∥∥
Hs−2k

≤ Cn

n∏
i=1

Mi

∑
k1+k2=k

‖U‖n
k1+K ′,s0

‖h‖k2,s
, (3.32)

for any h ∈ CK−K ′
∗R (I, Hs(T; C)). Moreover there exists C̃ such that

‖OpBW
( n∏

i=1

ci

)
h‖K−K ′,s ≤ C̃n

n∏
i=1

Mi‖U‖n
K,s0

‖h‖K−K ′,s , (3.33)

for any h ∈ CK−K ′
∗R (I, Hs(T; C)).

Proof. Let χ an admissible cut-off function and set b(U ; x, ξ) := (
∏n

i=1 ci(U ; x))χ . By Liebniz rule and interpolation 
one can prove that

|∂k
t ∂α

x ∂
β
ξ b(U ;x, ξ)| ≤ Cn ‖U‖n

k+K ′,s0

n∏
Mi (3.34)
i=1
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for any 0 ≤ k ≤ K − K ′, α ≤ 2, any ξ ∈ R and where the constant C is independent of n. Denoting by ̂b(U ; �, ξ) =
b̂(�, ξ) the �th Fourier coefficient of the function b(U ; x, ξ), from (3.34) with α = 2 one deduces the following decay 
estimate

|∂k
t b̂(�, ξ)| ≤ Cn ‖U‖n

k+K ′,s0

n∏
i=1

Mi〈�〉−2. (3.35)

With this setting one has

OpBW
( n∏

i=1

ci(U ;x)
)
h = OpW(b(U ;x, ξ))h

= 1

2π

∑
�∈Z

(∑
n′∈Z

b̂
(
� − n′, � + n′

2

)
ĥ(n′)

)
ei�x,

where the sum is restricted to the set of indices such that |� −n′| ≤ δ
|�+n′|

2 with 0 < δ < 1 (which implies that � ∼ n′). 
Let 0 ≤ k ≤ K − K ′, one has∥∥∥∥∥∂k

t

[
OpBW

( n∏
i=1

ci(U ;x)
)
h

]∥∥∥∥∥
2

Hs−2k

≤Cn
∑

k1+k2=k

∑
�∈Z

〈�〉2(s−2k)

∣∣∣∣∣∑
n′∈Z

∂
k1
t

(
b̂
(
� − n′, � + n′

2

))
∂

k2
t

(
ĥ(n′)

)∣∣∣∣∣
2

≤Cn
n∏

i=1

M2
i

∑
k1+k2=k

‖U‖2n
k1+K ′,s0

∑
�∈Z

(∑
n′∈Z

〈� − n′〉−2〈n′〉s−2k
∣∣∣∂k2

t ĥ(n′)
∣∣∣)2

,

where in the last passage we have used (3.35) and that � ∼ n′. By using Young inequality for sequences one can 
continue the chain of inequalities above and finally obtain the (3.32). The estimate (3.33) follows summing over 
0 ≤ k ≤ K − K ′. �
Proposition 3.6. Fix K, K ′ ∈ N, K ′ ≤ K and r > 0. Let {ci}i∈N a sequence in FK,K ′ [r] satisfying the hypotheses of 
Lemma 3.3. Then the operator

Q(n)
c1,...,cn

:= OpBW(c1) ◦ · · · ◦ OpBW(cn) − OpBW(c1 · · · cn) (3.36)

belongs to the class R−ρ

K,K ′ [r] for any ρ ≥ 0. More precisely there exists s0 > 0 such that for any s ≥ s0 the following 
holds. For any 0 ≤ k ≤ K − K ′ and any ρ ≥ 0 there exists a constant C > 0 (depending on ‖U‖K,s0

, s, s0, ρ, k and 
independent of n) such that∥∥∥∂k

t

(
Q(n)

c1,...,cn
[h]
)∥∥∥

s+ρ−2k
≤ CnM

∑
k1+k2=k

(
‖U‖n

K ′+k1,s0
‖h‖k2,s + ‖U‖n−1

K ′+k1,s0
‖h‖k2,s0‖U‖K ′+k1,s

)
, (3.37)

for any n ≥ 1, any h in CK
∗R(I, Hs(T, C)), any U ∈ CK

∗R(I, Hs) ∩ BK
s (I, r) and where M = M1 · · ·Mn (see (3.31)).

Proof. We proceed by induction. For n = 1 is trivial. Let us study the case n = 2. Since c1, c2 belong to FK,K ′ [r], 
then c1 · c2 = (c1�c2)ρ for any ρ > 0. Then by (3.29) there exists an admissible cut-off function χ such that

OpBW(c1) ◦ OpBW(c2) − OpBW(c1 · c2) = OpBW(c1) ◦ OpBW(c2) − OpBW((c1�c2)ρ)

= OpW((c1)χ�(c2)χ ) − OpW((c1�c2)ρ,χ ) = OpW(r1) + OpW(r2),
(3.38)

where

r1(x, ξ) = (c1)χ�(c2)χ − ((c1)χ�(c2)χ )ρ,

r (x, ξ) = ((c ) �(c ) ) − (c �c ) .
(3.39)
2 1 χ 2 χ ρ 1 2 ρ,χ
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Then, by Lemma 2.3.3 in [10] and (3.31), one has that r1 satisfies the bound

|∂k
t ∂�

xr1(U ;x, ξ)| ≤ C̃M1M2〈ξ〉−ρ+�‖U‖2
k+K ′,s0

(3.40)

for any |�| ≤ 2 and some universal constant C̃ > 0 depending only on s, s0, ρ. Therefore Proposition 3.2 and Re-
mark 3.4 imply that∥∥∥OpW(∂k

t r1(U ;x, ·))
∥∥∥
L(Hs,Hs+ρ−2)

≤ C̃M1M2‖U‖2
k+K ′,s0

, (3.41)

for C̃ > 0 possibly larger than the one in (3.40), but still depending only on k, s, s0, ρ. From the bound (3.41) one 
deduces the estimate (3.37) for some C ≥ 2C̃. One can argue in the same way to estimate the term OpW(r2) in (3.38).

Assume now that (3.37) holds for j ≤ n − 1 for n ≥ 3. We have that

OpBW(c1) ◦ · · · ◦ OpBW(cn) = (OpBW(c1 · · · cn−1) + Qn−1
) ◦ OpBW(cn), (3.42)

where Qn−1 satisfies condition (3.37). For the term OpBW(c1 · · · cn−1) ◦ OpBW(cn) one has to argue as done in the 
case n = 2.

Consider the term Qn−1 ◦ OpBW(cn) and let C > 0 be the universal constant given by Lemma 3.3.
Using the inductive hypothesis on Qn−1 and estimate (3.32) in Lemma 3.3 (in the case n = 1) we have

‖∂k
t

(
Qn−1 ◦ OpBW(cn)h

)‖s+ρ−2k ≤ KCn−1M1 · · ·Mn−1

∑
k1+k2=k

∑
j1+j2=k2

CMn‖U‖n−1
K ′+k1,s0

‖U‖K ′+j1,s0‖h‖j2,s

+ KCn−1M1 · · ·Mn−1

∑
k1+k2=k

∑
j1+j2=k2

CMn‖U‖n−2
K ′+k1,s0

‖U‖K ′+k1,s‖U‖K ′+j1,s0‖h‖j2,s0

≤ KMCn−1C

k∑
k1=0

k−k1∑
j1=0

‖U‖n
K ′+k1+j1,s0

‖h‖k−k1−j1,s

+ KMCn−1C

k∑
k1=0

k−k1∑
j1=0

‖U‖n−1
K ′+k1+j1,s0

‖U‖K ′+k1+j1,s‖h‖k−k1−j1,s0

≤ KMCn−1C

k∑
m=0

(‖U‖n
K ′+m,s0

‖h‖k−m,s + ‖U‖n−1
K ′+m,s0

‖U‖K ′+m,s‖h‖k−m,s0)(m + 1),

for constant K depending only on k. This implies (3.37) by choosing C > (k + 1)CK. �
Corollary 3.1. Fix K, K ′ ∈N, K ′ ≤ K and r > 0. Let s(U ; x) and z(U ; x) be symbols in the class FK,K ′ [r]. Consider 
the following two matrices

S(U ;x) :=
(

s(U ;x) 0
0 s(U ;x)

)
, Z(U ;x) :=

(
0 z(U ;x)

z(U ;x) 0

)
∈ FK,K ′ [r] ⊗M2(C). (3.43)

Then one has the following

exp
{

OpBW(S(U ;x))
}

− OpBW({expS(U ;x)}) ∈R−ρ

K,K ′ [r] ⊗M2(C),

exp
{

OpBW(Z(U ;x))
}

− OpBW({expZ(U ;x)}) ∈R−ρ

K,K ′ [r] ⊗M2(C),

for any ρ ≥ 0.

Proof. Let us prove the result for the matrix S(U ; x).
Since s(U ; x) belongs to FK,K ′ [r] then there exists s0 > 0 such that if U ∈ BK

s0
(I, r), then there is a constant N > 0

such that∣∣∣∂k
t ∂α

x s(U ;x)

∣∣∣≤ N‖U‖k+K ′,s0
,
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for any 0 ≤ k ≤ K − K ′ and |α| ≤ 2. By definition one has

exp
(

OpBW(S(U ;x))
)

=
∞∑

n=0

(
OpBW(S(U ;x))

)n
n!

=
∞∑

n=0

1

n!
( (

OpBW(s(U ;x))
)n 0

0
(
OpBW(s(U ;x))

)n) ,

on the other hand

OpBW
(

exp
(
S(U ;x)

))=
∞∑

n=0

1

n!OpBW

( [
s(U ;x)

]n 0
0

[
s(U ;x)

]n)

=
∞∑

n=0

1

n!
(

OpBW
([

s(U ;x)
]n) 0

0 OpBW
([

s(U ;x)
]n)) .

We argue componentwise. Let h be a function in CK
∗R(I, Hs(T, C)), then using Proposition 3.6, one has∥∥∥∥∥

∞∑
n=0

1

n!∂
k
t

([
OpBW(s(U ;x))

]n[h] − OpBW
(
s(U ;x)n

)[h]
)∥∥∥∥∥

s+ρ−2k

≤

∞∑
n=1

CnNn

n!
∑

k1+k2=k

(
‖U‖n

K ′+k1,s0
‖h‖k2,s

+ ‖U‖n−1
K ′+k1,s0

‖h‖k2,s0
‖U‖K ′+k1,s

)
≤

∑
k1+k2=k

(‖U‖K ′+k1,s0
‖h‖k2,s

+ ‖U‖K ′+k1,s
‖h‖k2,s0

) ∞∑
n=1

CnNn

n! ‖U‖n−1
K ′+k1,s0

.

Therefore we have proved the (3.17) with constant

C =
∞∑

n=1

CnNn

n! ‖U‖n−1
K ′+k1,s0

= exp(CN‖U‖K ′+k1,s0
) − 1

‖U‖K ′+k1,s0

.

For the other non zero component of the matrix the argument is the same.
In order to simplify the notation, set z(U ; x) = z and z(U ;x) = z, therefore for the matrix Z(U ; x), by definition, 

one has

OpBW (exp(Z(U ;x))) = OpBW

( ∞∑
n=0

1

n!
( |z|2n |z|2n+1z

|z|2n+1z |z|2n

))
.

On the other hand, setting An
z,z̄ = (OpBW(z) ◦ OpBW(z̄)

)n and Bn
z,z̄ = An

z,z̄ ◦ OpBW(z), one has

exp
(

OpBW(Z(U ;x))
)

=
∞∑

n=0

1

n!
(

An
z,z̄ Bn

z,z̄

Bn
z,z̄ An

z,z̄

)
.

Therefore one can study each component of the matrix exp
(

OpBW(Z(U ;x))
)

− OpBW (expZ(U ;x)) in the same 
way as done in the case of the matrix S(U, x). �
4. Paralinearization of the equation

In this section we give a paradifferential formulation of the equation (1.1). In order to paralinearize the equation 
(1.1) we need to “double” the variables. We consider a system of equations for the variables (u+, u−) in Hs × Hs

which is equivalent to (1.1) if u+ = ū−. More precisely we give the following definition.
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Definition 4.1. Let f be the C∞(C3; C) function in the equation (1.1). We define the “vector” NLS as

∂tU = iE [�U + F(U,Ux,Uxx)] , U ∈ Hs × Hs,

F(U,Ux,Uxx) :=
(

f1(U,Ux,Uxx)

f2(U,Ux,Uxx)

)
,

(4.1)

where

F(Z1,Z2,Z3) =
(

f1(z
+
1 , z−

1 , z+
2 , z−

2 , z+
3 , z−

3 )

f2(z
+
1 , z−

1 , z+
2 , z−

2 , z+
3 , z−

3 )

)
, Zi =

(
z+
i

z−
i

)
, i = 1,2,3,

extends (f, f ) in the following sense. The functions fi for i = 1, 2 are C∞ on C6 (in the real sense). Moreover one 
has the following:(

f1(z1, z̄1, z2, z̄2, z3, z̄3)

f2(z1, z̄1, z2, z̄2, z3, z̄3)

)
=
(

f (z1, z2, z3)

f (z1, z2, z3)

)
, (4.2)

and

∂z+
3
f1 = ∂z−

3
f2, ∂z+

i
f1 = ∂z−

i
f2, i = 1,2, ∂z−

i
f1 = ∂z+

i
f2, i = 1,2,3

∂
z+
i

f1 = ∂
z+
i

f2 = ∂
z−
i

f1 = ∂
z−
i

f2 = 0
(4.3)

where ∂
zσ
j

= ∂Re zσ
j

+ i∂Im zσ
j
, σ = ±.

Remark 4.1. In the case that f has the form

f (z1, z2, z3) = Cz
α1
1 z̄

β1
1 z

α2
2 z̄

β2
2

for some C ∈C, αi, βi ∈ N for i = 1, 2, a possible extension is the following:

f1(z
+
1 , z−

1 , z+
2 , z−

2 ) = C(z+
1 )α1(z−

1 )β1(z+
2 )α2(z−

2 )β2 ,

f2(z
+
1 , z−

1 , z+
2 , z−

2 ) = C(z−
1 )α1(z+

1 )β1(z−
2 )α2(z+

2 )β2 .

