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Abstract

In this paper we prove the nonlinear orbital stability of a large class of steady state solutions to the Hamiltonian Mean Field 
(HMF) system with a Poisson interaction potential. These steady states are obtained as minimizers of an energy functional under 
one, two or infinitely many constraints. The singularity of the Poisson potential prevents from a direct run of the general strategy 
in [19,16] which was based on generalized rearrangement techniques, and which has been recently extended to the case of the 
usual (smooth) cosine potential [17]. Our strategy is rather based on variational techniques. However, due to the boundedness of 
the space domain, our variational problems do not enjoy the usual scaling invariances which are, in general, very important in the 
analysis of variational problems. To replace these scaling arguments, we introduce new transformations which, although specific 
to our context, remain somehow in the same spirit of rearrangements tools introduced in the references above. In particular, these 
transformations allow for the incorporation of an arbitrary number of constraints, and yield a stability result for a large class of 
steady states.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

1.1. The HMF Poisson model

The Hamiltonian mean-field (HMF) model [22,1] describes the evolution of particles moving on a circle under 
the action of a given potential. The most popular model is the HMF system with an infinite range attractive cosine 
potential. Although this model has no direct physical relevance, it is commonly used in the physics literature as a 
toy model to describe some gravitational systems. In particular, it is involved in the study of non-equilibrium phase 
transitions [9,26,2,25], of traveling clusters [7,29] or of relaxation processes [28,3,10]. Many results exist concerning 
the stability of steady state solutions to the HMF system with a cosine potential. Some are about the dynamics of 
perturbations of inhomogeneous steady states [4,5] and others deal with the linear stability of steady states [9,24,6]. 

* Corresponding author.
E-mail addresses: marine.fontaine@ens-rennes.fr (M. Fontaine), mohammed.lemou@univ-rennes1.fr (M. Lemou), 

florian.mehats@univ-rennes1.fr (F. Méhats).
https://doi.org/10.1016/j.anihpc.2018.05.002
0294-1449/© 2018 Elsevier Masson SAS. All rights reserved.

http://www.sciencedirect.com
https://doi.org/10.1016/j.anihpc.2018.05.002
http://www.elsevier.com/locate/anihpc
mailto:marine.fontaine@ens-rennes.fr
mailto:mohammed.lemou@univ-rennes1.fr
mailto:florian.mehats@univ-rennes1.fr
https://doi.org/10.1016/j.anihpc.2018.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2018.05.002&domain=pdf


218 M. Fontaine et al. / Ann. I. H. Poincaré – AN 36 (2019) 217–255
In [17], the nonlinear stability of inhomogeneous steady states that satisfy an explicit criterion is proved. In the case 
of homogeneous (i.e. with dependence in velocity only) steady states and a cosine interaction potential, a nonlinear 
Landau damping analysis has been investigated for the HMF model in Sobolev spaces [14].

There exist other kinds of potentials for the HMF model like the Poisson potential or the screened Poisson potential 
[11,23]. In this paper, we study the orbital stability of ground states of a HMF model with a Poisson potential. This 
model is closer to the Vlasov–Poisson system than the HMF model with a cosine potential. The Poisson interaction 
potential is however more singular, which induces serious technical difficulties and prevent from a complete appli-
cation of the strategy introduced in [19] for the Vlasov–Poisson system or in [17] for the HMF model with a cosine 
potential. For this reason, our analysis is based on variational methods. A general approach is introduced allowing 
to prove the nonlinear stability of a large class of steady states thanks to the study of variational problems with one, 
two or infinitely many constraints. Notice that, in our case, since the domain of the position is bounded and since the 
number of constraints may be infinite, scaling arguments like in [20,18] cannot be used. New transformations will be 
introduced to bypass these technical difficulties.

The HMF Poisson system reads{
∂tf + v∂θf − ∂θφf ∂vf = 0, (t, θ, v) ∈R+ ×T×R,

f (t = 0, θ, v) = finit (θ, v) ≥ 0,
(1.1)

where T is the flat torus R/2πZ and f = f (t, θ, v) is the nonnegative distribution function. The self-consistent 
potential φf associated to a distribution function f is defined for θ ∈ T by

∂2
θ φf = ρf − ‖f ‖L1

2π
, ρf (θ) =

ˆ

R

f (θ, v)dv (1.2)

or, equivalently,

φf (θ) =
2πˆ

0

W(θ − θ̃ )ρf (θ̃)dθ̃ , (1.3)

where the function W is defined on R by

W is 2π -periodic , ∀θ ∈ [−π,π], W(θ) = − θ2

4π
+ |θ |

2
− π

6
.

Note that W has a zero average, is continuous on R and that φf is 2π -periodic with zero average: 
´ 2π

0 φf (θ)dθ = 0.
Some quantities are invariant during the evolution:

• the Casimir functions: 
˜

j (f (θ, v))dθdv, for any function j ∈ C1(R+) such that j (0) = 0;
• the nonlinear energy:

H(f ) =
¨

v2

2
f (θ, v)dθdv − 1

2

2πˆ

0

φ′
f (θ)2dθ; (1.4)

• the total momentum: 
˜

vf (θ, v)dθdv.

Moreover, the HMF system satisfies the Galilean invariance, that is, if f (t, θ, v) is a solution, then so is f (t, θ +
v0t, v + v0), for all v0 ∈ R.

In Section 2, we prove the orbital stability of stationary states which are minimizers of a one-constraint variational 
problem. It is obtained for two kinds of steady states: the compactly supported ones and the Maxwell–Boltzmann 
(non-compactly supported) distributions [10]. In Section 3, we prove the orbital stability of compactly supported 
steady states which are minimizers of a two constraints problem. In particular, this covers the case of compactly 
supported steady states which are minimizers of a one constraint problem. Lastly, in Section 4, we prove the orbital 
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stability of the set of all the minimizers of a problem with an infinite number of constraints. This set of minimizers 
contains the minimizers of one and two constraints problems. However, at this stage, our strategy only provides a 
collective stability result (stability of the set of minimizers) for the minimizers of this problem with infinite number of 
constraints, instead of the individual stability of each minimizer which is only obtained for the one and two constraints 
variational problems.

1.2. Statement of the results

1.2.1. One-constraint problem
First, in Section 2, we will show the orbital stability of stationary states which are minimizers of the following 

variational problem

I(M) = inf
f ∈Ej ,‖f ‖L1 =M

H(f ) +
¨

j (f (θ, v))dθdv. (1.5)

The constant M > 0 is given and Ej is the energy space:

Ej =
{
f ≥ 0,‖(1 + v2)f ‖L1 < +∞,

∣∣∣∣
¨

j (f (θ, v))dθdv

∣∣∣∣< +∞
}

, (1.6)

where j : R+ →R is either the function defined by j (t) = t ln(t) for t > 0 and j (0) = 0 or a function j satisfying the 
following assumptions

(H1) j ∈ C2(R∗+); j (0) = j ′(0) = 0 and j ′′(t) > 0 for all t > 0,

(H2) lim
t→+∞

j (t)
t

= +∞.

Note that j (t) = t ln(t) satisfies (H2) but not (H1) since j ′(0) 
= 0 in this case.

Definition 1.1. We shall say that a sequence fn converges to f in Ej and we shall write fn

Ej−−→ f if ‖(1 + v2)(fn −
f )‖L1 −→

n→+∞ 0 and 
˜

j (fn(θ, v))dθ dv −→
n→+∞

˜
j (f (θ, v)) dθdv.

In our first result, we establish the existence of ground states for the HMF Poisson model (1.1) which are minimizers 
of the variational problem (1.5). This theorem will be proved in Section 2.1.2.

Theorem 1 (Existence of ground states). Let j be the function j (t) = t ln(t) or a function satisfying (H1) and (H2). 
We have:

(1) In both cases, the infimum (1.5) exists and is achieved at a minimizer f0 which is a steady state of (1.1).
(2) If j satisfies (H1) and (H2), any minimizer f0 of (1.5) is continuous, compactly supported, piecewise C1 and takes 

the form

f0(θ, v) = (j ′)−1
(

λ0 − v2

2
− φf0(θ)

)
+

for some λ0 ∈R.

The function (.)+ is defined by (x)+ = x if x ≥ 0, 0 else.
(3) If j (t) = t ln(t), any minimizer f0 of (1.5) is a C∞ function which takes the form

f0(θ, v) = exp

(
λ0 − v2

2
− φf0(θ)

)
for some λ0 ∈R.

Our second result concerns the orbital stability of the above constructed ground states under the action of the HMF 
Poisson flow. But first and foremost, we need to prove the uniqueness of the minimizers under equimeasurability 
condition. To do that, first recall the definition of the equimeasurability of two functions.
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Definition 1.2. Let f1 and f2 be two nonnegative functions in L1([0, 2π ] × R). The functions f1 and f2 are said to 
be equimeasurable, if, and only if, μf1 = μf2 where μf denotes the distribution function of f , defined by

μf (s) = |{(θ, v) ∈ [0,2π ] ×R : f (θ, v) > s}|, for all s ≥ 0, (1.7)

and |A| stands for the Lebesgue measure of a set A.

Lemma 1.1 (Uniqueness of the minimizer under equimeasurability condition). Let f1 and f2 be two equimeasurable 
steady states of (1.1) which minimize (1.5) with j (t) = t ln(t) or with j given by a function satisfying (H1) and (H2). 
Then the steady states f1 and f2 are equal up to a shift in θ .

This lemma will be proved in Section 2.2.1. Now, using the compactness of all the minimizing sequences of (1.5)
(which will be obtained along the proof of Theorem 2 in Section 2.2.2) and the uniqueness result given by Lemma 1.1, 
we can get the following stability result. It will be proved in Section 2.2.2.

Theorem 2 (Orbital stability of ground states). Consider the variational problem (1.5) with j (t) = t ln(t) or with j
given by a function satisfying (H1) and (H2). In both cases, we have the following result. For all M > 0, any steady 
state f0 of (1.1) which minimizes (1.5) is orbitally stable under the flow (1.1). More precisely for all ε > 0, there 
exists η(ε) > 0 such that the following holds true. Consider finit ∈ Ej satisfying ‖(1 + v2)(finit − f0)‖L1 < η(ε) and 
| ̃ j (finit ) −

˜
j (f0)| < η(ε). Let f (t) be a weak global solution to (1.1) on R+ with initial data finit such that 

the Casimir functions are preserved during the evolution and that H(f (t)) ≤ H(finit ). Then there exists a translation 
shift θ(.) with values in [0, 2π ] such that ∀t ∈R

∗+, we have

‖(1 + v2)(f (t, θ + θ(t), v) − f0(θ, v))‖L1 < ε.

1.2.2. Two-constraints problem
In Section 3, we will show the orbital stability of stationary states which are minimizers of the following variational 

problem

I(M1,Mj ) = inf
f ∈Ej

‖f ‖
L1 =M1,‖j (f )‖

L1 =Mj

H(f ) (1.8)

where Ej is the same energy space as above and the function j satisfies (H1) and (H2) together with the following 
additional assumption

(H3) There exist p, q > 1 such that p ≤ tj ′(t)
j (t)

≤ q , for t > 0.

Note that j is a nonnegative function. The first result of this part is the following theorem which will be proved in 
Section 3.2.2.

Theorem 3 (Existence of ground states). Let j be a function satisfying (H1), (H2) and (H3). We have:

(1) The infimum (1.8) exists and is achieved at a minimizer f0 which is a steady state of (1.1);
(2) Any steady state f0 obtained as a minimizer of (1.8) is continuous, compactly supported, piecewise C1 and takes 

the form

f0(θ, v) = (j ′)−1

(
v2

2 + φf0(θ) − λ0

μ0

)
+

where (λ0,μ0) ∈ R×R
∗−; (1.9)

(3) The associated density ρf0 is continuous and the associated potential φf0 is C2 on T.

Since the existence of ground states is established, the natural second result is the uniqueness of these ground states. 
For the two constraints cases, we are only able to obtain a local uniqueness for the ground states under equimeasura-
bility condition. A steady state f will be said to be homogeneous if φf = 0 and inhomogeneous is φf 
= 0. We have 
the following lemma which will be proved in Section 3.3.1.
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Lemma 1.2 (Local uniqueness of the minimizer under equimeasurability condition). Let f0 ∈ Ej be a steady state 
of (1.1) and a minimizer of (1.8). It can be written in the form (1.9) with (λ0, μ0) ∈ R × R

∗−. We have the following 
cases:

• f0 is a homogeneous steady state. Then it is the only steady state minimizer of (1.8) under equimeasurability 
condition.

• f0 is an inhomogeneous steady state. Then, there exists δ0 > 0 such that for all f ∈ Ej inhomogeneous steady 
state of (1.1) and minimizer of (1.8) equimeasurable to f0 which can be written as (1.9) with (λ, μ) ∈ R × R

∗−, 
we have
– either μ0 
= μ and ||μ0| − |μ|| > δ0,
– or μ0 = μ and f0 = f up to a translation shift in θ .

Then, similarly to the one-constraint problem, we will show the following result concerning the orbital stability of 
the ground states under the action of the HMF Poisson flow. It will be proved in Section 3.3.2.

Theorem 4 (Orbital stability of ground states). Let M1, Mj > 0. Then any steady state f0 of (1.1) which minimizes 
(1.8) is orbitally stable under the flow (1.1). It means that given ε > 0, there exists η(ε) > 0 such that the following 
holds true. Consider finit ∈ Ej with ‖(1 + v2)(finit − f0)‖L1 < η(ε) and with 

∣∣˜ j (finit ) −˜
j (f0)

∣∣ < η(ε). Let 
f (t) be a weak global solution to (1.1) on R+ with initial data finit such that the Casimir functions are preserved 
during the evolution and that H(f (t)) ≤ H(finit ). Then there exists a translation shift θ(.) with values in [0, 2π ] such 
that ∀t ∈R

∗+, we have

‖(1 + v2)(f (t, θ + θ(t), v) − f0(θ, v))‖L1 < ε.

1.2.3. Infinite number of constraints problem
Finally, in Section 4, we will show the orbital stability of stationary states which are minimizers of a problem with 

an infinite number of constraints. In this Section, the energy space is the following

E = {f ≥ 0,‖(1 + v2)f ‖L1 < +∞,‖f ‖L∞ < +∞}. (1.10)

Let f0 ∈ E ∩ C0([0, 2π ] × R). We will denote by Eq(f0) the set of equimeasurable functions to f0. The variational 
problem is

H0 = inf
f ∈Eq(f0),f ∈E

H(f ). (1.11)

This is a variational problem with infinitely many constraints since the equimeasurability condition on f is equivalent 
to say that f has the same Casimirs as f0: ‖j (f )‖L1 = ‖j (f0)‖L1 , ∀j .

Definition 1.3. We shall say that a sequence fn converges to f in E and we shall write fn
E−→ f if (fn)n is uniformly 

bounded and satisfies ‖(1 + v2)(fn − f )‖L1 −→
n→+∞ 0.

We start by showing in Section 4.2.2 the existence of ground states for the HMF Poisson model (1.1) which are 
minimizers of the variational problem (1.11).

Theorem 5 (Existence of ground states). The infimum (1.11) is finite and is achieved at a minimizer f̄ ∈ E which is a 
steady state of (1.1).

Our second result concerns the orbital stability of the above constructed ground states under the action of the 
HMF flow. As we do not have the uniqueness of the minimizers under constraint of equimeasurability, we can just 
get the orbital stability of the set of minimizers and not the orbital stability of each minimizer. It will be proved in 
Section 4.3.1.
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Theorem 6 (Orbital stability of ground states). Let f0 ∈ E ∩ C0([0, 2π ] × R). Then the set of steady states of (1.1)
which minimize (1.11) is orbitally stable under the flow (1.1). More precisely given fi0 minimizer of (1.11), for all 
ε > 0, there exists η(ε) > 0 such that the following holds true. Consider finit ∈ E with ‖(1 + v2)(finit − fi0)‖L1 <

η(ε). Let f (t) be a weak global solution to (1.1) on R+ with initial data finit such that the Casimir functions are 
preserved during the evolution and that H(f (t)) ≤ H(finit ). Then there exist fi1 minimizer of (1.11) and a translation 
shift θ(.) with values in [0, 2π ] such that ∀t ∈R

∗+, we have

‖(1 + v2)(f (t, θ + θ(t), v) − fi1(θ, v))‖L1 < ε.

2. Minimization problem with one constraint

2.1. Existence of ground states

This section is devoted to the proof of Theorem 1.

2.1.1. Properties of the infimum
For convenience, we set for f ∈ Ej , the below functional

J (f ) =H(f ) +
¨

j (f ) =
¨

v2

2
f (θ, v)dθdv − 1

2

2πˆ

0

φ′
f (θ)2dθ +

¨
j (f (θ, v))dθdv. (2.1)

Lemma 2.1. The variational problem (1.5) satisfies the following statements.

