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Abstract

For a sequence of coupled fields {(φn, ψn)} from a compact Riemann surface M with smooth boundary to a general compact 
Riemannian manifold with uniformly bounded energy and satisfying the Dirac-harmonic system up to some uniformly controlled 
error terms, we show that the energy identity holds during a blow-up process near the boundary. As an application to the heat flow 
of Dirac-harmonic maps from surfaces with boundary, when such a flow blows up at infinite time, we obtain an energy identity.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper is a contribution to the study of coupled field equations on Riemann surfaces, merging the theory 
of harmonic maps from surfaces with a mathematical version of the nonlinear supersymmetric of quantum field 
theory. The corresponding action functional couples a term involving what is called the energy of a map from a 
surface to some Riemannian manifold with a Dirac action for a nonlinear spinor field. The solutions of the resulting 
Euler–Lagrange equations are called Dirac-harmonic maps [4]. While they share many properties with harmonic 
maps, their analysis is much more subtle, because the Dirac action is not bounded from below. Therefore, standard 
variational methods do not apply to show the existence of solutions under general conditions. As an alternative, a new 
type of mixed parabolic–elliptic partial differential equations has been introduced [5] and further investigated [14] in 
order to develop new tools for the existence problem. The existence problem is still not fully solved. In order to make 
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progress, results about the behavior at singularities that are known and classical for harmonic maps need to be extended 
to the Dirac-harmonic case. This is where the contribution of the present paper lies. We study the blow-up process and 
show a so-called energy identity, that is, all the energy that is removed from the map gets transferred to the bubbles 
that represent the singularity. In fact, we study this at the boundary, because boundary value problems currently offer 
the situation where the existence theory is best developed and most promising. In order that our results be applicable to 
the parabolic case, we have to consider approximate solutions, that is, fields that satisfy the Euler–Lagrange equations 
up to some controlled error term. This naturally makes the analysis more difficult.

We now fix the technical setting to describe our results in more precise terms. Let (M, h) be a compact connected 
Riemann surface with smooth boundary ∂M , equipped with a Riemannian metric h and with a fixed spin structure, 
�M be the spinor bundle over M and 〈·, ·〉�M be the metric on �M induced by the Riemannian metric h. Choosing a 
local orthonormal basis eα,α = 1,2 on T M , the usual Dirac operator is defined as /∂ := eα · ∇eα , where ∇ is the spin 
connection on �M , · is the Clifford multiplication, which satisfies the skew-adjointness property

〈X · ψ1,ψ2〉�M = −〈ψ1,X · ψ2〉�M

for any X ∈ �(T M), ψi ∈ �(�M), i = 1, 2.
Let φ be a smooth map from M to another compact Riemannian manifold (N, g) with dimension n ≥ 2. Let 

φ∗T N be the pull-back bundle of T N by φ and then we get the twisted bundle �M ⊗ φ∗T N . Naturally, there is a 
metric 〈·, ·〉�M⊗φ∗T N on �M ⊗ φ∗T N which is induced from the metrics on �M and φ∗T N . Also we have a natural 
connection ∇̃ on �M ⊗ φ∗T N which is induced from the connections on �M and φ∗T N . Let ψ be a section of the 
bundle �M ⊗ φ∗T N . In local coordinates, it can be written as

ψ = ψi ⊗ ∂yi (φ),

where each ψi is a usual spinor on M and ∂yi is the nature local basis on N . Then ∇̃ becomes

∇̃ψ = ∇ψi ⊗ ∂yi (φ) + (�i
jk∇φj )ψk ⊗ ∂yi (φ), (1.1)

where �i
jk are the Christoffel symbols of the Levi-Civita connection of (N, g). The Dirac operator along the map φ

is defined by /Dψ := eα · ∇̃eαψ .
An important factor that will enable us to utilize tools from complex analysis is that the usual Dirac operator /∂ on a 

surface can be seen as the Cauchy–Riemann operator. Consider R2 with the Euclidean metric dx2 + dy2. Let e1 = ∂
∂x

and e2 = ∂
∂y

be the standard orthonormal frame. A spinor field is simply a map ψ : R2 → �2 = C
2, and the action of 

e1 and e2 on spinors can be identified with multiplication with matrices

e1 =
(

0 1
−1 0

)
, e2 =

(
0 i

i 0

)
.

If ψ :=
(

ψ1
ψ2

)
:R2 → C

2 is a spinor field, then the Dirac operator is

/∂ψ =
(

0 1
−1 0

)(
∂ψ1
∂x
∂ψ2
∂x

)
+

(
0 i

i 0

)(
∂ψ1
∂y
∂ψ2
∂y

)
= 2

(
∂ψ2
∂z

− ∂ψ1
∂z

)
, (1.2)

where
∂

∂z
= 1

2
(

∂

∂x
− i

∂

∂y
),

∂

∂z
= 1

2
(

∂

∂x
+ i

∂

∂y
).

For more details on spin geometry and Dirac operators, one can refer to [18,1,9].
We consider the following functional

L(φ,ψ) =
∫
M

(
|dφ|2 + 〈ψ, /Dψ〉�M⊗φ∗T N

)
dvol

=
∫ (

gij (φ)hαβ ∂φi

∂xα

∂φj

∂xβ
+ gij (φ)〈ψi, /Dψj 〉�M

)
dvol.
M
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The functional L(φ, ψ) is conformally invariant (see [4]). That is, for any conformal diffeomorphism f : M → M , 
setting

φ̃ = φ ◦ f and ψ̃ = λ−1/2ψ ◦ f,

here λ is the conformal factor of the conformal map f , i.e. f ∗h = λ2h. Then L(φ̃, ̃ψ) = L(φ, ψ). Critical points 
(φ, ψ) of L are called Dirac-harmonic maps from M to N .

The Euler–Lagrange equations of the functional L are(
�φi + �i

jkh
αβφj

αφk
β

) ∂

∂yi
(φ(x)) = R(φ,ψ), (1.3)

/Dψ = 0, (1.4)

where R(φ, ψ) is defined by

R(φ,ψ) = 1

2
Rm

lij (φ(x))〈ψi,∇φl · ψj 〉 ∂

∂ym
(φ(x)).

Here Rm
lij stands for the Riemann curvature tensor of the target manifold (N, g). One can refer to [3,4].

Using Nash’s embedding theorem, we embed N isometrically into some Euclidean space RK . Then, the critical 
points (φ, ψ) satisfy the Euler–Lagrange equations

−�φ = A(φ)(dφ,dφ) − Re(P (A(dφ(eα), eα · ψ);ψ)), (1.5)

/∂ψ =A(dφ(eα), eα · ψ), (1.6)

where /∂ is the usual Dirac operator, A is the second fundamental form of N in RK , and

A(dφ(eα), eα · ψ) := (∇φi · ψj) ⊗ A(∂yi , ∂yj ),

Re(P (A(dφ(eα), eα · ψ);ψ)) := P(A(∂yl , ∂yj ); ∂yi )Re(〈ψi, dφl · ψj 〉) ∈ R
K.

Here P(ξ ; ·) denotes the shape operator satisfying 〈P(ξ ; X), Y 〉 = 〈A(X, Y), ξ 〉 for any X, Y ∈ �(T N) and Re(z)

denotes the real part of z ∈C. We refer to [3,4,34,6,28,13] for more details.
Before we state our main results, let us recall a definition of approximate Dirac-harmonic map in [17]. Denote

W 2,2(M,N) :=
{

φ ∈ W 2,2(M,RK) with φ(x) ∈ N for a.e. x ∈ M
}

,

W 1,4/3(M,�M ⊗ φ∗T N) := {
ψ ∈ W 1,4/3(M,�M ⊗R

K) with ψ(x) ∈ �M ⊗ φ∗T N

for a.e. x ∈ M
}
.

A pair of fields (φ, ψ) ∈ W 2,2(M, N) × W 1, 4
3 (M, �M × φ∗T N) is called an approximate Dirac-harmonic map 

from M to N with boundary data (ϕ(x), χ(x)), if there exists a pair of fields (τ (φ, ψ), h(φ, ψ)) ∈ L1(M) such that

τ(φ,ψ) = �φ + A(dφ,dφ) − Re (P (A(dφ(eα), eα · ψ);ψ)) , (1.7)

h(φ,ψ) = /∂ψ −A(dφ(eα), eα · ψ), (1.8)

with the boundary data{
φ(x) = ϕ(x), on ∂M;
Bψ(x) = Bχ(x), on ∂M,

(1.9)

where B = B± is the chiral boundary operator defined by

B± : L2(∂M,�M ⊗ φ∗T N |∂M) → L2(∂M,�M ⊗ φ∗T N |∂M) (1.10)

ψ �→ 1

2

(
Id ± −→

n · G) · ψ, (1.11)

where −→n is the outward unit normal vector field on ∂M , G = ie1 · e2 is the chiral operator defined using a local 
orthonormal frame {eα}2 on T M and satisfying:
α=1
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G2 = Id, G∗ = G, ∇G = 0, G · X = −X · G, (1.12)

for any X ∈ �(T M). See e.g. [6,5] for the notion of chiral boundary condition.
Therefore, (φ, ψ) is a Dirac-harmonic map if and only if τ(φ, ψ) = h(φ, ψ) = 0.
Dirac-harmonic maps were introduced in [3,4]. They are motivated by a model from quantum field theory, the 

supersymmetric sigma model [7,12]. This subject generalizes the theory of harmonic maps and harmonic spinors. 
Similarly to the case of two dimensional harmonic maps, the conformal invariance of the energy functional L leads 
to non-compactness of Dirac-harmonic maps in dimension 2 and hence one needs to study their blow-up theory, as in 
[3,32,33,23]. For the blow-up theory of a more general model, whose critical points are called Dirac-harmonic maps 
with curvature terms, see [13]. For approximate harmonic maps in dimension two, one can refer to e.g. [27,11,24,
25,8,26,21,22,19,30,29] for the interior blow-up case and [15,16,10] for the boundary blow-up cases under various 
boundary constraints.