Remark 4.2. Using (4.2) one deduces the following relations between the derivatives of f and fj with j = 1, 2:

∂zi
f (z1, z2, z3) = (∂z+

i
f1)(z1, z̄1, z2, z̄2, z3, z̄3)

∂z̄i
f (z1, z2, z3) = (∂z−

i
f1)(z1, z̄1, z2, z̄2, z3, z̄3)

∂z̄i
f (z1, z2, z3) = (∂z+

i
f2)(z1, z̄1, z2, z̄2, z3, z̄3)

∂zi
f (z1, z2, z3) = (∂z−

i
f2)(z1, z̄1, z2, z̄2, z3, z̄3).

(4.4)

In the rest of the paper we shall use the following notation. Given a function g(z+
1 , z−

1 , z+
2 , z−

2 , z+
3 , z−

3 ) defined on 
C6 which is differentiable in the real sense, we shall write

(∂∂i
xug)(u, ū, ux, ūx, uxx, ūxx) := (∂z+

i+1
g)(u, ū, ux, ūx, uxx, ūxx),

(∂
∂i
xu

g)(u, ū, ux, ūx, uxx, ūxx) := (∂z−
i+1

g)(u, ū, ux, ūx, uxx, ūxx), i = 0,1,2.
(4.5)

By Definition 4.1 one has that equation (1.1) is equivalent to the system (4.1) on the subspace Hs .
We state the Bony paralinearization lemma, which is adapted to our case from Lemma 2.4.5 of [10].

Lemma 4.1 (Bony paralinearization of the composition operator). Let f be a complex-valued function of class 
C∞ in the real sense defined in a ball centered at 0 of radius r > 0, in C6, vanishing at 0 at order 2. There exists a 
1 × 2 matrix of symbols q ∈ �2

K,0[r] and a 1 × 2 matrix of smoothing operators Q(U) ∈R−ρ
K,0[r], for any ρ, such that

f (U,Ux,Uxx) = OpBW(q(U,Ux,Uxx;x, ξ))[U ] + Q(U)U. (4.6)
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Moreover the symbol q(U ; x, ξ) has the form

q(U ;x, ξ) := d2(U ;x)(iξ)2 + d1(U ;x)(iξ) + d0(U ;x), (4.7)

where dj (U ; x) are 1 × 2 matrices of symbols in FK,0[r], for j = 0, 1, 2.

Proof. By the paralinearization formula of Bony, we know that

f (U,Ux,Uxx) = TDU f U + TDUx f Ux + TDUxx f Uxx + R0(U)U, (4.8)

where R0(U) satisfies estimates (3.17) and where

TDU f U = 1

2π

∫
ei(x−y)ξχ(〈ξ〉−1D)[cU (U ;x, ξ)]U(y)dydξ,

TDUx f Ux = 1

2π

∫
ei(x−y)ξχ(〈ξ〉−1D)[cUx (U ;x, ξ)]U(y)dydξ,

TDUxx f Uxx = 1

2π

∫
ei(x−y)ξχ(〈ξ〉−1D)[cUxx (U ;x, ξ)]U(y)dydξ,

with

cU (U ;x, ξ) = DUf,

cUx (U ;x, ξ) = DUx f (iξ),

cUxx (U ;x, ξ) = DUxx f (iξ)2,

(4.9)

for some χ ∈ C∞
0 (R) with small enough support and equal to 1 close to 0. Using (3.10) we define the x-periodic 

function bi(U ; x, ξ), for i = 0, 1, 2, through its Fourier coefficients

b̂i (U ;n, ξ) := ĉUi
(U ;n, ξ − n/2) (4.10)

where Ui := ∂i
xU . In the same way we define the function di(U ; x, ξ), for i = 0, 1, 2, as

d̂i (U ;n, ξ) := χ
(
n〈ξ − n/2〉−1

)
ĉUi

(U ;n, ξ − n/2). (4.11)

We have that TDUf U = OpW(d0(U, ξ))U . We observe the following

d̂0(U ;n, ξ) = χ
(
n〈ξ〉−1

)
D̂Uf (n) +

(
χ
(
n〈ξ − n/2〉−1

)
− n〈ξ〉−1

)
D̂Uf (n) (4.12)

therefore if the support of χ is small enough, thanks to Lemma 3.2, we obtained

TDU f U = OpBW(b0(U ;x, ξ))U + R1(U)U, (4.13)

for some smoothing reminder R1(U). Reasoning in the same way we get

TDUx f Ux = OpBW
(
b1(U ; ξ)

)
U + R2(U)U

TDUxx f Uxx = OpBW
(
b2(U ; ξ))

)
U + R3(U)U.

(4.14)

The theorem is proved defining Q(U) =∑3
k=0 Rk(U) and q(U ; x, ξ) = b2(U ; ξ) + b1(U ; ξ) + b0(U ; ξ). Note that 

the symbol q satisfies conditions (4.7) by (4.9) and formula (3.10). �
We have the following Proposition.

Proposition 4.1 (Paralinearization of the system). There are a matrix A(U ; x, ξ) in �2
K,0[r] ⊗M2(C) and a smooth-

ing operator R in R−ρ
K,0[r] ⊗M2(C), for any K, r > 0 and ρ ≥ 0 such that the system (4.1) is equivalent to

∂tU := iE
[
�U + OpBW(A(U ;x, ξ))[U ] + R(U)[U ]

]
, (4.15)
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on the subspace U (see (1.13) and Definition 4.1) and where � is defined in (1.18) and (1.16). Moreover the operator 
R(U)[·] has the form (3.24), the matrix A has the form (3.21), i.e.

A(U ;x, ξ) :=
(

a(U ;x, ξ) b(U ;x, ξ)

b(U ;x,−ξ) a(U ;x,−ξ)

)
∈ �2

K,0[r] ⊗M2(C) (4.16)

with a, b in �2
K,0[r]. In particular we have that

A(U ;x, ξ) = A2(U ;x)(iξ)2 + A1(U ;x)(iξ) + A0(U ;x), Ai ∈FK,0[r] ⊗M2(C), i = 0,1,2. (4.17)

Proof. The functions f1, f2 in (4.1) satisfy the hypotheses of Lemma 4.1 for any r > 0. Hence the result follows by 
setting q(U ; x, ξ) =: (a(U ; x, ξ), b(U ; x, ξ)). �

In the following we study some properties of the system in (4.15).
We first prove some lemmata which translate the Hamiltonian Hypothesis 1.1, parity-preserving Hypothesis 1.2

and global ellipticity Hypothesis 1.3 in the paradifferential setting.

Lemma 4.2 (Hamiltonian structure). Assume that f in (1.1) satisfies Hypothesis 1.1. Consider the matrix A(U ; x, ξ)

in (4.16) given by Proposition 4.1. Then the term

A2(U ;x)(iξ)2 + A1(U ;x)(iξ)

in (4.17) satisfies conditions (3.22). More explicitly one has

A2(U ;x) :=
(

a2(U ;x) b2(U ;x)

b2(U ;x) a2(U ;x)

)
, A1(U ;x) :=

(
a1(U ;x) 0

0 a1(U ;x)

)
, (4.18)

with a2, a1, b2 ∈FK,0[r] and a2 ∈R.

Proof. Recalling the notation introduced in (4.5) we shall write

∂∂i
xuf := ∂z+

i+1
f1, ∂

∂i
xu

f := ∂z−
i+1

f1, i = 0,1,2, (4.19)

when restricted to the real subspace U (see (1.13)). Using conditions (4.2), (4.3) and (4.4) one has that(
f (u,ux,uxx)

f (u,ux,uxx)

)
=
(

f1(U,Ux,Uxx)

f2(U,Ux,Uxx)

)
= OpB

[(
∂uxx f ∂ūxx f

∂ūxx f ∂uxx f

)
(iξ)2

]
U + OpB

[(
∂ux f ∂ūx f

∂ūx f ∂ux f

)
(iξ)

]
U + R(U)[U ]

(4.20)

where R(U) belongs to R0
K,0[r]. By Hypothesis 1.1 we have that

∂uxx f = −∂uxūx F,

∂ūxx f = −∂ūx ūx F,

∂ux f = − d

dx

[
∂uxūx F

]− ∂uūx F + ∂uxūF,

∂ūx f = − d

dx

[
∂ūx ūx F

]
.

(4.21)

We now pass to the Weyl quantization in the following way. Set

c(x, ξ) = ∂uxx f (x)(iξ)2 + ∂ux f (x)(iξ).

Passing to the Fourier side we have that

ĉ(j, ξ − j
) = ̂(∂uxx f )(j)(iξ)2 +

[
(̂∂ux f )(j) − (ij) ̂(∂uxx f )(j)

]
(iξ) +

[ (ij)2
̂(∂uxx f )(j) − (ij)

(̂∂ux f )(j)
]
,

2 4 2
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therefore by using formula (3.10) we have that OpB(c(x, ξ)) = OpBW(a(x, ξ)), where

a(x, ξ) = ∂uxx f (x)(iξ)2 + [∂ux f (x) − d

dx
(∂uxx f )](iξ) + 1

4

d2

dx2 (∂uxx f ) − 1

2

d

dx
(∂ux f ).

Using the relations in (4.21) we obtain a matrix A as in (4.18), and in particular we have

a2(U ;x) = −∂uxūx F, a1(U ;x) = −∂uūx F + ∂uxūF, b2(U ;x) = −∂ūx ūx F. (4.22)

Since F is real then a2 is real, while a1 is purely imaginary. This implies conditions (3.22). �
Lemma 4.3 (Parity preserving structure). Assume that f in (1.1) satisfies Hypothesis 1.2. Consider the matrix 
A(U ; x, ξ) in (4.16) given by Proposition 4.1. One has that A(U ; x, ξ) has the form (4.17) where

A2(U ;x) :=
(

a2(U ;x) b2(U ;x)

b2(U ;x) a2(U ;x)

)
, A1(U ;x) :=

(
a1(U ;x) b1(U ;x)

b1(U ;x) a1(U ;x)

)
,

A0(U ;x) :=
(

a0(U ;x) b0(U ;x)

b0(U ;x) a0(U ;x)

)
,

(4.23)

with a2, b2, a1, b1, a0, b0 ∈ FK,0[r] such that, for U even in x, the following holds:

a2(U ;x) = a2(U ;−x), b2(U ;x) = b2(U ;−x), (4.24a)

a1(U ;x) = −a1(U ;−x), b1(U ;x) = −b1(U ;−x), (4.24b)

a0(U ;x) = a0(U ;−x), b0(U ;x) = b0(U ;−x), U ∈ Hs
e, (4.24c)

and

a2(U ;x) ∈ R. (4.25)

The matrix R(U) in (4.15) is parity preserving according to Definition 2.4.

Proof. Using the same notation introduced in the proof of Lemma 4.2 (recall (4.4)) we have that formula (4.20) holds. 
Under the Hypothesis 1.2 one has that the functions ∂uf, ∂uf, ∂uxx f, ∂ūxx f are even in x while ∂ux f, ∂ūx f are odd in 
x. Passing to the Weyl quantization by formula (3.10) we get

a2(U ;x) = ∂uxx f,

a1(U ;x) = ∂ux f − ∂x(∂uxx f ),

a0(U ;x) = ∂uf + 1

4
∂2
x (∂uxx f ) − 1

2
∂x(∂ux f ),

b2(U ;x) = ∂ūxx f,

b1(U ;x) = ∂ūx f − ∂x(∂ūxx f ),

b0(U ;x) = ∂ūf + 1

4
∂2
x (∂ūxx f ) − 1

2
∂x(∂ūx f )

(4.26)

which imply conditions (4.24), while (4.25) is implied by item 2 of Hypothesis 1.2. The term R is parity preserving 
by difference. �
Lemma 4.4 (Global ellipticity). Assume that f in (1.1) satisfies Hypothesis 1.1 (respectively Hypothesis 1.2). If f
satisfies also Hypothesis 1.3 then the matrix A2(U ; x) in (4.18) (resp. in (4.23)) is such that

1 + a2(U ;x) ≥ c1

(1 + a2(U ;x))2 − |b2(U ;x)|2 ≥ c2 > 0,
(4.27)

where c1 and c2 are the constants given in (1.8) and (1.9).

Proof. It follows from (4.22) in the case of Hypothesis 1.1 and from (4.26) in the case of Hypothesis 1.2. �
Lemma 4.5 (Lipschitz estimates). Fix r > 0, K > 0 and consider the matrices A and R given in Proposition 4.1. 
Then there exists s0 > 0 such that for any s ≥ s0 the following holds true. For any U, V ∈ CK∗R(I ; Hs) ∩ BK

s0
(I, r)

there are constants C1 > 0 and C2 > 0, depending on s, ‖U‖K,s0 and ‖V ‖K,s0 , such that for any H ∈ CK∗R(I ; Hs)

one has



142 R. Feola, F. Iandoli / Ann. I. H. Poincaré – AN 36 (2019) 119–164
‖OpBW(A(U ;x, ξ))[H ] − OpBW(A(V ;x, ξ))[H ]‖K,s−2 ≤ C1‖H‖K,s‖U − V ‖K,s0 (4.28)

‖R(U)[U ] − R(V )[V ]‖K,s+ρ ≤ C2(‖U‖K,s + ‖V ‖K,s)‖U − V ‖K,s, (4.29)

for any ρ ≥ 0.