(1) Let j be a function satisfying (H1) and (H2) or j (t) = t ln(t), in both cases, the infimum (1.5) exists, i.e. I(M) >
−∞ for all M > 0.

(2) For any minimizing sequence (fn)n of the variational problem (1.5), we have the following properties:
(a) The minimizing sequence (fn)n is weakly compact in L1([0, 2π ] × R), i.e. there exists f̄ ∈ L1([0, 2π ] × R)

such that fn ⇀
n→+∞ f̄ weakly in L1.

(b) We have ‖φfn − φf̄ ‖H 1 −→
n→+∞ 0.

Proof. Let us start with the proof of item (1). Let f ∈ Ej such that ‖f ‖L1 = M . If j satisfies (H1) and (H2), then j
is nonnegative and we have

J (f ) ≥ −1

2

2πˆ

0

φ′
f (θ)2dθ ≥ −π‖W ′‖2

L∞M2

and this term is finite for f ∈ Ej . Note that

‖φ′
f ‖L∞ ≤ ‖W ′‖L∞‖f ‖L1 . (2.2)

If j (t) = t ln(t), the sign of j is not constant and we have to bound from below the term 
˜

j (f (θ, v))dθdv. With 
Jensen’s inequality and the convexity of t 
→ t ln(t), we get¨

f ln

(
f

f1

)
≥
(¨

f

)[
ln

(¨
f

)
− ln

(¨
f1

)]
. (2.3)

Taking f1(θ, v) = e− v2
2 and let C1 = ln

(˜
f1
)
, we obtain

J (f ) ≥ −1

2

2πˆ

0

φ′ 2
f (θ)dθ + M[ln(M) − C1] ≥ −π‖W ′‖2

L∞M2 + M[ln(M) − C1]. (2.4)

Each term is finite for f ∈ Ej . Thus I(M) exists for both functions j .
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Then let us continue with the proof of item (2). Let (fn)n be a minimizing sequence of (1.5). By the Dunford–Pettis 
theorem (see [13]), if ‖fn‖L1 , ‖v2fn‖L1 and 

˜
j (fn(θ, v))dθdv are bounded from above, the sequence of functions 

(fn)n is weakly compact in L1. Indeed, let us show that the set

P = {f ≥ 0,‖f ‖L1 = M,

¨
v2f ≤ K1,

∣∣∣∣
¨

j (f )

∣∣∣∣≤ K2 with K1,K2 which do not depend on f }
satisfies the hypothesis of Dunford–Pettis theorem. Since ‖f ‖L1 = M , it is clear that

sup
f ∈P

{¨
|f |dθdv

}
< +∞.

The boundedness of ‖v2f ‖L1 gives the vanishing at infinity. Indeed, we have for ε > 0, there exists K = [0, 2π ] ×
[−R, R] with R =

√
K1
ε

a compact subset of [0, 2π ] ×R such that
¨

Kc

|f |dθdv ≤ 1

R2

¨
v2f (θ, v)dθdv ≤ ε.

Hence

sup
f ∈P

⎧⎨
⎩
¨

Kc

|f |dθdv

⎫⎬
⎭< ε.

The equi-integrability is given by the boundedness of 
˜

j (f ). Let 0 < ε < 1 and R > 0 be such that for all t > R, 
j (t)
t

> 2K2
ε

, there exists δ = ε
2R

such that for A ⊂ [0, 2π ] ×R, |A| ≤ δ, we have:¨

A

|f |dθdv =
¨

{A,f <R}
f dθdv +

¨

{A,f >R}
f dθdv,

≤ R|A| +
¨

{
A,

εj (f )
2K2

>f
} f dθdv,

≤ ε

2
+ ε

2K2

¨
j (f )dθdv ≤ ε.

Hence

sup
f ∈P

⎧⎨
⎩
¨

A

|f |dθdv

⎫⎬
⎭< ε.

Notice that the domain in θ is bounded thus contrary to the Vlasov–Poisson system, there is no loss of mass at infinity. 
Let us then show that ‖v2fn‖L1 is bounded. We have from equality (2.1)

‖v2fn‖L1 = 2J (fn) +
2πˆ

0

φ′
fn

(θ)2dθ − 2
¨

j (fn(θ, v)dθdv.

If j satisfies the hypotheses (H1) and (H2), this equality becomes

‖v2fn‖L1 ≤ 2J (fn) + 2π‖W ′‖2
L∞M2.

Since J (fn) is bounded, we deduce in this case that ‖v2fn‖L1 is bounded. If j (t) = t ln(t), we have

‖v2fn‖L1 ≤ 2J (fn) + 2π‖W ′‖2
L∞M2 − 2

¨
fn(θ, v) ln(fn(θ, v))dθdv

≤ 2J (fn) + 2π‖W ′‖2
L∞M2 − 2M[ln(M) − C1] + 1

2
‖v2fn‖L1
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using Jensen’s inequality (2.3) with f1(θ, v) = e− v2
4 and C1 = ln(

˜
f1). Thus

‖v2fn‖L1 ≤ 4J (fn) + 4π‖W ′‖2
L∞M2 − 4M[ln(M) − C1]

and this quantity is bounded. Let us then show that 
˜

j (fn(θ, v))dθdv is bounded from above. Let j be a function 
satisfying (H1) and (H2) or j (t) = t ln(t), we have¨

j (fn(θ, v))dθdv ≤ J (fn) + π‖W ′‖2
L∞M2.

Each term of this inequality is bounded, therefore this quantity is bounded. Hence by Dunford–Pettis theorem, there 
exists f̄ ∈ L1 such that fn ⇀

n→+∞ f̄ in L1
w . This concludes the proof of item (1) of Lemma 2.1. Then, let us prove the 

last result. Since

φfn(θ) − φf̄ (θ) =
ˆ

R

2πˆ

0

W(θ − θ̃ )[fn(θ̃ , v) − f̄ (θ̃ , v)]dθ̃dv,

and

φ′
fn

(θ) − φ′
f̄
(θ) =

ˆ

R

2πˆ

0

W ′(θ − θ̃ )[fn(θ̃ , v) − f̄ (θ̃ , v)]dθ̃dv,

we immediately deduce applying dominated convergence and from the weak convergence of fn in L1([0, 2π ] × R)

that ‖φfn − φf̄ ‖H 1 −→
n→+∞ 0. �

The following lemma is the analog for j (t) = t ln(t) of a well-known result about the lower semicontinuity prop-
erties of convex nonnegative functions see [15]. The proof is not a direct consequence of the lower semicontinuity 
properties of convex positive functions since j (t) = t ln(t) changes sign on R+. It will be detailed in the appendix.

Lemma 2.2. Let (fn)n be a sequence of nonnegative functions converging weakly in L1 to f̄ such that ‖fn‖L1 = M , 
‖v2fn‖L1 ≤ C1 and | ̃ fn ln(fn)| ≤ C2 where M , C1 and C2 do not depend on n, we have the following inequality

¨
f̄ ln(f̄ )dθdv ≤ lim inf

n→+∞

¨
fn ln(fn)dθdv.

2.1.2. Proof of Theorem 1
We are now ready to prove Theorem 1.

Step 1: Existence of a minimizer.

Let M > 0. From item (1) of Lemma 2.1, we know that I(M) is finite for functions j satisfying (H1) and (H2) or 
j (t) = t ln(t). Let us show that there exists a function f̄ ∈ Ej which minimizes the variational problem (1.5). Let 
(fn)n ∈ EN

j be a minimizing sequence of I(M). Thus J (fn) −→
n→+∞ I(M) and ‖fn‖L1 = M where J is defined by 

(2.1). From item (2) of Lemma 2.1, we know that there exists f̄ ∈ L1([0, 2π ] × R) such that fn ⇀
n→+∞ f̄ weakly in 

L1([0, 2π ] × R). The L1-weak convergence implies ‖f̄ ‖L1 = M and f̄ ≥ 0 a.e. In the case where j satisfies (H1) 
and (H2), from lower semicontinuity properties of nonnegative convex functions (see [15]) and from item (b) of 
Lemma 2.1, we get f̄ ∈ Ej . For j (t) = t ln(t), from lower semicontinuity properties of nonnegative convex func-
tions and item (b) of Lemma 2.1, we get ‖v2f̄ ‖L1 < +∞ and from Lemma 2.2 and item (b) of Lemma 2.1, we get ˜

f̄ ln(f̄ ) < +∞. Using Jensen’s inequality (2.3) with f1(θ, v) = e− v2
2 , we get

M(ln(M) − C1) −
¨

v2

f̄ dθdv ≤
¨

f̄ ln(f̄ )dθdv,

2
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and we conclude that | ̃ j (f (θ, v))dθdv| < +∞ and that f̄ ∈ Ej . Therefore, in both cases, we have I(M) ≤ J (f̄ ). 
Moreover from item (2) of Lemma 2.1 and classical inequalities about the lower semicontinuity properties of convex 
nonnegative functions see [15] for j satisfying (H1) and (H2) and Lemma 2.2 for j (t) = t ln(t), we have the followings 
inequalities:

I(M) = lim
n→+∞J (fn) ≥

¨
v2

2
f̄ (θ, v)dθdv − 1

2

2πˆ

0

φ′
f̄
(θ)2dθ +

¨
j (f̄ (θ, v))dθdv.

Thus I(M) ≥ J (f̄ ). To recap, we have proved that I(M) = J (f̄ ) with f̄ ∈ Ej and ‖f̄ ‖L1 = M thus I(M) is achieved.

Step 2: Euler–Lagrange equation for the minimizers.

Let M > 0 and f̄ be a minimizer of I(M), let us write Euler–Lagrange equations satisfied by f̄ . For this purpose, for 
any given potential φ, we introduce a new distribution function Fφ having mass M and displaying nice monotonicity 
property for the energy–Casimir functional.

Lemma 2.3. Let j be a function verifying (H1) and (H2) or j (t) = t ln(t) and let M > 0. For all φ : [0, 2π ] −→ R

continuous function, there exists a unique λ ∈ ]minφ,+∞[ for j satisfying (H1), (H2) and λ ∈ R for j (t) = t ln(t)

such that the function Fφ : [0, 2π ] ×R −→R+ defined by⎧⎨
⎩

Fφ(θ, v) = (j ′)−1
(
λ − v2

2 − φ(θ)
)

+ for j satisfying (H1), (H2)

Fφ(θ, v) = exp
(
λ − v2

2 − φ(θ)
)

for j (t) = t ln(t),
(2.5)

satisfies ‖Fφ‖L1 = M .

Proof. Letting λ ∈ R, we define⎧⎨
⎩

K(λ) = ´ 2π

0

´
R
(j ′)−1

(
λ − v2

2 − φ(θ)
)

+ dθdv for j satisfying (H1), (H2)

K(λ) = ´ 2π

0

´
R

exp
(
λ − v2

2 − φ(θ)
)

dθdv for j (t) = t ln(t).
(2.6)

Since in both cases, j is strictly convex and 
∣∣∣{ v2

2 + φ(θ) < λ
}∣∣∣ is strictly increasing in λ, the map K is strictly 

increasing on [minφ,+∞[ for j satisfying (H1), (H2) and on R for j (t) = t ln(t). Note that for j satisfying (H1), 
(H2), K(λ) = 0 for λ ≤ minφ, then we have the following limit: lim

λ→min φ
K(λ) = 0 by using the monotone convergence 

theorem. For j (t) = t ln(t), we have lim
λ→−∞K(λ) = 0. For both functions, we have lim

λ→+∞K(λ) = +∞ by using 

Fatou’s lemma. Hence, there exists a unique λ such that ‖Fφ‖L1 = M . �
We introduce a second problem of minimization, we set M > 0. Let j (t) = t ln(t) or j given by a function satisfying 

(H1) and (H2).

J0 = inf´ 2π
0 φ=0

J (φ) where J (φ) =
¨ (

v2

2
+ φ(θ)

)
Fφ(θ, v)dθdv + 1

2

2πˆ

0

φ′(θ)2dθ +
¨

j (Fφ), (2.7)

where Fφ is defined by Lemma 2.3.

Lemma 2.4. We have the following inequalities:

(1) For all φ ∈ H 2([0, 2π ]) such that φ(0) = φ(2π) and 
´ 2π

φ = 0, we have J (Fφ) ≤ J (φ).
0
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(2) For all f ∈ Ej with ‖f ‖L1 = M1, we have

I(M) ≤ J (Fφf ) ≤ J (φf ) ≤ J (f ).

Besides I(M) = J0.

Proof. First we will show item (1) of this lemma. Let φ ∈ H 2([0, 2π ]) such that φ(0) = φ(2π) and 
´ 2π

0 φ = 0, we 
have

J (φ) = J (Fφ) − 1

2
‖φ′

Fφ‖2
L2 + 1

2
‖φ′‖2

L2 +
¨

(φ(θ) − φFφ (θ))Fφ(θ, v)dθdv

= J (Fφ) − 1

2
‖φ′

Fφ‖2
L2 + 1

2
‖φ′‖2

L2 +
2πˆ

0

(φ − φFφ )(φ′′
Fφ + ‖Fφ‖L1

2π
)dθ,

since φFφ satisfies the Poisson equation (1.2). Then, after integrating by parts and gathering the terms, we get

J (φ) = J (Fφ) + 1

2
‖φ′

Fφ − φ′‖2
L2 .

Hence J (φ) ≥ J (Fφ). Then, let us show the right inequality of item (2). Let f ∈ Ej such that ‖f ‖L1 = M . Using 
‖Fφ‖L1 = M , using the equality (2.5), the functional can be written as

J (f ) = J (φf ) +
¨ (

v2

2
+ φf (θ)

)
(f (θ, v) − Fφf (θ, v))dθdv +

¨
j (f ) −

¨
j (Fφ)

= J (φf ) +
¨

(λ − j ′(Fφf ))(f (θ, v) − Fφf (θ, v))dθdv +
¨

j (f ) −
¨

j (Fφ).

We get

J (f ) = J (φf ) +
¨

(j (f ) − j (Fφf ) − j ′(Fφf )(f − Fφf ))dθdv. (2.8)

The convexity of j gives us the desired inequality. The other inequalities are straightforward. �
We are now ready to get Euler–Lagrange equations. According to Lemma 2.4, if f̄ is a minimizer of I(M), φ̄ := φf̄

is a minimizer of J0 and J (f̄ ) = J (φ̄). Using (2.8), we get¨
(j (f̄ ) − j (F φ̄) − j ′(F φ̄)(f̄ − F φ̄))dθdv = 0.

Then writing the Taylor’s formula for the function j (f̄ ) and integrating over [0, 2π ] ×R, we get

¨
(f̄ − F φ̄)2

1ˆ

0

(1 − u)j ′′(u(f̄ − F φ̄) + F φ̄)du =
¨

j (f̄ ) −
¨

j (F φ̄) −
¨

(f̄ − F φ̄)j ′(F φ̄).

Thus 
˜

(f̄ − F φ̄)2
´ 1

0 (1 − u)j ′′(u(f̄ − F φ̄) + F φ̄)dudθdv = 0. As j ′′ > 0, we deduce that f̄ = F φ̄ . Hence, in the 
case where j satisfies (H1) and (H2), the minimizer f̄ has the following expression

f̄ (θ, v) = (j ′)−1
(

λ̄ − v2

2
− φf̄ (θ)

)
+

where λ̄ ∈R.

In the case where j (t) = t ln(t), we have

f̄ (θ, v) = exp

(
λ̄ − v2

2
− φf̄ (θ)

)
, where λ̄ ∈R.

Notice that in the case of j satisfying (H1) and (H2), the minimizer is continuous, piecewise C1 and compactly 
supported in v. In the case of j (t) = t ln(t), f̄ is a function of class C∞. We have shown that any minimizer of (1.5)
takes the above form and is at least piecewise C1 thus clearly any minimizer is a steady state of (1.1). The proof of 
Theorem 1 is complete.
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2.2. Orbital stability of the ground states

To prove the orbital stability result stated in Theorem 2, we first need to prove the uniqueness of the minimizers 
under equimeasurability condition.

2.2.1. Uniqueness of the minimizers under equimeasurability condition
This section is devoted to the proof of Lemma 1.1. Let f1 and f2 be two equimeasurable minimizers of I(M). In 

the case where j satisfies (H1) and (H2), they have the following expressions

f1(θ, v) = (j ′)−1
(

λ1 − v2

2
− φf1(θ)

)
+

, f2(θ, v) = (j ′)−1
(

λ2 − v2

2
− φf2(θ)

)
+

.

In the case where j (t) = t ln(t), they have the following expressions

f1(θ, v) = exp

(
λ1 − v2

2
− φf1(θ)

)
, f2(θ, v) = exp

(
λ2 − v2

2
− φf2(θ)

)
.

