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Abstract

We study the regularity of solutions of elliptic fractional systems of order 2s, s ∈ (0, 1), where the right hand side f depends on 
a nonlocal gradient and has the same scaling properties as the nonlocal operator. Under some structural conditions on the system 
we prove interior Hölder estimates in the spirit of [1]. Our results are stable in s allowing us to recover the classic results for elliptic 
systems due to S. Hildebrandt and K. Widman [11] and M. Wiegner [19].
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this work we are interested in the interior regularity of bounded weak or viscosity solutions of fractional systems 
of the form

−LKui = fi(x,u,BK(u,u)), x ∈ �, 1 ≤ i ≤ m,

where � ⊆ R
n and u = (u1, ..., um) is a vector valued function. Given s ∈ (0, 1) and a real-valued function v our 

nonlocal operator LK is given by

LK(v) =
ˆ

Rn

(v(y) − v(x))K(y − x)dy,

where the kernel K is assumed to be symmetric and to satisfy

(1 − s)
λ

|y|n+2s
≤ K(y) ≤ (1 − s)

�

|y|n+2s
.
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Finally BK stands for

BK(u,w) = (1 − s)cn

2

ˆ

Rn

(u(x) − u(y)) · (w(x) − w(y))K(y − x)dy,

and is a fractional derivative of order s playing the role of ∇u∇w. This operator appears naturally when studying 
fractional harmonic maps to the sphere. We refer to Section 3 for more details on this operator and fractional harmonic 
maps into the sphere.

In the local case, the interior regularity results are due to S. Hildebrandt and K. Widman [11] and M. Wiegner [19]. 
More precisely they studied the regularity of weak solutions to systems of the form

−Dβ

[
Aαβ(x,u,∇u)Dαui

] = fi(x,u,∇u),

with a right hand side satisfying

• |f (x, u, p)| ≤ a|p|2 + b(x), (quadratic growth)
• u · f (x, u, p) ≤ a∗|p|2 + b∗(x),

for a pair of functions b, b∗ ∈ Lq with q > n/2.
They proved interior Hölder estimates under the structural assumption

aM + a∗ < 2,

where M = ‖u‖∞. The structural condition is necessary as the classic harmonic map with values into the sphere 
u := x/|x| : Rn \ {0} → S

n−1 solves

(−�)u = u|∇u|2,
and fails to be regular. Note that in this particular case the structural condition reads as aM + a∗ = 2, that is, we are 
outside the feasible range.

The proof of S. Hildebrandt and K. Widman [11] and M. Wiegner [19] relies heavily on harmonic analysis and the 
use of the Green functions associated to the linear operators. The structural condition is somewhat hidden in the proof 
and there is little geometric insight on it. Also, since their proof relies on the divergence structure of the system it does 
not apply directly to viscosity solutions of systems of the form

aijuij = f (x,u,∇u). (1.1)

A few years later this result was proved by L. Caffarelli in [1] with a completely different strategy. Here the 
main idea was to control the oscillation of the function using an auxiliary scalar equation. In his proof the structural 
condition has a geometric interpretation; when satisfied the solution of the system becomes a contraction mapping. 
This naturally allows to control the oscillation of the function and a standard iterative argument then leads to Hölder 
continuity of the solution. Moreover, even though not explicitly stated, the proof works also in the non-divergence 
setting (1.1) and therefore the regularity results apply to viscosity solutions.

In the nonlocal setting there is little literature regarding systems with critical nonlocal drift. From a geometric point 
of view there are interesting and recent work related to harmonic maps into spheres and general target manifolds. 
Fractional harmonic maps into spheres were first introduced by F. Da Lio and T. Rivière in [5] in the special case s =
1/2, n = 2 and for general target manifolds in [6]. In their work they developed the harmonic analysis tools necessary 
to prove Hölder regularity of solutions. Their results were later generalized to higher dimensions by A. Schikorra in 
[15] and F. Da Lio in [4]. We also mention the work by F. Da Lio and A. Schikorra [7] and A. Schikorra in [16], 
where they studied Hs,p type and Ws,p energies. Finally the regularizing effects of certain right-hand side potentials 
is studied by A. Schikorra in [17].

In the aforementioned work the authors proof and used heavy harmonic analysis tools required for the study of 
regularity of solutions. In our setting, and thanks to the structural condition assumption, we can bypass this difficulty 
and obtain regularity in a more standard way.

The paper is organized as follows. Some standard notation and definitions are given in Section 2. We also state our 
main result and the necessary hypotheses. In Section 3 we discuss briefly fractional harmonic maps into spheres. This 
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is our main motivation for studying systems where the right hand side is dominated by the nonlocal operator B, since 
it plays the role of the gradient squared of classic harmonic maps. Then, in Section 4 we prove our result in the spirit 
of [1]. Finally, Section 5 is dedicated to the passage to the limit s → 1. In this section we also give a counterexample 
of regularity when the structural condition is not satisfied in the special case n = 1 s < 1/2.