Proof. We prove bound (4.28) on each component of the matrix A in (4.16) in the case that f satisfies Hypothesis 1.2. 
The Hamiltonian case of Hypothesis 1.1 follows by using the same arguments. From the proof of Lemma 4.3 we know 
that the symbol a(U ; x, ξ) of the matrix in (4.16) is such that a(U ; x, ξ) = a2(U ; x)(iξ)2 + a1(U ; x)(iξ) + a0(U ; x)

where ai(U ; x) for i = 0, 1, 2 are given in (4.26).
By Remark 3.3 there exists s0 > 0 such that for any s ≥ s0 one has

‖OpBW
(
(a2(U ;x) − a2(V ;x))(iξ)2)h‖K,s−2 ≤ C sup

ξ

〈ξ〉−2‖(a2(U ;x) − a2(V ;x))(iξ)2)‖K,s0‖h‖K,s . (4.30)

with C depending on s, s0. Let U, V ∈ CK∗R(I ; Hs) ∩ BK
s0+2(I, r), by Lagrange theorem, recalling the relations in 

(4.4), (4.5) and (4.19), one has that(
a2(U ;x) − a2(V ;x)

)
(iξ)2 = ((∂uxx f1)(U,Ux,Uxx) − (∂uxx f1)(V ,Vx,Vxx)

)
(iξ)2

= (∂U∂uxx f1)(W
(0),Ux,Uxx)(U − V )(iξ)2+

+ (∂Ux ∂uxx f1)(V ,W(1),Uxx)(Ux − Vx)(iξ)2+
+ (∂Uxx ∂uxx f1)(V ,Vx,W

(2))(Uxx − Vxx)(iξ)2

(4.31)

where W(j) = ∂
j
x V + tj (∂

j
x U − ∂

j
x V ), for some tj ∈ [0, 1] and j = 0, 1, 2. Hence, for instance, the first summand of 

(4.31) can be estimated as follows

sup
ξ

〈ξ〉−2‖(∂U∂uxx f1)(W
(0),Ux,Uxx)(U − V )(iξ)2‖K,s0

≤ C1‖U − V ‖K,s0 sup
U,V ∈BK

s0+2(I,r)

‖(∂U∂uxx f1)(W
(0),Ux,Uxx)‖K,s0

≤ C2‖U − V ‖K,s0,

(4.32)

where C1 depends on s0 and C2 depends only on s0 and ‖U‖K,s0+2, ‖V ‖K,s0+2 and where we have used a Moser 
type estimates on composition operators on Hs since f1 belongs to C∞(C6; C). We refer the reader to Lemma A.50
of [17] for a complete statement (see also [4], [22]). The other terms in the r.h.s. of (4.31) can be treated in the same 
way. Hence from (4.30) and the discussion above we have obtained

‖OpBW
(
(a2(U ;x) − a2(V ;x))(iξ)2)h‖K,s−2 ≤ C‖U − V ‖K,s0+2‖h‖K,s, (4.33)

with C depending on s and ‖U‖K,s0+2, ‖V ‖K,s0+2. One has to argue exactly as done above for the lower order terms 
a1(U ; x)(iξ) and a0(U ; x) of a(U ; x, ξ). In the same way one is able to prove the estimate

‖OpBW
(
(b(U ;x, ξ) − b(V ;x, ξ))

)
h̄‖K,s−2 ≤ C‖U − V ‖K,s0+2‖h̄‖K,s . (4.34)

Thus the (4.28) is proved renaming s0 as s0 + 2.
In order to prove (4.29) we show that the operator dU(R(U)U)[·] belongs to the class R−ρ

K,K ′ [r] ⊗M2(C) for any 
ρ ≥ 0 (where dU(R(U)U)[·] denotes the differential of R(U)[U ] w.r.t. the variable U ). We recall that the operator R
in (4.15) is of the form

R(U)[·] :=
(

Q(U)[·]
Q(U)[·]

)
,

where Q(U)[·] is the 1 ×2 matrix of smoothing operators in (4.6) with f given in (1.1). We claim that dU(Q(U)U)[·]
is 1 × 2 matrix of smoothing operators in R−ρ

K,0[r]. By Lemma 4.1 we know that Q(U)[·] = R0(U) +∑3
j=1 Rj (U), 

where R0 is 1 × 2 matrix of smoothing operators coming from the Bony paralinearization formula (see (4.8)), while 
Rj , for j = 1, 2, 3, are the 1 × 2 matrices of smoothing operators in (4.13) and (4.14).
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One can prove the claim for the terms Rj , j = 1, 2, 3, by arguing as done in the proof of (4.28). Indeed we know 
the explicit paradifferential structure of these remainders. For instance, by (4.10), (4.11), (4.12) and (4.13) we have 
that

R1(U)[·] := op
(
k(x, ξ)

)
[·], (4.35)

where k(x, ξ) =∑j∈Z k̂(j, ξ)eijx and

k(j, ξ) =
(
χ
(
n〈ξ − n/2〉−1

)
− χ(n〈ξ〉−1)

)
D̂Uf (n)

(see formula (4.12)). The remainders R2, R3 have similar expressions. We reduced to prove the claim for the term R0. 
Recalling (4.9) we set

c(U ;x, ξ) := cU (U ;x, ξ) + cUx (U ;x, ξ) + cUxx (U ;x, ξ).

Using this notation, formula (4.8) reads

f (u,ux,uxx) = f1(U,Ux,Uxx) = OpB(c(U ;x, ξ))U + R0(U)U. (4.36)

Differentiating (4.36) we get

dU(f1(U,Ux,Uxx))[H ] = OpB(c(U ;x, ξ))[H ] + OpB(∂Uc(U ;x, ξ) · H)[U ] + dU(R0(U)[U ])[H ]. (4.37)

The l.h.s. of (4.37) is nothing but

∂Uf1(U,Ux,Uxx) · H + ∂Ux f1(U,Ux,Uxx) · Hx + ∂Uxx f1(U,Ux,Uxx) · Hxx =: G(U,H).

By applying the Bony paralinearization formula to G(U, H) (as a function of the six variables U, Ux, Uxx , 
H, Hx, Hxx ) we get

G(U,H) = OpB(∂UG(U,H))[U ] + OpB(∂Ux G(U,H))[Ux] + OpB(∂Uxx G(U,H))[Uxx ]
+ OpB(∂H G(U,H))[H ] + OpB(∂Hx G(U,H))[Hx ] + OpB(∂Hxx G(U,H))[Hxx ] + R4(U)[H ],

(4.38)

where R4(U)[·] satisfies estimates (3.17) for any ρ ≥ 0. By (4.9) and (4.38) we have that (4.37) reads

dU(R0(U)U)[H ] = R4(U)[H ]. (4.39)

Therefore dU(R0(U)U)[·] is a 1 × 2 matrix of operators in the class R−ρ
K,0[r] for any ρ ≥ 0. �

5. Regularization

We consider the system

∂tV = iE
[
�V + OpBW(A(U ;x, ξ))[V ] + R

(0)
1 (U)[V ] + R

(0)
2 (U)[U ]

]
,

U ∈ BK
s0

(I, r) ∩ CK
∗R(I,Hs(T,C2)),

(5.1)

for some s0 large, s ≥ s0 and where � is defined in (1.16). The operators R(0)
1 (U) and R(0)

2 (U) are in the class 
R−ρ

K,0[r] ⊗ M2(C) for some ρ ≥ 0 and they have the reality preserving form (3.24). The matrix A(U ; x, ξ) satisfies 
the following.

Constraint 5.1. The matrix A(U ; x, ξ) belongs to �2
K,0[r] ⊗M2(C) and has the following properties:

• A(U ; x, ξ) is reality preserving, i.e. has the form (3.21);
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• the components of A(U ; x, ξ) have the form

a(U ;x, ξ) = a2(U ;x)(iξ)2 + a1(U ;x)(iξ),

b(U ;x, ξ) = b2(U ;x)(iξ)2 + b1(U ;x)(iξ),
(5.2)

for some ai(U ; x), bi(U ; x) belonging to FK,0[r] for i = 1, 2.

In addition to Constraint 5.1 we assume that the matrix A satisfies one the following two Hypotheses:

Hypothesis 5.1 (Self-adjoint). The operator OpBW(A(U ; x, ξ)) is self-adjoint according to Definition 2.3, i.e. the 
matrix A(U ; x, ξ) satisfies conditions (3.22).

Hypothesis 5.2 (Parity preserving). The operator OpBW(A(U ; x, ξ)) is parity preserving according to Definition 2.4, 
i.e. the matrix A(U ; x, ξ) satisfies the conditions

A(U ;x, ξ) = A(U ;−x,−ξ), a2(U ;x) ∈R. (5.3)

The function P in (1.2) is such that p̂(j) = p̂(−j) for j ∈Z.

Finally we need the following ellipticity condition.

Hypothesis 5.3 (Ellipticity). There exist c1, c2 > 0 such that components of the matrix A(U ; x, ξ) satisfy the condi-
tion

1 + a2(U ;x) ≥ c1,

(1 + a2(U ;x))2 − |b2(U ;x)|2 ≥ c2 > 0,
(5.4)

for any U ∈ BK
s0

(I, r) ∩ CK
∗R(I, Hs(T, C2)).

The goal of this section is to transform the linear paradifferential system (5.1) into a constant coefficient one up to 
bounded remainder.

The following result is the core of our analysis.

Theorem 5.1 (Regularization). Fix K ∈ N with K ≥ 4, r > 0. Consider the system (5.1). There exists s0 > 0 such that 
for any s ≥ s0 the following holds. Fix U in BK

s0
(I, r) ∩CK

∗R(I, Hs(T, C2)) (resp. U ∈ BK
s0

(I, r) ∩CK
∗R(I, Hs

e(T, C2))) 
and assume that the system (5.1) has the following structure:

• the operators R(0)
1 , R(0)

2 belong to the class R−ρ
K,0[r] ⊗M2(C);

• the matrix A(U ; x, ξ) satisfies Constraint 5.1,
• the matrix A(U ; x, ξ) satisfies Hypothesis 5.1 (resp. together with P satisfy Hypothesis 5.2)
• the matrix A(U ; x, ξ) satisfies Hypothesis 5.3.

Then there exists an invertible map (resp. an invertible and parity preserving map)

� = �(U) : CK−4
∗R (I,Hs(T,C2)) → CK−4

∗R (I,Hs(T,C2)),

with

‖(�(U))±1V ‖K−4,s ≤ ‖V ‖K−4,s(1 + C‖U‖K,s0), (5.5)

for a constant C > 0 depending on s, ‖U‖K,s0 and ‖P‖C1 such that the following holds. There exist operators 
R1(U), R2(U) in R0

K,4[r] ⊗M2(C), and a diagonal matrix L(U) in �2
K,4[r] ⊗M2(C) of the form (3.21) satisfying 

condition (3.22) and independent of x ∈ T, such that by setting W = �(U)V the system (5.1) reads

∂tW = iE
[
�W + OpBW(L(U ; ξ))[W ] + R1(U)[W ] + R2(U)[U ]

]
. (5.6)
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Remark 5.1. Note that, under the Hypothesis 5.2, if the term R(0)
1 (U)[V ] + R

(0)
2 (U)[U ] in (5.1) is parity preserving, 

according to Definition 2.4, then the flow of the system (5.1) preserves the subspace of even functions. Since the map 
�(U) in Theorem 5.1 is parity preserving, then Lemma 2.3 implies that also the flow of the system (5.6) preserves 
the same subspace.

The proof of Theorem 5.1 is divided into four steps which are performed in the remaining part of the section. We 
first explain our strategy and set some notation. We consider the system (5.1)

Vt = L(0)(U)[V ] := iE
[
�V + OpBW(A(U ;x, ξ))[V ] + R

(0)
1 (U)[V ] + R

(0)
2 (U)[U ]

]
. (5.7)

The idea is to construct several maps

�i[·] := �i(U)[·] : CK−(i−1)
∗R (I,Hs(T)) → C

K−(i−1)
∗R (I,Hs(T)),

for i = 1, . . . , 4 which conjugate the system L(i)(U) to L(i+1)(U), with L(0)(U) in (5.7) and

L(i)(U)[·] := iE
[
� + OpBW(L(i)(U ; ξ))[·] + OpBW(A(i)(U ;x, ξ))[·] + R

(i)
1 [·] + R

(i)
2 (U)[U ]

]
, (5.8)

where R(i)
1 and R(i)

2 belong to R0
K,i[r] ⊗M2(C), L(i) belong to �2

K,i[r] ⊗M2(C) and moreover they are diagonal, 
self-adjoint and independent of x ∈ T and finally A(i) are in �2

K,i[r] ⊗M2(C). As we will see, the idea is to look for 
�i in such a way A(i+1) is actually a matrix with symbols of order less or equal than the order of A(i).

We now prove a lemma in which we study the conjugate of the convolution operator.

Lemma 5.1. Let Q1, Q2 operators in the class R0
K,K ′ [r] ⊗M2(C) and P : T → R a continuous function. Consider 

the operator P defined in (1.19). Then there exists R belonging to R0
K,K ′ [r] ⊗M2(C) such that

(1+ Q1(U)) ◦P ◦ (1+ Q2(U))[·] = P[·] + R(U)[·]. (5.9)

Moreover if P is even in x and the operators Q1(U) and Q2(U) are parity-preserving then the operator R(U) is 
parity preserving according to Definition 2.4.

Proof. By linearity it is enough to show that the terms

Q1(U) ◦P ◦ (1+ Q2(U))[h], (1+ Q1(U)) ◦P ◦ Q2(U)[h], Q1(U) ◦P ◦ Q2(U)[h]
belong to R0

K,K ′ [r] ⊗M2(C). Note that, for any 0 ≤ k ≤ K − K ′,

‖∂k
t (P ∗ h)‖Hs−2k ≤ C‖∂k

t h‖Hs−2k , (5.10)

for some C > 0 depending only on ‖P‖L∞ . The (5.10) and the estimate (3.17) on Q1 and Q2 imply the thesis. If P
is even in x then the convolution operator with kernel P is a parity preserving operator according to Definition 2.4. 
Therefore if in addiction Q1(U) and Q2(U) are parity preserving so is R(U). �
5.1. Diagonalization of the second order operator

Consider the system (5.1) and assume the Hypothesis of Theorem 5.1. The matrix A(U ; x, ξ) satisfies conditions 
(5.2), therefore it can be written as

A(U ;x, ξ) := A2(U ;x)(iξ)2 + A1(U ;x)(iξ), (5.11)

with Ai(U ; x) belonging to FK,0[r] ⊗M2(C) and satisfying either Hypothesis 5.1 or Hypothesis 5.2. In this Section, 
by exploiting the structure of the matrix A2(U ; x), we show that it is possible to diagonalize the matrix E(1 + A2)

through a change of coordinates which is a multiplication operator. We have the following lemma.