They can be written in the form

f1(θ, v) = G

(
v2

2
+ ψ1(θ)

)
, f2(θ, v) = G

(
v2

2
+ ψ2(θ)

)
; (2.9)

where G(t) = (j ′)−1((−t)+) or G(t) = exp(−t) with ψi(θ) = φfi
(θ) − λi . In both cases, G is a continuous, strictly 

decreasing and piecewise C1 function. The functions f1 and f2 are equimeasurable so ‖f1‖L∞ = ‖f2‖L∞ . Since G is 
a decreasing function, this means that G(minψ1) = G(minψ2). Besides, G being strictly decreasing and continuous 
on R, it is one-to-one from R to R+ then minψ1 = minψ2 = α. Thus, there exist θ1 and θ2 such that

ψ1(θ1) = ψ2(θ2) = α, ψ ′
1(θ1) = ψ ′

2(θ2) = 0.

Therefore, ψi satisfies⎧⎪⎨
⎪⎩

�′′(θ) = G(�(θ)),

�′(θi) = 0,

�(θi) = ψ1(θ1) = ψ2(θ2) = α,

for i = 1 or 2 and where G(e) = ´
R

G(v2

2 + e)dv − M
2π

. In both cases, G is locally Lipschitz thus according to Cauchy–
Lipschitz theorem, ψ1 = ψ2 up to the translation shift θ2 − θ1. From (2.9), we get f1 = f2 up to a translation shift 
in θ .

2.2.2. Proof of Theorem 2
We will prove the orbital stability of steady states of (1.1) which are minimizers of (1.5) in two steps. First, we will 

assume that all minimizing sequences of I(M) are compact and deduce that all minimizer is orbitally stable. Then, 
we will show the compactness of all minimizing sequence.

Step 1: Proof of the orbital stability.

Assume that all minimizing sequences are compact. Let us argue by contradiction. Let f0 be a minimizer and assume 
that f0 is orbitally unstable. Then there exist ε0 > 0, a sequence (f n

init )n ∈ EN

j and a sequence (tn)n ∈ R
+∗ such that 

lim
n→+∞‖(1 + v2)(f n

init − f0)‖L1 = 0 and lim
n→+∞

∣∣˜ j (f n
init ) −˜

j (f0)
∣∣= 0 and for all n, for all θ0 ∈ [0, 2π ]

{
‖f n(tn, θ + θ0, v) − f0(θ, v)‖L1 > ε0,

or ‖v2(f n(tn, θ + θ0, v) − f0(θ, v))‖L1 > ε0,
(2.10)

where f n(tn, θ, v) is a solution to (1.1) with initial data f n
init . Letting gn(θ, v) = f n(tn, θ, v), we have J (gn) −

J (f0) ≤ J (f n
init ) −J (f0) −→ 0 since the system (1.1) preserves the Casimir functionals and H(f n(tn)) ≤ H(f n

init ). 
n→+∞
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Introduce g̃n(θ, v) = gn(θ, v
λn

) with λn = M
‖gn‖L1

. This function g̃n satisfies ‖g̃n‖L1 = M , thus 0 ≤ J (g̃n) − J (f0). 
Notice that

J (f0) ≤ J (g̃n) ≤ λn[(λ2
n − 1)

¨
v2

2
gn(θ, v)dθdv − λn − 1

2

2πˆ

0

φ′ 2
gn

(θ)dθ + J (f n
init )].

It is clear that λn −→
n→+∞ 1. Moreover using inequality (2.2), we show that 

(´ 2π

0 φ′ 2
gn

(θ)dθ
)

n
is a bounded sequence. 

Then, arguing as in the proof of item (2) of Lemma 2.1, we get 
(‖v2gn‖L1

)
n

is bounded sequence. Thus, J (f0) ≤
lim

n→+∞J (g̃n) ≤ J (f0). Hence (g̃n)n is a minimizing sequence of I(M). According to our assumption, it is a compact 

sequence in Ej : there exists g̃ ∈ Ej such that, up to an extraction of a subsequence, we have

‖gn − g̃‖L1 −→
n→+∞ 0, ‖v2(gn − g̃)‖L1 −→

n→+∞ 0,

∣∣∣∣
¨

j (gn) −
¨

j (g̃)

∣∣∣∣ −→
n→+∞ 0. (2.11)

According to the conservation properties of HMF Poisson system, we have

|{(θ, v) ∈ [0,2π ] ×R, gn(θ, v) > t}| = |{(θ, v) ∈ [0,2π ] ×R, f n
init (θ, v) > t}|.

Letting ε > 0, we notice that ∀ 0 < t < ε{
{gn > t} ⊂ {{|gn − g̃| < ε} ∩ {g̃ > t − ε}} ∪ {|gn − g̃| ≥ ε},
{gn > t} ⊃ {|gn − g̃| < ε} ∩ {g̃ > t + ε}.

Passing to the limit, we get

lim sup
n→+∞

|{gn > t}| ≤ |{g̃ > t − ε}|, lim inf
n→+∞|{gn > t}| ≥ |{g̃ > t + ε}|.

Then we pass to the limit as ε → 0 and we get up to an extraction of a subsequence;

lim
n→+∞|{gn > t}| = |{g̃ > t}| for almost all t > 0.

In the same way, we obtain up to an extraction of a subsequence

lim
n→+∞|{f n

init > t}| = |{f0 > t}| for almost all t > 0.

Noticing that the functions t → |{f0 > t}| and t → |{g̃ > t}| are right-continuous, we get

|{f0 > t}| = |{g̃ > t}|, ∀t ≥ 0.

Thus f0 and g are two equimeasurable minimizers of I(M) but according to the previous uniqueness result stated 
in Lemma 1.1, f0 = g̃ up to a translation shift. To conclude, (2.11) contradicts (2.10) and we have proved that f0 is 
orbitally stable.

Step 2: Compactness of the minimizing sequences.

Let j satisfy (H1) and (H2) or j (t) = t ln(t). Let (fn)n be a minimizing sequence of I(M). Let us show 
that (fn)n is compact in Ej , i.e. that there exists f0 ∈ Ej such that lim

n→+∞‖(1 + v2)(fn − f0)‖L1 = 0 and 

lim
n→+∞

∣∣˜ j (f n
init ) −˜

j (f0)
∣∣ = 0 up to an extraction of a subsequence. Arguing as before in Section 2.1.2, there 

exists f0 ∈ Ej such that ‖f0‖L1 = M , fn ⇀
n→+∞ f0 in L1

w up to an extraction of a subsequence and J (f0) = I(M). 

From this last equality and the strong convergence in L2 of the potential established in item (b) of Lemma 2.1, we 
deduce that

lim
n→+∞

(¨
v2

fn(θ, v)dθdv +
¨

j (fn)

)
=
¨

v2

f0(θ, v)dθdv +
¨

j (f0). (2.12)

2 2
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From equality (2.12), from lower semicontinuity properties of nonnegative convex functions (see [15]) and from 
Lemma 2.2, we get

¨
j (fn) −→

n→+∞

¨
j (f0), and

¨
v2

2
fn(θ, v)dθdv −→

n→+∞

¨
v2

2
f0(θ, v)dθdv. (2.13)

There remains to show that ‖v2(fn − f0)‖L1 −→
n→+∞ 0 and ‖fn − f0‖L1 −→

n→+∞ 0.

In the case of j (t) = t ln(t), the Csiszar–Kullback’s inequality, see [27], gives us the strong convergence in 
L1([0, 2π ] ×R). In our case, this Csiszar–Kullback’s inequality writes

‖fn − f0‖2
L1 ≤ 2M

¨
fn ln

(
fn

f0

)
. (2.14)

Hence, to prove the strong convergence in L1([0, 2π ] ×R), it is sufficient to prove that
¨

fn ln

(
fn

f0

)
dθdv −→

n→+∞ 0.

Since f0(θ, v) = exp
(
λ0 − v2

2 − φf0(θ)
)

, we have

¨
fn ln

(
fn

f0

)
dθdv = J (fn) − J (f0) + 1

2
(‖φ′

fn
‖2

L2 − ‖φ′
f0

‖2
L2) +

¨
φf0(fn − f0). (2.15)

Note that

(1) J (fn) − J (f0) −→
n→+∞ 0 since (fn)n is a minimizing sequence of I(M),

(2) ‖φ′
fn

‖2
L2 − ‖φ′

f0
‖2

L2 −→
n→+∞ 0 since of the strong convergence in L2([0, 2π ] × R) of the potential established in 

item (b) of Lemma 2.1,
(3)

˜
φf0(θ)(fn(θ, v) − f0(θ, v))dθdv −→

n→+∞ 0 since of the weak convergence of fn to f0 in L1([0, 2π ] ×R).

Hence with (2.14) and (2.15), we get ‖fn − f0‖L1 −→
n→+∞ 0. From this strong convergence in L1([0, 2π ] × R), we 

deduce the a.e. convergence of fn and with Brezis–Lieb’s lemma, and the second limit in (2.13), we get the strong 
convergence of v2fn in L1([0, 2π ] ×R). Hence the sequence (fn)n is compact in Ej .

In the case of j satisfying (H1) and (H2), we again use Brezis–Lieb’s lemma, see [8], to get the strong convergence 
of fn in L1. We already have that ‖fn‖L1 −→

n→+∞ ‖f0‖L1 . Hence, with Brezis–Lieb’s lemma, it is sufficient to show 

that fn −→
n→+∞ f0 a.e. Writing the Taylor formula for the function j (fn) and integrating over [0, 2π ] ×R, we get

¨
(fn − f0)

2

1ˆ

0

(1 − u)j ′′(u(fn − f0) + f0)du =
¨

j (fn) −
¨

j (f0) −
¨

(fn − f0)j
′(f0). (2.16)

Note also that

(1)
˜

j (fn) −→
n→+∞

˜
j (f0),

(2)
˜

j ′(f0)(fn − f0) −→
n→+∞ 0 since fn ⇀

n→+∞ f0 L1
w . Note that j ′(f0) ∈ L∞ since f0 ∈ L∞.

Hence with Fubini–Tonelli’s theorem, we get¨
(fn − f0)

2j ′′((fn − f0)u + f0) −→ 0 for almost all u ∈ [0,1].

n→+∞
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Let u0 ∈ [0, 1] such that 
˜

(fn − f0)
2j ′′((fn − f0)u0 + f0) −→

n→+∞ 0. Up to an extraction of a subsequence, we have

(fn − f0)
2j ′′((fn − f0)u0 + f0) −→

n→+∞ 0 for almost all (θ, v) ∈ [0,2π ] ×R.

This means there exists �u0 such that |�u0 | = 0 and ∀(θ, v) ∈ [0, 2π ] ×R \ �u0 ,

(fn(θ, v) − f0(θ, v))2j ′′(u0(fn(θ, v) − f0(θ, v)) + f0(θ, v)) −→
n→+∞ 0. (2.17)

Let us show that, up to a subsequence, fn(θ, v) −→
n→+∞ f0(θ, v) for (θ, v) ∈ [0, 2π ] ×R \ �u0 . If u0 = 0, we directly 

have the wanted convergence. Then let u0 ∈ ]0,1] and let l(θ, v) be a limit point of (fn(θ, v))n. Assume that l(θ, v) 
=
f0(θ, v).

• First case: l(θ, v) < +∞. As j ′′ is continuous and j ′′ > 0, we have

(fn(θ, v) − f0(θ, v))2j ′′(u0(fn(θ, v) − f0(θ, v)) + f0(θ, v))

−→
n→+∞ (l(θ, v) − f0(θ, v))2j ′′(u0(l(θ, v) − f0(θ, v)) + f0(θ, v)) > 0.

This contradicts (2.17).
• Second case: l(θ, v) = +∞. Thus:

(fn(θ, v) − f0(θ, v))2 −→
n→+∞ +∞ and u0(fn(θ, v) − f0(θ, v)) + f0(θ, v) −→

n→+∞ +∞. (2.18)

However the hypothesis (H2) implies that t2j ′′(t) does not converge to 0 when t goes to infinity. Indeed, arguing 
by contradiction, integrating twice over [x0, x] and taking the limit for x → +∞, we get

∀ε > 0, ∃M > 0, such that ∀x > M, 0 ≤ j (x)

x
≤ ε

x0
+ j ′(x0).

This inequality contradicts (H2) then t2j ′′(t) does not converge to 0 when t goes to infinity and (2.18) contradicts 
(2.17).

Hence fn −→
n→+∞ f0 a.e. and we conclude using the Brezis–Lieb’s lemma. The minimizing sequence is compact in Ej .

3. Problem with two constraints

3.1. Toolbox for the two constraints problem

In this section, we define a new function denoted by Fφ . Note that the function Fφ of (3.1) differs from the 
one of Section 2.1.2. However it can be seen as an equivalent of (2.5) in the sense that both functions Fφ satisfy 
the constraints of the one and two constraints problem respectively. There will be no possible confusion since the 
function Fφ of Section 2.1.2 will no longer be used. First, thank to this new function, the existence of minimizers 
is shown. Indeed the sequence (Fφfn )n has better compactness properties than the sequence (fn)n. Then, we get the 
compactness of the sequence (fn)n via the sequence (Fφfn )n thanks to monotonicity properties of H with respect to 
the transformation Fφ . These properties will be detailed in Lemma 3.2. More precisely, we have the following lemma:

Lemma 3.1. Let j be a function verifying (H1), (H2) and (H3) and let M1, Mj > 0. For all φ : [0, 2π ] −→ R con-
tinuous function, there exists a unique pair (λ, μ) ∈R ×R

∗− such that the function Fφ : [0, 2π ] ×R −→ R+ defined 
by

Fφ(θ, v) = (j ′)−1

(
v2

2 + φ(θ) − λ

μ

)
+

satisfies ‖Fφ‖L1 = M1, ‖j (Fφ)‖L1 = Mj . (3.1)
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Proof. Letting (λ, μ) ∈ R ×R
∗−, we define

K(λ,μ) =
2πˆ

0

ˆ

R

(j ′)−1

(
v2

2 + φ(θ) − λ

μ

)
+

dθdv.

We set μ ∈ R
∗−, since j is strict convex and 

∣∣∣{ v2

2 + φ(θ) < λ
}∣∣∣ is strictly increasing in λ, the map λ → K(λ, μ)

is strictly increasing on [minφ,+∞[. Note that K(λ, μ) = 0 for λ ≤ minφ. We also have the following limits: 
lim

λ→min φ
K(λ, μ) = 0 using the monotone convergence theorem and lim

λ→+∞K(λ, μ) = +∞ using Fatou’s lemma. 

Therefore, there exists a unique λ = λ(μ) ∈ ]minφ,+∞[ such that ‖Fφ‖L1 = M1. We now define the map:

G :

⎧⎪⎨
⎪⎩
R

∗− −→R+

μ → ´ 2π

0

´
R

j ◦ (j ′)−1
(

v2
2 +φ(θ)−λ(μ)

μ

)
+

dθdv.

Our purpose is to show that G is continuous, strictly increasing on R∗− and that lim
μ→−∞G(μ) = 0 and lim

μ→0
G(μ) =

+∞. This claim would imply that there exists a unique μ ∈R
∗− such that G(μ) = Mj and the proof of the lemma will 

be ended.
To get the monotony of G and the continuity of λ on R∗−, we first have to show the decrease of λ. Since 

K(λ(μ), μ) = M1, using that both functions λ 
→ K(λ, μ) and μ 
→ K(λ, μ) are increasing, we get that the map 
λ is nonincreasing on R∗−. According to the definition of G, it is sufficient to show that μ → λ(μ) is continuous on 
R

∗− to get the continuity of G on R∗−. To prove the continuity of λ, we argue by contradiction. Assume that μ → λ(μ)

is discontinuous at μ0 < 0. Assume on the one hand that λ is left-discontinuous, i.e. there exist ε0 > 0 and an increas-
ing sequence (μn)n ∈ (R∗−)N converging to μ0 such that |λ(μn) − λ(μ0)| > ε0. λ being nonincreasing and j being 
convex, we get

M1 ≥ K(λ(μ0) + ε0,μn).

Applying Fatou’s lemma, we have

K(λ(μ0) + ε0,μn) ≥ K(λ(μ0) + ε0,μ0).

Since K(λ(μ0) + ε0, μ0) > M1, we get a contradiction and λ is left-continuous. On the other hand, assume that λ is 
right-discontinuous at μ0 < 0, i.e. there exist ε0 > 0 and a decreasing sequence (μn)n ∈ (R∗−)N converging to μ0 such 
that |λ(μn) − λ(μ0)| > ε0. λ being nonincreasing and j being convex, we get

M1 ≤ K(λ(μ0) − ε0,μn).

Using a generalization of the Beppo Levi’s theorem for the decreasing functions, we get

K(λ(μ0) − ε0,μn) ≤ K(λ(μ0) − ε0,μ0).