2. Definitions and statement of the main result

Let us introduce some standard notation and the notion of weak and viscosity solution. We point out that our method 
does not rely on the divergence form of the equation but rather on the Harnack inequality for nonlocal operators, 
which is available for both notions of solutions. Furthermore, since we are looking for a priori bounds, a standard 
regularization procedure allows us to assume that solutions are smooth.

We denote by K(λ, �) the family of kernels K such that K(y) = K(−y) and

(1 − s)
λ

|y|n+2s
≤ K(y) ≤ (1 − s)

�

|y|n+2s
, (2.1)

with s ∈ (0, 1). When there is no chance of confusion we will simply denote K(λ, �) by K. Given a kernel K ∈ K we 
denote by LK the linear nonlocal operator given by

LK(v) = P.V.
ˆ

Rn

(v(y) − v(x))K(y − x)dy.

The last integral is well defined whenever the function v is punctually C1,1 and has an integrable tail. Note that since 
the kernel is symmetric the operator can be written as

LK(v) = 1

2

ˆ

Rn

(v(x + y) + v(x − y) − 2v(x))K(y)dy.

Given two smooth bounded maps u, w : Rn → R
m we define the bilinear form BK associated to the kernel K ∈ K, 

as in the introduction, by

BK(u,w) = 1

2

ˆ

Rn

(u(x) − u(y)) · (w(x) − w(y))K(y)dy.

In the special case of the fractional Laplacian

(−�)su = (1 − s)cnP.V.
ˆ

Rn

u(x) − u(y)

|x − y|n+2s
dy

we will denote it’s associated bilinear form just by B. Here the constant cn is chosen such that (−�)su → (−�)u. 
For more details on this we refer to Section 3.

Let � ⊂R
n be an open bounded set, we are interested in weak and/or viscosity solutions to the following system

−LKui = fi(x,u,BK(u,u)), x ∈ �. (2.2)

Here fi : Rn × R
m × R → R is a bounded function and we will usually denote by f = (f1, ..., fm) the associated 

map. Due to the nonlocal behavior of the operator we need to prescribe the boundary data in order to compute it. That 
is we need to couple (2.2) with a boundary condition{ −LKui = fi(x,u,BK(u,u)) in �

ui = gi in �c.

In order for the operator to be finite it is sufficient to restrict the data to functions gi with integrable tail.
For our regularity result we will need to impose a stronger assumption, namely we will assume that g ∈ L∞(Rn \�)

which clearly implies that the tails are integrable.
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We define now weak solutions.

Definition 2.1. A map u = (ui) ∈ Hs(�; Rm) ∩ L∞(Rn) is a weak solution to the nonlocal system (2.2) if for all test 
maps ϕ we have

¨

R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))K(y − x)dydx =
ˆ

Rn

fi(x,u,BK(u,u))ϕ(x)dx,

for all i = 1, ..., m. Here ϕi ∈ Hs
0 (�) + gi , for i = 1, ..., m.

Definition 2.2. We say that ϕ touches u by above (below) in a neighborhood N if

• ϕ(x) = u(x) for x ∈ �.
• ϕ(y) > u(y) (ϕ(y) < u(y)) in N .

We can define now viscosity solutions.

Definition 2.3. A function u :Rn →R
m upper (lower) semicontinuous in �̄ is a viscosity subsolution (supersolution) 

to (2.2) if anytime a smooth map ϕ touches u by above (below) then

uϕ(x) =
{

ϕ(x) if x ∈ �

u(x) if x ∈R
n \ �

satisfies

−LKuϕ ≤ (≥)f (x,uϕ,BK(uϕ,uϕ)).

A continuous function u is a viscosity solution to (2.2) if it is both a viscosity subsolution and supersolution.

In order to obtain regularity for solutions to (2.2) we need to impose some growth conditions on the right hand 
side. The hypotheses needed are the following.

(H1.1) Small 2s growth There are constants a and b such that

|f (x,u(x),B(v(y), v(y)))| ≤ aB(v(y), v(y)) + b

for all smooth maps v :Rn → R
m and x, y ∈ �.

(H1.2) There are constants a∗ and b∗ such that

u(x) · f (x,u(x),B(v(y), v(y))) ≤ a∗B(v(y), v(y)) + b∗.

(H2) An L∞ estimate on the solution, namely ‖u‖L∞(�) ≤ M .

Note that hypotheses (H1) and (H1.1) are the nonlocal analogous to the conditions imposed in [11] and [1].
We point out that the size of the solution plays a relevant role in its regularity. In the local case, harmonic maps into 

the unitary sphere are not regular (M = 1) but they are when the target domain is some compact subset of the open 
ball as seen in the work by S. Hildebrandt, H. Kaul and K. Widman [10].