Lemma 5.2. Under the Hypotheses of Theorem 5.1 there exists s0 > 0 such that for any s ≥ s0 there exists an invertible 
map (resp. an invertible and parity preserving map)
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�1 = �1(U) : CK
∗R(I,Hs) → CK

∗R(I,Hs),

with

‖(�1(U))±1V ‖K,s ≤ ‖V ‖K,s(1 + C‖U‖K,s0) (5.12)

where C depends only on s and ‖U‖K,s0 such that the following holds. There exists a matrix A(1)(U ; x, ξ) satisfying 
Constraint 5.1 and Hypothesis 5.1 (resp. Hypothesis 5.2) of the form

A(1)(U ;x, ξ) := A
(1)
2 (U ;x)(iξ)2 + A

(1)
1 (U ;x)(iξ),

A
(1)
2 (U ;x) :=

(
a

(1)
2 (U ;x) 0

0 a
(1)
2 (U ;x)

)
∈FK,1[r] ⊗M2(C),

A
(1)
1 (U ;x) :=

⎛⎝ a
(1)
1 (U ;x) b

(1)
1 (U ;x)

b
(1)
1 (U ;x, ) a

(1)
1 (U ;x)

⎞⎠ ∈ FK,1[r] ⊗M2(C)

(5.13)

and operators R(1)
1 (U), R(1)

2 (U) in R0
K,1[r] ⊗M2(C) such that by setting V1 = �(U)V the system (5.1) reads

∂tV1 = iE
[
�V1 + OpBW(A(1)(U ;x, ξ))[V1] + R

(1)
1 (U)[V1] + R

(1)
2 (U)[U ]

]
. (5.14)

Moreover there exists a constant k > 0 such that

1 + a
(1)
2 (U ;x) ≥ k. (5.15)

Proof. Let us consider a symbol z(U ; x) in the class FK,0[r] and set

Z(U ;x) :=
(

0 z(U ;x)

z(U ;x) 0

)
∈FK,0[r] ⊗M2(C). (5.16)

Let �τ
1(U)[·] the solution at time τ ∈ [0, 1] of the system{

∂τ�
τ
1(U)[·] = OpBW(Z(U ;x))�τ

1(U)[·],
�0

1(U)[·] = 1[·]. (5.17)

Since OpBW(Z(U ; x)) is a bounded operator on Hs , by standard theory of Banach space ODE we have that the flow 
�τ

1 is well defined, moreover by Proposition 3.2 one gets

∂τ‖�τ
1(U)V ‖2

Hs ≤ ‖�τ
1(U)V ‖Hs ‖OpBW(Z(U ;x))�τ

1(U)V ‖Hs

≤ ‖�τ
1(U)V ‖2

Hs C‖U‖Hs0 ,
(5.18)

hence one obtains

‖�τ
1(U)[V ]‖Hs ≤ ‖V ‖Hs (1 + C‖U‖Hs0 ), (5.19)

where C > 0 depends only on ‖U‖Hs0 . The latter estimate implies (5.12) for K = 0. By differentiating in t the 
equation (5.17) we note that

∂τ ∂t�
τ
1(U)[·] = OpBW(Z(U ;x))∂t�

τ
1(U)[·] + OpBW(∂tZ(U ;x))�τ

1(U)[·]. (5.20)

Now note that, since Z belongs to the class FK,0[r] ⊗M2(C), one has that ∂tZ is in FK,1[r] ⊗M2(C). By performing 
an energy type estimate as in (5.18) one obtains

‖�τ
1(U)[V ]‖C1Hs ≤ ‖V ‖C1Hs (1 + C‖U‖C1Hs0 ),

which implies (5.12) with K = 1. Iterating K times the reasoning above one gets the bound (5.12). By using Corol-
lary 3.1 one gets that

�τ
1(U)[·] = exp{τOpBW(Z(U ;x))}[·] = OpBW(exp{τZ(U ;x)})[·] + Qτ

1(U)[·], (5.21)
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with Qτ
1 belonging to R−ρ

K,0[r] ⊗M2(C) for any ρ > 0 and any τ ∈ [0, 1]. We now set �1(U)[·] := �τ
1(U)[·]|τ=1 . In 

particular we have

�1(U)[·] = OpBW(C(U ;x))[·] + Q1
1(U)[·]

C(U ;x) := exp{Z(U ;x)} : =
(

c1(U ;x) c2(U ;x)

c2(U ;x) c1(U ;x)

)
, C(U ;x) − 1 ∈FK,0[r] ⊗M2(C),

(5.22)

where

c1(U ;x) := cosh(|z(U ;x)|), c2(U ;x) := z(U ;x)

|z(U ;x)| sinh(|z(U ;x)|). (5.23)

Note that the function c2(U ; x) above is not singular indeed

c2(U ;x) = z(U ;x)

|z(U ;x)| sinh(|z(U ;x)|) = z(U ;x)

|z(U ;x)|
∞∑

k=0

(|z|(U ;x))2k+1

(2k + 1)!

= z(U ;x)

∞∑
k=0

(
z(U ;x)z(U ;x)

)k
(2k + 1)! .

We note moreover that for any x ∈ T one has det(C(U ; x)) = 1, hence its inverse C−1(U ; x) is well defined. In 
particular, by Propositions 3.3 and 3.4, we note that

OpBW(C−1(U ;x)) ◦ �1 = 1+ Q̃(U), Q̃ ∈ R−ρ
K,0[r] ⊗M2(C), (5.24)

for any ρ > 0, since the expansion of (C−1(U ; x)�C(U ; x))ρ (see formula (3.30)) is equal to C−1(U ; x)C(U ; x) for 
any ρ. This implies that

(�1(U))−1[·] = OpBW(C−1(U ;x))[·] + Q2(U)[·], (5.25)

for some Q2(U) in the class R−ρ
K,0[r] ⊗ M2(C) for any ρ > 0. By setting V1 := �1(U)[V ] the system (5.1) in the 

new coordinates reads

(V1)t = �1(U)
(

iE(� + OpBW(A(U ;x, ξ)))�−1
1 (U)

)
V1 + (∂t�1(U))�−1

1 (U)V1+
+ �1(U)(iE)R

(0)
1 (U)�−1

1 (U)[V1] + �1(U)(iE)R
(0)
2 (U)[U ]

= i�1(U)
[
EP[�−1

1 (U)[V1]]
]
+ i�1(U)EOpBW

(
(1+ A2(U ;x))(iξ)2)�−1

1 (U)[V1]+
+ i�1(U)EOpBW

(
A1(U ;x)(iξ)

)
�−1

1 (U)[V1] + (∂t�1)�
−1
1 (U)V1+

+ �1(U)(iE)R
(0)
1 (U)�−1

1 (U)[V1] + �1(U)(iE)R
(0)
2 (U)[U ],

(5.26)

where P is defined in (1.19). We have that

�1(U) ◦ E = E ◦ OpBW

(
c1(U ;x) −c2(U ;x)

−c2(U ;x) c1(U ;x)

)
,

up to remainders in R−ρ
K,0[r] ⊗M2(C), where ci(U ; x), i = 1, 2, are defined in (5.23). Since the matrix C(U ; x) −1 ∈

FK,0[r] ⊗M2(C) (see (5.22)) then by Lemma 5.1 one has that

�1(U) ◦ EP ◦ �−1
1 (U)[V1]] = EP[V1] + Q3(U)[V1],

where Q3(U) belongs to R0
K,0[r] ⊗ M2(C). The term (∂t�1) is OpBW(∂tC(U ; x)) plus a remainder in the class 

R0
K,1[r] ⊗M2(C). Note that, since (C(U ; x) − 1) belongs to the class �0

K,0[r] ⊗M2(C), one has that ∂tC(U ; x) is 
in �0

K,1[r] ⊗ M2(C). Therefore, by the composition Propositions 3.3 and 3.4, Remark 3.5, and using the discussion 

above we have that, there exist operators R(1)
, R(1) belonging to R0 [r] ⊗M2(C) such that
1 2 K,1
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(V1)t = iEPV1 + iOpBW
(
C(U ;x)E(1+ A2(U ;x))C−1(U ;x)(iξ)2)

)
V1 + iEOpBW(A

(1)
1 (U ;x)(iξ))V1+

+ iE
(
R

(1)
1 (U)[V1] + R

(1)
2 (U)[U ]

)
(5.27)

where

A
(1)
1 (U ;x) := EC(U ;x)E(1+ A2(U ;x))∂xC

−1(U ;x) − (∂x(C)(U ;x))E(1+ A2(U ;x))C−1(U ;x)

+ EC(U ;x)A1(U ;x)C−1(U ;x),
(5.28)

with A1(U ; x), A2(U ; x) defined in (5.11). Our aim is to find a symbol z(U ; x) such that the matrix of symbols 
C(U ; x)E(1 + A2(U ; x))C−1(U ; x) is diagonal. We reason as follows. One can note that the eigenvalues of E(1 +
A2(U ; x)) are

λ± := ±
√

(1 + a2(U ;x))2 − |b2(U ;x)|2.
We define the symbols

λ
(1)
2 (U ;x) := λ+,

a
(1)
2 (U ;x) := λ

(1)
2 (U ;x) − 1 ∈FK,0[r].

(5.29)

The symbol λ(1)
2 (U ; x) is well defined and satisfies (5.15) thanks to Hypothesis 5.3. The matrix of the normalized 

eigenvectors associated to the eigenvalues of E(1 + A2(U ; x)) is

S(U ;x) :=
(

s1(U ;x) s2(U ;x)

s2(U ;x) s1(U ;x)

)
,

s1(U ;x) := 1 + a2(U ;x) + λ
(1)
2 (U ;x)√

2λ
(1)
2 (U ;x)

(
1 + a2(U ;x) + λ

(1)
2 (U ;x)

) ,
s2(U ;x) := −b2(U ;x)√

2λ
(1)
2 (U ;x)

(
1 + a2(U ;x) + λ

(1)
2 (U ;x)

) .
(5.30)

Note that 1 +a2(U ; x) +λ
(1)
2 (U ; x) ≥ c1+√

c2 > 0 by (5.4). Therefore one can check that S(U ; x) −1 ∈FK,0[r] ⊗
M2(C). Therefore the matrix S is invertible and one has

S−1(U ;x)
[
E(1+ A2(U ;x))

]
S(U ;x) = E

(
1 + a

(1)
2 (U ;x) 0

0 1 + a
(1)
2 (U ;x)

)
. (5.31)

We choose z(U ; x) in such a way that C−1(U ; x) := S(U ; x). Therefore we have to solve the following equations

cosh(|z(U ;x)|) = s1(U ;x),
z(U ;x)

|z(U ;x)| sinh(|z(U ;x)|) = −s2(U ;x). (5.32)

Concerning the first one we note that s1 satisfies

(s1(U ;x))2 − 1 = |b2(U ;x)|2
2λ

(1)
2 (U ;x)(1 + a2(U ;x) + λ

(1)
2 (U ;x))

≥ 0,

indeed we remind that 1 + a2(U ; x) + λ
(1)
2 (U ; x) ≥ c1 + √

c2 > 0 by (5.4), therefore

|z(U ;x)| := arccosh(s1(U ;x)) = ln
(
s1(U ;x) +

√
(s1(U ;x))2 − 1

)
,

is well-defined. For the second equation one observes that the function

sinh(|z(U ;x)|)
|z(U ;x)| = 1 +

∑ (z(U ;x)z̄(U ;x))k

(2k + 1)! ≥ 1,
k≥0
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hence we set

z(U ;x) := s2(U ;x)
|z(U ;x)|

sinh(|z(U ;x)|) . (5.33)

We set

A(1)(U ;x, ξ) := A
(1)
2 (U ;x)(iξ)2 + A

(1)
1 (U ;x)(iξ),

A
(1)
2 (U ;x) :=

(
a

(1)
2 (U ;x) 0

0 a
(1)
2 (U ;x)

)
(5.34)

where a(1)
2 (U ; x) is defined in (5.29) and A(1)

1 (U ; x) is defined in (5.28). Equation (5.31), together with (5.27) and 
(5.34) implies that (5.14) holds. By construction one has that the matrix A(1)(U ; x, ξ) satisfies Constraint 5.1. It 
remains to show that A(1)(U ; x, ξ) satisfies either Hypothesis 5.1 or Hypothesis 5.2.

If A(U ; x, ξ) satisfies Hypothesis 5.2 then we have that a(1)
2 (U ; x) in (5.29) is real. Moreover by construction 

S(U ; x) in (5.30) is even in x, therefore by Remark 3.6 we have that the map �1(U) in (5.21) is parity preserving 
according to Definition 2.4. This implies that the matrix A(1)(U ; x, ξ) satisfies Hypothesis 5.2. Let us consider the 
case when A(U ; x, ξ) satisfies Hypothesis 5.1. One can check, by an explicit computation, that the map �1(U) in 
(5.21), is such that

�∗
1(U)(−iE)�1(U) = (−iE) + R̃(U), (5.35)

for some smoothing operators R̃(U) belonging to R−ρ
K,0[r] ⊗ M2(C). In other words, up to a ρ-smoothing operator, 

the map �1(U) satisfies conditions (2.10). By following essentially word by word the proof of Lemma 2.2 one 
obtains that, up to a smoothing operator in the class R−ρ

K,1[r] ⊗M2(C), the operator OpBW(A(1)(U ; x, ξ)) in (5.14)

is self-adjoint. This implies that the matrix A(1)(U ; x, ξ) satisfies Hypothesis 5.1. This concludes the proof. �
5.2. Diagonalization of the first order operator

In the previous Section we conjugated system (5.1) to (5.14), where the matrix A(1)(U ; x, ξ) has the form

A(1)(U ;x, ξ) = A
(1)
2 (U ;x)(iξ)2 + A

(1)
1 (U ;x)(iξ), (5.36)

with A(1)
i (U ; x) belonging to FK,1[r] ⊗M2(C) and where A(1)

2 (U ; x) is diagonal. In this Section we show that, since 

the matrices A(1)
i (U ; x) satisfy Hypothesis 5.1 (respectively Hypothesis 5.2), it is possible to diagonalize also the 

term A(1)
1 (U ; x) through a change of coordinates which is the identity plus a smoothing term. This is the result of the 

following lemma.