Since K(λ(μ0) − ε0, μ0) < M1, we get a contradiction and λ is right-continuous. We conclude that the map λ is 
continuous on R∗−. Let us show the increase of G. Before that, notice that K(λ, μ) can be written as

K(λ,μ) = 2
√

2

2πˆ

0

+∞ˆ

0

1

j ′′ ◦ (j ′)−1(t)

√
(μt + λ − φ(θ))+dtdθ, (3.2)

by performing a change of variables: t = v2
2 +φ(θ)−λ

μ
and an integration by parts. By doing the exact same thing for G, 

we can also write

G(μ) = 2
√

2

2πˆ +∞ˆ
t

j ′′ ◦ (j ′)−1(t)

√
(μt + λ(μ) − φ(θ))+dtdθ. (3.3)
0 0
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Let μ1, μ2 ∈ R
∗− be such that μ1 
= μ2. Thanks to the previous step, there exists, for i = 1, 2, λi := λ(μi) ∈

]minφ,+∞[ such that K(λi, μi) = M1. Hence, by using the equality (3.2) and by setting for i = 1, 2, Aμi
:=

μit + λi − φ(θ), we get

K(λ1,μ1) − K(λ2,μ2) = 2
√

2

2πˆ

0

+∞ˆ

0

1

j ′′ ◦ (j ′)−1(t)
[(Aμ1)

1
2+ − (Aμ2)

1
2+]dtdθ = 0. (3.4)

Then, by using (3.3) and (3.4), we have for all C ∈ R

G(μ1) − G(μ2) = 2
√

2

2πˆ

0

+∞ˆ

0

t + C

j ′′ ◦ (j ′)−1(t)
[(Aμ1)

1
2+ − (Aμ2)

1
2+]dtdθ.

We set C0 := λ1−λ2
μ1−μ2

and we get

(μ1 − μ2)(G(μ1) − G(μ2)) = 2
√

2

2πˆ

0

+∞ˆ

0

(Aμ1 − Aμ2)

j ′′ ◦ (j ′)−1(t)
[(Aμ1)

1
2+ − (Aμ2)

1
2+]dtdθ. (3.5)

Since the function t 
→ (t)
1
2+ is nondecreasing, we have (Aμ1 −Aμ2)[(Aμ1)

1
2+ −(Aμ2)

1
2+] ≥ 0. Hence G is a nondecreas-

ing function. We now notice that (Aμ1 − Aμ2)[(Aμ1)
1
2+ − (Aμ2)

1
2+] > 0 for θ ∈ {φ < λ1} and t ∈ ]0,

φ(θ)−λ1
μ1

[. Besides 
the measure of the set {φ < λ1} is strictly positive because λ1 > minφ. Thus, the function G is strictly increasing 
on R

∗−.
It remains to compute the limits of G. First let us prove that lim

μ→−∞λ(μ) = +∞. The function λ being nonincreas-

ing, lim
μ→−∞λ(μ) exists and we denote it by λ∞. Assume that λ∞ < ∞. We have

M1 = K(λ(μ),μ) ≤ K(λ∞,μ) −→
μ→−∞ 0.

This is a contradiction then lim
μ→−∞λ(μ) = +∞. Then let us prove that lim

μ→0−λ(μ) = minφ. λ being nonincreasing, 

lim
μ→0−λ(μ) exists and we denote it by λ0. We have to deal with three cases. First, notice that (H2) and (H3) imply 

lim
t→+∞(j ′)−1(t) = +∞, then we get

⎧⎨
⎩

if λ0 > minφ : M1 = K(λ(μ),μ) > K(λ0,μ) −→
μ→0− +∞, applying Fatou’s lemma,

if λ0 < minφ : M1 = K(λ(μ),μ) < K(
min φ+λ0

2 ,μ) = 0 since min φ+λ0
2 < minφ.

Hence only the third case can occur, i.e. lim
μ→0−λ(μ) = minφ.

Let us continue with the computation of lim
μ→0−G(μ). Performing the change of variables: u = v√

2(λ(μ)−φ(θ))+
, we 

get

G(μ) = 2
√

2

2πˆ

0

1ˆ

0

√
(λ(μ) − φ(θ))+j ◦ (j ′)−1

(
(λ(μ) − φ(θ))+

|μ| (1 − u2)

)
dθdu

and

M1 = 2
√

2

2πˆ 1ˆ √
(λ(μ) − φ(θ))+(j ′)−1

(
(λ(μ) − φ(θ))+

|μ| (1 − u2)

)
dθdu. (3.6)
0 0
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Then applying Jensen’s inequality to the convex function j , we obtain

j

(
M1´ 2π

0 2
√

2
√

(λ(μ) − φ(θ))+dθ

)
+

≤ G(μ)´ 2π

0 2
√

2
√

(λ(μ) − φ(θ))+dθ
.

Hence

G(μ) ≥
j
(

M1
α(μ)

)
M1

α(μ)

M1 with α(μ) = 2
√

2

2πˆ

0

√
(λ(μ) − φ(θ))+dθ. (3.7)

Using the dominated convergence theorem, we show that α(μ) −→
μ→0− 0. But j satisfies (H2) therefore

j
(

M1
α(μ)

)
M1

α(μ)

−→
μ→0− +∞ and lim

μ→0−G(μ) = +∞.

Let us continue with the computation of lim
μ→−∞G(μ). The hypothesis (H3) implies the following inequality:

t (j ′)−1(t)

q
≤ j ◦ (j ′)−1(t) ≤ t (j ′)−1(t)

p
. (3.8)

Thanks to (3.8), we can estimate

0 ≤ G(μ) ≤ M1

p

(λ(μ) − minφ)+
|μ| (3.9)

Let us show that M1
p

(λ(μ)−min φ)+
|μ| −→

μ→−∞ 0. Using the expression of M1 given by (3.6), we get

M1 ≥√(λ(μ) − maxφ)+4π
√

2

1ˆ

0

(j ′)−1
(

(λ(μ) − maxφ)+
|μ| (1 − u2)

)
du ≥ 0.

For |μ| sufficiently large, we have (λ(μ) − maxφ)+ > 0. Therefore, we have

M1√
(λ(μ) − maxφ)+

1

4π
√

2
≥

1ˆ

0

(j ′)−1
(

(λ(μ) − maxφ)+
|μ| (1 − u2)

)
du ≥ 0,

the term on the left side converges to 0. Hence using Fatou’s lemma, we get

1ˆ

0

lim inf
μ→−∞(j ′)−1

(
(λ(μ) − maxφ)+

|μ| (1 − u2)

)
du = 0.

We deduce that (λ(μ)−max φ)+
|μ| −→

μ→−∞ 0 and we conclude with (3.9) that lim
μ→−∞G(μ) = 0. The proof is complete. �

As mentioned before the sequence (Fφfn )n will be used to show the existence of minimizers of (1.8) and the 
compactness of minimizing sequences. To do that, we need to link H(fn) and H(Fφfn ). For this purpose, we introduce 
a second problem of minimization and we set M1, Mj > 0.

J0 = inf´ 2π
0 φ=0

J (φ) where J (φ) =
¨ (

v2

2
+ φ(θ)

)
Fφ(θ, v)dθdv + 1

2

2πˆ

0

φ′(θ)2dθ, (3.10)

where Fφ is defined by Lemma 3.1.
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Lemma 3.2. We have the following inequalities:

(1) For all φ ∈ H 2([0, 2π ]) such that φ(0) = φ(2π) and 
´ 2π

0 φ = 0, we have H(Fφ) ≤ J (φ).
(2) For all f ∈ Ej with ‖f ‖L1 = M1 and ‖j (f )‖L1 = Mj , we have

I(M1,Mj ) ≤ H(Fφf ) ≤ J (φf ) ≤H(f ).

Besides I(M1, Mj) = J0.

Proof. First, let us show item (1) of this lemma. Let φ ∈ H 2([0, 2π ]) such that φ(0) = φ(2π) and 
´ 2π

0 φ = 0, we 
have

J (φ) =H(Fφ) − 1

2
‖φ′

Fφ‖2
L2 + 1

2
‖φ′‖2

L2 +
¨

(φ(θ) − φFφ (θ))Fφ(θ, v)dθdv

=H(Fφ) − 1

2
‖φ′

Fφ‖2
L2 + 1

2
‖φ′‖2

L2 +
2πˆ

0

(φ − φFφ )(φ′′
Fφ + ‖Fφ‖L1

2π
)dθ,

since φFφ satisfies the Poisson equation (1.2). Then, after integrating by parts and gathering the terms, we get

J (φ) =H(Fφ) + 1

2
‖φ′

Fφ − φ′‖2
L2 . (3.11)

Hence J (φ) ≥ H(Fφ). Then, let us show the right inequality of item (2). Let f ∈ Ej such that ‖f ‖L1 = M1 and 
‖j (f )‖L1 = Mj . Using ‖Fφ‖L1 = M1 and ‖j (Fφ)‖L1 = Mj , using equality (1.4), the Hamiltonian can be written in 
the form

H(f ) = J (φf ) +
¨ (

v2

2
+ φf (θ)

)
(f (θ, v) − Fφf (θ, v))dθdv

= J (φf ) +
¨

(μj ′(Fφf ) + λ)(f (θ, v) − Fφf (θ, v))dθdv.

We get

H(f ) = J (φf ) − μ

¨
(j (f ) − j (Fφf ) − j ′(Fφf )(f − Fφf ))dθdv. (3.12)

The convexity of j gives us the desired inequality. The other inequalities are straightforward. �
3.2. Existence of ground states

This section is devoted to the proof of Theorem 3.

3.2.1. Properties of the infimum

Lemma 3.3. The variational problem (1.8) satisfies the following statements.

(1) The infimum (1.8) exists, i.e. I(M1, Mj) > −∞ for M1, Mj > 0.
(2) For any minimizing sequence (fn)n of the variational problem (1.8), we have the following properties:

(a) The minimizing sequence (fn)n is weakly compact in L1([0, 2π ] × R), i.e. there exists f̄ ∈ L1([0, 2π ] × R)

such that fn ⇀
n→+∞ f̄ weakly in L1.

(b) We have ‖φfn − φf̄ ‖H 1 −→
n→+∞ 0.

The proof of Lemma 3.3 is similar to the one of Lemma 2.1.
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Lemma 3.4. Let (fn)n be a minimizing sequence of the variational problem (1.8) and let φn := φfn be the 
associated potential. Using Lemma 3.1, there exists a unique pair (λn, μn) ∈ R × R

∗− such that Fφn(θ, v) =
(j ′)−1

(
v2
2 +φn(θ)−λn

μn

)
+

verifies ‖Fφn‖L1 = M1 and ‖j (Fφn)‖L1 = Mj . The sequences (λn)n and (μn)n are bounded.

Proof. Let us first prove that the sequence (λn)n is bounded. We argue by contradiction. Hence up to an extrac-
tion of a subsequence, λn −→

n→+∞ +∞. According to the expression (1.3) of the potential φn, we have ‖φn‖L∞ ≤
2π‖W‖L∞M1 := C. Using the expression of M1 given by (3.6), we get

M1 ≥√(λn − C)+4π
√

2

1ˆ

0

(j ′)−1
(

(λn − C)+
|μn| (1 − u2)

)
du ≥ 0.

Then, we argue as at the end of the proof of Lemma 3.1 and we deduce that (λn−C)+
|μn| −→

n→+∞ 0. With the hypothesis 

(H3) and ‖φn‖L∞ ≤ C, we can estimate Mj as follows:

0 ≤ Mj ≤ M1

p

(λn + C)+
|μn| .

The term of the right side converges to 0 then we get a contradiction. The sequence (λn)n is hence bounded. Now, we 
shall prove that the sequence (μn)n is bounded. Using the expression (3.6) of M1 and the fact that λn is bounded, we 
have

M1

4π
√

2C̃
≤ (j ′)−1

(
C̃

|μn|

)
where C̃ is a constant.

Therefore we obtain

0 ≤ |μn| ≤ C̃

j ′
(

M1

4π
√

2C̃

)
and we deduce that the sequence (μn)n is bounded. This achieves the proof of this lemma. �
3.2.2. Proof of Theorem 3

We are now ready to prove Theorem 3.

Step 1: Existence of a minimizer.

Let M1, Mj > 0. From Lemma 3.3, we know that I(M1, Mj) is finite. Let us show that there exists a function 
of Ej which minimizes the variational problem (1.8). Let (fn)n ∈ EN

j be a minimizing sequence of I(M1, Mj). 

Thus H(fn) −→
n→+∞ I(M1, Mj), ‖fn‖L1 = M1 and ‖j (fn)‖L1 = Mj . From item (2) of Lemma 3.3, there exists f̄ ∈

L1([0, 2π ] ×R) such that fn ⇀
n→+∞ f̄ weakly in L1. In what follows, we will denote by φn the potential φfn defined 

by (1.3). Thanks to the weak convergence in L1, we only get that ‖f̄ ‖L1 = M1 and ‖j (f̄ )‖L1 ≤ Mj . The idea is to 
introduce a new sequence which is a minimizing sequence of (1.8) and which has better compactness properties. For 
this purpose, we define

Fφn(θ, v) = (j ′)−1

(
v2

2 + φn(θ) − λn

μn

)
+

(3.13)

where (λn, μn) is the unique pair of R × R
∗− such that ‖Fφn‖L1 = M1 and ‖j (Fφn)‖L1 = Mj . According to 

Lemma 3.1, Fφn is well-defined and notice that the pair (λn, μn) depends on φn this is why we will denote by 



236 M. Fontaine et al. / Ann. I. H. Poincaré – AN 36 (2019) 217–255
λn = λ(φn) and μn = μ(φn). Besides, using Lemma 3.2, we see that (Fφn)n is a minimizing sequence of (1.8). Ac-
cording to item (b) of Lemma 3.3, φn converges to φ̄ := φf̄ strongly in L2([0, 2π ] ×R). Thus, up to an extraction of a 
subsequence, φn converges to φ̄ a.e. Let us prove that the sequences (λn)n and (μn)n converge. Using Lemma 3.4, we 
get that the sequences (λn)n and (μn)n are bounded. Therefore, there exist λ0 and μ0 such that, up to an extraction of 
a subsequence, λn −→

n→+∞ λ0 and μn −→
n→+∞ μ0. Let us prove that μ0 < 0. Assume that μn −→

n→+∞ 0. First assume that 

λn −→
n→+∞ λ0 
= min φ̄. From assumptions on j , this implies

(j ′)−1

(
λn − v2

2 − φn(θ)

|μn|

)
+

−→
n→+∞ +∞ for almost all (θ, v) ∈ [0,2π ] ×R.

And using Fatou’s lemma, we get a contradiction. Then assume that λn −→
n→+∞ min φ̄, using inequality (3.7), we get

Mj ≥
j
(

M1
αn

)
M1
αn

with αn = 2
√

2

2πˆ

0

√
(λn − φn(θ))+dθ. (3.14)

Using the dominated convergence theorem, we show that αn −→
n→+∞ 0. But j satisfies (H2) thus 

j
(

M1
αn

)
M1
αn

−→
n→+∞ +∞ and 

we get a contradiction with (3.14). Besides λ0 
= min φ̄ since otherwise Fφn converges to 0 and we get a contradiction 

with ‖Fφn‖L1 = M1. Hence we have proved that Fφn converges to (j ′)−1
(

v2
2 +φ̄(θ)−λ0

μ0

)
+

a.e. Now let us show that 

λ0 = λ(φ̄) and μ0 = μ(φ̄) to get that (j ′)−1
(

v2
2 +φ̄(θ)−λ0

μ0

)
+

satisfies the two constraints. For this purpose, we first 

prove by the dominated convergence theorem, ‖φn‖L∞ being bounded, that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖Fφn‖L1 −→
n→+∞

´ 2π

0

´
R
(j ′)−1

(
v2
2 +φ̄(θ)−λ0

μ0

)
+

dθdv,

‖j (Fφn)‖L1 −→
n→+∞

´ 2π

0

´
R

j ◦ (j ′)−1
(

v2
2 +φ̄(θ)−λ0

μ0

)
+

dθdv.

(3.15)

But (‖Fφn‖L1, ‖j (Fφn)‖) = (M1, Mj) then

M1 =
2πˆ

0

ˆ

R

(j ′)−1

(
v2

2 + φ̄(θ) − λ0

μ0

)
+

dθdv, Mj =
2πˆ

0

ˆ

R

j ◦ (j ′)−1

(
v2

2 + φ̄(θ) − λ0

μ0

)
+

dθdv.