Now we are in shape to state our main result.

Theorem 2.4. Let u be a weak or viscosity solution to (2.2) and assume that hypotheses H1.1, H1.2 and H2 hold. 
Assume further that the structural condition aM + a∗ < 2 holds, then there exists α depending only on λ, � and the 
dimension n such that u ∈ Cα(�′; Rm) where �′ is any open set such that �̄′ ⊂ �.
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3. Fractional harmonic maps into the sphere

In this section we derive the system associated to harmonic maps into the unitary sphere. We present the construc-
tion with detail since it motivates the structure of (2.2) and the bounds of f given by (H1.1) and (H1.2).

It is important to note that, as in the local case, solutions to the harmonic system do not satisfy the structural 
assumption of Theorem 2.4 and therefore our result does not apply. The importance of this section is the proper 
introduction of the bilinear form B.

Note that the study of fractional harmonic maps into spheres were first introduced by F. Da Lio and T. Rivière in 
[5] in the special case s = 1/2, n = 2. The theory has been greatly extended as mentioned in the introduction, we refer 
to [6,7,15–17].

In [14] V. Millot and Y. Sire studied solutions to the Ginzburg–Landau system

(−�)1/2vε = 1

ε
(1 − |vε|2) in �

vε = g, in R
n \ �,

where g : Rn → R
m is a smooth function with |g| = 1 in Rn \ � and � ⊂ R

n is a open bounded set. Among several 
properties of such solutions they studied the limit as ε → 0 and proved that they converged weakly to sphere valued 
1/2-harmonic maps. The limiting equation had a right hand side that involves the bilinear form B of order 1/2, as 
introduced in the previous section.

Following the construction done by V. Millot and Y. Sire in the case of fractional 1/2 maps, we study fractional 
harmonic maps into spheres of general order s. We will also borrow the notation from [14].

Let � ⊂ R
n be an open bounded set and u : Rn → R

m a smooth function. We define the fractional Laplacian of 
order s by

(−�)su = cn,sP.V.
ˆ

Rn

u(x) − u(y)

|x − y|n+2s
dy,

where cn,s is a normalizing constant such that for smooth functions (−�)s → (−�) (see for example [9]). In order 
for this to be valid we need to assume that s ∈ (0, 1). As seen in [9] Proposition 4.1, the constant cn,s satisfies,

lim
s→1−

cn,s

(1 − s)
= C,

for some constant C. This behavior is important when studying the stability results in s. With this in mind we can 
think that for s close to 1 we have cn,s = (1 − s)cn. Now we can define the action of the operator by

〈(−�)su,ϕ〉� = cn,s

2

¨

�×�

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s
dxdy

+ cn,s

¨

�×(Rn\�)

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s
dxdy,

where ϕ ∈D(�, Rm). Define the s-energy Es by

Es(u,�) = cn,s

4

¨

�×�

|u(x) − u(y)|2
|x − y|n+2s

dxdy (3.1)

+ cn,s

2

¨

�×(Rn\�)

|u(x) − u(y)|2
|x − y|n+2s

dxdy, (3.2)

and note that the action by the fractional operator defines a distribution on � when

Es(u,�) < ∞,
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and u ∈ L2
loc(R

n; Rm). In this case we say that u is admissible and (−�)s belongs to H−s(�; Rm). For more details 
on fractional Sobolev spaces and the action of the fractional Laplacian we refer to [9].

We can introduce now the notion of s-harmonic maps with values into the sphere.

Definition 3.1. Let u ∈ Ĥ s(�; Rm) = {u ∈ L2
loc(R

n; Rm) s.t. Es(u, �) < ∞} be such that |u| = 1 a.e. in �. We say 
that u is weakly s-harmonic into Sm−1 in � if[

d

dt
Es

(
u + tϕ

|u + tϕ| ,�
)]

t=0
= 0, (3.3)

for all ϕ ∈ Hs
00(�; Rm) ∩ L∞(�). Here

Hs
00(�;Rm) = {u ∈ Hs(Rn;Rm) s.t. u = 0 a.e. in R

n \ �}.

The next proposition is just the variational formulation of the Euler–Lagrange equation of (3.3).

Proposition 3.2. Let u ∈ Ĥ s(�; Rm) with |u| = 1 a.e. in �. Then u is a weak s-harmonic map into Sm−1 in � if and 
only if

〈(−�)su,ϕ〉� = 0, (3.4)

for all ϕ ∈ Hs
00(�; Rm) satisfying ϕ(x) ∈ Tv(x)S

m−1 a.e. in �.

The proof is the same as in [14] but we include it for completeness.