Lemma 5.3. If the matrix A(1)(U ; x, ξ) in (5.14) satisfies Hypothesis 5.1 (resp. together with P satisfy Hypothesis 5.2) 
then there exists s0 > 0 (possibly larger than the one in Lemma 5.2) such that for any s ≥ s0 there exists an invertible 
map (resp. an invertible and parity preserving map)

�2 = �2(U) : CK−1
∗R (I,Hs) → CK−1

∗R (I,Hs),

with

‖(�2(U))±1V ‖K−1,s ≤ ‖V ‖K−1,s(1 + C‖U‖K,s0) (5.37)

where C > 0 depends only on s and ‖U‖K,s0 such that the following holds. There exists a matrix A(2)(U ; x, ξ)

satisfying Constraint 5.1 and Hypothesis 5.1 (resp. Hypothesis 5.2) of the form

A(2)(U ;x, ξ) := A
(2)
2 (U ;x)(iξ)2 + A

(2)
1 (U ;x)(iξ),

A
(2)
2 (U ;x) := A

(1)
2 (U ;x);

A
(2)
1 (U ;x) :=

⎛⎝a
(2)
1 (U ;x) 0

0 a
(2)

(U ;x)

⎞⎠ ∈ FK,2[r] ⊗M2(C),

(5.38)
1
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and operators R(2)
1 (U), R(2)

2 (U) in R0
K,2[r] ⊗M2(C), such that by setting V2 = �2(U)V1 the system (5.14) reads

∂tV2 = iE
[
�V2 + OpBW(A(2)(U ;x, ξ))[V2] + R

(2)
1 (U)[V2] + R

(2)
2 (U)[U ]

]
. (5.39)

Proof. We recall that by Lemma 5.2 we have that

A(1)(U ;x, ξ) :=
(

a(1)(U ;x, ξ) b(1)(U ;x, ξ)

b(1)(U ;x,−ξ) a(1)(U ;x,−ξ)

)
.

Moreover by (5.13) we can write

a(1)(U ;x, ξ) = a
(1)
2 (U ;x)(iξ)2 + a

(1)
1 (U ;x)(iξ),

b(1)(U ;x, ξ) = b
(1)
1 (U ;x)(iξ),

with a(1)
2 (U ; x), a(1)

1 (U ; x), b(1)
1 (U ; x) ∈ FK,1[r]. In the case that A(1)(U ; x, ξ) satisfies Hypothesis 5.1, we can note 

that b1(U ; x) ≡ 0. Hence it is enough to choose �2(U) ≡ 1 to obtain the thesis. On the other hand, assume that 
A(1)(U ; x, ξ) satisfies Hypothesis 5.2 we reason as follows.

Let us consider a symbol d(U ; x, ξ) in the class �−1
K,1[r] and define

D(U ;x, ξ) :=
(

0 d(U ;x, ξ)

d(U ;x,−ξ) 0

)
∈ �−1

K,1[r] ⊗M2(C). (5.40)

Let �τ
2(U)[·] be the flow of the system{

∂τ�
τ
2(U) = OpBW(D(U ;x, ξ))�τ

2(U)

�0
2(U) = 1.

(5.41)

Reasoning as done for the system (5.17) one has that there exists a unique family of invertible bounded operators on 
Hs satisfying with

‖(�τ
2(U))±1V ‖K−1,s ≤ ‖V ‖K−1,s(1 + C‖U‖K,s0) (5.42)

for C > 0 depending on s and ‖U‖K,s0 for τ ∈ [0, 1].
The operator Wτ(U)[·] := �τ

2(U)[·] − (1 + τOpBW(D(U ; x, ξ))) solves the following system:{
∂τW

τ (U) = OpBW(D(U ;x, ξ))Wτ (U) + τOpBW(D(U ;x, ξ)) ◦ OpBW(D(U ;x, ξ))

W 0(U) = 0.
(5.43)

Therefore, by Duhamel formula, one can check that Wτ(U) is a smoothing operator in the class R−2
K,1[r] ⊗ M2(C)

for any τ ∈ [0, 1]. We set �2(U)[·] := �τ
2(U)[·]|τ=1 , by the discussion above we have that there exists Q(U) in 

R−2
K,1[r] ⊗M2(C) such that

�2(U)[·] = 1+ OpBW(D(U ;x, ξ)) + Q(U).

Since �−1
2 (U) exists, by symbolic calculus, it is easy to check that there exists Q̃(U) in R−2

K,1[r] ⊗M2(C) such that

�−1
2 (U)[·] = 1− OpBW(D(U ;x, ξ)) + Q̃(U).

We set V2 := �2(U)[V1], therefore the system (5.14) in the new coordinates reads

(V2)t = �2(U)iE
(
� + OpBW(A(1)(U ;x, ξ)) + R

(1)
1 (U)

)
(�2(U))−1[V2]+

+ �2(U)iER
(1)
2 (U)[U ] + OpBW(∂t�2(U))(�2(U))−1[V2].

(5.44)

The summand �2(U)iER
(1)
2 (U)[·] belongs to the class R0

K,1[r] ⊗ M2(C) by composition Propositions. Since 

∂tD(U ; x, ξ) belongs to �−1 [r] ⊗M2(C) and ∂tQ is in R−2 [r] ⊗M2(C) then the last summand in (5.44) belongs 
K,2 K,2
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to R0
K,2[r] ⊗ M2(C). We now study the first summand. First we note that �2(U)iER

(1)
1 (U)�−1

2 (U) is a bounded 
remainder in R0

K,1[r] ⊗M2(C). It remains to study the term

i�2(U)
[
EP

(
�−1

2 (U)[V2]
))]+ i�2(U)

[
OpBW

(
E(1+ A

(1)
2 (U ;x))(iξ)2 + EA

(1)
1 (U ;x)(iξ)

)]
�−1

2 (U)[V2],
where P is defined in (1.19). The first term is equal to iE(PV2) up to a bounded term in R0

K,1[r] ⊗ M2(C) by 
Lemma 5.1. The second is equal to

iOpBW
(
E(1+ A

(1)
2 (U ;x))(iξ)2 + EA

(1)
1 (U ;x)(iξ)

)+
+
[
OpBW(D(U ;x, ξ)), iEOpBW

(
(1+ A

(1)
2 (U ;x))(iξ)2)] (5.45)

modulo bounded terms in R0
K,1[r] ⊗M2(C). By using formula (3.27) one get that the commutator above is equal to 

OpBW(M(U ; x, ξ)) with

M(U ;x, ξ) :=
(

0 m(U ;x, ξ)

m(U ;x,−ξ) 0

)
,

m(U ;x, ξ) := −2d(U ;x, ξ)(1 + a
(1)
2 (U ;x))(iξ)2,

(5.46)

up to terms in R0
K,1[r] ⊗M2(C). Therefore the system obtained after the change of coordinates reads

(V2)t = iE
[
�V2 + OpBW(A(2)(U ;x, ξ))[V2] + Q1(U)[V2] + Q2(U)[U ]

]
, (5.47)

where Q1(U) and Q2(U) are bounded terms in R0
K,2[r] ⊗M2(C) and the new matrix A(2)(U ; x, ξ)) is⎛⎝a

(1)
2 (U ;x) 0

0 a
(1)
2 (U ;x)

⎞⎠ (iξ)2 +
⎛⎝a

(1)
1 (U ;x) b

(1)
1 (U ;x)

b
(1)
1 (U ;x) a

(1)
1 (U ;x)

⎞⎠ (iξ) + M(U ;x, ξ). (5.48)

Hence the elements on the diagonal are not affected by the change of coordinates, now our aim is to choose d(U ; x, ξ)

in such a way that the symbol

b1(U ;x)(iξ) + m(U ;x, ξ) = b1(U ;x)(iξ) − 2d(U ;x, ξ)(1 + a
(1)
2 (U ;x))(iξ)2, (5.49)

belongs to �0
K,2[r]. We split the symbol in (5.49) in low-high frequencies: let ϕ(ξ) a function in C∞

0 (R; R) such that 
supp(ϕ) ⊂ [−1, 1] and ϕ ≡ 1 on [−1/2, 1/2]. Trivially one has that ϕ(ξ)(b1(U ; x)(iξ) + m(U ; x, ξ)) is a symbol in 
�0

K,1[r], so it is enough to solve the equation(
1 − ϕ(ξ)

) [
b1(U ;x)(iξ) − 2d(U ;x, ξ)

(
1 + a

(1)
2 (U ;x))(iξ)2

)]
= 0. (5.50)

So we should choose the symbol d as

d(U ;x, ξ) =
(

b
(1)
1 (U ;x)

2(1 + a
(1)
2 (U ;x))

)
· γ (ξ)

γ (ξ) =

⎧⎪⎪⎨⎪⎪⎩
1

iξ
if |ξ | ≥ 1

2

odd continuation of class C∞ if |ξ | ∈ [0,
1

2
).

(5.51)

Clearly the symbol d(U ; x, ξ) in (5.51) belongs to �−1
K,1[r], hence the map �2(U) in (5.40) is well defined and 

estimate (5.37) holds. It is evident that, after the choice of the symbol in (5.51), the matrix A(2)(U ; x, ξ) is⎛⎝a
(1)
2 (U ;x) 0

0 a
(1)
2 (U ;x)

⎞⎠ (iξ)2 +
⎛⎝a

(1)
1 (U ;x) 0

0 a
(1)
1 (U ;x).

⎞⎠ (iξ) (5.52)

The symbol d(U ; x, ξ) is equal to d(U ; −x, −ξ) because b(1)
1 (U ; x) is odd in x and a(1)

2 (U ; x) is even in x, therefore, 
by Remark 3.6 the map �2(U) is parity preserving. �
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5.3. Reduction to constant coefficients 1: paracomposition

Consider the diagonal matrix of functions A(2)
2 (U ; x) ∈ FK,2[r] ⊗ M2(C) defined in (5.38). In this section we 

shall reduce the operator OpBW(A
(2)
2 (U ; x)(iξ)2) to a constant coefficient one, up to bounded terms (see (5.65)). For 

these purposes we shall use a paracomposition operator (in the sense of Alinhac [3]) associated to the diffeomorphism 
x �→ x + β(x) of T. We follow Section 2.5 of [10] and in particular we shall use their alternative definition of 
paracomposition operator.

Consider a real symbol β(U ; x) in the class FK,K ′ [r] and the map

�U : x �→ x + β(U ;x). (5.53)

We state the following.

Lemma 5.4. Let 0 ≤ K ′ ≤ K be in N, r > 0 and β(U ; x) ∈ FK,K ′ [r] for U in the space CK∗R(I, Hs0). If s0 is suffi-
ciently large and β is 2π -periodic in x and satisfies

1 + βx(U ;x) ≥ � > 0, x ∈R, (5.54)

for some constant � depending on supt∈I ‖U(t)‖Hs0 , then the map �U in (5.53) is a diffeomorphism of T to itself, 
and its inverse may be written as

(�U)−1 : y �→ y + γ (U ;y) (5.55)

for γ in FK,K ′ [r].

Proof. Under condition (5.54) there exists γ (U ; y) such that

x + β(U ;x) + γ (U ;x + β(U ;x)) = x, x ∈ R. (5.56)

One can prove the bound (3.3) on the function γ (U ; y) by differentiating in x equation (5.56) and using that β(U ; x)

is a symbol in FK,K ′ [r]. �
Remark 5.2. The Lemma above is very similar to Lemma 2.5.2 of [10]. The authors use a smallness assumption on r
to prove the result. Here this assumption is replaced by (5.54) in order to treat big sized initial conditions.

Remark 5.3. By Lemma 5.4 one has that x �→ x + τβ(U ; x) is a diffeomorphism of T for any τ ∈ [0, 1]. Indeed

1 + τβx(U ;x) = 1 − τ + τ(1 + βx(U ;x)) ≥ (1 − τ) + τ� ≥ min{1,�} > 0,

for any τ ∈ [0, 1]. Hence the (5.54) holds true with c = min{1, �} and Lemma 5.4 applies.

With the aim of simplifying the notation we set β(x) := β(U ; x), γ (y) := γ (U ; x) and we define the following 
quantities

B(τ ;x, ξ) = B(τ,U ;x, ξ) := −ib(τ ;x)(iξ),

b(τ ;x) := β(x)

(1 + τβx(x))
.

(5.57)

Then one defines the paracomposition operator associated to the diffeomorphism (5.53) as �B(U)(1), where �B(U)(τ )

is the flow of the linear paradifferential equation⎧⎨⎩
d

dτ
�B(U)(τ ) = iOpBW(B(τ ;U,ξ))�B(U)(τ )

�B(U)(0) = id.

(5.58)

We state here a Lemma which asserts that the problem (5.58) is well posed and whose solution is a one parameter 
family of bounded operators on Hs , which is one of the main properties of a paracomposition operator. For the proof 
of the result we refer to Lemma 2.5.3 in [10].
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Lemma 5.5. Let 0 ≤ K ′ ≤ K be in N, r > 0 and β(U ; x) ∈ FK,K ′ [r] for U in the space CK∗R(I, Hs). The system 
(5.58) has a unique solution defined for τ ∈ [−1, 1]. Moreover for any s in R there exists a constant Cs > 0 such that 
for any U in BK

s0
(I, r) and any W in Hs

C−1
s ‖W‖Hs ≤ ‖�B(U)(τ )W‖Hs ≤ Cs‖W‖Hs , ∀ τ ∈ [−1,1], W ∈ Hs, (5.59)

and

‖�B(U)(τ )W‖K−K ′,s ≤ (1 + C‖U‖K,s0)‖W‖K−K ′,s , (5.60)

where C > 0 is a constant depending only on s and ‖U‖K,s0 .

Remark 5.4. As pointed out in Remark 3.2, our classes of symbols are slightly different from the ones in [10]. For 
this reason the authors in [10] are more precise about the constant C in (5.60). However the proof can be adapted 
straightforward.

Remark 5.5. In the following we shall study how symbols a(U ; x, ξ) changes under conjugation through the flow 
�B(U)(τ ) introduced in Lemma 5.5. In order to do this we shall apply Theorem 2.5.8 in [10]. Such result requires that 
x �→ x + τβ(U ; x) is a path of diffeomorphism for τ ∈ [0, 1]. In [10] this fact is achieved by using the smallness of r , 
here it is implied by Remark 5.3.

We now study how the convolution operator P∗ changes under the flow �B(U)(τ ) introduced in Lemma 5.5.

Lemma 5.6. Let P : T → R be a C1 function, let us define P∗[h] = P ∗ h for h ∈ Hs , where ∗ denote the convolution 
between functions, and set �(U)[·] := �B(U)(τ )|τ=1 . There exists R belonging to R0

K,K ′ [r] such that

�(U) ◦ P∗ ◦ �−1(U)[·] = P∗[·] + R(U)[·]. (5.61)

Moreover if P(x) is even in x and �(U) is parity preserving according to Definition 2.4 then the remainder R(U) in 
(5.61) is parity preserving.