In order to study the blow-up behavior of the Dirac-harmonic map flow from surfaces with boundary considered 
in [5,14], we introduced the notion of approximate Dirac-harmonic maps in [17] and proved the energy identity and 
no neck result in the interior blow-up case for a sequence of such maps. In general, this sequence might blow up at 
a boundary point. In this paper, we shall consider the case that the sequence blows up at the boundary and hence 
complete the blow-up picture of the Dirac-harmonic map flow.

Denote the energy of φ on � ⊂ M by

E(φ;�) =
∫
�

|∇φ|2dM,

the energy of ψ on � ⊂ M by

E(ψ;�) =
∫
�

|ψ |4dM,

and the energy of the pair (φ, ψ) on � ⊂ M by

E(φ,ψ;�) =
∫
�

(|∇φ|2 + |ψ |4)dM.

We shall often omit the domain M from the notation and simply write E(φ) = E(φ; M), E(ψ) = E(ψ; M) and 
E(φ, ψ) = E(φ, ψ; M).

Based on the interior blow-up results for approximate Dirac-harmonic maps studied in [17], we state our first main 
result in this paper concerning the boundary blow-up case:

Theorem 1.1. Consider a sequence of approximate Dirac-harmonic maps (φn, ψn) ∈ C2(M, N) × C1(M, �M ⊗
φ∗T N) from a compact Riemann surface M with smooth boundary ∂M to a compact Riemannian manifold N satis-
fying

E(φn,ψn) + ‖τ(φn,ψn)‖L2 + ‖h(φn,ψn)‖L4 ≤ �,

and with boundary data

φn|∂M = ϕ, Bψn|∂M = Bχ,

where ϕ ∈ C2+α(∂M, N), χ ∈ C1+α(∂M, �M ⊗ φ∗T N) for some 0 < α < 1. We assume (φn, ψn) ⇀ (φ, ψ) weakly 
in W 1,2(M, N) × L4(M, �M ⊗ φ∗T N). Define the blow-up set

S := ∩r>0
{
x ∈ M| lim inf

n→∞

∫
D(x,r)

(|dφn|2 + |ψn|4) ≥ ε
}
, (1.13)

where ε > 0 is the constant as in (3.3). Then S is a (possibly empty) finite set {p1, ..., pq, ..., pI }, where 1 ≤ q ≤ I , 
{p1, ..., pq} ∈ M \ ∂M , {pq+1, ..., pI } ∈ ∂M . Moreover, a subsequence, still denoted by {(φk, ψk)}, converges weakly 
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in W 2,2
loc (M \ S) × W

1,2
loc (M \ S) to (φ, ψ) and for each i = 1, ..., I , there is a finite set of Dirac-harmonic spheres 

(σ l
i , ξ

l
i ) : S2 → N , l = 1, ..., Li , such that

lim
k→∞E(φk) = E(φ) +

I∑
i=1

Li∑
l=1

E(σ l
i ), (1.14)

lim
k→∞E(ψk) = E(ψ) +

I∑
i=1

Li∑
l=1

E(ξ l
i ), (1.15)

and the image φ(M \ ∂M) ∪ ⋃q
i=1

⋃Li

l=1(σ
l
i (S

2)) is a connected set.

Remark 1.2. In Theorem 1.1, for those Dirac-harmonic spheres splitting off at the interior blow-up points, i.e.
(σ l

i , ξ
l
i ) : S2 → N , i = 1, ..., q; l = 1, ..., Li , we know that the image of the map parts σ l

i , i = 1, ..., q; l = 1, ..., Li , 
are connected to the map part φ of the base field (φ, ψ) in the target manifold; this is proved in [17], the refined 
bubble tree can be constructed by applying similar arguments as in the harmonic map case given by [2, Section 3]
and [20, Appendix]. However, for those Dirac-harmonic spheres splitting off at the boundary blow-up points, i.e.
(σ l

i , ξ
l
i ) : S2 → N , i = q +1, ..., I ; l = 1, ..., Li , it is not clear whether the images of the map parts σ l

i , i = q +1, ..., I ; 
l = 1, ..., Li have the same property.

To prove the energy quantization result near the boundary in Theorem 1.1, we shall follow the general blow-up 
scheme developed for harmonic map type problems, however, the proofs in this case are subtle and there are new 
difficulties arising when carrying out the neck analysis. Firstly, the method of the three circle type theorem used in 
the interior case in [17] can not be applied to the boundary case and we need to apply certain integration argument 
to show the no neck energy property. Secondly, we need to establish a new Pohozaev type identity for approximate 
Dirac-harmonic maps from surfaces with boundary (see Lemma 2.2) which requires some algebraic property for the 
spinors, see (2.10). Moreover, we need to derive a new Pohozaev type estimate (see Corollary 2.3) by carrying out 
some exponential decay estimates, which are crucial in the proof of the above theorem. Finally, we would like to 
remark that the bubbling analysis at the boundary is more complicated than in the interior case and here we follow the 
scheme developed for approximate harmonic maps in [15,16].

With the help of Theorem 1.1, we can now study the asymptotic behavior at infinite time for the Dirac-harmonic 
map flow in dimension 2.

The notion of Dirac-harmonic map flow was introduced in [5]. In this flow, one seeks a pair of fields (φ, ψ) :
M × [0, ∞) → N × (�M ⊗ φ∗T N) that solves{

∂tφ = τ(φ) − Re(P (A(dφ(eα), eα · ψ);ψ)), in M × (0,∞);
/∂ψ =A(dφ(eα), eα · ψ), in M × (0,∞),

(1.16)

with the following boundary-initial data:⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ(x, t) = ϕ(x), on ∂M × [0,∞);
φ(x,0) = φ0(x), in M;
Bψ(x, t) = Bχ(x), on ∂M × [0,∞);
φ0(x) = ϕ(x), on ∂M,

(1.17)

where τ(φ) := �φ +A(φ)(∇φ, ∇φ) is the tension field of φ, M is a compact spin Riemannian manifold with smooth 
boundary ∂M and of dimension dim M ≥ 2 and φ0 ∈ W 1,2(M, N), ϕ ∈ C2+α(∂M, N), χ ∈ C1+α(∂M, �M ⊗ϕ∗T N)

are given data. The short-time existence for the above flow (1.16) (1.17) was proved in [5].
When M is a surface, it was shown in [14] that there exists a unique global weak solution defined in [0, ∞) ×M to 

(1.16) with initial-boundary data (1.17) under some smallness assumption for ‖φ0‖H 1 + ‖Bχ‖L2 , which has at most 
finitely many singular times and enjoys the following property:

E(φ(t),ψ(t);M) +
∫
Mt

|∂tφ|2dxdt ≤ C(M,E(φ0),‖Bχ‖L2(∂M)), ∀ 0 ≤ t < ∞. (1.18)
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It follows from (1.18) that there exists a sequence tn ↑ ∞ such that

(φn,ψn) := (φ(·, tn),ψ(·, tn)) ∈ C2+α(M,N) × C1+α(M,�M × φ∗T N)

is a sequence of approximate Dirac-harmonic maps with boundary-data (ϕ, χ) and satisfying

h(φn,ψn) = 0

and

τ(φn,ψn) := ∂tφ(·, tn) with ‖τ(φn,ψn)‖L2 → 0.