According to Lemma 3.1, the couple (λ(φ̄), μ(φ̄)) is unique, so λ0 = λ(φ̄) and μ0 = μ(φ̄). Hence Fφn con-
verges to F φ̄ a.e. But ‖F φ̄‖L1 = ‖F φ̄n‖L1 = M1 then according to Brezis–Lieb’s lemma, Fφn −→

n→+∞ F φ̄ strongly 

in L1([0, 2π ] × R). We already know that F φ̄ satisfies the two constraints, there remains to show that H(F φ̄) =
I(M1, Mj). The strong convergence in L1([0, 2π ] × R) of Fφn to F φ̄ implies that φ′

Fφn
−→

n→+∞ φ′
F φ̄

strongly in L2. 

Therefore using classical inequalities about the lower semicontinuity properties of convex nonnegative functions see 
[15] and the convergence in L2([0, 2π ]) of φ′

Fφn
, we get

I(M1,Mj ) ≥
¨

v2

2
F φ̄(θ, v)dθdv − 1

2

2πˆ

0

φ′
F φ̄

(θ)2dθ.

Thus I(M1, Mj) ≥ H(F φ̄). As F φ̄ satisfies the two constraints and belongs to Ej , we have I(M1, Mj) ≤ H(F φ̄). 
Therefore we get the equality and we have shown the existence of a minimizer.
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Step 2: The minimizer is a steady state of (1.1).

To prove that the minimizer F φ̄ is a stationary state of the system (1.1), it is sufficient to show that φ̄ = φ
F φ̄ . First, 

(Fφn)n being a minimizing sequence of (1.8), we have H(Fφn) −→
n→+∞ I(M1, Mj). Then, using Lemma 3.2, we know 

that J0 = I(M1, Mj) and that I(M1, Mj) ≤ J (φn) ≤ H(fn). Hence (φn)n is a minimizing sequence of J0: we have 
J (φn) −→

n→+∞ I(M1, Mj) = J0. Hence using the equality (3.11), we get

‖φ′
Fφn − φ′

n‖2
L2 −→

n→+∞ 0.

Passing to the limit n → +∞ and knowing that φ̄ has a zero average, we deduce that φ̄ = φ
F φ̄ a.e.

Step 3: Euler–Lagrange equation for minimizers.

There remains to prove part (2) of Theorem 3. We obtain Euler–Lagrange equation for the minimizer in the same 
way as in the proof of Theorem 1 in Section 2.1.2. Indeed, according to Lemma 3.2, if f̄ is a minimizer of I(M1, Mj), 
φ̄ := φf̄ is a minimizer of J0 and H(f̄ ) = J (φ̄). Using (3.12), we get

¨
(j (f̄ ) − j (F φ̄) − j ′(F φ̄)(f̄ − F φ̄))dθdv = 0.

Then writing the Taylor’s formula for j and using j ′′ > 0, we can deduce as in Section 2.1.2 that f̄ = F φ̄ .

Step 4: Regularity of the potential φf .

First, we will show that φf ∈ C1([0, 2π ]). Thanks to the Sobolev embedding

W 2,3([0,2π ]) ↪→ C1, 2
3 ([0,2π ]),

it is sufficient to show that φf ∈ W 2,3([0, 2π ]). We know that f ∈ L1([0, 2π ] × R), then with expression (1.3), 
we get φf ∈ L∞([0, 2π ]) ⊂ L3([0, 2π ]). In the same way, φ′

f ∈ L3([0, 2π ]). Besides φf satisfies (1.2), then let us 

show that ρf ∈ L3([0, 2π ]). According to the previous step, f is compactly supported and since φf ∈ L∞, we get 
f ∈ L∞([0, 2π ] × R). We also have v2f ∈ L1([0, 2π ] × R). Therefore with a classical argument, we show ρf ∈
L3([0, 2π ]) and we get φf ∈ C1([0, 2π ]). Then, according to its expression (1.3), ρf is continuous. Hence φ′′

f ∈
C0([0, 2π ]) and φ′

f ∈ W 1,3([0, 2π ]) ∩ C0([0, 2π ]), then we can write for x, y ∈ [0, 2π ]

φ′
f (y) − φ′

f (x) =
yˆ

x

φ′′
f (t)dt. (3.16)

We deduce from (3.16) that φ′
f ∈ C1([0, 2π ]) then φf ∈ C2([0, 2π ]).

3.3. Orbital stability of the ground states

To prove the orbital stability result stated in Theorem 4, we first need to prove the local uniqueness of the minimiz-
ers under equimeasurability condition.

3.3.1. Local uniqueness of the minimizers under equimeasurability condition
In this section, we prove Lemma 1.2. To this purpose, we first need to prove some preliminary lemmas.

Lemma 3.5. Let f1, f2 be two equimeasurable steady states of (1.1) which minimizes (1.8), they can be written in the 
form (1.9) with (λ1, μ1), (λ2, μ2) ∈ R ×R

∗−, we have for all e ≥ 0
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|μ1| 1
2

2πˆ

0

(ψ1(θ) − e)
1
2+dθ = |μ2| 1

2

2πˆ

0

(ψ2(θ) − e)
1
2+dθ where ψi = φfi

− λi

μi

, i = 1,2. (3.17)

Besides, if f1 and f2 are inhomogeneous then there exist p1 = p1(φf1) ∈ N
∗ and p2 = p2(φf2) ∈ N

∗ such that

p1|μ1| 3
4√∣∣∣∣a(e0) − 1

|μ1|
1
2
c0

∣∣∣∣
= p2|μ2| 3

4√∣∣∣∣a(e0) − 1

|μ2|
1
2
c0

∣∣∣∣
, (3.18)

where⎧⎨
⎩

a(e0) = ´
R
(j ′)−1

(
e0 − v2

2

)
+ with e0 = max

(
φfi

−λi

μi

)
, i = 1,2;

c0 = M1
2π

.

Lemma 3.6. Let ψ ∈ C2([0, 2π ]) such that there exists a finite number p of values ξ ∈ [0, 2π ] satisfying ψ(ξ) =
max(ψ) := e0. We will denote them by ξi for i ∈ {1, .., p}. Besides we assume that for all i ∈ {1, .., p}, we have 
ψ ′′(ξi) 
= 0 thus we have

2πˆ

0

(ψ(θ) − e)
1
2+dθ = ε

p∑
i=1

√
2√|ψ ′′(ξi)|

1ˆ

0

s− 1
2 (1 − s)

1
2 ds + o(ε) with ε = e0 − e.

We first show Lemma 1.2 using Lemmas 3.5 and 3.6 then Lemmas 3.5 and 3.6 will be proved.

Proof of Lemma 1.2. Let f0 be a homogeneous steady state of (1.1) and a minimizer of (1.8). It can be written in 
the form (1.9) with (λ0, μ0) ∈ R × R

∗−. First, let f be a homogeneous steady state of (1.1) and a minimizer of (1.8)
equimeasurable to f0. It can be written in the form (1.9) with (λ, μ) ∈ R ×R

∗−. We can also write⎧⎪⎨
⎪⎩

f0(θ, v) = (j ′)−1
( −v2

2|μ0| + ψ0(θ)
)

+ with ψ0(θ) = φf0 (θ)−λ0

|μ0| ,

f (θ, v) = (j ′)−1
(−v2

2|μ| + ψ(θ)
)

+ with ψ(θ) = φf (θ)−λ

|μ| .

(3.19)

The homogeneity and equimeasurability of f0 and f implies λ0|μ0| = λ
|μ| . Besides replacing in equality (3.17) of 

Lemma 3.5, we get μ0 = μ and then λ0 = λ. Thus f0 = f . Then let f be an inhomogeneous steady state (1.1)
and a minimizer of (1.8) equimeasurable to f0. The minimizer f can be written in the form (3.19). The equimeasura-
bility of f0 and f implies max(ψ0) = max(ψ). We note this value e0 and we notice that ψ0(θ) = e0 for all θ ∈ [0, 2π ]. 
Replacing in equality (3.17) of Lemma 3.5, we get

2π |μ1| 1
2 (e0 − e)

1
2+ = |μ2| 1

2

2πˆ

0

(ψ2(θ) − e)
1
2+dθ.

To estimate the right term of this equality, we will apply Lemma 3.6 and we get

2π |μ1| 1
2
√

ε =
⎛
⎜⎝|μ2| 1

2

p2∑
j=1

√
2√

|ψ ′′
2 (ξj )|

1ˆ

0

s− 1
2 (1 − s)

1
2 ds

⎞
⎟⎠ ε + o(ε).

This last equality shows us that this case cannot occur. Thus f0 is the only homogeneous steady state of (1.1) and 
minimizer of (1.8) under equimeasurability condition.

Let f0 be an inhomogeneous steady state of (1.1) and a minimizer of (1.8), it can be written in the form (1.9) with 
(λ0, μ0) ∈ R × R

∗−. Let f be an inhomogeneous steady state of (1.1) and a minimizer of (1.8) equimeasurable to 
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f0. It can be written in the form (1.9) with (λ, μ) ∈ R × R
∗−. Let us assume that μ0 = μ then we can write our two 

minimizers like that

f0(θ, v) = G

(
v2

2
+ ψ0(θ)

)
, f (θ, v) = G

(
v2

2
+ ψ(θ)

)
,

with G(t) = (j ′)−1
((

t
μ

)
+

)
and ψi(θ) − λi . Arguing as the one constraint case, we get f0 = f up to a translation 

shift in θ . Let us assume that μ0 
= μ and let us show that μ0 is isolated. Since f0 and f are inhomogeneous, they 

verify (3.18) according to Lemma 3.5. Define for x > 0, F(x) = x
3
4√

|a(e0)−x
− 1

2 c0|
and introduce the set

E = ∪
p∈N{μ s.t. pF(|μ|) = A0}.

If E is finite, the result is trivial. Otherwise E is countable, it can be written in the form E = (μn)n with μn injective 
and satisfying for all n ∈N, there exists pn such that pnF(|μn|) = A0. Let μ1 be a limit point of the sequence (μn)n, 
it verifies F(|μ1|) = 0. Indeed, the sequence (pn)n cannot take an infinity of times the same value since in equality 
(3.18), for p fixed, there are at the most 4 μ. Therefore pn −→

n→+∞ +∞. Thus μ1 = 0. As μ0 < 0, it is isolated. Thus 

there exists δ0 > 0 such that for all f 
= f0 inhomogeneous steady state of (1.1) and minimizer of (1.8), we have 
||μ| − |μ0|| > δ0. �

Now, let us prove Lemma 3.6.

Proof of Lemma 3.6. Let ψ ∈ C2([0, 2π ]) satisfying the assumptions noted above, we have

2πˆ

0

(ψ(θ) − e)
1
2+dθ = 1

2

2πˆ

0

(ψ(θ)−e)+ˆ

0

s− 1
2 dsdθ = 1

2

e0−eˆ

0

s− 1
2 |{e + s ≤ ψ ≤ e0}|ds

= ε
1
2

2

1ˆ

0

s− 1
2 |{e0 − ε(1 − s) ≤ ψ ≤ e0}|ds,

using Fubini’s theorem, putting ε = e0 − e and performing a change of variables s̃ = s
ε
.

We define Eε = {θ ∈ [0,2π ], e0 − ε(1 − s) ≤ ψ ≤ e0}. We can write [0, 2π ] = ∪p
i=1Ei with⎧⎪⎪⎨

⎪⎪⎩
E1 = [0,

ξ1+ξ2
2 ]

Ei = [ ξi−1+ξi

2 ,
ξi+ξi+1

2 ] for i ∈ {2, ..,p − 1}
Ep = [ ξp−1+ξp

2 ,2π ].
Thus Eε = ∪p

i=1E
i
ε with Ei

ε = {θ ∈ Ei,−ε(1 − s) ≤ ψ(θ) − e0 ≤ 0} and we get

2πˆ

0

(ψ(θ) − e)
1
2+dθ =

p∑
i=1

ε
1
2

2

1ˆ

0

s− 1
2 |Ei

ε|ds.

The next step is to compute for i ∈ {1...p} the limit of |Ei
ε| when ε goes to 0. Notice that there is a unique ξi in each 

interval Ei for i ∈ {1...p}, and use the Taylor formula for ψ , to get

Ei
ε =

⎧⎨
⎩θ ∈ Ei,−ε(1 − s) ≤ (θ − ξi)

2

1ˆ

0

(1 − u)ψ ′′(u(θ − ξi) + ξi)du ≤ 0

⎫⎬
⎭ .

Letting A(θ, ξ) = ´ 1
0 (1 − u)ψ ′′(u(θ − ξ) + ξ)du, we can write

Ei
ε =

{
θ ∈ Ei,

|θ − ξi |√ √|A(θ, ξi)| ≤
√

1 − s

}
.

ε
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Then we have

|Ei
ε| = 2

√
ε

∣∣∣{θ ∈ Ei, θ
√|B(θ, ξi)| ≤

√
1 − s}

}∣∣∣ where B(θ, ξi) =
1ˆ

0

(1 − u)ψ ′′(u
√

εθ + ξi)du.

Recall that ψ ′′(ξi) 
= 0 hence by continuity of ψ ′′, we have ψ ′′ 
= 0 on a neighborhood of ξi . Thus for e close to e0, 
i.e. for ε sufficiently small, we have B(θ, ξi) 
= 0. Thus we can write

|Ei
ε|√
ε

= 2

2πˆ

0

1{
0≤θ≤

√
1−s√|B(θ,ξi )|

}dθ.

Applying the dominated convergence theorem, we get for i ∈ {1...p}

lim
ε→0

|Ei
ε|√
ε

= 2

√
2(1 − s)√|ψ ′′(ξi)| .

This ends the proof of Lemma 3.6. �
To prove Lemma 3.5, we need a last technical lemma.

Lemma 3.7. Let f be an inhomogeneous minimizer of the variational problem (1.8) given by (1.9) with (λ, μ) ∈
R ×R

∗−. We denote by e0 := maxψ where ψ(θ) = φf (θ)−λ

μ
. Then there is only a finite number of values ξ satisfying 

ψ(ξ) = e0.

Proof. Let us argue by contradiction. Assume there is an infinite number of different values ξ satisfying ψ(ξ) = e0. 
We define a strictly increasing sequence (ξn)n such that for all n, ψ(ξn) = e0. In particular we have ψ ′(ξn) = 0. 
Then we apply Rolle’s theorem on each interval [ξn, ξn+1] and we build a new sequence (ξ̃n)n such that ψ ′′(ξ̃n) = 0. 
We have (ξ̃n)n ∈ [0, 2π ]N thus there exists ξ̃ such that ξ̃n −→

n→+∞ ξ̃ up to an extraction of a subsequence. With the 

continuity of ψ ′′ and Theorem 3, we get ψ ′′(ξ̃ ) = 0. By construction, we have for all n, ξ̃n−1 < ξn < ξ̃n. Thus up to 
an extraction of a subsequence ξn −→

n→+∞ ξ̃ and the limit satisfies ψ ′(ξ̃ ) = 0 and ψ(ξ̃) = e0. Besides we know that

ψ ′′ = φ′′
f

μ
= ρf − M1

2π

μ
,

then ρf (ξ̃ ) = M1
2π

. Using the expression of ρf , we get for all θ ∈ [0, 2π ], ρf (θ) ≤ ρf (ξ̃ ) and max(ρf ) = ρf (ξ̃ ) = M1
2π

. 
Since 

´
R

ρf = M1, we deduce that for all θ ∈ [0, 2π ], ρf (θ) = M1
2π

. Thus for all θ , φ′′
f (θ) = 0. Since φf has a zero

average and φf (0) = φf (2π), we get φf = 0. Contradiction. �
We are now ready to prove Lemma 3.5.

Proof. Let f1 and f2 be two steady states of (1.1) and two minimizers of (1.8) equimeasurable. They can be written 
in the form (1.9) and we can write

f1(θ, v) = (j ′)−1
(

v2

2μ1
+ ψ1(θ)

)
+

, f2(θ, v) = (j ′)−1
(

v2

2μ2
+ ψ2(θ)

)
+

where ψi(θ) = φfi
(θ)−λi

μi
for i = 1 or 2. Since f1 and f2 are equimeasurable, we know that for all t ≥ 0

∣∣∣∣
{
(j ′)−1

( −v2

2|μ | + ψ1(θ)

)
> t

}∣∣∣∣=
∣∣∣∣
{
(j ′)−1

( −v2

2|μ | + ψ2(θ)

)
> t

}∣∣∣∣ .

1 + 2 +
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We have for i = 1 or 2,∣∣∣∣
{
(j ′)−1

( −v2

2|μi | + ψi(θ)

)
+

> t

}∣∣∣∣1 =
∣∣∣∣
{

v2

2
− |μi |ψi(θ) < −|μi |j ′(t)

}∣∣∣∣
= 2

√
2|μi | 1

2

2πˆ

0

(ψi(θ) − j ′(t))
1
2+dθ.