Proof. Using equation (5.58) and estimate (3.18) one has that, for 0 ≤ k ≤ K − K ′, the following holds true

‖∂k
t

(
�±1(U) − Id

)
h‖Hs−1−2k ≤

∑
k1+k2=k

C‖U‖K ′+k1,s0‖h‖k2,s (5.62)

where C > 0 depends only on ‖U‖K,s0 and Id is the identity map on Hs . Therefore we can write

�(U)
[
P ∗ [�−1(U)h

]]= P ∗ h +
(
(�(U) − Id)(P ∗ h)

)
+ �

[
P ∗

(
(�−1(U) − Id)h

)]
. (5.63)

Using estimate (5.62) and the fact that the function P is of class C1(T) we can estimate the last two summands in the 
r.h.s. of (5.63) as follows∥∥∥∂k

t (�(U) − Id)(P ∗ h)

∥∥∥
Hs−2k

≤
∑

k1+k2=k

C ‖U‖K ′+k1,s0
‖P ∗ h‖k2,s+1 ≤

∑
k1+k2=k

C ‖U‖K ′+k1,s0
‖h‖k2,s∥∥∥∂k

t

(
�(U)

[
P ∗

(
(�−1(U) − Id)h

)])∥∥∥
s−2k

≤
∑

k1+k2=k

C ‖U‖K ′+k1,s0

∥∥∥(�−1(U) − Id)h

∥∥∥
k2,s−1

≤
∑

k1+k2=k

C ‖U‖K ′+k1,s0
‖h‖k2,s

,

for 0 ≤ k ≤ K − K ′ and where C is a constant depending on ‖P‖C1 and ‖U‖K,s0
. Hence they belong to the class 

R0
K,K ′ [r]. Finally if P(x) is even in x then the operator P∗ is parity preserving according to Definition 2.4, therefore 

if in addiction �(U) is parity preserving so must be R(U) in (5.61). �
We are now in position to prove the following.
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Lemma 5.7. If the matrix A(2)(U ; x, ξ) in (5.39) satisfies Hypothesis 5.1 (resp. together with P satisfy Hypothesis 5.2) 
then there exists s0 > 0 (possibly larger than the one in Lemma 5.3) such that for any s ≥ s0 there exists an invertible 
map (resp. an invertible and parity preserving map)

�3 = �3(U) : CK−2
∗R (I,Hs(T,C2)) → CK−2

∗R (I,Hs(T,C2)),

with

‖(�3(U))±1V ‖K−2,s ≤ ‖V ‖K−2,s(1 + C‖U‖K,s0) (5.64)

where C > 0 depends only on s and ‖U‖K,s0 such that the following holds. There exists a matrix A(3)(U ; x, ξ)

satisfying Constraint 5.1 and Hypothesis 5.1 (resp. Hypothesis 5.2) of the form

A(3)(U ;x, ξ) := A
(3)
2 (U)(iξ)2 + A

(3)
1 (U ;x)(iξ),

A
(3)
2 (U) :=

(
a

(3)
2 (U) 0

0 a
(3)
2 (U)

)
, a

(3)
2 ∈FK,3[r], independent of x ∈ T,

A
(3)
1 (U ;x) :=

(
a

(3)
1 (U ;x) 0

0 a
(3)
1 (U ;x)

)
∈FK,3[r] ⊗M2(C),

(5.65)

and operators R(3)
1 (U), R(3)

2 (U) in R0
K,3[r] ⊗M2(C), such that by setting V3 = �3(U)V2 the system (5.39) reads

∂tV3 = iE
[
�V3 + OpBW(A(3)(U ;x, ξ))[V3] + R

(3)
1 (U)[V3] + R

(3)
2 (U)[U ]

]
. (5.66)

Proof. Let β(U ; x) be a real symbol in FK,2[r] to be chosen later such that condition (5.54) holds. Set moreover 
γ (U ; x) the symbol such that (5.56) holds. Consider accordingly to the hypotheses of Lemma 5.5 the system

Ẇ = iEMW, W(0) = 1, M := OpBW

(
B(τ, x, ξ) 0

0 B(τ, x,−ξ)

)
, (5.67)

where B is defined in (5.57). Note that B(τ, x,−ξ) = −B(τ, x, ξ). By Lemma 5.5 the flow exists and is bounded on 
Hs(T, C2) and moreover (5.64) holds. We want to conjugate the system (5.39) through the map �3(U)[·] = W(1)[·]. 
Set V3 = �3(U)V2. The system in the new coordinates reads

d

dt
V3 = �3(U)

[
iE(P

[
�−1

3 (U)V3)
]+ (∂t�3(U))�−1

3 (U)[V3]
+ �3(U)

[
iEOpBW((1+ A

(2)
2 (U ;x))(iξ)2)

]
�−1

3 (U)[V3]
+ �3(U)

[
iEOpBW(A

(2)
1 (U ;x)(iξ))

]
�−1

3 (U)[V3]
+ �3(U)

[
iER

(2)
1 (U)

]
�−1

3 (U)[V3] + �3(U)iER
(2)
2 (U)[U ],

(5.68)

where P is defined in (1.19). We now discuss each term in (5.68). The first one, by Lemma 5.6, is equal to iE(PV3)

up to a bounded remainder in the class R0
K,2[r] ⊗M2(C). The last two terms also belongs to the latter class because 

the map �3 is a bounded operator on Hs . For the term (∂t�3(U))�−1
3 (U)[V3] we apply Proposition 2.5.9 of [10] and 

we obtain that

(∂t�3(U))�−1
3 (U)[V3] = OpBW

(
e(U ;x)(iξ) 0

0 e(U ;x)(iξ)

)
[V3] + R̃(U)[V3], (5.69)

where R̃ belongs to R−1
K,3[r] ⊗ M2(C) and e(U ; x) is a symbol in FK,3[r] ⊗ M2(C) such that Re(e(U ; x)) = 0. It 

remains to study the conjugate of the paradifferential terms in (5.68). We note that

�3(U)
[
iEOpBW((1+ A

(2)
2 (U ;x))(iξ)2)

]
�−1

3 (U)[V3] + �3(U)
[
iEOpBW(A

(2)
1 (U ;x)(iξ))

]
�−1

3 (U)[V3]

=
(

T 0
0 T

)
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where T is the operator

T = �B(U)(1)OpBW
(
(1 + a

(2)
2 (U ;x))(iξ)2 + a

(2)
1 (U ;x)(iξ)

)
�−1

B(U)(1). (5.70)

The Paracomposition Theorem 2.5.8 in [10], which can be used thanks to Remarks 5.3 and 5.5, guarantees that

T = OpBW(ã
(3)
2 (U ;x, ξ) + a

(3)
1 (U ;x)(iξ))[·] (5.71)

up to a bounded term in R0
K,3[r] and where

ã
(3)
2 (U ;x, ξ) = (1 + a

(2)
2 (U ;y)

)(
1 + γy(1, y)

)2
|y=x+β(x)

(iξ)2,

a
(3)
1 (U ;x) = a

(2)
1 (U ;y)

(
1 + γy(1, y)

)
|y=x+β(x)

.
(5.72)

Here γ (1, x) = γ (τ, x)|τ=1 = γ (U ; τ, x)|τ=1 with

y = x + τβ(U ;x) ⇔ x = y + γ (τ, y), τ ∈ [0,1],
where x + τβ(U ; x) is the path of diffeomorphism given by Remark 5.3.

By Lemma 2.5.4 of Section 2.5 of [10] one has that the new symbols ã(3)
2 (U ; x, ξ), a(3)

1 (U ; x) defined in (5.72)
belong to the class �2

K,3[r] and FK,3[r] respectively. At this point we want to choose the symbol β(x) in such a way 

that ã(3)
2 (U ; x, ξ) does not depend on x. One can proceed as follows. Let a(3)

2 (U) a x-independent function to be 
chosen later, one would like to solve the equation(

1 + a
(2)
2 (U ;y)

)(
1 + γy(1, y)

)2
|y=x+β(x)

(iξ)2 = (1 + a
(3)
2 (U))(iξ)2. (5.73)

The solution of this equation is given by

γ (U ;1, y) = ∂−1
y

⎛⎝
√√√√ 1 + a

(3)
2 (U)

1 + a
(2)
2 (U ;y)

− 1

⎞⎠ . (5.74)

In principle this solution is just formal because the operator ∂−1
y is defined only for function with zero mean, therefore 

we have to choose a(3)
2 (U) in such a way that

∫
T

⎛⎝
√√√√ 1 + a

(3)
2 (U)

1 + a
(2)
2 (U ;y)

− 1

⎞⎠dx = 0, (5.75)

which means

1 + a
(3)
2 (U) :=

⎡⎢⎣2π

⎛⎜⎝∫
T

1√
1 + a

(2)
2 (U ;y)

dy

⎞⎟⎠
−1⎤⎥⎦

2

. (5.76)

Note that everything is well defined thanks to the positivity of 1 + a
(2)
2 . Indeed a(2)

2 = a
(1)
2 by (5.38), and a(1)

2 satisfies 
(5.15). Indeed every denominator in (5.74), (5.75) and in (5.76) stays far away from 0. Note that γ (U ; y) belongs to 
FK,2[r] and so does β(U ; x) by Lemma 5.4. By using (5.56) one can deduce that

1 + βx(U ;x) = 1

1 + γy(U ;1, y)
(5.77)

where

1 + γy(U ;1, y) = 2π

⎛⎜⎝∫
T

1√
1 + a

(2)
(U ;y)

dy

⎞⎟⎠
−1

1√
1 + a

(2)
(U ;y)

, (5.78)
2 2
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thanks to (5.74) and (5.76). Since the matrix A(2)
2 satisfies Hypothesis 5.3 one has that there exists a universal constant 

c > 0 such that 1 + a
(2)
2 (U ; y) ≥ c. Therefore one has

1 + βx(U ;x) = 1

1 + γy(U ;1, y)
≥ √

c
1

2π

∫
T

1√
1 + a

(2)
2 (U ;y)

dy

≥ 1

2π

√
c

1 + C‖U‖0,s0

:= � > 0,

for some C depending only on ‖U‖K,s0 , where we used the fact that a(2)
2 (U ; y) belongs to the class FK,2[r] (see 

Definition 3.2). This implies that β(U ; x) satisfies condition (5.54). We have written system (5.39) in the form (5.66)
with matrices defined in (5.65).

It remains to show that the new matrix A(3)(U ; x, ξ) satisfies either Hypothesis 5.1 or 5.2. If A(2)(U ; x, ξ) is 
selfadjoint, i.e. satisfies Hypothesis 5.1, then one has that the matrix A(3)(U ; x, ξ) is selfadjoint as well thanks to the 
fact that the map W(1) satisfies the hypotheses (condition (2.10)) of Lemma 2.2, by using Lemma 2.1. In the case 
that A(2)(U ; x, ξ) is parity preserving, i.e. satisfies Hypothesis 5.2, then A(3)(U ; ξ) has the same properties for the 
following reasons. The symbols β(U ; x) and γ (U ; x) are odd in x if the function U is even in x. Hence the flow map 
W(1) defined by equation (5.67) is parity preserving. Moreover the matrix A(3)(U ; x, ξ) satisfies Hypothesis 5.2 by 
explicit computation. �
5.4. Reduction to constant coefficients 2: first order terms

Lemmata 5.2, 5.3, 5.7 guarantee that one can conjugate the system (5.1) to the system (5.66) in which the matrix 
A(3)(U ; x, ξ) (see (5.65)) has the form

A(3)(U ;x, ξ) = A
(3)
2 (U)(iξ)2 + A

(3)
1 (U ;x)(iξ), (5.79)

where the matrices A(3)
2 (U), A(3)

1 (U ; x) are diagonal and belong to FK,3[r] ⊗M2(C), for i = 1, 2. Moreover A(3)
2 (U)

does not depend on x ∈ T. In this Section we show how to eliminate the x dependence of the symbol A(3)
1 (U ; x) in 

(5.65). We prove the following.

Lemma 5.8. If the matrix A(3)(U ; x, ξ) in (5.66) satisfies Hypothesis 5.1 (resp. together with P satisfy Hypothesis 5.2) 
then there exists s0 > 0 (possibly larger than the one in Lemma 5.7) such that for any s ≥ s0 there exists an invertible 
map (resp. an invertible and parity preserving map)

�4 = �4(U) : CK−3
∗R (I,Hs(T,C2)) → CK−3

∗R (I,Hs(T,C2)),

with

‖(�4(U))±1V ‖K−3,s ≤ ‖V ‖K−3,s(1 + C‖U‖K,s0) (5.80)

where C > 0 depends only on s and ‖U‖K,s0 such that the following holds. Then there exists a matrix A(4)(U ; ξ)

independent of x ∈ T of the form

A(4)(U ; ξ) :=
⎛⎝a

(3)
2 (U) 0

0 a
(3)
2 (U)

⎞⎠ (iξ)2 +
⎛⎝a

(4)
1 (U) 0

0 a
(4)
1 (U)

⎞⎠ (iξ), (5.81)

where a(3)
2 (U) is defined in (5.65) and a(4)

1 (U) is a symbol in FK,4[r], independent of x, which is purely imaginary 

in the case of Hypothesis 5.1 (resp. is equal to 0). There are operators R(4)
1 (U), R(4)

2 (U) in R0
K,4[r] ⊗M2(C), such 

that by setting V4 = �4(U)V3 the system (5.66) reads

∂tV4 = iE
[
�V4 + OpBW(A(4)(U ; ξ))[V4] + R

(4)
1 (U)[V4] + R

(4)
2 (U)[U ]

]
. (5.82)
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Proof. Consider a symbol s(U ; x) in the class FK,3[r] and define

S(U ;x) :=
(

s(U ;x) 0
0 s(U ;x)

)
.