When such a flow blows up at infinite time and at interior points, it was proved in [17] that an energy identity and 
no neck property hold during the blow-up process. In this paper, as an immediate corollary of Theorem 1.1 and as a 
complement of the blow-up picture at infinite time of such a flow given in [17], we obtain

Theorem 1.3. Let M be a compact spin Riemann surface with smooth boundary ∂M . Let φ0 ∈ H 1(M, N), ϕ ∈
C2+α(∂M, N), χ ∈ C1+α(∂M, �M ⊗ ϕ∗T N). Let (φ, ψ) : M × [0, ∞) → N × (�M ⊗ φ∗T N) be a global weak 
solution of (1.16) and (1.17), which has finitely many singular times and satisfies (1.18). Then there exist tn ↑ ∞, 
a Dirac-harmonic map (φ∞, ψ∞) ∈ C2+α(M, N) × C1+α(M, �M ⊗ φ∗∞T N) with boundary data φ∞|∂M = ϕ and 
Bψ∞|∂M = Bχ , nonnegative integer I and a possibly empty set with at most finitely many points {p1, ..., pq, ..., pI } ⊂
M , where 1 ≤ q ≤ I , {p1, ..., pq} ∈ M \ ∂M , {pq+1, ..., pI } ∈ ∂M such that

(1) (φn, ψn) := (φ(·, tn), ψ(·, tn)) ⇀ (φ∞, ψ∞) in W 1,2(M, N) × L4(M, �M × φ∗∞T N);
(2) (φn, ψn) → (φ∞, ψ∞) in W 1,2

loc (M \ {p1, ..., pI }) × L4
loc(M \ {p1, ..., pI });

(3) For 1 ≤ i ≤ I , there exist a positive integer Li and Li nontrivial Dirac-harmonic spheres (σ l
i , ξ

l
i ) : S2 → N , 

i = 1, ..., I ; l = 1, ..., Li such that

lim
n→∞E(φn) = E(φ∞) +

I∑
i=1

Li∑
l=1

E(σ l
i ), (1.19)

lim
n→∞E(ψn) = E(ψ∞) +

I∑
i=1

Li∑
l=1

E(ξ l
i ) (1.20)

and the image φ∞(M \ ∂M) ∪ ⋃q

i=1

⋃Li

l=1(σ
l
i (S

2)) is a connected set.

This paper is organized as follows. In Section 2, we extend some basic lemmas to the boundary case, such as small 
energy regularity, Pohozaev’s identity and removable singularity. Then, we recall some known results which will be 
used in this paper. In Section 3, we prove our main Theorem 1.1.

Notations: We denote R2+ = {(x, y) ∈ R
2|y ≥ 0}, Dr(x) = {y ∈ R

2||y − x| ≤ r}, D+
r (x) = Dr(x) ∩R

2+, ∂+D+
r (x) =

∂Dr(x) ∩R2+, ∂0D+
r (x) = Dr(x) ∩ ∂R2+.

For simplicity, we also denote Dr(0), D+
r (0), D1(0), D+

1 (0) as Dr , D+
r , D, D+ respectively.

2. Some basic lemmas

In this section, we will prove some basic lemmas and recall some known results which will be used in this paper.
By standard elliptic theory, there exists a unique solution u ∈ C2+α(M, RK) of{

�u = 0, in M,

u = ϕ, on ∂M,

satisfying

‖u‖C2+α(M) ≤ C(α,M)‖ϕ‖C2+α(∂M).



J. Jost et al. / Ann. I. H. Poincaré – AN 36 (2019) 365–387 371
For simplicity of notation, in the sequel, we will also denote this solution as ϕ.
Firstly, we prove a small energy regularity theorem for the boundary case. For similar results for approximate 

harmonic maps, one can refer to the main estimate 3.2 in [27] and Lemma 2.1 in [8] for the interior case and one can 
also refer to Lemma 4.1 in [15], Lemma 2.4 in [16] for various boundary cases.

Theorem 2.1. There is a small constant ε0 > 0 depending only on p, q and N , such that if (φ, ψ) ∈ W 2,p(D+, N) ×
W 1,q(D+, �D+ ⊗ φ∗T N) is an approximate Dirac-harmonic map from the upper unit disc D+ ⊂ R

2 to a compact 
Riemannian manifold (N, g) ⊂ R

K with τ(φ, ψ) ∈ Lp and h(φ, ψ) ∈ Lq for some 1 < p ≤ 2 and some 4
3 < q ≤ 2, 

and with boundary data (1.9), satisfying

E(φ,ψ;D+) =
∫

D+
(|dφ|2 + |ψ |4)dx < (ε0)

2, (2.1)

then

‖φ − ϕ‖W 2,p(D+
1
2
) ≤ C(‖dφ‖Lp(D+) + ‖ψ‖L2p(D+) + ‖|τ |‖Lp(D+) + ‖∇ϕ‖W 1,p(D+)),

‖ψ‖W 1,q (D+
1
2
) ≤ C(‖ψ‖Lq(D+) + ‖h‖Lq(D+) + ‖Bχ‖W 1−1/q,q (∂0D+)),

where ϕ := ∫
∂0D+

1/2
ϕ ∈R

K and C > 0 is a constant depending only on p, q, N, ‖ϕ‖C2, ‖χ‖C1 .

Moreover, by the Sobolev embedding W 2,p(R2) ⊂ C0(R2), we have

‖φ‖Osc(D+
1/2)

= sup
x,y∈D+

1/2

|φ(x) − φ(y)| ≤ C(‖∇φ‖L2(D+) + ‖τ(u)‖Lp(D+) + ‖∇ϕ‖W 1,p(D+)). (2.2)

Proof. Without loss of generality, we assume 
∫
∂0D+

1
2

ϕ = 0.

Choosing a cut-off function η ∈ C∞
0 (D+) satisfying 0 ≤ η ≤ 1, η|D+

3/4
≡ 1, |∇η| + |∇2η| ≤ C, by standard theory 

of first order elliptic equation, for any 1 < q < 2, we have

‖ηψ‖W 1,q (D+) ≤ C(‖/∂(ηψ)‖Lq(D+) + ‖Bψ‖W 1−1/q,q (∂0D+))

≤ C(‖∇η · ψ + η/∂ψ‖Lq(D+) + ‖Bψ‖W 1−1/q,q (∂0D+))

≤ C
(‖ψ‖Lq(D+) + ‖|dφ||ηψ |‖Lq(D+) + ‖h‖Lq(D+) + ‖Bψ‖W 1−1/q,q (∂0D+)

)
≤ C‖dφ‖L2(D+)‖ηψ‖

L
2q

2−q (D+)

+ C(‖ψ‖Lq(D+) + ‖h‖Lq(D+) + ‖Bψ‖W 1−1/q,q (∂0D+))

≤ Cε0‖ηψ‖
L

2q
2−q (D+)

+ C(‖ψ‖Lq(D+) + ‖h‖Lq(D+) + ‖Bψ‖W 1−1/q,q (∂0D+)).

Taking ε0 > 0 sufficiently small, by Sobolev embedding, we get

‖ηψ‖
L

2q
2−q (D+)

≤ ‖ηψ‖W 1,q (D+) ≤ C(‖ψ‖Lq(D+) + ‖h‖Lq(D+) + ‖Bψ‖W 1−1/q,q (∂0D+)). (2.3)

Computing directly, we obtain

|�(ηφ)| = |η�φ + 2∇η∇φ + φ�η|
≤ C

(
|φ| + |dφ| + |dφ||ηdφ| + |ψ |2|ηdφ| + |τ |

)
≤ C(|dφ| + |ψ |2)|d(ηφ)| + C

(
|φ| + |dφ| + |ψ |2 + |τ |

)
.

By standard elliptic estimates and Poincaré’s inequality, for any 1 < p < 2, we have
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‖ηφ‖W 2,p(D+) ≤ C‖(|dφ| + |ψ |2)|d(ηφ)|‖Lp(D+) + C(‖dφ‖Lp(D+) + ‖|ψ |2‖Lp(D+)

+ ‖|τ |‖Lp(D+) + ‖ϕ‖W 2,p(D+))

≤ C‖d(ηφ)‖
L

2p
2−p (D+)

(‖dφ‖L2(D+) + ‖ψ‖2
L4(D+)

) + C(‖dφ‖Lp(D+)

+ ‖ψ‖2
L2p(D+)

+ ‖|τ |‖Lp(D+) + ‖ϕ‖W 2,p(D+))

≤ Cε0‖d(ηφ)‖
L

2p
2−p (D+)

+ C(‖dφ‖Lp(D+) + ‖ψ‖2
L2p(D+)

+ ‖|τ |‖Lp(D+)

+ ‖∇ϕ‖W 1,p(D+)).

Taking ε0 > 0 sufficiently small, we have

‖∇(ηφ)‖
L

2p
2−p (D+)

≤ C‖ηφ‖W 2,p(D+)

≤ C(‖dφ‖Lp(D+) + ‖ψ‖2
L2p(D+)

+ ‖|τ |‖Lp(D+) + ‖∇ϕ‖W 1,p(D+)). (2.4)

So, we have proved the theorem in the case 1 < p < 2, 4/3 < q < 2.
For the case p = 2, 4/3 < q < 2, taking p = q

2(q−1)
∈ (1, 2) and p = 4

3 in (2.4), by Sobolev embedding, we have

‖∇φ‖L4(D+
3/4)

+ ‖∇φ‖
L

2q
3q−4 (D+

3/4)

≤ C(‖dφ‖L2(D+) + ‖ψ‖2
L4(D+)

+ ‖|τ |‖L2(D+) + ‖∇ϕ‖W 1,2(D+)). (2.5)

By (2.3) and the W 2,2-estimate for the Laplace operators, we obtain

‖φ‖W 2,2(D+
1/2)

≤ C(‖�φ‖L2(D+
3/4)

+ ‖∇φ‖L2(D+) + ‖∇ϕ‖W 1,2(D+))

≤ C(‖∇φ‖2
L4(D+

3/4)
+ ‖∇φ‖ 2q

3q−4 (D+
3/4)

‖|ψ |2‖
L

q
2−q (D+

3/4)
+ ‖∇φ‖L2(D+)

+ ‖∇ϕ‖W 1,2(D+))

≤ C(‖dφ‖L2(D+) + ‖ψ‖L4(D+) + ‖|τ |‖L2(D+) + ‖∇ϕ‖W 1,2(D+)).