Proof. Suppose first that u is a weakly s-harmonic map and let ϕ ∈ Hs
00(�; Rm) be such that ϕ · u = 0 a.e. in �. 

Without loss of generality we can assume that ϕ is compactly supported in � and that is bounded. Then we can 
estimate

v(x) + tϕ(x)

|v(x) + tϕ(x)| = v(x) + tϕ(x)√
1 + t2|ϕ2(x)| = v(x) + tϕ(x) + O(t2),

as t → 0. A direct application of the dominated convergence theorem let us deduce then[
d

dt
Es

(
u + tϕ

|u + tϕ| ,�
)]

t=0
= 〈(−�)su,ϕ〉�,

and therefore, since u satisfies (3.3), 〈(−�)su, ϕ〉� = 0.
Suppose now that u ∈ Ĥ s(�; Rm) satisfies (3.4) and let ϕ ∈ D(�; Rm). Note that (ϕ · u) ∈ Hs

00(�; Rm) and there-
fore

φ = ϕ − (ϕ · u)ϕ

belongs to Hs
00(�; Rm). Since |u| = 1 we have also φ · u = 0 a.e. in �. As before, we can rewrite

v(x) + tϕ(x)

|v(x) + tϕ(x)| = v(x) + tϕ(x)√
1 + t2|ϕ2(x)| = v(x) + tϕ(x) + O(t2),

as t → 0. Again by dominated converge we conclude[
d

dt
Es

(
u + tϕ

|u + tϕ| ,�
)]

t=0
= 〈(−�)su,ϕ〉�,

and by (3.4) we conclude that (3.3) holds. �
As in [14] we note that thanks to the previous proposition the Euler–Lagrange equation can be rewritten as

(−�)su⊥TvS
m−1, in H−s(�). (3.5)
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Note that equation (3.5) is the nonlocal analogue of the classical harmonic map system. In the classical case (s = 1), 
equation (3.5) is equivalent to the unrestricted system

(−�)u = u|∇u|2. (3.6)

In the nonlocal case, we can derive a similar system of equations when the target domain is the sphere. More precisely, 
let u be such that |u| = 1 a.e. in � and ϕ ∈ D(�; Rm). Thanks to Proposition 3.2 we have

〈(−�)su,ϕ〉� = 〈(−�)su, (ϕ · u)u〉�.

Note now that since |u| = 1 a.e. in � we have the following identity

(u(x) − u(y)) · ((ϕ(x) · u(x))u(x) − (ϕ(y) · u(y))u(y)) = 1

2
|u(x) − u(y)|2(ϕ(x) · u(x) + ϕ(y) · u(y)),

and therefore we get

〈(−�)su, (ϕ · u)u〉� = cn,s

2

¨

�×Rn

|u(x) − u(y)|2
|x − y|n+2s

u(x) · ϕ(x)dxdy.

The previous identity is equivalent then to the system

(−�)su = u(x)
cn,s

2

ˆ

Rn

|u(x) − u(y)|2
|x − y|n+2s

dy (3.7)

in D′(�). Note the similarity between this system and the one found in the local case (3.6). Furthermore note that 
since the constant cn,s = (1 − s)cn then

cn,s

2

ˆ

Rn

|u(x) − u(y)|2
|x − y|n+2s

dy → |∇u(x)|2

for smooth functions u. Using the notation introduced in the previous section we can rewrite equation (3.7) as

(−�)su = u(x)B(u,u),

and we note that as s → 1 we recover the classic system

−�u = u|∇u|2.

4. Proof of Theorem 2.4

In this section we prove our main Theorem 2.4 in the spirit of [1]. For the rest we will fix λ, � and K ∈ K. Also, 
since we are only concerned in the interior regularity of the solution we will assume that � = B2(0). A standard 
covering argument then will allows us to deduce the interior regularity in any sub domain �′ ⊂ �.

Recall that our right hand side is controlled by BK and that this operator has the same scaling as L and therefore 
issues with regularity are expected, since it cannot be absorbed directly by the diffusion. Furthermore note that in the 
case of strictly smaller scaling one could proceed as in [18] to deduce regularity via a blow up argument.

In [1], one of the main ideas is to prove that |u|2 solves a linear scalar equation. This is true due to the smallness 
condition on the right hand side (hypothesis (H1.1)) and the known identity �v2 = 2v�v + 2|∇v|2. Then, thanks to 
the regularity theory for linear operators we can control the oscillation of the solution. More precisely, we will prove 
that the solution maps B2−k (0) into a ball BMK

(ρk) for some Mk and ρk decaying geometrically (see Corollaries 4.3
and 4.5).