Let �τ
4(U)[·] be the flow of the system{

∂τ�
τ
4(U)[·] = OpBW(S(U ;x))�τ

4(U)[·]
�0

4(U)[·] = 1.
(5.83)

Again one can reason as done for the system (5.17) to check that there exists a unique family of invertible bounded 
operators on Hs satisfying

‖(�τ
4(U))±1V ‖K−3,s ≤ ‖V ‖K−3,s(1 + C‖U‖K,s0) (5.84)

for C > 0 depending on s and ‖U‖K,s0 for τ ∈ [0, 1]. We set

�4(U)[·] = �τ
4(U)[·]|τ=1 = exp{OpBW(S(U ;x))}. (5.85)

By Corollary 3.1 we get that there exists Q(U) in the class of smoothing remainder R−ρ
K,3[r] ⊗M2(C) for any ρ > 0

such that

�4(U)[·] := OpBW(exp{S(U ;x)})[·] + Q(U)[·]. (5.86)

Since �−1
4 (U) exists, by symbolic calculus, it is easy to check that there exists Q̃(U) in R−ρ

K,3[r] ⊗M2(C) such that

�−1
4 (U)[·] = OpBW(exp{−S(U ;x)})[·] + Q̃(U)[·].

We set G(U ; x) = exp{S(U ; x)} and V4 = �4(U)V3. Then the system (5.66) becomes

(V4)t = �4(U)iE
(
� + OpBW(A(3)(U ;x, ξ)) + R

(3)
1 (U)

)
(�4(U))−1[V4]+

+ �4(U)iER
(3)
2 (U)[U ] + OpBW(∂tG(U ;x, ξ))(�4(U))−1[V4].

(5.87)

Recalling that � = P + d2

dx2 (see (1.20)) we note that by Lemma 5.1 the term i�4(U)
[
EP

(
�−1

4 (U)[V4]
]

is equal to 
iEPV4 up to a remainder in R0

K,4[r] ⊗M2(C). Secondly we note that the operator

Q̂(U)[·] := �4(U)iER
(3)
1 (U)�−1

4 (U)[·] + �4(U)iER
(3)
2 (U)[U ] + OpBW(∂tG(U ;x)) ◦ �−1

4 (U)[·] (5.88)

belongs to the class of operators R0
K,4[r] ⊗M2(C). This follows by applying Propositions 3.3, 3.4, Remark 3.5 and 

the fact that ∂tG(U ; x) is a matrix in FK,4[r] ⊗M2(C). It remains to study the term

�4(U)iE
(

OpBW
(
(1+ A

(3)
2 (U))(iξ)2)+ OpBW(A

(3)
1 (U ;x)(iξ))

)
(�4(U))−1. (5.89)

By using formula (3.27) and Remark 3.5 one gets that, up to remainder in R0
K,4[r] ⊗ M2(C), the term in (5.89) is 

equal to

iEOpBW
(
(1+ A

(3)
2 (U))(iξ)2)+ iEOpBW

(
r(U ;x)(iξ) 0

0 r(U ;x)(iξ)

)
(5.90)

where

r(U ;x) := a
(3)
1 (U ;x) + 2(1 + a

(3)
2 (U))∂xs(U ;x). (5.91)

We look for a symbol s(U ; x) such that, the term of order one has constant coefficient in x. This requires to solve the 
equation

a
(3)
1 (U ;x) + 2(1 + a

(3)
2 (U))∂xs(U ;x) = a

(4)
1 (U), (5.92)

for some symbol a(4)
(U) constant in x to be chosen. Equation (5.92) is equivalent to
1
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∂xs(U ;x) = −a
(3)
1 (U ;x) + a

(4)
1 (U)

2(1 + a
(3)
2 (U))

. (5.93)

We choose the constant a(4)
1 (U) as

a
(4)
1 (U) := 1

2π

∫
T

a
(3)
1 (U ;x)dx, (5.94)

so that the r.h.s. of (5.93) has zero average, hence the solution of (5.93) is given by

s(U ;x) := ∂−1
x

(
−a

(3)
1 (U ;x) + a

(4)
1 (U)

2(1 + a
(3)
2 (U))

)
. (5.95)

It is easy to check that s(U ; x) belongs to FK,4[r]. Using equation (5.91) we get (5.82) with A(4)(U ; ξ) as in (5.81).
It remains to prove that the constant a(4)

1 (U) in (5.94) is purely imaginary. On one hand, if A(3)(U ; x, ξ) satisfies 

Hypothesis 5.1, we note the following. The coefficient a(3)
1 (U ; x) must be purely imaginary hence the constant a(4)

1 (U)

in (5.94) is purely imaginary.
On the other hand, if A(3)(U ; x, ξ) satisfies Hypothesis 5.2, we note that the function a(3)

1 (U ; x) is odd in x. This 

means that the constants a(4)
1 (U) in (5.94) is zero. Moreover the symbol s(U ; x) in (5.95) is even in x, hence the map 

�4(U) in (5.83) is parity preserving according to Definition 2.4 thanks to Remark 3.6. This concludes the proof. �
Proof of Theorem 5.1. It is enough to choose �(U) := �4(U) ◦· · ·◦�1(U). The estimates (5.5) follow by collecting 
the bounds (5.12), (5.37), (5.64) and (5.80). We define the matrix of symbols L(U ; ξ) as

L(U ; ξ) :=
(
m(U, ξ) 0

0 m(U,−ξ)

)
, m(U, ξ) := a

(3)
2 (U)(iξ)2 + a

(4)
1 (U)(iξ) (5.96)

where the coefficients a(3)
2 (U), a(4)

1 (U) are x-independent (see (5.81)). One concludes the proof by setting R1(U) :=
R

(4)
1 (U) and R2(U) := R

(4)
2 (U). �

An important consequence of Theorem 5.1 is that system (5.1) admits a regular and unique solution. More precisely 
we have the following.

Proposition 5.1. Let s0 given by Theorem 5.1 with K = 4. For any s ≥ s0 + 2 let U = U(t, x) be a function in 
B4

s ([0, T ), θ) for some T > 0, r > 0, θ ≥ r with ‖U(0, ·)‖Hs ≤ r and consider the system{
∂tV = iE

[
�V + OpBW(A(U ;x, ξ))[V ] + R

(0)
1 (U)[V ] + R

(0)
2 (U)[U ]

]
,

V (0, x) = U(0, x) ∈ Hs ,

(5.97)

where the matrix A(U ; x, ξ), the operators R(0)
1 (U) and R(0)

2 (U) satisfy the hypotheses of Theorem 5.1. Then the 
following holds true.

(i) There exists a unique solution ψU(t)U(0, x) of the system (5.97) defined for any t ∈ [0, T ) such that

‖ψU(t)U(0, x)‖4,s ≤ C‖U(0, x)‖Hs (1 + tC‖U‖4,s)e
tC‖U‖4,s + tC‖U‖4,s etC‖U‖4,s + C, (5.98)

where C is constant depending on s, r , supt∈[0,T ] ‖U‖4,s−2 and ‖P‖C1 .
(ii) In the case that U is even in x, the matrix A(U ; x, ξ) and the operator � satisfy Hypothesis 5.2, the opera-

tor R(0)
1 (U)[·] is parity preserving according to Definition 2.4 and R(0)

2 (U)[U ] is even in x, then the solution 
�U(t)U(0, x) is even in x ∈ T.

Proof. We apply to system (5.97) Theorem 5.1 defining W = �(U)V . The system in the new coordinates reads{
∂tW − iE

[
�W + OpBW(L(U ; ξ))W + R1(U)W + R2(U)[U ]

]
= 0

(0)
(5.99)
W(0, x) = �(U(0, x))U(0, x) := W (x),
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where L(U ; ξ) is a diagonal, self-adjoint and constant coefficient in x matrix in �2
4,4[r] ⊗M2(C), R1(U), R2(U) are 

in R0
4,4[r] ⊗M2(C). Therefore the solution of the linear problem{

∂tW − iE
[
�W + OpBW(L(U ; ξ))

]
W = 0

W(0, x) = W(0)(x),

(5.100)

is well defined as long as U is well defined, moreover it is an isometry of Hs . We denote by ψt
L the flow at time t of 

such equation. Then one can define the operator

TW(0) (W)(t, x) = ψt
L

(
W(0)(x)

)+ ψt
L

t∫
0

(ψs
L)−1iE

(
R1(U(s, x))W(s, x) + R2(U(s, x))U(s, x)

)
ds. (5.101)

Thanks to (5.5) and by the hypothesis on U(0, x) one has that 
∥∥W(0)

∥∥
Hs ≤ (1 + cr)r for some constant c > 0 depend-

ing only on r . In order to construct a fixed point for the operator TW(0)(W) in (5.101) we consider the sequence of 
approximations defined as follows:{

W0(t, x) = ψt
LW(0)(x),

Wn(t, x) = TW(0) (Wn−1)(t, x), n ≥ 1,

for t ∈ [0, T ). For the rest of the proof we will denote by C any constant depending on r , s, supt∈[0,T ) ‖U(t, ·)‖4,s−2
and ‖P‖C1 . Using estimates (3.17) one gets for n ≥ 1

‖(Wn+1 − Wn)(t, ·)‖Hs ≤ C‖U(t, ·)‖Hs

t∫
0

‖(Wn − Wn−1)(τ, ·)‖Hs dτ.

Arguing by induction over n, one deduces

‖(Wn+1 − Wn)(t, ·)‖Hs ≤ (C‖U(t, ·)‖Hs )ntn

n! ‖(W1 − W0)(t, ·)‖Hs , (5.102)

which implies that W(t, x) =∑∞
n=1(Wn+1 −Wn)(t, x) +W0(t, x) is a fixed point of the operator in (5.101) belonging 

to the space C0
∗R([0, T ); Hs(T; C2)). Therefore by Duhamel principle the function W is the unique solution of the 

problem (5.99). Moreover, by using (3.17), we have that the following inequality holds true

‖W1(t, ·) − W0(t, ·)‖Hs ≤ tC
(‖U‖Hs

∥∥∥W(0)
∥∥∥

Hs
+ ‖U‖Hs−2 ‖U‖Hs

)
,

from which, together with estimates (5.102), one deduces that

‖W(t, ·)‖Hs ≤
∞∑

n=0

‖(Wn+1 − Wn)(t, ·)‖Hs +
∥∥∥W(0)

∥∥∥
Hs

≤
∥∥∥W(0)

∥∥∥
Hs

(
1 + tC‖U‖Hs

∞∑
n=0

(tC‖U‖Hs )n

n!
)

+ tC‖U‖Hs

∞∑
n=0

(tC‖U‖Hs )n

n!
=
∥∥∥W(0)

∥∥∥
Hs

(
1 + tC‖U‖Hs etC‖U‖Hs

)+ tC‖U‖Hs etC‖U‖Hs

≤ C
∥∥∥U(0)

∥∥∥
Hs

(
1 + tC‖U‖Hs etC‖U‖Hs

)+ tC‖U‖Hs etC‖U‖Hs

Applying the inverse transformation V = �−1(U)W and using (5.5) we find a solution V of the problem (5.97) such 
that

‖V ‖Hs ≤ C
∥∥∥U(0)

∥∥∥
Hs

(
1 + tC‖U‖Hs etC‖U‖Hs

)+ tC‖U‖Hs etC.‖U‖Hs

We now prove a similar estimate for ∂tV . More precisely one has
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‖∂tV ‖Hs−2 ≤ ‖�V + OpBW(A(U ;x, ξ))V ‖Hs−2 + ‖R(0)
1 (U)V ‖Hs−2 + ‖R(0)

2 (U)U‖Hs−2

≤ C‖V ‖Hs + C‖V ‖Hs−2 + C

≤ C‖U(0, x)‖Hs (1 + tC‖U‖4,s)e
tC‖U‖4,s + tC‖U‖4,s etC‖U‖4,s + C,

(5.103)

where we used estimates (3.19) and (3.17). By differentiating equation (5.97) and arguing as done in (5.103) one can 
bound the terms ‖∂k

t V ‖Hs−2k , for 2 ≤ k ≤ 4, and hence obtain the (5.98).
In the case that U is even in x, �, A(U ; x, ξ) satisfy Hypothesis 5.2, R1(U)[·] is parity preserving according to 

Definition 2.4 and R(0)
2 (U)[U ] is even in x we have, by Theorem 5.1, that the map �(U) is parity-preserving. Hence 

the flow of the system (5.99) preserves the subspace of even functions. This follows by Lemma 2.3. Hence the solution 
of (5.97) defined as V = �−1(U)W is even in x. This concludes the proof. �
Remark 5.6. In the notation of Proposition 5.1 the following holds true.

• If R(0)
2 ≡ 0 in (5.97), then the estimate (5.98) may be improved as follows:

‖ψU(t)U(0, x)‖4,s ≤ C‖U(0, x)‖Hs (1 + tC‖U‖4,s)e
tC‖U‖4,s . (5.104)

This follows straightforward from the proof of Proposition 5.1.
• If R(0)

2 ≡ R
(0)
1 ≡ 0 then the flow ψU(t) of (5.97) is invertible and (ψU(t))−1U(0, x) satisfies an estimate similar 

to (5.104). To see this one proceed as follows. Let �(U)[·] the map given by Theorem 5.1 and set �(t) :=
�(U)ψU(t). Thanks to Theorem 5.1, �(t) is the flow of the linear para-differential equation{

∂t�(t) = iEOpBW(L(U ; ξ))�(t) + R(U)�(t),

�(0) = Id,

where R(U) is a remainder in R0
K,4[r] and OpBW(L(U ; ξ)) is diagonal, self-adjoint and constant coefficients in 

x. Then, if ψL(t) is the flow generated by iOpBW(L(U ; ξ)) (which exists and is an isometry of Hs), we have that 
�(t) = ψL(t) ◦ F(t), where F(t) solves the Banach space ODE{

∂tF (t) = ((ψL(t))−1R(U)ψL(t)
)
F(t),

F (0) = Id.

To see this one has to use the fact that the operators iOpBW(L(U ; ξ)) and ψL(t) commutes. Standard the-
ory of Banach spaces ODE implies that F(t) exists and is invertible, therefore ψU(t) is invertible as well and 
(ψU(t))−1 = (F (t))−1 ◦ (ψL(t))−1 ◦ �(U). To deduce the estimate satisfied by (ψU(t))−1 one has to use (3.17)
to control the contribution coming from R(U), the fact that ψL(t) is an isometry and (5.5).