For the case q = 2, 1 < p < 2, taking q = 2p
3p−2 ∈ (1, 2) in (2.3), we get

‖ψ‖
L

p
p−1 (D+

3/4)
≤ C(‖ψ‖L2(D+) + ‖h‖L2(D+) + ‖Bψ‖W 1−1/2,2(∂0D+)). (2.6)

By (2.4) and W 1,2-estimates for the Dirac operator, we arrive at

‖ψ‖W 1,2(D+
1/2)

≤ C(‖/∂ψ‖L2(D+
3/4)

+ ‖ψ‖L4(D3/4)
+ ‖Bχ‖W 1−1/2,2(∂0D+))

≤ C(‖∇φ‖
L

2p
2−p (D+

3/4)

‖ψ‖
L

p
p−1 (D+

3/4)
+ ‖ψ‖L4(D3/4)

+ ‖Bχ‖W 1−1/2,2(∂0D+))

≤ C(‖ψ‖L2(D+) + ‖h‖L2(D+) + ‖Bψ‖W 1−1/2,2(∂0D+)).

For the case p = q = 2, taking q = 8
5 in (2.3) and p = 4

3 in (2.4), we will obtain a L8(D+
3/4)-bound for ψ

and a L4(D+
3/4) bound for ∇φ. Then one can apply the W 2,2-boundary estimate for the Laplace operator and the 

W 1,2-boundary estimate for the Dirac operator to get the conclusion of the theorem. �
Next we shall derive a Pohozaev type identity for approximate Dirac-harmonic maps with boundary data, extending 

the interior case given in Lemma 2.3 in [17]. For corresponding results for two dimensional approximate harmonic 
maps, one can refer to Lemma 2.4 [21] for the interior case and refer to Lemma 4.3 in [15] and Lemma 2.5 in [16] for 
various boundary cases.
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Lemma 2.2. (Pohozaev type identity) Let � ⊂ R
2 be a bounded smooth domain. If D+ ⊂ � ⊂ R

2+ and (φ, ψ) ∈
C2(�, N) × C1(�, �� ⊗ φ∗T N) is an approximate Dirac-harmonic map with boundary data (1.9) on ∂0�, then for 
any 0 < t < 1

2 , we have

t

∫
∂+D+

t

(|φr |2 − 1

2
|∇φ|2) = 1

2

∫
∂+D+

t

〈ψ, r−1∂θ · ψθ 〉 − 1

2

∫
D+

t

〈ψ, /Dψ〉dx − Re

∫
D+

t

〈 /Dψ, rψr 〉dx

+
∫

D+
t

r(φ − ϕ)rτdx + 1

2

∫
∂0D+

t

〈ψ,
∂

∂x2 · rψr 〉

+
∫

∂+D+
t

rφrϕr −
∫

D+
t

∇φ(∇ϕ + r∇ϕr)dx

+
∫

D+
t

〈rϕr ,A(φ)(dφ, dφ) − Re (P (A(dφ(eα), eα · ψ);ψ))〉dx, (2.7)

where (r, θ) are polar coordinates in D centered at 0, φr = ∂φ
∂r

, ψr = ∇̃ ∂
∂r

ψ and ψθ = ∇̃ ∂
∂θ

ψ .

Before we prove this lemma, let us recall two basic facts for Dirac operators and spinors with chiral boundary 
constraint,

Fact 1: For any ψ, ω ∈ W 1,3/4(M, �M ⊗ φ∗T N) satisfying

Bψ |∂M = Bω|∂M = 0,

we have

〈−→n · ψ,ω〉 = 0 on ∂M, (2.8)

where −→n is the unit normal vector field on ∂M .
For a proof of this straightforward fact, see e.g. [[6], Prop 3.1].

Fact 2: For any ψ, ω ∈ W 1,3/4(M, �M ⊗ φ∗T N), we have∫
M

〈ψ, /Dω〉dx =
∫
M

〈 /Dψ,ω〉dx −
∫

∂M

〈−→n · ψ,ω〉 (2.9)

where 〈ψ, ω〉 := hij 〈ψi, ωj 〉.
For a proof of this well-known fact, see e.g. [[6], Prop 3.2].

Proof of Lemma 2.2. Multiplying the equation (1.7) by r(φ − ϕ)r and integrating over D+
t , noting the fact that 

r∂rφ = xβ∂βφ and recalling Proposition 2.2 in [17] that

〈ψ, ∇̃ ∂

∂xβ
( /Dψ) = 2〈Re (P (A(dφ(eα), eα · ψ);ψ)) ,∇ ∂

∂xβ
φ〉 + 〈ψ, /D∇̃ ∂

∂xβ
ψ〉, (2.10)

we get∫
D+

t

r(φ − ϕ)rτdx =
∫

D+
t

r(φ − ϕ)r�φdx −
∫

D+
t

〈rφr ,Re (P (A(dφ(eα), eα · ψ);ψ))〉dx

−
∫

D+
〈rϕr ,A(φ)(dφ, dφ) − Re (P (A(dφ(eα), eα · ψ);ψ))〉dx
t
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=
∫

D+
t

r(φ − ϕ)r�φdx + 1

2

∫
D+

t

〈xβψ, /Dψβ〉dx − 1

2

∫
D+

t

〈xβψ, ∇̃∂β
/Dψ〉dx

−
∫

D+
t

〈rϕr ,A(φ)(dφ, dφ) − Re (P (A(dφ(eα), eα · ψ);ψ))〉dx

: = I+ II+ III+ IV.

On one hand, by integrating by parts, we have

I=
∫

∂+D+
t

r|φr |2 −
∫

∂+D+
t

rφrϕr −
∫

D+
t

∇φ∇(r(φ − ϕ)r)dx

=
∫

∂+D+
t

r|φr |2 −
∫

∂+D+
t

rφrϕr −
∫

D+
t

∇φ∇(φ − ϕ)dx − 1

2

∫
D+

t

r∂r |∇φ|2dx

+
∫

D+
t

r∇φ∇ϕrdx

= t

∫
∂+D+

t

(|φr |2 − 1

2
|∇φ|2) −

∫
∂+D+

t

rφrϕr +
∫

D+
t

∇φ(∇ϕ + r∇ϕr)dx,

where the last equality follows from the fact that

−1

2

∫
D+

t

r∂r |∇φ|2dx = −1

2

∫
∂+D+

1

t∫
0

r2∂r |∇φ|2drdθ

= −1

2

∫
∂+D+

t

t |∇φ|2 +
∫

D+
t

|∇φ|2dx.

On the other hand, by Fact 2, we get

2II=
∫

D+
t

〈xβψ, /Dψβ〉dx

=
∫

D+
t

〈 /D(xβψ),ψβ〉dx −
∫

∂+D+
t

〈 ∂

∂r
· xβψ,ψβ〉 +

∫
∂0D+

t

〈 ∂

∂x2 · xβψ,ψβ〉

= −
∫

D+
t

〈ψ, /Dψ〉dx +
∫

D+
t

〈 /Dψ, rψr 〉dx +
∫

∂+D+
t

〈ψ, r∂r · ψr 〉 −
∫

∂0D+
t

〈ψ,
∂

∂x2 · rψr 〉. (2.11)

Integrating by parts, it follows that

2III = −
∫

D+
t

〈xβψ, ∇̃∂β
/Dψ〉dx

= −
∫

∂+D+
t

〈rψ, /Dψ〉dx +
∫

D+
t

〈∇̃∂β (xβψ), /Dψ〉dx

= 2
∫

D+
t

〈ψ, /Dψ〉dx +
∫

D+
t

〈rψr, /Dψ〉dx −
∫

∂+D+
t

〈rψ, /Dψ〉. (2.12)
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Thus, we have

II+ III = 1

2

∫
D+

t

〈ψ, /Dψ〉dx + Re

∫
D+

t

〈 /Dψ, rψr 〉dx − 1

2

∫
∂+D+

t

〈ψ, r−1∂θ · ψθ 〉

− 1

2

∫
∂0D+

t

〈ψ,
∂

∂x2 · rψr 〉.

Combining these estimates, we get (2.7). This finishes the proof of the lemma. �
As a consequence of Lemma 2.2, we derive the following Pohozaev type estimate, which plays a key role in the 

proof of Theorem 1.1.

Corollary 2.3. (Pohozaev type estimate) Under the assumption of Lemma 2.2, if

E(φ,ψ;D+) + ‖τ(φ,ψ)‖L2 + ‖h(φ,ψ)‖L4 ≤ �,

then for any 0 < t < 1
4 and 0 < ε < 1

4 , we have∫
D+

2t\D+
t

(|φr |2 − 1

2
|∇φ|2)dx ≤ε

∫
D+

2t\D+
t

|r−1 ∂φ

∂θ
|2dx + C

ε

∫
D+

2t\D+
t

|ψ |4dx

+ C

∫
D+

2t\D+
t

|r−1 ∂ψ

∂θ
| 4

3 dx + C
√

t, (2.13)

where C is a positive constant depending only on �, N, ‖ϕ‖C2, ‖χ‖C1 .