Thus for all e ≥ 0, we have equality (3.17). Then let us assume that φf1 
= 0 and φf2 
= 0. According to the third point 
of Theorem 3, ψ1, ψ2 ∈ C2([0, 2π ]). Besides, according to Lemma 3.7, there exists, for i = 1 or 2, pi = pi(φfi

) such 
that ψi has pi values ξ satisfying ψi(ξ) = e0. We denote them {ξi,1, .., ξi,pi

}. In order to apply Lemma 3.6, let us show 
that ψ ′′

i (ξi,j ) 
= 0 for j ∈ {1, .., pi} and i = 1 or 2. If ψ ′′
i (ξi,j ) = 0, since ξi,j is a maximum of ψ too, we are in the 

same case as the end of the proof of Lemma 3.7 and we get a contradiction. Hence we are allowed to use Lemma 3.6
and get

|μ1| 1
2

p1∑
j=1

1√
|ψ ′′

1 (ξ1,j )|
= |μ2| 1

2

p1∑
j=1

1√
|ψ ′′

2 (ξ1,j )|
.

Notice that we have for i = 1 or 2

ψ ′′
i (θ) = φ′′

fi
(θ) = ρfi

(θ) − M1
2π

μi

= 1

μi

⎛
⎝ˆ

R

(j ′)−1
( −v2

2|μi | + ψi(θ)

)
+

dv − M1

2π

⎞
⎠

= −|μi |− 1
2

⎛
⎝ˆ

R

(j ′)−1
(−v2

2
+ ψi(θ)

)
+

dv − 1

|μi | 1
2

M1

2π

⎞
⎠ .

Thus we have

ψ ′′
i (ξi,j ) = −|μi |− 1

2

(
a(e0) − 1

|μi |
M1

2π

)

with a(e0) =
´
R
(j ′)−1

(
e0 − v2

2

)
+ dv, and therefore equality (3.18) is proved. �

3.3.2. Proof of Theorem 4
We will prove the orbital stability of steady states of (1.1) which are minimizers of (1.8) in two steps. First we will 

show that any minimizing sequence is compact.

Step 1: Compactness of the minimizing sequences.

Let (fn)n be a minimizing sequence of I(M1, Mj). Let us show that (fn)n is compact in Ej , i.e. there exists 

f0 ∈ Ej such that fn

Ej−−→ f0 up to an extraction of a subsequence. Using item (2) of Lemma 3.3, there exists f0 ∈
L1([0, 2π ] × R) such that fn ⇀

n→+∞ f0 weakly in L1([0, 2π ] × R) and we denote by φ0 := φf0 . In the same way 

as the proof of Theorem 3 in Section 3.2.2, we introduce the function Fφn defined by (3.13). According to Step 1 
of the proof of Theorem 3 in Section 3.2.2, it is a minimizing sequence of (1.8), Fφn converges to Fφ0 strongly in 

L1([0, 2π ] ×R) and Fφ0 is a minimizer of I(M1, Mj). Our goal is to prove that f0 = Fφ0 and fn

Ej−−→ f0.
In order to do that, let us start with the proof of the strong convergence in L1([0, 2π ] ×R) of fn to Fφ0 . First, we 

notice that ‖fn‖L1 = ‖Fφ0‖L1 = M1, then thanks to Brezis–Lieb’s lemma, it is sufficient to show that fn converges to 
Fφ0 a.e. in order to get the strong convergence in L1([0, 2π ] ×R). To this purpose, let us write

fn − Fφ0 = fn − Fφn + Fφn − Fφ0 .



242 M. Fontaine et al. / Ann. I. H. Poincaré – AN 36 (2019) 217–255
As the a.e. convergence of Fφn to Fφ0 is already known, the next step is to show that fn −Fφn converges to 0 a.e. For 
this purpose, we will argue as in the proof of Theorem 2 in Section 2.2.2. We notice that we have¨

(j (fn) − j (Fφn) − j ′(Fφn)(fn − Fφn))dθdv −→
n→+∞ 0. (3.20)

Indeed, using equality (3.12), we get¨
(j (fn) − j (Fφn) − j ′(Fφn)(fn − Fφn))dθdv = J (φn) −H(fn)

μ
.

There remains to argue as in Step 2 of the proof of Theorem 3 in Section 3.2.2 to get the desired limit. Then writing 
the Taylor’s formula for the function j (fn) and integrating over [0, 2π ] ×R, we get

¨
(fn − Fφn)2

1ˆ

0

(1 − u)j ′′(u(fn − Fφn) + Fφn)du =
¨

j (fn) −
¨

j (Fφn) −
¨

(fn − Fφn)j ′(Fφn).

Thus ̃ (fn −Fφn)2
´ 1

0 (1 −u)j ′′(u(fn −Fφn) +Fφn)du −→
n→+∞ 0. Arguing in the same way as the proof of Theorem 2

in Section 2.2.2, we get fn − Fφn −→
n→+∞ 0 a.e. To recap, we have obtained that ‖fn − Fφ0‖L1 −→

n→+∞ 0. But fn −→
n→+∞

f0 weakly in L1([0, 2π ] ×R) then by uniqueness of the limit, we have Fφ0 = f0. Therefore ‖fn − f0‖L1 −→
n→+∞ 0. To 

show the convergence in Ej , there remains to show that

‖v2(fn − f0)‖L1 −→
n→+∞ 0, and ‖j (fn)‖L1 −→

n→+∞ ‖j (f0)‖L1 .

The second limit clearly comes from the fact that f0 = Fφ0 satisfies the constraints. For the first limit, we write¨
v2(fn(θ, v) − f0(θ, v))dθdv = 2(H(fn) −H(f0)) + ‖φ′

n‖2
L2 − ‖φ′

0‖2
L2 .

Then ‖v2fn‖L1 −→
n→+∞ ‖v2f0‖L1 . Besides the strong convergence in L1([0, 2π ] × R) of fn to f0 implies that 

v2fn −→
n→+∞ v2f0 a.e. up to an extraction of a subsequence. We conclude with Brezis–Lieb’s lemma. Hence the mini-

mizing sequence is compact in Ej .

Step 2: Proof of the orbital stability.

Before starting the proof of Theorem 4, notice the following fact. As mentioned in Section 3.2.2, it is possible 
to obtain Euler–Lagrange equations for the minimizers in the same way as in the proof of Theorem 1. This method 
provides the expressions of λ and μ. In particular, we have

μ = −‖v2f ‖L1

Cf

with Cf =
¨

fj ′(f )dθdv − Mj. (3.21)

If f1 and f2 are equimeasurable, then Cf1 = Cf2 . Hence, we can rewrite the first point of Lemma 1.2 as follows.

Lemma 3.8. Let f0 be an inhomogeneous steady state of (1.1) which is a minimizer of (1.8). Let (λ, μ) ∈ R × R
∗−

be the Lagrange multipliers associated with f0 according to (1.9). There exists δ0 > 0 such that for all f ∈ Ej

inhomogeneous steady state of (1.1) which is minimizer of (1.8) and which is equimeasurable to f0 with μ0 
= μ, 
where μ is the Lagrange constant associated with f in the expression (1.9), we have∣∣∣‖v2f0‖L1 − ‖v2f ‖L1

∣∣∣> δ0. (3.22)

This characterization will be used in the proof of the orbital stability of steady states.

Before proving the orbital stability of minimizers, we need to prove a preliminary lemma.
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Lemma 3.9. Let f0 be an inhomogeneous steady state of (1.1) which minimizes (1.8). We denote by δ0 the constant 
associated with f0 as defined in Lemma 1.2. We have: ∀ε > 0, ∃η > 0 such that ∀finit ∈ Ej

‖(1 + v2)(finit − f0)‖L1 ≤ η and

∣∣∣∣
¨

j (finit ) −
¨

j (f0)

∣∣∣∣≤ η

⇒
[
∀t > 0,

[∣∣∣‖v2f (t)‖L1 − ‖v2f0‖L1

∣∣∣≤ δ0

2
⇒
∣∣∣‖v2f (t)‖L1 − ‖v2f0‖L1

∣∣∣≤ ε

]]
,

where f (t) is a solution to (1.1) with initial data finit .

With this lemma, we are able to prove Theorem 4. We will prove Lemma 3.9 after the proof of Theorem 4.

Proof of Theorem 4. Let us argue by contradiction, let f0 be an inhomogeneous minimizer of (1.8). Assume that 
f0 is orbitally unstable. Then there exist ε0 > 0, a sequence (f n

init )n ∈ EN

j and a sequence (tn)n ∈ (R+∗ )N such that 

f n
init

Ej−−→ f0 and for all n, for all θ0 ∈ [0, 2π ]{‖f n(tn, θ + θ0, v) − f0(θ, v)‖L1 > ε0,

or ‖v2(f n(tn, θ + θ0, v) − f0(θ, v))‖L1 > ε0,
(3.23)

where f n(tn, θ, v) is a solution to (1.1) with initial data f n
init . Letting gn(θ, v) = f n(tn, θ, v), we have H(gn) ≤

H(f n
init ) from the conservation property of the flow (1.1). Introduce ḡn(θ, v) = γngn

(
θ,

γn

λn
v
)

where (γn, λn) is the 
unique pair such that ‖ḡn‖L1 = M1 and ‖j (ḡn)‖L1 = Mj . Besides γn and λn satisfy

λn = M1

‖gn‖L1
and γn is such that

‖j (γngn)‖L1

γn

= Mj‖gn‖L1

M1
. (3.24)

The existence and uniqueness of such (γn, λn) can be proved exactly the same way as Lemma A.1 in [20]. As ḡn

satisfies the two constraints of the minimization problem (1.8), we have H(f0) ≤ H(ḡn). Besides we have

H(f0) ≤H(ḡn) ≤ λ2
n

((
λn

γ 2
n

− 1

)
‖v2

2
gn‖L1 +H(f n

init )

)
. (3.25)

Notice that

‖gn‖L1 = ‖f n
init‖L1 −→

n→+∞ M1 since ‖f n
init − f0‖L1 −→

n→+∞ 0 and ‖f0‖L1 = M1.

Hence the sequence (gn)n is bounded in L1. We also have

∥∥∥∥v2

2
gn

∥∥∥∥
L1

=H(gn) + 1

2

2πˆ

0

φ′ 2
gn

(θ)dθ ≤ C + π‖W ′‖2
L∞‖gn‖2

L1 where C is a constant,

and therefore the sequence (‖ v2

2 gn‖L1)n is bounded too. Let us then show that λn and γn converge to 1. With (3.24), 
we get λn −→

n→+∞ 1. To deal with the case of γn, we will use the fact that the hypothesis (H3) is equivalent to the 

hypothesis (H3bis)

(H3bis) : bpj (t) ≤ j (bt) ≤ bqj (t), ∀b ≥ 1, t ≥ 0 and bqj (t) ≤ j (bt) ≤ bpj (t), ∀b ≤ 1, t ≥ 0.

Therefore using (H3bis), we get

min(C
1

p−1
n ,C

1
q−1
n ) ≤ γn ≤ max(C

1
p−1
n ,C

1
q−1
n ), where Cn =

(
Mj

M1

‖gn‖L1

‖j (gn)‖L1

) 1
p−1

.

But ‖j (gn)‖L1 = ‖j (f n
init )‖L1 −→

n→+∞ ‖j (f0)‖L1 and therefore Cn −→
n→+∞ 1. Thus γn −→

n→+∞ 1. We deduce with (3.25)

that lim H(ḡn) = H(f0) and thus (ḡn)n is a minimizing sequence of (1.8). According to the previous step, this 

n→+∞
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sequence is compact, hence, up to an extraction of a subsequence, there exists ḡ ∈ Ej such that ḡn −→
n→+∞ ḡ in Ej . It 

is easy to show with Brezis–Lieb’s lemma that gn −→
n→+∞ ḡ in Ej up to an extraction of a subsequence. This implies 

that

‖gn − ḡ‖L1 −→
n→+∞ 0, ‖v2(gn − ḡ)‖L1 −→

n→+∞ 0 and |
¨

j (gn) −
¨

j (ḡ)| −→
n→+∞ 0. (3.26)

Then we deduce of this convergence that H(gn) −→
n→+∞ H(ḡ), but H(gn) −→

n→+∞ I(M1, Mj) and I(M1, Mj) = H(ḡ). 

Besides ḡ satisfies the two constraints therefore ḡ is a minimizer of (1.8). Furthermore in the same way as the proof 
of Theorem 2 in Section 2.2.2, we prove that ḡ and f0 are equimeasurable. In summary, f0 and ḡ are equimeasurable 
minimizers of I(M1, Mj). According to Lemma 1.2, g cannot be a homogeneous steady state. Thus g is an inhomo-
geneous minimizer and has the form (1.9) with (λḡ, μḡ) ∈ R × R

∗−. The inhomogeneous minimizer f0 also has the 
form (1.9) with (λ0, μ0) ∈ R ×R

∗−. If μḡ = μ0, according to Lemma 1.2, f0 = ḡ up to a translation in θ . Then (3.26)
contradicts (3.23) and we have proved that f0 is an orbitally stable steady state. Otherwise, μḡ 
= μ0 and according 
to Lemma 3.8, there exists δ0 such that (3.22) holds. Now, let us show that |‖v2ḡ‖L1 − ‖v2f0‖L1 | ≤ δ0. In order to do 
that, let us prove that for all n,

|‖v2gn‖L1 − ‖v2f0‖L1 | ≤ δ0

2
. (3.27)

We will show that ∀t ≥ 0, |‖v2f n(t)‖L1 −‖v2f0‖L1 | ≤ δ0
2 . Let us argue by contradiction and assume there exists t ≥ 0

such that |‖v2f n(t)‖L1 −‖v2f0‖L1 | > δ0
2 . As ‖(1 + v2)(f n

init −f0)‖L1 −→
n→+∞ 0, we can assume ∀n, ‖(1 + v2)(f n

init −
f0)‖L1 ≤ δ0

4 . This implies ∀n, |‖v2f n
init‖L1 − ‖v2f0‖L1 | ≤ δ0

4 . Thus we have

|‖v2f n(0)‖L1 − ‖v2f0‖L1 | ≤ δ0

4
and ∃t > 0 s.t. |‖v2f n(t)‖L1 − ‖v2f0‖L1 | > δ0

2
.

By continuity of the map t 
→ ‖v2f n(t)‖L1 , there exists t0 > such that

|‖v2f n(t0)‖L1 − ‖v2f0‖L1 | = δ0

3
<

δ0

2
,

therefore according to Lemma 3.9, for all ε > 0, we have |‖v2f n(t0)‖L1 − ‖v2f0‖L1 | ≤ ε. For instance with ε = δ0
5 , 

we get a contradiction. Hence: ∀t ≥ 0, |‖v2f n(t)‖L1 − ‖v2f0‖L1 | ≤ δ0
2 and we deduce (3.27). Recall that we have 

‖v2(gn − ḡ)‖ −→
n→+∞ 0, hence with (3.27), we deduce that |‖v2f0‖L1 − ‖v2ḡ‖L1 | ≤ δ0. We get a contradiction with 

(3.22) and μ0 = μḡ then f0 = ḡ up to a translation shift in θ . Then (3.26) contradicts (3.23) and we have proved that 
f0 is an orbitally stable steady state.

If f0 is a homogeneous minimizer of (1.8). We follow the same reasoning by contradiction and we build an other 
equimeasurable minimizer ḡ. Two cases arise: firstly, ḡ is inhomogeneous and in fact, this case cannot occur according 
to the third point of Lemma 3.5. Hence we get a contradiction. Secondly, ḡ is homogeneous and we have f0 = ḡ

according to the first point of Lemma 1.2. We get the same kind of contradiction as in the case of f0 inhomogeneous. 
Hence, we have proved that f0 is an orbitally stable steady state. �

To end this section, let us prove the preliminary Lemma 3.9.