6. Local existence

In this Section we prove Theorem 1.1. By previous discussions we know that (1.1) is equivalent to the system 
(4.15) (see Proposition 4.1). Our method relies on an iterative scheme. Namely we introduce the following sequence 
of linear problems. Let U(0) ∈ Hs such that ‖U(0)‖Hs ≤ r for some r > 0. For n = 0 we set

A0 :=
{

∂tU0 − iE�U0 = 0,

U0(0) = U(0).
(6.1)

The solution of this problem exists and is unique, defined for any t ∈ R by standard linear theory, it is a group of 
isometries of Hs (its k-th derivative is a group of isometries of Hs−2k) and hence satisfies ‖U0‖4,s ≤ r for any t ∈R.

For n ≥ 1, assuming Un−1 ∈ BK
s0

(I, r) ∩ CK
∗R(I, Hs(T, C2)) for some s0, K > 0 and s ≥ s0, we define the Cauchy 

problem

An :=
{

∂tUn − iE
[
�Un + OpBW(A(Un−1;x, ξ))Un + R(Un−1)[Un−1]

]
= 0,

(0)
(6.2)
Un(0) = U ,
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where the matrix of symbols A(U ; x, ξ) and the operator R(U) are defined in Proposition 4.1 (see (4.15)).
One has to show that each problem An admits a unique solution Un defined for t ∈ I . We use Proposition 5.1 in 

order to prove the following lemma.

Lemma 6.1.
Let f be a C∞ function from C3 in C satisfying Hypothesis 1.1 (resp. Hypothesis 1.2). Let r > 0 and consider 

U(0) in the ball of radius r of Hs (resp. of Hs
e) centered at the origin. Consider the operators �, R(U) and the matrix 

of symbols A(U ; x, ξ) given by Proposition 4.1 with K = 4, ρ = 0. If f satisfies Hypothesis 1.3, or r is sufficiently 
small, then there exists s0 > 0 such that for all s ≥ s0 the following holds. There exists a time T and a constant θ , both 
of them depending on r and s, such that for any n ≥ 0 one has:

(S1)n for 0 ≤ m ≤ n there exists a function Um in

Um ∈ B4
s ([0, T ), θ), (6.3)

which is the unique solution of the problem Am; in the case of parity preserving Hypothesis 1.2 the functions 
Um for 0 ≤ m ≤ n are even in x ∈ T;

(S2)n for 0 ≤ m ≤ n one has

‖Um − Um−1‖4,s′ ≤ 2−mr, s0 ≤ s′ ≤ s − 2, (6.4)

where U−1 := 0.

Proof. We argue by induction. The (S1)0 and (S2)0 are true thanks to the discussion following the equation (6.1). 
Suppose that (S1)n−1, (S2)n−1 hold with a constant θ = θ(s, r, ‖P‖C1) � 1 and a time T = T (s, r, ‖P‖C1 , θ) � 1. 
We show that (S1)n, (S2)n hold with the same constant θ and T .

The Hypothesis 1.1, together with Lemma 4.2 (resp. Hypothesis 1.2 together with Lemma 4.3) implies that the ma-
trix A(U ; x, ξ) satisfies Hypothesis 5.1 (resp. Hypothesis 5.2) and Constraint 5.1. The Hypothesis 1.3, together with 
Lemma 4.4, (or r small enough) implies that A(U ; x, ξ) satisfies also the Hypothesis 5.3. Therefore the hypotheses 
of Theorem 5.1 are fulfilled. In particular, in the case of Hypothesis 1.2, Lemma 4.3 guarantees also that the matrix of 
operators R(U)[·] is parity preserving according to Definition 2.4.

Moreover by (6.3), we have that ‖Un−1‖4,s ≤ θ , hence the hypotheses of Proposition 5.1 are fulfilled by system 
(6.2) with R(0)

1 = 0, R(0)
2 = R, U � Un−1 and V � Un in (5.97). We note that, by (S2)n−1, one has that the constant 

C in (5.98) does not depend on θ , but it depend only on r > 0. Indeed (6.4) implies

‖Un−1‖4,s−2 ≤
n−1∑
m=0

‖Um − Um−1‖4,s−2 ≤ r

n−1∑
m=0

1

2m
≤ 2r, ∀ t ∈ [0, T ]. (6.5)

Proposition 5.1 provides a solution Un(t) defined for t ∈ [0, T ]. By (5.98) one has that

‖Un(t)‖4,s ≤ C
∥∥∥U(0)

∥∥∥
Hs

(1 + tC‖Un−1‖4,s)e
tC
∥∥Un−1

∥∥
4,s + tC‖Un−1‖4,s e

tC
∥∥Un−1

∥∥
4,s + C, (6.6)

where C is a constant depending on ‖Un−1‖4,s−2, r , s and ‖P‖C1 , hence, thanks to (6.5), it depends only on r , s, 
‖P‖C1 . We deduce that, if

T Cθ � 1, θ > Cr2e + e + C, (6.7)

then ‖Un‖4,s ≤ θ . If A(Un−1; x, ξ) and � satisfy Hypothesis 5.2, R(Un−1) is parity preserving then the solution Un

is even in x ∈ T. Indeed by the inductive hypothesis Un−1 is even, hence item (ii) of Proposition 5.1 applies. This 
proves (S1)n.

Let us check (S2)n. Setting Vn = Un − Un−1 we have that{
∂tVn − iE

[
�Vn + OpBW(A(Un−1;x, ξ))Vn + fn

]
= 0,

Vn(0) = 0,
(6.8)

where



162 R. Feola, F. Iandoli / Ann. I. H. Poincaré – AN 36 (2019) 119–164
fn := OpBW
(
A(Un−1;x, ξ) − A(Un−2;x, ξ)

)
Un−1 + R(Un−1)Un−1 − R(Un−2)Un−2. (6.9)

Note that, by (4.28), (4.29), we have

‖fn‖4,s′ ≤
∥∥∥OpBW

(
A(Un−1;x, ξ) − A(Un−2;x, ξ)

)
Un−1

∥∥∥
4,s′ + ‖R(Un−1)Un−1 − R(Un−2)Un−2‖4,s′

≤ C
[
‖Vn−1‖4,s0

‖Un−1‖4,s′+2 + (‖Un−1‖4,s′ + ‖Un−2‖4,s′)‖Vn−1‖4,s′
]

≤ C
(

‖Un−1‖4,s′+2 + ‖Un−2‖4,s′+2

)
‖Vn−1‖4,s′ ,

(6.10)

where C > 0 depends only on s, ‖Un−1‖4,s0, ‖Un−2‖4,s0 . Recalling the estimate (6.5) we can conclude that the con-
stant C in (6.10) depends only on s, r .

The system (6.8) with fn = 0 has the form (5.97) with R(0)
2 = 0 and R(0)

1 = 0. Let ψUn−1(t) be the flow of system 
(6.8) with fn = 0, which is given by Proposition 5.1. The Duhamel formulation of (6.8) is

Vn(t) = ψUn−1(t)

t∫
0

(ψUn−1(τ ))−1iEfn(τ)dτ. (6.11)

Then using the inductive hypothesis (6.3), inequality (5.104) and the second item of Remark 5.6 we get

‖Vn‖4,s′ ≤ θK1T ‖Vn−1‖4,s′ , ∀ t ∈ [0, T ], (6.12)

where K1 > 0 is a constant depending r , s and ‖P‖C1 . If K1θT ≤ 1/2 then we have ‖Vn‖4,s′ ≤ 2−nr for any t ∈ [0, T )

which is the (S2)n. �
We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Consider the equation (1.1). By Lemma 4.1 we know that (1.1) is equivalent to the system 
(4.15). Since f satisfies Hypothesis 1.1 (resp. Hypothesis 1.2) and Hypothesis 1.3, then Lemmata 4.2 (resp 4.3) and 
4.4 imply that the matrix A(U ; x, ξ) satisfies Constraint 5.1 and Hypothesis 5.1 (resp. Hypothesis 5.2 and R(U) is 
parity preserving according to Definition 2.4). According to this setting consider the problem An in (6.2).

By Lemma 6.1 we know that the sequence Un defined by (6.2) converges strongly to a function U in 
C0

∗R([0, T ), Hs′
) for any s′ ≤ s − 2 and, up to subsequences,

Un(t) ⇀ U(t), in Hs ,

∂tUn(t) ⇀ ∂tU(t), in Hs−2,
(6.13)

for any t ∈ [0, T ), moreover the function U is in L∞([0, T ), Hs) ∩ Lip([0, T ), Hs−2). In order to prove that U solves 
(4.15) it is enough to show that∥∥∥OpBW(A(Un−1;x, ξ))]Un + R(Un−1)[Un−1] − OpBW(A(U ;x, ξ))]U − R(U)[U ]

∥∥∥
Hs−2

goes to 0 as n goes to ∞. Using (4.28) and (3.19) we obtain

‖OpBW(A(Un−1;x, ξ)Un − OpBW(A(U ;x, ξ)U)‖Hs−2 ≤
‖OpBW(A(Un−1;x, ξ) − A(U ;x, ξ))Un‖Hs−2 + ‖OpBW(A(U ;x, ξ))(U − Un)‖Hs−2 ≤
C
(

‖U − Un‖Hs−2 ‖U‖Hs0 + ‖U − Un−1‖Hs0 ‖Un‖Hs

)
,

which tends to 0 since s − 2 ≥ s′. In order to show that R(Un−1)[Un−1] tends to R(U)[U ] in Hs−2 it is enough to use 
(4.29). Using the equation (4.15) and the discussion above the solution U has the following regularity:

U ∈ B4
s′([0, T ); θ) ∩ L∞([0, T ),Hs) ∩ Lip([0, T ),Hs−2), ∀ s0 ≤ s′ ≤ s − 2,

‖U‖ ∞ s ≤ θ,
(6.14)
L ([0,T ),H )
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where θ and s0 are given by Lemma 6.1. We show that U actually belongs to C0
∗R([0, T ), Hs). Let us consider the 

problem{
∂tV − iE

[
�V + OpBW(A(U ;x, ξ))V + R(U)[U ]

]
= 0,

V (0) = U(0), U(0) ∈ Hs ,

(6.15)

where the matrices A and R are defined in Proposition 4.1 (see (4.15)) and U is defined in (6.13) (hence satisfies 
(6.14)). Theorem 5.1 applies to system (6.15) and provides a map

�(U)[·] : C0
∗R([0, T ),Hs′

(T,C2)) → C0
∗R([0, T ),Hs′

(T,C2)), (6.16)

which satisfies (5.5) with K = 4 and s′ as in (6.14). One has that the function W := �(U)[U ] solves, the problem{
∂tW − iE

[
� + OpBW(L(U ; ξ))

]
W + R2(U)[U ] + R1(U)W = 0

W(0) = �(U(0))U(0) := W(0),

(6.17)

where L(U) is a diagonal, self-adjoint and constant coefficient in x matrix of symbols in �2
K,4[θ ], and R1(U), R2(U)

are matrices of bounded operators (see eq. (5.6)). We prove that W is weakly-continuous in time with values in Hs . 
First of all note that U ∈ C0([0, T ); Hs′

) with s′ given in (6.14), therefore W belongs to the same space thanks to 
(6.16). Moreover W is in L∞([0, T ), Hs) (again by (6.14) and (6.16)). Consider a sequence τn converging to τ as 
n → ∞. Let φ ∈ H−s and φε ∈ C∞

0 (T; C2) such that ‖φ − φε‖H−s ≤ ε. Then we have∣∣∣∣∣∣
∫
T

(
W(τn) − W(τ)

)
φdx

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∫
T

(
W(τn) − W(τ)

)
φεdx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T

(W(τn) − W(τ))(φ − φε)dx

∣∣∣∣∣∣
≤ ‖W(τn) − W(τ)‖Hs′ ‖φε‖H−s′ + ‖W(τn) − W(τ)‖Hs ‖φ − φε‖H−s

≤ Cε + 2‖W‖L∞Hs ε

(6.18)

for n sufficiently large and where s′ ≤ s − 2 as above.
Therefore W is weakly continuous in time with values in Hs . In order to prove that W is in C0

∗R([0, T ), Hs), 
we show that the map t �→ ‖W(t)‖Hs is continuous on [0, T ). We introduce, for 0 < ε ≤ 1, the Friedrichs mollifier 
Jε := (1 − ε∂xx)

−1 and the Fourier multiplier �s := (1 − ∂xx)
s/2. Using the equation (6.17) and estimates (3.17) one 

gets

d

dt

∥∥�sJεW(t)
∥∥2

H0 ≤ C
[
‖U(t)‖2

Hs ‖W(t)‖Hs + ‖W(t)‖2
Hs ‖U(t)‖Hs

]
, (6.19)

where the right hand side is independent of ε and the constant C depends on s and ‖U‖Hs0 . Moreover, since U, W
belong to L∞([0, T ), Hs), the right hand side of inequality (6.19) is bounded from above by a constant independent of 
t . Therefore the function t �→ ‖JεW(t)‖H0 is Lipschitz continuous in t , uniformly in ε. As JεW(t) converges to W(t)

in the Hs -norm, the function t �→ ‖W(t)‖H0 is Lipschitz continuous as well. Therefore W belongs to C0
∗R([0, T ), Hs)

and so does U . To recover the regularity of d
dt

U one may use equation (4.15).
Let us show the uniqueness. Suppose that there are two solution U and V in C0

∗R([0, T ), Hs) of the problem (4.15). 
Set H := U − V , then H solves the problem{

∂tH − iE
[
�H + OpBW(A(U ;x, ξ))[H ] + R(U)[H ]

]
+ iEF = 0

H(0) = 0,
(6.20)

where

F := OpBW
(
A(U ;x, ξ) − A(V ;x, ξ)

)
V + (R(U) − R(V )

)[V ].
Thanks to estimates (4.28) and (4.29) we have the bound

‖F‖Hs−2 ≤ C ‖H‖Hs−2

(
‖U‖Hs + ‖V ‖Hs

)
. (6.21)

By Proposition 5.1, using Duhamel principle and (6.21), it is easy to show the following:
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‖H(t)‖Hs−2 ≤ C(r)

t∫
0

‖H(σ)‖Hs−2dσ.

Thus by Gronwall Lemma the solution is equal to zero for almost everywhere time t in [0, T ). By continuity one 
gets the unicity. �
Proof of Theorem 1.2. The proof is the same of the one of Theorem 1.1, one only has to note that the matrix 
A(U ; x, ξ) satisfies Hypothesis 5.3 thanks to the smallness of the initial datum instead of Hypothesis 1.3. �
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