Let us start with the following observation on the nonlocal operator LK . Let v : Rn → R be a smooth bounded 
function, then we claim that

−LKv2(x) = −2v(x)LKv(x) − 2BK(v, v).
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In fact,

−2v(x)LKv(x) − 2B(v, v) = P.V.
ˆ

Rn

(2v(x)(v(x) − v(y)) − (v(x) − v(y))2)K(y − x)dy

= P.V.
ˆ

Rn

(v2(x) − v2(y))K(y − x)dy

= −LKv2(x),

which is in clear analogy with the local case.
Another important ingredient in regularity theory is scaling. Let u be a solution of (2.2) and assume that (H1.1), 

(H1.2) and (H2) hold. Let uμ,t (x) = μu(tx), then we have that uμ,t solves an analogous system

−Lsuμ,t (x) = μt2sf (x,uμ,t ,BK(uμ,t , uμ,t )t
−2s)

:= f̃ .

Hypotheses (H1.1), (H1.2) and (H2) remain valid by changing the constants accordingly,

M(uμ,t ) = μM(u),

b∗(uμ,t ) = μ2t2sb∗(u),

b(uμ,t ) = μt2sb(u),

a∗(uμ,t ) = μ2a∗(u),

a(uμ,t ) = μa(u).

A key tool in our proofs is the weak Harnack inequality for nonlocal equations. To our knowledge the first result 
regarding nonlocal weak Harnack inequalities was obtained by M. Kassmann in [12]. Recently a weak Harnack 
inequality was derived for p-type nonlocal linear operators by A. Di Castro, T. Kuusi and G. Palatucci in [8]. A general 
survey on the Harnack inequality and applications for nonlocal equations can be found in [13].

For completion we state the weak Harnack inequality as in [8] Theorem 1.2 in the special case u ≥ 0 in Rn, p = 2.

Theorem 4.1 (Weak Harnack inequality). Let u ≥ 0 in Rn be a weak supersolution of

−LKu = 0, x ∈ BR(0),

with K ∈ K(λ, �) (see Section 2, (2.1)).
Then there is a constant C only depending on n, s, λ, � so that for any Br(0) ⊆ BR/2 and t < n/(n − 2s) we have⎛

⎜⎝ 

Br

ut

⎞
⎟⎠

1/t

≤ C inf
B2r

u. (4.1)

Note that the constant obtained is stable as s → 1. We will usually use inequality (4.1) with t = 1 and in the form

u(x) ≥ c

⎛
⎜⎝ 

Br

u

⎞
⎟⎠ .

Before we state our first lemma note that the solution u to (2.2) can be assumed to be smooth. This can be justified 
by a regularization procedure as in [3], Lemma 2.1.

Lemma 4.2. Let u be a weak solution to (2.2) in B2(0) satisfying hypotheses (H1.1), (H1.2) and (H2). Assume also 
that a = 1, b = 0 = b∗ and that 1/2(a∗ + M) = l < 1. Then there exists a constant 0 < δ(l) < 1 such that

u(B1(0)) ⊂ BM(1−δ)(δū),
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where

ū = 1

|B1|
ˆ

B1

udx =
 

B1

udx.

Furthermore δ is monotone decreasing in l.

Proof. As mentioned before the strategy revolves in using |u|2 as a supersolution of a linear scalar equation.
First note that

L(|u|2) = L

(∑
i

u2
i

)

=
∑

i

(2uiLui + 2BK(ui, ui))

= −2u · f (x,u,BK(u,u)) + 2BK(u,u)

≥ 2(1 − l)BK(u,u).

Let ρ ∈R
m with |ρ| ≤ 1 − l and note that

L(ρ · u) = ρ · Lu

= −ρ · f (x,u,BK(u,u))

≤ |ρ||BK(u,u)|,
which leads to

L

(
1

2
|u|2 + ρ · u

)
≥ 0

Recall now that u is bounded by M , therefore

h(x) = 1

2
M2 + (1 − l)M − 1

2
|u|2 − ρ · u,

is nonnegative and furthermore satisfies −Lh ≥ 0 in B2. Therefore we can apply the weak Harnack inequality to h
(see Theorem 4.1) to conclude that there exists a constant C = C(λ, �) such that

h(x) ≥ 1

C
h̄

≥ c1((1 − l)M − ρ · ū),

for x ∈ B1 or equivalently

M − |u|2
2

+ (1 − l)M − ρ · u ≥ c1((1 − l)M − ρ · ū). (4.2)

Now we are in position to prove the conclusion of the lemma. For this, note that inequality (4.2) allows us to control 
u and not only |u|2. In fact, take ρ in the direction of u with |ρ| = 1 − l, denote by θ the angle between u and ū and 
let r = |u|/M . With this selection of parameters we get from (4.2)

M(1 − r)

(
1

2
(M + |u|) + (1 − l)

)
≥ Mc1(1 − l)

(
1 − |ū|

M
cos θ

)
,

which gives us the control on r

1 − r ≥ c2

(
1 − |ū|

M
cos θ

)
. (4.3)

Note that thanks to the hypothesis 1/2(a∗ + M) = l < 1 the constant c2 is uniformly bounded independent on M . 
Also we can assume without any loss of generality smaller than 1 (c2 < 1). Therefore by multiplying (4.3) by r and 
adding afterwards 1 − r we arrive to
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1 − r2 ≥ c2

(
1 − r

|ū|
M

cos θ

)
,

which is equivalent to

r2 − c2r
|ū|
M

cos θ ≤ 1 − c2.