Proof of Lemma 3.9. Let us argue contradiction. Then there exist ε0 > 0, a sequence (f n
init )n ∈ EN

j and a sequence 

(tn)n ∈ R
+∗ such that f n

init

Ej−−→ f0 and for all n,

|‖v2f n(tn)‖L1 − ‖v2f0‖L1 | ≤ δ0

2
and |‖v2f n(tn)‖L1 − ‖v2f0‖L1 | > ε0, (3.28)

where f n(tn) is a solution to (1.1) with initial data f n
init . Let gn(θ, v) = f n(tn, θ, v), exactly like in the proof of 

Theorem 4, we introduce ḡn(θ, v) = γngn

(
θ,

γn

λ
v
)

where (γn, λn) is the unique pair such that ‖ḡn‖L1 = M1 and 

n
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‖j (ḡn)‖L1 = Mj . In the same way as the proof of Theorem 4 in Section 3.3.2, we prove that ḡ is a minimizer of (1.8)
and as in the proof of Theorem 2 in Section 2.2.2, we show that ḡ and f0 are equimeasurable. Using the first inequality 
of (3.28) and the convergence of ‖v2gn‖L1 to ‖v2ḡ‖L1 , we get

|‖v2f0‖L1 − ‖v2ḡ‖L1 | ≤ δ0 (3.29)

Therefore according to Lemma 1.2, we deduce that f0 = ḡ up to a translation in θ and we get a contradiction with the 
second inequality of (3.28) and the convergence in Ej of gn to ḡ. �
4. Problem with an infinite number of constraints

4.1. Generalized rearrangement with respect to the microscopic energy

In the same way as in the two-constraints problem, we introduce a new function denoted by f ∗φ . The sequence 
(f ∗φn)n has better compactness properties than the sequence (fn)n. We get the compactness of (fn)n via the compact-
ness of (f ∗φn)n thanks to monotonicity properties of H with respect to the transformation f ∗φ which will be detailed 
in Lemma 4.3. To define this new function, we use the generalization of symmetric rearrangement with respect to the 
microscopic energy e = v2

2 + φ(θ) introduced in [17]. For more generalized results, see also [16]. We first recall the 
usual notion of rearrangement which is adapted here to functions defined on the domain T ×R. For more details on 
this subject see [15] and [21]. For any nonnegative function f ∈ L1(T × R), we define its distribution function with 
(1.7). Let f # be the pseudo-inverse of the function μf defined by (1.7):

f #(s) = inf{t ≥ 0,μf (t) ≤ s} = sup{t ≥ 0,μf (t) > s}, for all s ≥ 0. (4.1)

We notice that f #(0) = ‖f ‖L∞ ∈ R ∪ {+∞} and f #(+∞) = 0. It is well known that μf is right-continuous and that 
for all s ≥ 0, t ≥ 0,

f #(s) > t ⇐⇒ μf (t) > s. (4.2)

Next, we define the rearrangement f ∗ of f by

f ∗(θ, v) = f #
(∣∣∣B(0,

√
θ2 + v2) ∩T×R

∣∣∣) , (4.3)

where B(0, R) denotes the open ball in R2 centered at 0 with radius R. Then in order to generalize the rearrangements, 
we introduce for φ ∈ C2(T) the quantity

aφ(e) =
∣∣∣∣
{
(θ, v) ∈ [0,2π ] ×R : v2

2
+ φ(θ) < e

}∣∣∣∣ . (4.4)

From this quantity, we can adapt the proofs in Section 2.1 of [17] to the case of φ ∈ C2 and we are able to define 
the generalized rearrangement with respect to the microscopic energy. We get the following properties gathered in 
Lemma 4.1. The last item of this lemma is proved in the Step 2 of the proof of Proposition 2.3 in [17].

Lemma 4.1 (Properties of aφ). We have the following statements.

(1) The function aφ is continuous on R, vanishes on ] − ∞,minφ] and is strictly increasing from [minφ,+∞[ to 
[0,+∞[.

(2) The function aφ is invertible from [minφ,+∞[ to [0,+∞[, we denote its inverse by a−1
φ . This inverse satisfies

s2

32π2 + minφ ≤ a−1
φ (s) ≤ s2

32π2 + maxφ, ∀s ∈R+. (4.5)

(3) Let φ ∈ C2([0, 2π ]) and let aφ be the function defined by (4.4). Let f be a nonnegative function in L1([0, 2π ] ×R). 
Then the function

f ∗φ(θ, v) = f #
(

aφ

(
v2

+ φ(θ)

))
, (θ, v) ∈ [0,2π ] ×R
2
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is equimeasurable to f , that is μf ∗φ = μf where μf is defined by (1.7). The function f ∗φ is called the decreasing 

rearrangement with respect to the microscopic energy v
2

2 + φ(θ).
(4) Let f ∈ L1([0, 2π ] ×R) and φf is the potential associated to f defined by (1.3), we have

¨ (
v2

2
+ φf (θ)

)
(f (θ, v) − f ∗φf (θ, v))dθdv ≥ 0. (4.6)

The next lemma, proved in Section 3.1 of [16], is a technical lemma about rearrangements which will be used in 
Lemma 4.5.

Lemma 4.2. Let φ ∈ C2([0, 2π ]) and f ∈ L1([0, 2π ] ×R), we have the following identity

2πˆ

0

ˆ

R

(
v2

2
+ φ(θ)

)
f ∗φ(θ, v)dθdv =

+∞ˆ

0

a−1
φ (s)f #(s)ds.

In the rest of this Section, we adopt the following definition of minimizing sequences.

Definition 4.1 (Minimizing sequence). We shall say that (fn)n is a minimizing sequence of (1.11) if (fn)n is uniformly 
bounded and

H(fn) −→
n→+∞ H0 and ‖f ∗

n − f ∗
0 ‖L1 −→

n→+∞ 0.

As mentioned at the beginning of this section, we need to link H(fn) and H(f ∗φn) to get compactness for fn. 
Hence, we introduce a second problem of minimization

J 0
f ∗ = inf´ 2π

0 φ=0
Jf ∗(φ) where Jf ∗(φ) =

¨ (
v2

2
+ φ(θ)

)
f ∗φ(θ, v)dθdv + 1

2

2πˆ

0

φ′(θ)2dθ. (4.7)

Lemma 4.3 (Monotonicity properties of H with respect to the transformation f ∗φ). We have the following inequali-
ties:

(1) Let f ∈ E , for all φ ∈ H 2([0, 2π ]) such that φ(0) = φ(2π) and 
´ 2π

0 φ = 0, we have H(f ∗φ) ≤ Jf ∗(φ).
(2) For all f ∈ E , H0 ≤H(f ∗φf ) ≤ Jf ∗(φf ) ≤ H(f ) where H0 is defined by (1.11). Besides H0 = J 0

f ∗ .

Proof. The first item of this lemma is proved exactly like item (2) of Lemma 3.2. Hence we have

Jf ∗(φ) =H(f ∗φ) + 1

2
‖φ′

f ∗φ − φ′‖2
L2 (4.8)

Then, let us prove the right inequality of item (2). Let f ∈ E , the Hamiltonian can be written as

H(f ) =
2πˆ

0

ˆ

R

(
v2

2
+ φf (θ)

)
f ∗φf (θ, v)dθdv + 1

2

2πˆ

0

φ′
f (θ)2dθ

+
2πˆ

0

ˆ

R

(
v2

2
+ φf (θ)

)
(f (θ, v) − f ∗φf (θ, v))dθdv

= Jf ∗(φf ) +
2πˆ

0

ˆ

R

(
v2

2
+ φf (θ)

)
(f (θ, v) − f ∗φf (θ, v))dθdv.

Using (4.6), we get that H(f ∗φ) ≤ Jf ∗(φ). Thanks to the two above inequalities, we easily deduce H0 = J 0
f ∗ . �
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4.2. Existence of ground states

This section is devoted to the proof of Theorem 5.

4.2.1. Properties of the infimum

Lemma 4.4. The variational problem (1.11) satisfies the following statements.

(1) The infimum (1.11) exists, i.e. H0 > −∞.
(2) For any minimizing sequence (fn)n of the variational problem (1.11), we have the following properties:

(a) There exists f̄ ∈ L1([0, 2π ] ×R) such that fn −→
n→+∞ f̄ weakly in L1.

(b) We have ‖φfn − φf̄ ‖H 1 −→
n→+∞ 0.

The proof of item (1) from Lemma 4.4 is similar to the one of Lemma 2.1. In the spirit of Lemma 2.1, noticing 
that ‖fn‖L1 = ‖f ∗

n ‖L1 is bounded and using Dunford–Pettis’s theorem, we get the weak convergence of (fn)n in 
L1([0, 2π ] ×R). The proof of item (b) is similar to the one of item (2) in Lemma 2.1.

4.2.2. Proof of Theorem 5
We are now ready to prove Theorem 5.

Step 1: Existence of a minimizer.

From item (1) of Lemma 4.4, we know that H0 is finite. Let us show that there exists a function which minimizes 
the variational problem (1.11). Let (fn)n ∈ EN be a minimizing sequence of (1.11). From item (a) of Lemma 4.4, there 
exists f̄ ∈ L1([0, 2π ] ×R) such that fn ⇀

n→+∞ f̄ in L1
w . From item (b) of Lemma 4.4, φfn strongly converges to φf̄

in L2([0, 2π ] ×R) and φ′
fn

strongly converges to φ′
f̄

in L2([0, 2π ] ×R).

In the following paragraphs, we will note φn := φfn and φ̄ := φf̄ . Notice using item (2) of Lemma 4.3 that (φn)n
is a minimizing sequence of (4.7). As in the proof of Theorem 3, we introduce a new minimizing sequence which 
has better compactness properties than (fn)n. The sequence (f ∗φn

0 )n is well-defined according to Lemma 4.1. Since 

(φn)n is a minimizing sequence of (4.7) and using the second item of Lemma 4.3, we directly get H(f
∗φn

0 ) −→
n→+∞ H0. 

The next step is to prove that H(f
∗φn

0 ) −→
n→+∞ H(f

∗φ̄
0 ). In order to do that, let us show that f ∗φn

0 −→
n→+∞ f

∗φ̄
0 strongly 

in L1([0, 2π ] × R). From general properties of rearrangements, see [15] and [21], we have ‖f ∗φn

0 ‖L1 = ‖f0‖L1 and 

‖f ∗φ̄
0 ‖L1 = ‖f0‖L1 and therefore using Brezis–Lieb, see [8], it is sufficient to show that f ∗φn

0 −→
n→+∞ f

∗φ̄
0 a.e. to get 

the strong convergence in L1([0, 2π ] ×R). Using the dominated convergence theorem, we easily get that

aφn

(
v2

2
+ φn(θ)

)
−→

n→+∞ aφ̄

(
v2

2
+ φ̄(θ)

)
a.e. up to a subsequence.

As by hypothesis, f0 ∈ E ∩ C0([0, 2π ] × R), f #
0 is continuous then f ∗φn

0 −→
n→+∞ f

∗φ̄
0 a.e. up to an extraction of a 

subsequence. Thus, we get ‖f ∗φn

0 − f
∗φ̄
0 ‖L1 −→

n→+∞ 0. Then, from classical inequality about lower semicontinuous 

functions (see [15]) and the convergence in L2([0, 2π ] ×R) of φn, we deduce that

H0 ≥
¨

v2

2
f

∗φ̄
0 (θ, v)dθdv − 1

2

2πˆ

0

φ′
f

∗φ̄
0

(θ)2dθ =H(f
∗φ̄
0 ) (4.9)

Since f ∗φ̄
0 ∈ E and is equimeasurable to f0, we get H0 ≤ H(f

∗φ̄
0 ). Hence with the inequality (4.9), we deduce H0 =

H(f
∗φ̄

) and f ∗φ̄ is a minimizer of (1.11).
0 0
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Step 2: The minimizer is a steady state of (1.1).

The minimizer f ∗φ̄
0 is a stationary state of the system (1.1) and to prove that it is sufficient to show that φ̄ = φ

f
∗φ̄
0

. 

The proof is similar to the one of two-constraints case in Section 3.2.2, we use Lemma 4.3 and equality (4.8) to get 
the result.

4.3. Orbital stability of the ground states

4.3.1. Proof of Theorem 6
This section is devoted to the proof of Theorem 6. As we do not have the uniqueness of the minimizers under 

constraint of equimeasurability, we can only get the orbital stability of the set of minimizers and not the orbital 
stability of each minimizer.

First, we need to the following lemma which is at the heart of the proof of the compactness of minimizing se-
quences. This lemma will be proved at the end of the proof of Theorem 6.

Lemma 4.5. Let f0 ∈ E ∩ C0([0, 2π ] ×R) and let (fn)n be a minimizing sequence of (1.11). Then (fn)n has a weak 
limit f̄ in L1([0, 2π ] ×R). Denoting φ̄ := φf̄ , we have

‖f0‖L∞ˆ

0

Bφ̄(μf0(t) + β
fn,f

∗φ̄
0

(t)) + Bφ̄(μf0(t) − β
fn,f

∗φ̄
0

(t)) − 2Bφ̄(μf0(t))dt −→
n→+∞ 0

where⎧⎨
⎩

βf,g(t) = |{(θ, v) ∈ [0,2π ] ×R : f (θ, v) ≤ t < g(θ, v)}|,
Bφ̄(μ) =˜

{aφ̄( v2
2 +φ̄(θ))<μ}

v2

2 + φ̄(θ)dθdv.
(4.10)

Step 1: Compactness of the minimizing sequences.

Let (fn)n be a minimizing sequence of (1.11), let us show that (fn)n is compact in E . Using Lemma 4.4, there exists 
f̄ ∈ L1 such that fn ⇀

n→+∞ f̄ weakly in L1([0, 2π ] ×R) and φn −→
n→+∞ φ̄ strongly in L2([0, 2π ] ×R) where φ̄ := φf̄ . 

Arguing as in the proof of Theorem 5 in Section 4.2.2, we also get f ∗φn

0 −→
n→+∞ f

∗φ̄
0 strongly in L1([0, 2π ] ×R). Our 

aim is now to show that ‖fn −f
∗φ̄
0 ‖L1 −→

n→+∞ 0. In order to do that, we will use some techniques about rearrangements 

introduced in [16]. In particular, we will use the following equality established in the proof of Theorem 1 in Section 2.3 
in [16]

‖fn − f
∗φ̄
0 ‖L1 = 2

+∞ˆ

0

β
fn,f

∗φ̄
0

(t)dt + ‖fn‖L1 − ‖f0‖L1 (4.11)

where βf,g is defined in (4.10). The second term of (4.11): ‖fn‖L1 −‖f0‖L1 goes to 0 when n goes to infinity. Indeed, 
according to Definition 4.1 of a minimizing sequence, we have: ‖f ∗

n − f ∗
0 ‖L1 −→

n→+∞ 0 then ‖f ∗
n ‖L1 = ‖fn‖L1 −→

n→+∞
‖f ∗

0 ‖L1 = ‖f0‖L1 using rearrangements properties, see [15]. Hence to prove that: ‖fn − f
∗φ̄
0 ‖L1 −→

n→+∞ 0, we need to 

prove that 
´ +∞

0 β
fn,f

∗φ̄
0

(t)dt −→
n→+∞ 0. For this purpose, it is sufficient to show that β

fn,f
∗φ̄
0

(t) −→
n→+∞ 0. Indeed, this a 

direct application of the dominated convergence theorem
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• β
fn,f

∗φ̄
0

(t) −→
n→+∞ 0,

• 0 ≤ β
fn,f

∗φ̄
0

(t) ≤ μf0(t) and 
´ +∞

0 μf0(t)dt = ‖f0‖L1 using Fubini’s theorem.

To get the a.e. convergence to 0 of β
fn,f

∗φ̄
0

(t), we will use Lemma 4.5. By convexity of Bφ̄ given by Theorem 1 in [16],

Bφ̄(μf0(t) + β
fn,f

∗φ̄
0

(t)) + Bφ̄(μf0(t) − β
fn,f

∗φ̄
0

(t)) − 2Bφ̄(μf0(t)) ≥ 0

therefore Lemma 4.5 implies that

Bφ̄(μf0(t) + β
fn,f

∗φ̄
0

(t)) + Bφ̄(μf0(t) − β
fn,f

∗φ̄
0

(t)) − 2Bφ̄(μf0(t)) −→
n→+∞ 0 for almost t ≥ 0.

Notice that β
fn,f

∗φ̄
0

(0) = 0 and for all t > 0,

0 < β
fn,f

∗φ̄
0

(t) ≤ 1

t
‖f ‖L1 .

Thus the sequence (β
fn,f

∗φ̄
0

(t))n is bounded and has a convergent subsequence. Let us suppose that β
fn,f

∗φ̄
0

(t) −→
n→+∞

l 
= 0, then by strict convexity of Bφ̄ ,

Bφ̄(μf0(t) + β
fn,f

∗φ̄
0

(t)) + Bφ̄(μf0(t) − β
fn,f

∗φ̄
0

(t)) − 2Bφ̄(μf0(t))

−→
n→+∞ Bφ̄(μf0(t) + l) + Bφ̄(μf0(t) − l) − 2Bφ̄(μf0(t)) > 0.

This yields a contradiction, and therefore β
fn,f

∗φ̄
0

(t) −→
n→+∞ 0 for almost t ≥ 0. Hence ‖fn − f

∗φ̄
0 ‖L1 −→

n→+∞ 0. Besides 

we have proved that fn ⇀
n→+∞ f̄ weakly in L1([0, 2π ] ×R), hence by uniqueness of the limit, we get f ∗φ̄

0 = f̄ . Since 

by definition, a minimizing sequence is uniformly bounded, to prove the compactness of the sequence (fn)n in the 
energy space E , there remains show that

‖v2(fn − f̄ )‖L1 −→
n→+∞ 0.