Proof. Firstly, by equation (1.8) and elliptic theory, we have

‖ψ‖
W

1, 4
3 (D+

1
2
)
≤ C(‖∇φ‖L2(D+)‖ψ‖L4(D+) + ‖h‖

L
4
3 (D+)

+ ‖Bχ‖W 1/4,4/3(∂0D+)) ≤ C.

Thanks to Lemma 2.2, for any 0 < t < 1
2 , we have

t

∫
∂+D+

t

(|φr |2 − 1

2
|∇φ|2) := I1 + ... + I8. (2.14)

Using Young’s inequality and the fact that

ψr = ∇̃ ∂
∂r

ψ = ∂ψ

∂r
+ ψi ⊗ A(dφ(

∂

∂r
),

∂

∂yi
), (2.15)

where ∂ψ
∂r

= (
∂ψ1

∂r
, ..., ∂ψK

∂r
), we obtain

I2 + I3 + I4 ≤ Ct(‖ψ‖L4(D+
t ) + ‖ψr‖

L
4
3 (D+

t )
)‖h‖L4(D+

t )

+ Ct(‖∇φ‖L2(D+
t ) + ‖∇ϕ‖L2(D+

t ))‖τ‖L2(D+
t )

≤ Ct(‖ψ‖L4(D+
t ) + ‖∇ψ‖

L
4
3 (D+

t )
+ ‖∇φ‖L2(D+

t )‖ψ‖L4(D+
t ))‖h‖L4(D+

t ) + Ct

≤ Ct. (2.16)

As for I5, we have

I5 = 1

2

∫
∂0D+

〈ψ,
∂

∂x2 · rψr 〉

t
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= 1

2

∫
∂0D+

t

〈ψ − χ,
∂

∂x2 · r(ψ − χ)r 〉 + 1

2

∫
∂0D+

r

〈χ,
∂

∂x2 · rψr 〉

+ 1

2

∫
∂0D+

t

〈ψ,
∂

∂x2 · rχr 〉 − 1

2

∫
∂0D+

t

〈χ,
∂

∂x2 · rχr 〉

= 1

2

∫
∂0D+

t

〈χ,
∂

∂x2 · rψr 〉 + 1

2

∫
∂0D+

t

〈ψ,
∂

∂x2 · rχr 〉 − 1

2

∫
∂0D+

t

〈χ,
∂

∂x2 · rχr 〉, (2.17)

where the last equality follows from Fact 1 which tells us that

1

2

∫
∂0D+

t

〈ψ − χ,
∂

∂x2 · r(ψ − χ)r 〉 = 0.

Computing directly, we get

1

2

∫
∂0D+

t

〈χ,
∂

∂x2 · rψr 〉 = −1

2

t∫
−t

〈x1 ∂

∂x2 · χ, ∇̃ ∂

∂x1
ψ〉dx1

= −1

2

t∫
−t

∂

∂x1 〈x1 ∂

∂x2 · χ,ψ〉dx1 + 1

2

t∫
−t

〈∇̃ ∂

∂x1
(x1 ∂

∂x2 · χ),ψ〉dx1

≤ Ct(|ψ |(t,0) + |ψ |(−t,0)) + C
√

t‖ψ‖L2(∂0D+
1
2
).

By Hölder’s inequality and trace theory, we have

1

2

∫
∂0D+

t

〈ψ,
∂

∂x2 · rχr 〉 − 1

2

∫
∂0D+

t

〈χ,
∂

∂x2 · rχr 〉 ≤ C(
√

t‖ψ‖L2(∂0D+
1
2
) + t)

≤ C(
√

t‖ψ‖
W

1, 4
3 (D+

1
2
)
+ t),

where C is a constant depending only on ‖χ‖C1 .
Then (2.17) implies

I5 ≤ Ct(|ψ |(t,0) + |ψ |(−t,0)) + C
√

t‖ψ‖L2(∂0D+
1
2
) + Ct. (2.18)

For I7 and I8, it is easy to see that

I7 + I8 ≤ Ct. (2.19)

Multiplying (2.14) by 1
t

and integrating from t to 2t , we get∫
D+

2t\D+
t

(|φr |2 − 1

2
|∇φ|2)dx

≤ 1

2

2t∫
t

1

r

∫
∂+D+

r

〈ψ, r−1∂θ · ψθ 〉dθdr +
2t∫

t

1

r

∫
∂+D+

r

rφrϕrdθdr

+ C

2t∫
(|ψ |(r,0) + |ψ |(−r,0) + 1 + 1√

r
)dr
t
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≤ C‖ψ‖L4(D+
2t\D+

t )‖r−1ψθ‖
L

4
3 (D+

2t\D+
t )

+ Ct(1 + ‖dφ‖L2(D+
2t\D+

t )) + C
√

t(1 + ‖ψ‖L2(∂0D+
1
2
))

≤ ε

∫
D+

2t\D+
t

|r−1 ∂φ

∂θ
|2dx + C

ε

∫
D+

2t\D+
t

|ψ |4dx + C

∫
D+

2t\D+
t

|r−1 ∂ψ

∂θ
| 4

3 dx + C
√

t,

where the last inequality follows from Young’s inequality, the trace theory

‖ψ‖L2(∂0D+
1
2
) ≤ C‖ψ‖

W
1, 4

3 (D+
1
2
)

and the fact

ψθ = ∇̃ ∂
∂θ

ψ = ∂ψ

∂θ
+ ψi ⊗ A(dφ(

∂

∂θ
),

∂

∂yi
).

This finishes the proof. �
In the end of this section, we recall some known results for (approximate) Dirac-harmonic maps which are used in 

this paper.

Theorem 2.4 (Theorem 2.1., [17]). There is a small constant ε′
0 > 0 depending on p, q and N , such that if (φ, ψ) ∈

W 2,p(D, N) × W 1,q(D, �D ⊗ φ∗T N) is an approximate Dirac-harmonic map from the unit disc D in R2 to a 
compact Riemannian manifold (N, g) with τ(φ, ψ) ∈ Lp and h(φ, ψ) ∈ Lq for some 4

3 ≤ p ≤ 2 and some 8
5 ≤ q ≤ 2, 

and satisfies

E(φ,ψ;D) =
∫
D

(|dφ|2 + |ψ |4)dx < (ε′
0)

2, (2.20)

then

‖φ − φ‖W 2,p(D 1
2
) ≤ C(‖dφ‖L2(D) + ‖τ‖Lp(D)),

‖ψ‖W 1,q (D 1
2
) ≤ C(‖ψ‖L4(D) + ‖h‖Lq(D)),

where φ := 1
|D1/2|

∫
D1/2

φdx and C > 0 is a constant depending only on p, q, N .

Moreover, by the Sobolev embedding W 2,p(R2) ⊂ C0(R2), we have

‖φ‖Osc(D1/2) = sup
x,y∈D1/2

|φ(x) − φ(y)| ≤ C(�,N)(‖∇φ‖L2(D) + ‖τ(u)‖Lp(D)). (2.21)

Proposition 2.5 (Theorem 3.1 in [3]). There exists an ε1 > 0 depending on N such that if (φ, ψ) is a smooth Dirac-
harmonic map from the standard sphere S2 to a compact Riemannian manifold N satisfying∫

S2

(|dφ|2 + |ψ |4)dx < ε1,

then φ is a constant map and ψ ≡ 0.

Theorem 2.6 (Theorem 1.4 in [14]). Let (φ, ψ) : R2+ → N be a smooth Dirac-harmonic map with boundary data 
φ|∂R2+ = const. and Bψ |∂R2+ = 0 and satisfying∫

R
2+

|∇φ|2dx +
∫
R

2+

|ψ |4dx < ∞.

Then φ is a constant map and ψ ≡ 0.
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3. Energy identity

In this section, we will prove our main Theorem 1.1. Since the interior blow-up behavior was already studied in 
[17], we only need to consider the boundary blow-up behavior.

Firstly, we consider the following simpler case of a boundary blow-up point.

Theorem 3.1. Let φn ∈ C2(D+
1 (0), N), ψn ∈ C1(D+

1 (0), �D+
1 (0) ⊗ φ∗

nT N) be a sequence of approximate Dirac-
harmonic maps satisfying

(a) ‖φn‖W 1,2(D+) + ‖ψn‖L4(D+) + ‖τn‖L2(D+) + ‖hn‖L4(D+) ≤ �,

(b) (φn, ψn) ⇀ (φ, ψ) weakly in W
2,2
loc (D+ \ {0}) × W

1,2
loc (D+ \ {0}) as n → ∞.