Note now that ū/M ≤ 1 therefore from the previous inequality we get

r2 − c2r
|ū|
M

cos θ +
(

1

2
c2

ū

M

)2

≤ 1 − c2 +
(

1

2
c2

)2

,

and by picking δ = 1/2c2 we conclude

|u − δū|2 ≤ M2(1 − δ)2,

which finishes the proof. �
The previous lemma states that u maps B1(0) to a ball of strictly smaller radius and center shifted toward ū. This 

result turns out to control the oscillation of the function. Note that the key ingredient is the fact that we can simplify 
the system to the study of a scalar linear equation.

A direct consequence of the previous lemma is the following corollary.

Corollary 4.3. Let u be as in Lemma 4.2. Then there exist a sequence of points {ρk} and radii {Mk} such that

i.- Mk ≤ M(1 − δ)k .
ii.- |ρk| + Mk ≤ M .

iii.- u(B2−k (0)) ⊂ BMk
(ρk).

Proof. We proceed by induction on k. Note the case k = 0 is just Lemma 4.2 with ρ0 = δū and M0 = M(1 − δ). Let 
uk = u(2−kx) − ρk and assume the result holds up to k. In order to apply Lemma 4.2 to uk in B1 we first note that

‖uk‖L∞(B1(0)) ≤ Mk + |ρk| ≤ M.

Furthermore note that thanks to the bounds of f and the scaling properties of fractional Laplacian uk solves in B2

−Luk = f̄ (x, uk,BK(uk,uk)),

and f̄ satisfies hypotheses (H1.1) and (H1.2) with constants a∗
k := a∗(uk) = a∗ (see the scaling remark before 

Lemma 4.2). Therefore we can apply Lemma 4.2 to uk , which finishes the proof by letting Mk+1 = Mk(1 − δ), 
ρk+1 = ρk + δūk . �

Note that, as in the local case, if ū < M , then there is no need to shift the center of the ball to get an improvement 
on the L∞ norm of u. Furthermore instead of asking the structural condition 1/2(a∗ + M) < 1 in order to apply 
Corollary 4.3 we just need a∗ < 1 and

a∗ + lim inf
r→0

 

Br

u < 2.

We need to lift now the extra assumptions of Lemma 4.2. The following lemma deals with the case of nontrivial b
and b∗. Without loss of generality let us assume that b = max{b, b∗}.

Lemma 4.4. Let u be a weak or viscosity solution of (2.2) in B2(0) satisfying hypotheses (H1.1), (H1.2), (H2) and 
assume also that a = 1. Then there exists a constant τ such that

u(B1(0)) ⊂ BM(1−δ)+τb(δū),

where δ is the same from Lemma 4.2.
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Note that the main difference between Lemma 4.2 and Lemma 4.4 is that in the latter we have to take into the 
account the action of the nontrivial factors.

Proof. We will proceed as in Lemma 4.2, but first we need to add a correcting factor to the function h. Let v be the 
solution to{

−LKv = −1 in B2,

v = 0 in R
n \ B2.

Note that v ≤ 0 by the maximum principle and that it is universally bounded in B1

‖v‖L∞(B1(0)) ≤ C̃,

for some constant C̃.
Define now

h(x) = 1

2
M2 + (1 − l)M − 1

2
|u|2 − ρ · u − 2bv,

which, as in Lemma 4.2, is a nonnegative function solving

−Lh ≥ 0 in B2.

Applying the weak Harnack inequality to h (see Theorem 4.1) we deduce as before

h(x) ≥ 1

C
h̄

≥ c1[(1 − l)M − ρ · ū − 2bv̄]
≥ c1[(1 − l)M − ρ · ū − 2bL].

Recall now that v ≤ 0, therefore we have

1

2
M2 + (1 − l)M − 1

2
|u|2 − ρ · u ≥ h(x),

and so rearranging the terms as in Lemma 4.2 we deduce

M − |u|2
2

+ (1 − l)M − ρ · u + 2c1Lb ≥ c1((1 − l)M − ρ · ū).

Take ρ in the direction of u with |ρ| = 1 − l, denote by θ the angle between u and ū and let r = |u|/M . From the 
previous inequality we deduce

M(1 − r)

(
1

2
(M + |u|) + (1 − l)

)
+ 2c1Lb ≥ Mc1(1 − l)

(
1 − |ū|

M
cos θ

)
.