Notice that¨
v2(fn(θ, v) − f̄ (θ, v))dθdv = 2(H(fn) −H(f̄ )) + ‖φ′

n‖2
L2 − ‖φ̄′‖2

L2,

thus ‖v2fn‖L1 −→
n→+∞ ‖v2f̄ ‖L1 since (fn)n is a minimizing sequence and f̄ is a minimizer. Moreover v2fn −→

n→+∞ v2f̄

up to an extraction of a subsequence since fn −→
n→+∞ f̄ strongly in L1. Thanks to Brezis–Lieb’s lemma (see [8]), we 

deduce that ‖v2(fn − f̄ )‖L1 −→
n→+∞ 0. To conclude, we have proved that the sequence (fn)n is compact in E .

Step 2: Proof of the orbital stability.

Let us argue by contradiction, let fi0 be a steady state of (1.1) which minimizes (1.11). Assume that fi0 is orbitally 

unstable. Then there exist ε0 > 0, a sequence (f n
init )n ∈ EN and a sequence (tn)n ∈ (R+∗ )N such that f n

init

E−→ fi0 and 
for all n, for all θ0 ∈ [0, 2π ], for all fi minimizer of (1.11),{‖f n(tn, θ + θ0, v) − fi(θ, v)‖L1 > ε0,

or ‖v2(f n(tn, θ + θ0, v) − fi(θ, v))‖L1 > ε0,
(4.12)

where f n(tn, θ, v) is a solution to (1.1) with initial data f n
init . Let gn(θ, v) = f n(tn, θ, v). Notice that

‖(f n
init )

∗ − f ∗
0 ‖L1 = ‖(f n

init )
∗ − f ∗

i0
‖L1 since fi0 ∈ Eq(f0),

≤ ‖f n
init − fi0‖L1 by contractivity of rearrangement (see [15]),
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but from conservation properties of the flow (1.1), we have g∗
n = (f n

init )
∗ together with ‖gn‖L∞ = ‖f n

init‖L∞ . There-
fore g∗

n −→
n→+∞ f ∗

0 strongly in L1 and (gn)n is uniformly bounded. Finally, from item (2) of Lemma 4.3 and from the 

conservation property of the flow (1.1), we have

H0 ≤ H(f
∗φgn

0 ) ≤ H(gn) ≤H(f n
init ) −→

n→+∞ H0.

Thus H(gn) −→
n→+∞ H0 and the sequence (gn)n is a minimizing sequence of (1.11). According to the previous step, 

this sequence is compact, hence, up to an extraction of a subsequence, there exists fI ∈ E such that gn
E−→ fI . This 

implies that

‖gn − fI‖L1 −→
n→+∞ 0 and ‖v2(gn − fI )‖L1 −→

n→+∞ 0. (4.13)

Arguing as in the proof of Theorem 2 in Section 2.2.2, we prove that H(fI ) = H0 and that fI is equimeasurable to 
fi0 . We deduce that fI is equimeasurable to f0 and hence this is a minimizer of (1.11). We get a contradiction with 
(4.13) and (4.12). There remains to show Lemma 4.5.

Proof of Lemma 4.5. The existence of the weak limit f̄ is given by item (3) of Lemma 4.4. Many techniques in this 
proof have been introduced in [16]. By convexity of Bφ̄ , see Theorem 1 in [16], we have

‖f0‖L∞ˆ

0

Bφ̄(μf0(t) + β
fn,f

∗φ̄
0

(t)) + Bφ̄(μf0(t) − β
fn,f

∗φ̄
0

(t)) − 2Bφ̄(μf0(t))dt ≥ 0.

Using the remark following Theorem 1 in [16], we have

‖f0‖L∞ˆ

0

Bφ̄(μf0(t) + β
fn,f

∗φ̄
0

(t)) + Bφ̄(μf0(t) − β
fn,f

∗φ̄
0

(t)) − 2Bφ̄(μf0(t))dt ≤ An + Bn

where⎧⎨
⎩

An = ´ 2π

0

´
R

(
v2

2 + φ̄(θ)
)

(fn(θ, v) − f
∗φ̄
0 (θ, v))dθdv,

Bn = ´ +∞
0 [a−1

φ̄
(2μf0(s))βf ∗

n ,f ∗
0
(s) − a−1

φ̄
(μf0(s))βf ∗

0 ,f ∗
n
(s)]ds.

Then let us show that An −→
n→+∞ 0. After integrating by parts, we get

An =
2πˆ

0

ˆ

R

(
v2

2
+ φ̄(θ)

)
(fn(θ, v) − f

∗φ̄
0 (θ, v))dθdv =H(fn) −H(f

∗φ̄
0 ) + 1

2
‖φ′

n − φ̄′‖2
L2 .

We have seen in Step 1 of the proof of Theorem 5 in Section 4.2.2 that H(fn) − H(f
∗φ̄
0 ) converges to 0 and ‖φ′

n −
φ̄′‖2

L2 −→
n→+∞ 0; therefore An −→

n→+∞ 0. Finally let us show that Bn −→
n→+∞ 0. We have the following inequality using 

inequality (4.5)

Bn =
+∞ˆ

0

[a−1
φ̄

(2μf0(s))βf ∗
n ,f ∗

0
(s) − a−1

φ̄
(μf0(s))βf ∗

0 ,f ∗
n
(s)]ds

≤
+∞ˆ

0

(
4μf0(s)

2

32π2 + max φ̄

)
βf ∗

n ,f ∗
0
(s) −

(
μf0(s)

2

32π2 + min φ̄

)
βf ∗

0 ,f ∗
n
(s)ds.
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Using the following identity, see the proof of Proposition 4.1 in [17],

+∞ˆ

0

βf ∗
0 ,f ∗

n
(s)ds +

+∞ˆ

0

βf ∗
n ,f ∗

0
(s)ds = ‖f ∗

n − f ∗
0 ‖L1,

we get

Bn ≤ 1

8π2

+∞ˆ

0

μf0(s)
2βf ∗

n ,f ∗
0
(s)ds + (max φ̄ + min φ̄)

+∞ˆ

0

βf ∗
n ,f ∗

0
(s)ds − min φ̄‖f ∗

n − f ∗
0 ‖L1 .

Notice that min φ̄‖f ∗
n − f ∗

0 ‖L1 −→
n→+∞ 0 since (fn)n is a minimizing sequence of (1.11). Besides

(max φ̄ + min φ̄)

+∞ˆ

0

βf ∗
n ,f ∗

0
(s)ds ≤ max φ̄

+∞ˆ

0

βf ∗
n ,f ∗

0
(s)ds

≤ max φ̄

+∞ˆ

0

(f ∗
n − f ∗

0 )+ds

≤ max φ̄‖f ∗
n − f ∗

0 ‖L1 −→
n→+∞ 0.

Finally, let us prove that

1

8π2

+∞ˆ

0

μf0(s)
2βf ∗

n ,f ∗
0
(s)ds −→

n→+∞ 0.

First notice that βf ∗
n ,f ∗

0
(s) −→

n→+∞ 0. Indeed we shall apply the dominated convergence theorem to βf ∗
n ,f ∗

0
(s) =˜

1{f ∗
n (θ,v)≤s<f ∗

0 (θ,v)}dθdv for s > 0. We first have

• 1{f ∗
n (θ,v)≤s<f ∗

0 (θ,v)} −→
n→+∞ 1{f ∗

0 (θ,v)≤s<f ∗
0 (θ,v)} a.e. since f ∗

n −→
n→+∞ f ∗

0 strongly in L1([0, 2π ] ×R),

• 1{f ∗
n (θ,v)≤s<f ∗

0 (θ,v)} ≤ 1{s<f ∗
0 (θ,v)}. But 

˜
1{s<f ∗

0 (θ,v)}dθdv = μ∗
f0

(s) = μf0(s) < ∞ since f0 ∈ L1([0, 2π ] ×R).

Hence by the dominated convergence theorem, we get for all s > 0, βf ∗
n ,f ∗

0
(s) −→

n→+∞ 0. For s = 0, βf ∗
n ,f ∗

0
(0) =

|∅| = 0, thus for all s ≥ 0, βf ∗
n ,f ∗

0
(s) −→

n→+∞ 0. There remains to dominate the term μf0(s)
2βf ∗

n ,f ∗
0
(s). Notice that 

μf0(s)
2βf ∗

n ,f ∗
0
(s) ≤ μf0(s)

3. However we have

+∞ˆ

0

s2f #
0 (s)ds =

+∞ˆ

0

⎛
⎜⎝ ˆ

0≤s<μf0 (t)

s2ds

⎞
⎟⎠dt = 1

3

+∞ˆ

0

μf0(t)
3dt.

So to prove the integrability of s → μf0(s)
3, it is sufficient to show that 

´ +∞
0 s2f #

0 (s)ds < ∞. Using equality (4.5), 
identity 

´
f #

0 (s)ds = ‖f0‖L1 and Lemma 4.2, we get

+∞ˆ

0

s2f #
0 (s)ds �

+∞ˆ

0

(a−1
φ̄

(s) + 1)f #
0 (s)ds

=
+∞ˆ

a−1
φ̄

(s)f #
0 (s)ds + ‖f0‖L1
0
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=
¨ (

v2

2
+ φ̄(θ)

)
f

∗φ̄
0 (θ, v)dθdv + ‖f0‖L1 < +∞

since f ∗φ̄
0 satisfies H0 =H(f

∗φ̄
0 ) and f0 ∈ L1([0, 2π ] ×R). Hence ́ +∞

0 μf0(t)
3dt < +∞. We conclude by dominated 

convergence that

+∞ˆ

0

μf0(s)
2βf ∗

n ,f ∗
0
(s)ds −→

n→+∞ 0.

Therefore Bn −→
n→+∞ 0 and the lemma is proved. �

4.3.2. Expression of the minimizers
From the proof of compactness of minimizing sequences in Section 4.3.1, we can deduce the expression of the 

steady states of (1.1) which minimizes (1.11). Indeed, we have proved that any minimizing sequences (fn)n converge 

to a minimizer f̄ in E which satisfies f̄ = f
∗φ̄
0 . Hence any minimizer f̄ of (1.11) has the following expression:

f̄ = f #
0

(
aφ̄

(
v2

2
+ φ̄(θ)

))
.
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Appendix A

Proof of Lemma 2.2. Let (fn)n be a sequence of nonnegative functions converging weakly in L1([0, 2π ] ×R) to f̄
such that ‖fn‖L1 = M , ‖v2fn‖L1 ≤ C1 and 

˜
fn ln(fn) ≤ C2 where M , C1 and C2 do not depend on n. Let λ ∈ R+

and f1(θ, v) = e−|v|, we have
¨

fn ln(fn) =
¨

fn ln

(
fn

λf1

)
+ ln(λ)

¨
fn +

¨
fn ln(f1)

=
¨

{0≤fn≤λf1}
fn ln

(
fn

λf1

)
+
¨ (

fn ln

(
fn

λf1

))
+

+ ln(λ)M +
¨

fn ln(f1).

First by using the lower semicontinuity properties of convex positive functions, we get

lim inf
n→+∞

¨ (
fn ln

(
fn

λf1

))
+

≥
¨ (

f̄ ln

(
f̄

λf1

))
+

.

At this stage, we have the following identity

lim inf
n→+∞

¨
fn ln(fn) ≥

[¨ (
f̄ ln

(
f̄

λf1

))
+

+ ln(λ)M

]
+ lim inf

n→+∞

¨
fn ln(f1) (A.1)

+ lim inf
n→+∞

¨

{0≤fn≤λf1}
fn ln

(
fn

λf1

)
.
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Let us then show that

lim
λ→0

sup
n

∣∣∣∣∣∣∣
¨

{0≤fn≤λf1}
fn ln

(
fn

λf1

)∣∣∣∣∣∣∣= 0. (A.2)

This term can be written as¨

{0≤fn≤λf1}
fn ln

(
fn

λf1

)
=

¨

{0≤fn≤λf1}
fn ln

(
fn

f1

)
− ln(λ)

¨

{0≤fn≤λf1}
fn = T1 + T2.

We have |T2| ≤ λ| ln(λ)|M1 −→
λ→0

0 uniformly in n where M1 = ‖f1‖L1 . Since for λ sufficiently small, the function 

x → x| ln(x)| is increasing on [0, λf1], we have for T1

|T1| ≤
¨

{0≤fn≤λf1}
fn| ln(f1)| +

¨

{0≤fn≤λf1}
fn| ln(fn)|

≤ λ

¨
f1| ln(f1)| + λ

¨
f1| ln(λf1)| ≤ 2λ

¨
f1| ln(f1)| + λ| ln(λ)|M1.

Clearly, we have 
˜

f1| ln(f1)| < +∞ so |T1| −→
λ→0

0 uniformly in n. So far, we have

lim inf
n→+∞

¨
fn ln(fn) ≥ lim

λ→0

[¨ (
f̄ ln

(
f̄

λf1

))
+

+ ln(λ)M

]
+ lim inf

n→+∞

¨
fn ln(f1). (A.3)

The next step is to show that lim
λ→0

[˜ (
f̄ ln

(
f̄

λf1

))
+ + ln(λ)M

]
=˜

f̄ ln
(

f̄
f1

)
. We have

∣∣∣∣
¨ (

f̄ ln

(
f̄

λf1

))
+

+ ln(λ)M −
¨

f̄ ln

(
f̄

f1

)∣∣∣∣≤
∣∣∣∣∣∣∣

¨

{f̄ ≥λf1}
f̄ ln

(
f̄

f1

)
−
¨

f̄ ln

(
f̄

f1

)∣∣∣∣∣∣∣+ λ| ln(λ)|M1.

(A.4)

Let us show, using the dominated convergence theorem, that the first term of (A.4) converges to 0 when λ goes to 0. 

The term f̄ ln(
f̄
f1

)1{f̄ ≥λf1} clearly converges to f̄ ln(
f̄
f1

). So it remains to show that 
˜ |f̄ ln(

f̄
f1

)|dθdv < +∞. We 
have

¨ ∣∣∣∣f̄ ln

(
f̄

f1

)∣∣∣∣dθdv ≤
¨

|f̄ ln(f̄ )|dθdv +
¨

|f̄ ln(f1)|dθdv

≤
¨

|f̄ ln(f̄ )|dθdv + M + ‖v2f̄ ‖L1 .

It is well known, see [12], that for f̄ ≥ 0, if ‖f̄ ‖L1 < +∞, ‖v2f̄ ‖L1 < +∞, | ̃ f̄ ln(f̄ )dθdv| < +∞, we have ˜ |f̄ ln(f̄ )|dθdv < +∞. We already have that ‖f̄ ‖L1 < +∞, ‖v2f̄ ‖L1 < +∞, so let us show that | ̃ f̄ ln(f̄ )dθdv| <
+∞. Thanks to Jensen’s inequality (2.3), we have¨

f̄ ln(f̄ )dθdv ≥ M(ln(M) − ln(M1)) −
¨

|v|f̄ > −∞.

By hypothesis, we know that lim inf
n→+∞

˜
fn ln(fn)dθdv ≤ C2 and with inequality (A.1) and limit (A.2), we get for all 

λ ∈R+

C2 ≥
¨

¯
f̄ ln(f̄ )dθdv + ln(λ)

¨

¯
f̄ dθdv −

¨
|v|f̄ .
{f ≥λf1} {f ≤λf1}
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The two last terms are bounded so 
˜

{f̄ ≥λf1} f̄ ln(f̄ )dθdv is bounded from above and we deduce that 
˜

f̄ ln(f̄ )dθdv

is bounded from above. So the dominated convergence theorem gives the limit. Then the second term of (A.4) clearly 
converges to 0. So

lim inf
n→+∞

¨
fn ln(fn) ≥

¨
f̄ ln(f̄ ) + lim inf

n→+∞

¨
(fn − f̄ ) ln(f1).

To conclude, it is sufficient to show that 
˜

(fn − f̄ ) ln(f1) −→
n→+∞ 0. Let ε > 0 and R > 0 such that 2C1

R
≤ ε, we have

∣∣∣∣
¨

(fn − f̄ ) ln(f1)

∣∣∣∣≤
∣∣∣∣∣∣∣
¨

{|v|≤R}
(fn − f̄ )|v|dθdv

∣∣∣∣∣∣∣+
¨

{|v|>R}
(fn + f̄ )|v|dθdv

≤

∣∣∣∣∣∣∣
¨

{|v|≤R}
(fn − f̄ )|v|dθdv

∣∣∣∣∣∣∣+
1

R

¨
v2(fn + f̄ )dθdv

≤

∣∣∣∣∣∣∣
¨

{|v|≤R}
(fn − f̄ )|v|dθdv

∣∣∣∣∣∣∣+
2C1

R
.

The first term converges to 0 when n goes to infinity thanks to the weak convergence in L1([0, 2π ] × R) of fn to f̄
and R is chosen such that the second term is smaller than ε. �
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