Then there exist a subsequence of (φn, ψn) (still denoted by (φn, ψn)) and a nonnegative integer L such that, for any 
i = 1, ..., L, there exist points xi

n, positive numbers λi
n and a nonconstant Dirac-harmonic sphere (σ i, ξ i) : S2 → N

such that:

(1) xi
n → 0, λi

n → 0, as n → ∞;

(2) dist (xi
n,∂0D+)

λi
n

→ ∞, as n → ∞;

(3) limn→∞
(λi

n

λ
j
n

+ λ
j
n

λi
n

+ |xi
n−x

j
n |

λi
n+λ

j
n

) = ∞ for any i �= j ;

(4) (σ i, ξ i) is the weak limit of (φn(x
i
n + λi

nx), ψn(x
i
n + λi

nx)) in W 1,2
loc (R2) × L4

loc(R
2);

(5) Energy identity: we have

lim
n→∞E(φn) = E(φ) +

L∑
i=1

E(σ i), (3.1)

lim
n→∞E(ψn) = E(ψ) +

L∑
i=1

E(ξ i). (3.2)

Proof. By assumption, without loss of generality, we may assume that 0 is the only blow-up point of the sequence 
{(φn, ψn)} in D+, i.e.

lim inf
n→∞ E(φn,ψn;D+

r ) ≥ ε2

2
for all r > 0 (3.3)

where ε = min{ε0, ε′
0} and ε0, ε′

0 are the constants in Theorem 2.1 and Theorem 2.4. By the standard argument of 
blow-up analysis (see e.g. [8,3]), we can assume that, for any n, there exist sequences xn → 0 and rn → 0 such that

E(φn,ψn;D+
rn

(xn)) = sup
x∈D+,r≤rn
D+

r (x)⊂D+

E(φn,ψn;D+
r (x)) = ε2

4
. (3.4)

Firstly, we make a Claim 1: lim supn→∞
dist (xn,∂0D+)

rn
= ∞.

If not, after taking a subsequence, we may assume limn→∞ dist (xn,∂0D+)
rn

= a ≥ 0. Set

un(x, t) := φn(xn + rnx), vn(x, t) := √
rnψn(xn + rnx),

and

Bn := {x ∈R
2|xn + rnx ∈ D+}.

Then

Bn →R
2
a := {(x1, x2)|x2 ≥ −a},
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as n → ∞. It is easy to see (un, vn) lives in Bn and satisfies{
r2
nτ (φn) = �un + A(dun, dun) − Re(P (A(dun(eα), eα · vn);vn)), in Bn;

r
4
3
n hn = /∂vn −A(dun(eα), eα · vn), in Bn,

(3.5)

with the boundary data{
un(x) = ϕ(x1 + rnx), if xn + rnx ∈ ∂M;
Bvn(x) = √

rnBχ(xn + rnx), if xn + rnx ∈ ∂M.
(3.6)

By (3.4), Theorem 2.4 and Theorem 2.1, we have

‖un‖W 2,2(D4R(0)∩Bn) + ‖vn‖W 1,2(D4R(0)∩Bn) ≤ C(R,N) (3.7)

for any DR(0) ⊂ R
2 which implies

‖un(x − (0,
dn

rn
))‖W 2,2(D+

3R(0)) + ‖vn(x − (0,
dn

rn
))‖W 1,2(D+

3R(0)) ≤ C(R,N)

when n, R are large, where dn := dist (xn, ∂0D+).
Then there exist a subsequence of (un, vn) (also denoted by (un, vn)) and a Dirac-harmonic map (̃u, ̃v) ∈

W 2,2(R2+) × W 1,2(R2+) with the boundary data (̃u, Bṽ)|∂R2+ = (ϕ(x0), 0), such that for any R > 0,

lim
n→∞‖un(x − (0,

dn

rn
)) − ũ(x)‖W 1,2(D+

3R(0)) = 0

lim
n→∞‖vn(x − (0,

dn

rn
)) − ṽ(x)‖L4(D+

3R(0)) = 0.

Set ̃u1(x) := ũ(x + (0, a)) and ̃v1(x) := ṽ(x + (0, a)), then we get, for any R > 0,

lim
n→∞‖un(x) − ũ1(x)‖W 1,2(D2R(0)∩Bn∩R2

a) = 0

lim
n→∞‖vn(x) − ṽ1(x)‖L4(D2R(0)∩Bn∩R2

a) = 0.

Combining this with (3.7) and noting that the measure of D2R(0) ∩ Bn \R2
a goes to zero, we have

lim
n→∞‖un(x)‖W 1,2(DR(0)∩Bn) = ‖ũ1(x)‖W 1,2(DR(0)∩R2

a)

lim
n→∞‖vn(x)‖L4(DR(0)∩Bn) = ‖̃v1(x)‖L4(DR(0)∩R2

a).

Therefore, by (3.4), we can obtain E(̃u1, ̃v1; D1(0) ∩R
2
a) = ε2

4 . However, by Theorem 2.6, we know ̃u1 is a constant 
map and ̃v1 ≡ 0. This is a contradiction. We proved Claim 1.

Under the assumption lim supn→∞ dist (xn,∂0D+)
rn

= ∞, we can see that (un, vn) lives in Bn which tends to R2 as 

n → ∞. Moreover, for any x ∈R
2, when n is sufficiently large, by (3.4), we have

E(un, vn;D1(x)) ≤ ε2

4
. (3.8)

According to Theorem 2.4, there exist a subsequence of (un, vn) (we still denote it by (un, vn)) and a Dirac-harmonic 
map (u1(x), v1(x)) ∈ W 2,2(R2, N) × W 1,2(R2, �R2 ⊗ (u1)∗T N) such that

un(x) → u1(x) in W
1,2
loc (R2), vn(x) → v1(x) in L4

loc(R
2), (3.9)

as n → ∞. Besides, we know E(u1, v1; D1(0)) = ε2

4 . By the standard theory of Dirac-harmonic maps [3], 
(u1(x), v1(x)) can be extended to a nontrivial Dirac-harmonic sphere which is usually called the first bubble.

By the standard induction argument in [8], we only need to prove the theorem in the case where there is only one 
bubble. For the more bubbles case, i.e. the bubble tree, we just need to distinguish “neck domains” which is almost 
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the same as in the blow-up theory of approximate harmonic maps. See [20,2] for details. Then we can estimate the 
energy concentration on each “neck domain” by using the proof of the one bubble case.

Under this assumption, we have the following:

Claim 2: for any ε > 0, there exist δ > 0 and R > 0 such that

E(φn,ψn;D+
8t (xn) \ D+

t (xn)) ≤ ε2 for any t ∈ (
1

2
rnR,2δ) (3.10)

when n is large enough.

In fact, if (3.10) is not true, then we can find tn → 0, such that limn→∞ tn
rn

= ∞ and ε′ > 0 such that

E(φn,ψn;D+
8tn

(xn) \ D+
tn

(xn)) ≥ ε′ > 0. (3.11)

Passing to a subsequence, we may assume limn→∞ dn

tn
= b ∈ [0, ∞]. For simplicity of notation, we also denote

un(x) := φn(xn + tnx), vn(x) := √
tnψn(xn + tnx).

Denoting B ′
n := {x ∈ R

2|xn + tnx ∈ D+}, then it is easy to see that (un(x), vn(x)) lives in B ′
n and 0 is also an energy 

concentration point for (un, vn). We have to consider the following two cases:

(a) b < ∞.

Then B ′
n tends to R2

b as n → ∞. Here, we also need to consider two cases.

(a-1) (un, vn) has no other energy concentration points except 0.

By Theorem 2.4, Theorem 2.1 and the proof of Claim 1, there exists a Dirac-harmonic map (u, v) :R2
b → N with 

boundary data u|∂R2
b
= ϕ(0), Bv|∂R2

b
= 0 satisfying, passing to a subsequence, for any λ, R > 0, there hold

lim
n→∞‖un(x) − u(x)‖W 1,2(D2R(0)∩B ′

n∩R2
b\Dλ(0)) = 0

lim
n→∞‖vn(x) − v(x)‖L4(D2R(0)∩B ′

n∩R2
b\Dλ(0)) = 0,

and

lim
n→∞‖un(x)‖W 1,2(DR(0)∩B ′

n\Dλ(0)) = ‖u(x)‖W 1,2(DR(0)∩R2
b\Dλ(0))

lim
n→∞‖vn(x)‖L4(DR(0)∩B ′

n\Dλ(0)) = ‖v(x)‖L4(DR(0)∩R2
b\Dλ(0)).

According to (3.11), we have

E(u,v; (D8(0) \ D1(0)) ∩R
2
b) = lim

n→∞E(un, vn; (D8(0) \ D1(0)) ∩ B ′
n) ≥ ε′.

However, Theorem 2.6 tells us that u is a constant map and v ≡ 0. This is a contradiction.

(a-2) (un, vn) has another energy concentration point p �= 0.