At this point we can proceed as in the proof of Lemma 4.2 to deduce the desired conclusion. �
Since the coefficients b, b∗ are nontrivial we note that we no longer have the inclusion of

BM(1−δ)+τb(δū) ⊂ B1(0).

This inclusion was crucial in order to prove Corollary 4.3, since it allowed us to control

Mk + a∗
k ≤ M + a∗,

where a∗
k stands for the corresponding constant a∗ associated to uk(x) = u(2−kx) − ρk . In order to control now the 

constants we note that uk solves the same system (2.2) with the appropriate constant (see the scaling remark at the 
beginning of the section)

bk := b(uk) ≤ 2−2sk(1 + |ρk|)b,

which will be sufficient to prove that the balls remain within M + (1 − l) from the original one.
We now iterate Lemma 4.4 as we did in Corollary 4.3. As noted before we have to take into the account that, 

a priori, the balls are not contained in the previous one.
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Corollary 4.5. Let u be as in Lemma 4.4. Then there exist a constant d = d(l, b) and a sequence {ρk} ⊂ BM(0) and 
radii {Mk} such that

i.- Mk ≤ M(1 − 1
2δ( 1

2 (1 + l)))k .

ii.- |ρk| + Mk ≤ M + (1 − l) 
∑k

i=1 2−si .
iii.- u(B2−(k+d) ) ⊂ BMk

(ρk).

Proof. Without loss of generality we can assume that τ ≥ 1, M > 1/2 and δ < 1/2s and that b = max{b, b∗}.
Let us pick d large enough (in terms of s) so that

max
{

2−2sdbτ,2−dbτ(1 + M)
}

≤ min

{
1 − l,

2s − 1

2s
Mδ

}
. (4.4)

Note in particular that

2s − 1

2s
≤ 1

2
.

We will prove the result by induction. For the initial step we apply Lemma 4.4 to the function u0(x) = u(2−dx) to get 
that u0(B1) ⊂ BM(1−δ)+τb0(δū0). We translate the inclusion to

u0(B1(0)) = u(B2−d (0)) ⊂ BM(1−δ)+τb0(δū0).

Define ρ0 = δū0 and M0 = M(1 − δ) + τb0 and let us check the conditions. Since M(u0) = M then we have that 
ρ0 ∈ BδM ⊂ BM . Furthermore since b(u0) = 2−2sdb and thanks to the definition of d (4.4) we get

M0 = 2−2sdbτ + (1 − δ)M ≤ 2−dbτ + (1 − δ)M

≤ min{1 − l,1/2Mδ} + (1 − δ)M

≤ M.

Finally note that

ρ0 + M0 ≤ δM + min{1 − l,1/2Mδ} + (1 − δ)M

≤ M + (1 − l),

which finishes the initial step.
Assume now that the result is valid for k and define uk+1(x) = u(2−(k+1+d)x) = u0(2−(k+1)x). Note that a∗

k+1 :=
a∗(uk+1) = a∗ and since uk+1(B2(0)) = uk(B1(0)) ⊂ BMk

(ρk) therefore we have

a∗
k+1 + M(uk+1) ≤ a∗ + Mk + |ρk|

≤ a∗ + M + (1 − l) ≤ 1 + l.

Furthermore we also have b(uk) = 2−2s(k+d)b ≤ 2−2sk min{1 − l, 12Mδ}. Now, Lemma 4.4 applied to uk+1 gives us a 
point ρk+1 lying in the segment ρk and δūk and hence in BM and a radius

Mk+1 ≤ Mk(1 − δ) + τbk

≤ M

(
1 − 1

2s
δ

[
1

2
(1 + l)

])k

(1 − δ) + 2−2skM
2s − 1

2s
Mδ

≤ M

(
1 − 1

2s
δ

)k

(1 − δ) + 2−2skM
2s − 1

2s
Mδ.

Since δ ≤ 1/2s we have that 1 − δ/2s ≥ 2−2s , and therefore

2−2sk ≤
(

(1 − 1
s
δ

)k
2
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Moreover we also have

2s − 1

2s
δ ≤

(
1 − 1

2s

)
,

which allows us to conclude

Mk+1 ≤ M

(
1 − 1

2s
δ

)k

(1 − δ) +
(

1 − 1

2s
δ

)k 2s − 1

2s
Mδ

≤ M

(
1 − 1

2s
δ

)k+1

.

Finally we estimate

|ρk+1| + Mk+1 ≤ |ρk| + δūk+1 + Mk(1 − δ) + τbk

≤ |ρk| + Mk + τbk

≤ M + (1 − l)

k∑
i=1

2−si + τb2−2s(k+1+d)

≤ M + (1 − l)

k+1∑
i=1

2−si ,

which finishes the proof. �
Note that the previous result states that the oscillation of the solution decays geometrically. More precisely we have 

that

osc
R−k

u ≤ Mk,

with R = 2−d . Since the oscillation decreases at every step the conclusion of Theorem 2.4 now follows in a standard 
way.