Without loss of generality, we may assume p is the only energy concentration point in Dr0(p) for some r0 > 0. By 
the standard argument of blow-up analysis, there exist sequences x′

n → p and r ′
n → 0 such that

E(un, vn;Dr ′
n
(x′

n) ∩ B ′
n) = sup

x∈Dr0 (p),r≤r ′
n

Dr (x)⊂Dr0 (p)

E(un, vn;Dr(x) ∩ B ′
n) = ε2

4
. (3.12)

By (3.4), we have r ′
ntn ≥ rn and taking a subsequence, we may assume

lim
n→∞

dn

r ′ t
= d ∈ [0,∞].
n n
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Furthermore, we know d must be ∞ (the proof is the same as for Claim 1). Then similar to the process of construct-
ing the first bubble, there exists a nontrivial Dirac-harmonic map (u2(x), v2(x)) ∈ W 2,2(R2, N) × W 1,2(R2, �R

2 ⊗
(u2)∗T N) such that

un(x
′
n + r ′

nx) → u2(x) in W
1,2
loc (R2),

√
r ′
nvn(x

′
n + r ′

nx) → v2(x) in L4
loc(R

2),

as n → ∞. This is

φn(xn + tnx
′
n + tnr

′
nx) → v2(x) in W

1,2
loc (R2) and

√
tnr ′

nψn(xn + tnx
′
n + tnr

′
nx) → v2(x) in L4

loc(R
2).

Thus, (u2, v2) is also a bubble for the sequence (φn, ψn). This is a contradiction to the one bubble assumption.

(b) b = ∞.

In this case, B ′
n will tend to R2 as n → ∞. Again, we need to consider the following two cases.

(b-1) (un, vn) has no other energy concentration points except 0.

According to (3.11), Theorem 2.4, Theorem 2.1 and the process of constructing the first bubble, we know that there 
exists a nontrivial Dirac-harmonic map (u2, v2) : R2 → N such that, passing to a subsequence,

un(x) → u2(x) in W
1,2
loc (R2 \ {0}) and vn(x) → v2(x) in L4

loc(R
2 \ {0}),

as n → ∞. Then, we get the second bubble (u2(x), v2(x)) which contradicts the “one bubble” assumption.

(b-2) (un, vn) has another energy concentration point p �= 0.

Similar to Case (a-2), there exist sequences x ′
n → p and r ′

n → 0 satisfying (3.12) and

lim
n→∞

dn

r ′
ntn

= ∞.

Moreover, by the process of constructing the first bubble, there exists a nontrivial Dirac-harmonic map (u2, v2) : R2 →
N such that, as n → ∞,

un(x
′
n + r ′

nx) → v2(x) in W
1,2
loc (R2) and

√
r ′
nvn(x

′
n + r ′

nx) → v2(x) in L4
loc(R

2)

that is

φn(xn + tnx
′
n + tnr

′
nx) → v2(x) in W

1,2
loc (R2) and

√
tnr ′

nψn(xn + tnx
′
n + tnr

′
nx) → v2(x) in L4

loc(R
2).

So, we get the second bubble (u2(x), v2(x)). This also contradicts the “one bubble” assumption. Thus, we proved
Claim 2.

Under the “one bubble” assumption, by (3.9), it is easy to see that energy identity (3.1) and (3.2) are equivalent to

lim
R→∞ lim

δ→0
lim

n→∞E(φn;D+
δ (xn) \ D+

rnR(xn)) = 0 (3.13)

and

lim
R→∞ lim

δ→0
lim

n→∞E(ψn;D+
δ (xn) \ D+

rnR(xn)) = 0. (3.14)

Without loss of generality, we may assume δ = 2mnrnR for some positive integer mn which tends to ∞ as n → ∞. 
We denote Pi := D+

2i rnR
(xn) \ D+

2i−1rnR
(xn).

Firstly we use a finite decomposition argument that is similar to those in [31,32] to separate � := D+
δ (xn) \

D+
rnR(xn) into finite parts

� = ∪sn
j=1Qj, Qj := ∪kj

i=kj−1+1Pi, 0 = k0 < k1 <, ...,< ksn = mn
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such that sn ≤ S and

E(φn,ψn;Qj) ≤ 1

C1(N)
, j = 1, ..., sn, (3.15)

where C1(N) > 0 is a constant depending only on N to be determined later and S is a uniform integer for all n large 
enough.

From (3.10), for any ε < 1
2C1(N)

, we have

E(φn,ψn;Pi) < ε <
1

2C1(N)
, i = 1, ...,mn

when n is large.
If

E(φn,ψn;�) ≤ 1

C1(N)
,

let k1 = mn and then Q1 = �. Otherwise, we can choose an integer 1 ≤ k1 < mn such that

1

2C1(N)
< E(φn,ψn;Q1) ≤ 1

C1(N)
and E(φn,ψn;Q1 ∪ Pk1+1) >

1

C1(N)
.

This is the first step of the division. Inductively, suppose that kj is chosen such that E(φn, ψn; Qj) ≤ 1
C1(N)

. If

E(φn,ψn;∪mn

i=kj +1Pi) ≤ 1

C1(N)
,

let kj+1 = mn, thus Qj+1 = ∪mn

i=kj +1Pi . If not, then similar to the first step, we can find kj < kj+1 < mn such that

1

2C1(N)
< E(φn,ψn;Qj+1) ≤ 1

C1(N)
and E(φn,ψn;Qj+1 ∪ Pkj+1+1) >

1

C1(N)
.

Since E(φn, ψn) is uniformly bounded by �, we will finish our division after at most S = [2C1(N)�] + 1 steps. So 
we have finished the division.

Take a cut-off function η ∈ C∞
0 (D+

2kj +1
rnR

(xn) \D+
2kj−1−1

rnR
(xn)) such that 0 ≤ η ≤ 1 and η|D+

2
kj rnR

(xn)\D+
2
kj−1 rnR

(xn)

≡ 1 and

|∇η| ≤ C

2kj rnR
on D+

2kj +1
rnR

(xn) \ D+
2kj rnR

(xn) and

|∇η| ≤ C

2kj−1rnR
on D+

2kj−1 rnR
(xn) \ D+

2kj−1−1
rnR

(xn).

By the standard elliptic estimates, we have

‖ηψn‖W 1,4/3(D+
1 )

≤ C‖η/∂ψn + ∇η · ψn‖
L

4
3 (D+

1 )
+ C‖ηBχ‖W 1/4,4/3(∂D+

1 )

≤ 1

4
C(N)(‖|dφn||ηψn|‖

L
4
3 (�)

+ ‖η|hn|‖
L

4
3 (�)

) + C‖|∇η||ψn|‖
L

4
3 (�)

+ C‖ηBχ‖W 1/4,4/3(∂0D+
δ )

≤ 1

4
C(N)‖dφn‖L2(D

2
kj +1

rnR
(xn)\D

2
kj−1−1

rnR
(xn))‖ηψn‖L4(�) + C‖hn‖

L
4
3 (�)

+ C‖∇ηψn‖
L

4
3 (Pkj−1∪Pkj +1)

+ C‖ηBχ‖W 1/4,4/3(∂0D+
δ )

≤ 1

4
C(N)

2√
C1(N)

‖ηψn‖L4(�) + C‖ψn‖L4(Pkj−1∪Pkj +1)
+ C‖hn‖

L
4
3 (�)

+ C‖ηBχ‖W 1/4,4/3(∂0D+
δ ),

where the last inequality is from (3.10) and (3.15). Then, taking C1(N) = C2(N) + 1, by (3.10) and Sobolev embed-
ding, we have
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‖ψn‖L4(Qj ) + ‖∇ψn‖L4/3(Qj ) ≤ C‖ψn‖L4(Pkj−1∪Pkj +1)
+ C‖hn‖

L
4
3 (�)

+ C‖ηBχ‖W 1/4,4/3(∂0D+
δ )

≤ C(�,‖χ‖C1)(
√

ε + δ).

So,

‖ψn‖L4(�) + ‖∇ψn‖L4/3(�) ≤
sn∑

j=1

(‖ψn‖L4(Qj ) + ‖∇ψn‖L4/3(Qj )) ≤ CS(
√

ε + δ).

This is (3.14).
Suppose x′

n ∈ ∂0D+ is the projection of xn, i.e. dn = dist (xn, ∂0D+) = |xn −x′
n|. Similar to the boundary blow-up 

cases for approximate harmonic maps studied in [15,16], we decompose the neck domain D+
δ (xn) \ D+

rnR(xn) as 
follows

D+
δ (xn) \ D+

rnR(xn) = D+
δ (xn) \ D+

δ
2
(x′

n) ∪ D+
δ
2
(x′

n) \ D+
2dn

(x′
n)

∪ D+
2dn

(x′
n) \ D+

dn
(xn) ∪ D+

dn
(xn) \ D+

rnR(xn)

:= �1 ∪ �2 ∪ �3 ∪ �4,

when n is large.
Since limn→∞ dn = 0 and limn→∞ dn

rn
= ∞, when n is large enough, it is easy to see that

�1 ⊂ D+
δ (xn) \ D+

δ
4
(xn), and �3 ⊂ D+

4dn
(xn) \ D+

dn
(xn).

Moreover, for any dn ≤ t ≤ δ, there holds

D+
2t (x

′
n) \ D+

t (x′
n) ⊂ D+

4t (xn) \ D+
t/2(xn).

By assumption (3.10), we have

E(φn,ψn;�1) + E(φn,ψn;�3) ≤ ε2 (3.16)

and

E(φn,ψn;D+
2t (x

′
n) \ D+

t (x′
n)) ≤ ε2 for any t ∈ (dn, δ). (3.17)

By (3.10), Theorem 2.4, Theorem 2.1 and the standard scaling argument, we get

OscD+
2t (x

′
n)\D+

t (x′
n)φn

≤ C(‖∇φn‖L2(D+
4t (x

′
n)\D+

t/2(x
′
n)) + ‖ψn‖L4(D+

4t (x
′
n)\D+

t/2(x
′
n)) + ‖∇ϕ‖L2(D+

4t (x
′
n)\D+

t/2(x
′
n))

+ t‖∇2ϕ‖L2(D+
4t (x

′
n)\D+

t/2(x
′
n)) + t‖τ(un)‖L2(D+

4t (x
′
n)\D+

t/2(x
′
n)))

≤ C(
√

ε + δ), (3.18)

for any t ∈ (2rnR, 12δ), where C = C(�, N, ‖ϕ‖C2, ‖χ‖C1) is a positive constant.
Noting that �4 = D+

dn
(xn) \D+

rnR(xn) = Ddn(xn) \DrnR(xn), by the energy identity of approximate Dirac-harmonic 
maps with interior blow-up points (see Theorem 1.2 in [17]), there holds

lim
R→∞ lim

n→0
E(un;Ddn(xn) \ DrnR(xn)) = 0. (3.19)

Therefore, we just need to estimate the energy concentration in �2. Here, we use a similar method as in [15,16].
Define �̂2 := Dδ

2
(x′

n) \ D2dn(x
′
n), �n(x) := φn(x) − ϕ(x), x ∈ �2 and

�̂n(x) :=
{

�n(x), x ∈ �2,

−�n(x
′), x ∈ �̂2 \ �2,

(3.20)

where x = (x1, x2) and x′ = (x1, −x2). It is easy to see that �̂n(x) ∈ W 2,∞(�̂2) and satisfies the following equation
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��̂n(x) =
{

�φn(x) − �ϕ(x), x ∈ �2,

−�φn(x
′) + �ϕ(x′), x ∈ �̂2 \ �2,

(3.21)

where �φn(x) = −A(dφn, dφn)(x) + Re (P (A(dφn(eα), eα · ψn);ψn)) (x) + τ(un)(x).
Without loss of generality, we may also assume 1

2δ = 2m′
n(2dn), where m′

n is a positive integer which tends to ∞
as n → ∞. Setting P ′

i := D+
2i+1dn

(x′
n) \ D+

2i dn
(x′

n) and P̂ ′
i := D2i+1dn

(x′
n) \ D2i dn

(x′
n),

Set

�̂n
∗
(r) := 1

2π

2π∫
0

�̂n(r, θ)dθ,

where (r, θ) are the polar coordinates at x′
n. By (3.18) and (3.20), we have

‖�̂n(x) − �̂n
∗
(x)‖L∞(�̂2)

≤ sup
1≤i≤m′

n

‖�̂n(x) − �̂n
∗
(x)‖

L∞(P̂ ′
i )

≤ sup
1≤i≤m′

n

‖�̂n(x)‖
Osc(P̂ ′

i )

≤ 2 sup
1≤i≤m′

n

‖�n(x)‖Osc(P ′
i )

≤ 2 sup
1≤i≤m′

n

‖φn(x)‖Osc(P ′
i )

+ Cδ‖∇ϕ‖L∞

≤ C(N,�,‖ϕ‖C2,‖χ‖C1)(
√

ε + δ). (3.22)

Integrating by parts, we get∫
P̂ ′

i

∇�̂n∇(�̂n − �̂n
∗
)dx =

∫
∂P̂ ′

i

(�̂n − �̂n
∗
)
∂�̂n

∂r
−

∫
P̂ ′

i

(�̂n − �̂n
∗
)��̂ndx.

On the one hand, we have∫
P̂ ′

i

∇�̂n∇(�̂n − �̂n
∗
)dx =

∫
P̂ ′

i

|∇�̂n|2dx −
∫
P̂ ′

i

∂�̂n

∂r

∂�̂n
∗

∂r
dx

≥
∫
P̂ ′

i

|∇�̂n|2dx − (

∫
P̂ ′

i

|∂�̂n

∂r
|2dx)

1
2 (

∫
P̂ ′

i

|∂�̂n
∗

∂r
|2dx)

1
2

≥
∫
P̂ ′

i

|∇�̂n|2dx −
∫
P̂i

|∂�̂n

∂r
|2dx

= 1

2

∫
P̂ ′

i

|∇�̂n|2dx −
∫
P̂ ′

i

(|∂�̂n

∂r
|2 − 1

2
|∇�̂n|2)dx

=
∫
P ′

i

|∇�n|2dx − 2
∫
P ′

i

(|∂�n

∂r
|2 − 1

2
|∇�n|2)dx.

By direct computation, we obtain∫
P ′

i

|∇�n|2dx − 2
∫
P ′

i

(|∂�n

∂r
|2 − 1

2
|∇�n|2)dx

=
∫
P ′

i

|∇φn|2dx − 2
∫
P ′

i

(|∂φn

∂r
|2 − 1

2
|∇φn|2)dx + 4

∫
P ′

i

(
∂φn

∂r

∂ϕ

∂r
− ∇φn∇ϕ)dx

+ 2
∫
P ′

(|∇ϕ|2 − |∂ϕ

∂r
|2)dx
i
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≥
∫
P ′

i

|∇φn|2dx − 2
∫
P ′

i

(|∂φn

∂r
|2 − 1

2
|∇φn|2)dx − C2idn.

On the other hand, by (3.21) and (3.22), we have∫
P̂ ′

i

(�̂n − �̂n
∗
)��̂ndx ≤ C(

√
ε + δ)

∫
P ′

i

|dφn|2dx + C(
√

ε + δ)

∫
P ′

i

|dφ||ψn|2dx

+ C(
√

ε + δ)

∫
P ′

i

(|τn| + |�ϕ|)dx

≤ C(
√

ε + δ)

∫
P ′

i

|dφn|2dx + C(
√

ε + δ)

∫
P ′

i

|ψn|4dx + C(
√

ε + δ)2idn.

From the above, by Corollary 2.3 (taking ε = 1
2 ), we get∫

P ′
i

|dφn|2dx ≤
∫

∂P̂ ′
i

(�̂n − �̂n
∗
)
∂�̂n

∂r
+

∫
P ′

i

(|∂φn

∂r
|2 − 1

2
|∇φn|2)dx + C(

√
ε + δ)

∫
P ′

i

|dφn|2dx

+ C(
√

ε + δ)

∫
P ′

i

|ψn|4dx + C2idn

≤
∫

∂P̂ ′
i

(�̂n − �̂n
∗
)
∂�̂n

∂r
+ (

1

2
+ C(

√
ε + δ))

∫
P ′

i

|dφn|2dx + C

∫
P ′

i

|ψn|4dx

+ C

∫
P ′

i

|∇ψn| 4
3 dx + C2idn.

Summing i from 1 to m′
n, we get

(
1

2
− C(

√
ε + δ))

∫
�2

|∇φn|2dx ≤
∫

∂Dδ/2(x
′
n)

(�̂n − �̂n
∗
)
∂�̂n

∂r
−

∫
∂D2dn (x′

n)

(�̂n − �̂n
∗
)
∂�̂n

∂r

+ C

∫
�2

|∇ψn|4/3dx + C

∫
�2

|ψn|4dx + Cδ. (3.23)

As for the boundary term, by trace theory, we have∫
∂Dδ/2(x

′
n)

(�̂n − �̂n
∗
)
∂�̂n

∂r
≤ C(

√
ε + δ)

∫
∂Dδ/2(x

′
n)

|∇�̂n|

≤ C(
√

ε + δ)

∫
∂+Dδ/2(x

′
n)

(|∇φn| + |∇ϕ|)

≤ C(
√

ε + δ)

(
‖∇φn‖L2(D+

δ \D+
1
4 δ

) + δ‖∇2φn‖L2(D+
δ \D+

1
4 δ

) + 1

)
≤ C(

√
ε + δ)

(‖∇φn‖L2(D+
4
3 δ

\D+
1
6 δ

) + ‖ψn‖L4(D+
4
3 δ

\D+
1
6 δ

)

+ ‖∇ϕ‖L2(D+
4 δ

\D+
1 δ

) + δ‖∇2ϕ‖L2(D+
4 δ

\D+
1 δ

)

3 6 3 6
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+ δ‖τn‖L2(D+
4
3 δ

\D+
1
6 δ

) + 1
)

≤ C(
√

ε + δ),

where the last second inequality can be derived from Theorem 2.1.
Also, there holds∫

∂D2dn

(�̂n − �̂n
∗
)
∂�̂n

∂r
≤ C(

√
ε + δ).

Putting these in (3.23) and taking ε and δ sufficient small, we have∫
�2

|∇φn|2dx ≤ C

∫
�2

|∇ψn|4/3dx + C

∫
�2

|ψn|4dx + C(
√

ε + δ). (3.24)

Combining this with (3.16), (3.19) and (3.14), we will obtain (3.13) and we finished the proof of Theorem 3.1. �
Proof of Theorem 1.1. It is easy to see that Theorem 1.1 is a consequence of the interior blow-up case, i.e. Theo-
rem 1.2 in [17] and the model case of boundary blow-ups, i.e. Theorem 3.1. �
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