Remark 4.6. As pointed out before, we can replace the structural condition

a∗ + aM ≤ 2,

by a ≤ 1 and

a∗ + a lim inf
r→0

∣∣∣∣∣∣∣
 

Br(x0)

u

∣∣∣∣∣∣∣ ≤ 2

to conclude that u is Hölder continuous in a neighborhood of x0.

5. A non-regular example when aM + a∗ = 2

In this section we provide an example of a non-regular weak solution when the structural condition is not satisfied 
in the case s < 1/2. In the local case the harmonic map to the unitary sphere provides the non-smooth solution 
� = x/|x| : Rn \ {0} → S

n−1 to

−�� = �|∇�|2,
for general dimensions n. In the particular case n = 1 it is easy to check that the function � belongs to Hs(R) for 
s < 1/2. Furthermore it also solves

(−�)s� = �B(�,�), (5.1)
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for all s ∈ (0, 1/2) in the weak sense. In fact, since � is just the sign function we have for x, y ∈ R \ {0}
�(x)(�(x) − �(y))2 = �(x)(�2(x) − 2�(x)�(y) + �2(y))

= 2�(x)(1 − �(x)�(y))

= 2(�(x) − �(y)),

where we used the fact that �2 = 1. Therefore the following formal computation follows

�(x)B(�(x),�(x)) = cn,s

2
�(x)

ˆ

Rn

(�(x) − �(y))2

|x − y|1+2s
dy

= cn,s

2

ˆ

Rn

2(�(x) − �(y))

|x − y|1+2s
dy

= (−�)s�(x),

concludes the claim.
The previous formal computation works in the entire range s ≤ 1 but the function � fails to be in Hs for s ≥ 1/2.
The previous formal computation can be made rigorous. Let ϕ be a test function, that is ϕ ∈ Hs

0 (�) + g, where g
would be the boundary data with bounded L∞ norm, then we haveˆ

R

ˆ

R

(�(x) − �(y))(ϕ(x) − ϕ(y))

|x − y|1+2s
dydx = 2

ˆ

R

(−�)s�(x)ϕ(x)dx

= 2
ˆ

R

ϕ(x) P.V.
ˆ

R

(�(x) − �(y))

|x − y|1+2s
dydx,

Using the previous pointwise estimate we deduce then
ˆ

R

ˆ

R

(�(x) − �(y))(ϕ(x) − ϕ(y))

|x − y|1+2s
dydx =

ˆ

R

ˆ

R

�(x)(�(x) − �(y))2ϕ(x)

|x − y|1+2s
dydx.

With this we have found a non smooth solution to the system in the case aM + a∗ = 2.
For general dimensions x/|x| fails to solve the fractional harmonic system. This is mainly due to the fact that for 

dimensions greater than 1 there is a nonlocal interaction with the coordinates and therefore the projection to the sphere 
fails to solve the nonlocal system. A counterexample for general dimensions is still open for the nonlocal case.

Let us give a brief remark on the passage to the limit as s → 1. As noted in [2] we have that for a smooth function v

lim
s→1

cn,s

2

ˆ

Rn

v(x + y) + v(x − y) − 2v(x)

|y|n+2s
dy = �v(x)

and therefore changing z = Ay we deduce

lim
s→1

cn,s

2

ˆ

Rn

v(x + y) + v(x − y) − 2v(x)

detA|A−1z|n+2s
dz =

∑
aij vij (x),

where aij = AAt . With this fact we can recover a priori estimates for (viscosity) solutions to systems of the form

Lu = f (x,u,∇u),

where L = ∑
aij ∂ij .

On the other hand, given a kernel K ∈ K the operator LK

LK =
ˆ
n

(v(y) − v(x))K(y − x)dy
R
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is the Euler Lagrange equation associated to the energy

EK,s(u) =
¨

R2n

|u(x) − u(y)|2K(x − y)dxdy.

Since the energy converges to the classical Dirichlet energy, weak solutions to the fractional equations will converge 
to weak solutions of divergence type equations.

The previous assertion still holds for more general operators of the form

Lu =
ˆ

Rn

(u(y) − u(x))K(x, y)dy

under symmetry assumptions K(x, y) = K(y, x) and satisfying bounds like (2.1) uniformly in x. The associated 
energy here is simply given by

¨

R2n

|u(x) − u(y)|2|x − y|n+2sK(x, y)dxdy.

With this in mind and since Theorem 2.4 is stable in s we recover the a priori Hölder estimates for (weak) solutions 
as in [1].
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