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Abstract

We prove regularity estimates for entropy solutions to scalar conservation laws with a force. Based on the kinetic form of a scalar 
conservation law, a new decomposition of entropy solutions is introduced, by means of a decomposition in the velocity variable, 
adapted to the non-degeneracy properties of the flux function. This allows a finer control of the degeneracy behavior of the flux. In 
addition, this decomposition allows to make use of the fact that the entropy dissipation measure has locally finite singular moments. 
Based on these observations, improved regularity estimates for entropy solutions to (forced) scalar conservation laws are obtained.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the regularity of solutions to scalar conservation laws

∂tu + divA(u) = S on (0, T ) ×R
n (1.1)

u(0) = u0 on R
n,

for S ∈ L1([0, T ] × R
n), u0 ∈ L1(Rn) and A ∈ C2(R; Rn) satisfying a non-degeneracy condition to be specified 

below.
In the special case, n = 1, S ≡ 0 and A convex, the one-sided Oleinik inequality for entropy solutions can be used 

to obtain optimal regularity estimates for (1.1). More precisely, assuming in addition that

inf
(u,v)∈R2, u �=v

|A′(u) − A′(v)|
|u − v|� > 0

for some l > 0, Bourdarias, Gisclon and Junca have shown in [4] that bounded entropy solutions for (1.1) satisfy 

u(t) ∈ W
1
�
−ε,�

loc (R) for all t, ε > 0. A typical example is A(u) = |u|�+1, � ≥ 1. For a flux function A that fails to be 
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convex, n = 1, S ≡ 0, the same regularity can be obtained under some restrictive assumptions on the zeroes of A′′, by 
combining results of Cheng [6] and Jabin [14].

In multiple dimensions, or for S non-smooth, these arguments do not apply anymore. In this case, the best known 
regularity estimates rely on the kinetic formulation of (1.1), as introduced by Lions, Perthame and Tadmor in [17]. In 
this work it was observed1 that if u is an entropy solution to (1.1) then the kinetic function

f (t, x, v) := 10<v<u(t,x) − 10>v>u(t,x) (1.2)

satisfies

∂tf + a(v) · ∇xf = ∂vm + δv=uS, (1.3)

for some Radon measure m ≥ 0 and a := A′. Based on this and on averaging techniques, regularity estimates for 
bounded entropy solutions to (1.1) have been obtained in [17] assuming a non-degeneracy property for the flux A and 
S ≡ 0. For the special case of (1.1) with A(u) = u�+1 this leads to

u ∈ W
s,p
loc ((0, T ) ×R

n) ∀s <
1

1 + 2�
, p <

4� + 1

2� + 1
. (1.4)

In this work, we provide improved regularity estimates in the case l > 1, based on a careful treatment of the degeneracy 
at u = 0.

Regularity estimates for scalar conservation laws. The improved regularity estimates for the special case A(u) =
u�+1 will be obtained as a consequence of a general regularity result for possibly higher dimensional fluxes A(u)

with a finite number of degeneracy points. To state this result precisely, we need to introduce technical assumptions 
satisfied by the velocity field a(u) = A′(u), which quantify the “degree of nonlinearity” at these isolated points and 
away from them. Loosely speaking, we ask that:

• The overall nonlinearity be “higher” than some threshold represented by a number α ∈ (0, 1], where α = 1
corresponds in one dimension to the least degenerate flux A(u) = u2/2 and α = 1/� to the degenerate flux 
A(u) = u�+1. See (1.6) below.

• The flux at the degeneracy points be “flatter” than some threshold represented by an exponent κ > 0, where 
κ = � − 1 corresponds in one dimension to the degenerate flux A(u) = u�+1 with � > 1. See (1.7) below.

• The nonlinearity away from the degeneracy points be “higher” than some threshhold β > α (that is, strictly 
higher than the overall nonlinearity), in a way quantified, as one approaches a degeneracy point, by an exponent 
τ > 0 (the higher τ is, the faster nonlinearity is “lost” as one approaches the point). In one dimension, the flux 
A(u) = u�+1 corresponds to β = 1 and τ = � − 1. See (1.8) below.

More specifically, we consider a velocity field a ∈ C1(R; Rn) such that the set of degeneracy points

Z := {
a′ = 0

}
is locally finite (1.5)

and assume that there exist α < β ∈ (0, 1] and κ, τ ≥ 0 such that for any bounded interval I ⊂Rv and λ, δ > 0 it holds

sup
τ 2+|ξ |2=1

|{v ∈ I : |τ + a(v) · ξ | ≤ δ}| � δα, (1.6)

sup
v∈I, dist(v,Z)≤λ

∣∣a′(v)
∣∣ � λκ, (1.7)

sup
τ 2+|ξ |2=1

|{v ∈ I : dist(v,Z) ≥ λ, |τ + a(v) · ξ | ≤ δ}| � λ−τ δβ . (1.8)

Here the symbol � denotes inequality up to a multiplicative constant that depends only on the interval I and the 
velocity field a. Note that since I is bounded, (1.6)–(1.8) are trivially satisfied for δ, λ large.

We are now in a position to state our main general result on the regularity of entropy solutions to scalar conservation 
laws.

1 In fact, [17] treated the case S ≡ 0 but the same applies to non-vanishing S.
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Theorem 1. Let A ∈ C2(R; Rn) satisfy (1.5)–(1.8), u0 ∈ L1(Rn
x), S ∈ L1([0, T ] × R

n
x) and u(t, x) be an entropy 

solution of (1.1) with associated kinetic function f as in (1.2). Then, for all φ ∈ C∞
c (R),∫

f (t, x, v)φ(v) dv ∈ W
s,r
loc ((0, T ) ×R

n
x) ∀s < s∗,

where

s∗ = (1 − η)θα + ηθβ,

θa = a

a + 2
, (a = α,β), η = E1

E1 + E2
,

E1 = min

(
κ + 1,

1

α

)
θα,

E2 = max

(
2τ

β
− κ − 1,

τ − 1

β
,0

)
θβ,

and the order of integrability r is given by

1

r
= 1 − η

rα
+ η

rβ
,

1

ra
= 1 + θa

2
, (a = α,β).

In particular, if u0 ∈ L∞(Rn) and S ∈ L∞([0, T ] ×R
n) then

u ∈ W
s,r
loc ((0, T ) ×R

n
x) ∀s < s∗.

We next provide several examples of fluxes A satisfying the assumptions (1.5)–(1.8).

Example 2. Let A ∈ C2(I ; Rn) for some interval I ⊆R.

(1) Let A ∈ C∞(I ; R), n = 1. The valuation of A at v ∈ I is defined as mA(v) = inf{k ≥ 1 : A(k+1)(v) �= 0}, the 
degeneracy of A on I is mA := supv∈I mA(v). If 0 < mA < ∞ we say that A is non-degenerate of order mA. In 
this case (1.6) is satisfied with α = 1/mA (cf. [3, Lemma 1]).

(2) Let a′ be κ-Hölder continuous, i.e. A ∈ C2+κ (I ; Rn). Then (1.7) is satisfied.
(3) Assume n = 1, (1.5) and that for some τ ≥ 0 and all λ > 0

λτ � inf
v∈I, dist(v,Z)≥λ

|a′(v)|.

Then a satisfies (1.8) with β = 1.
(4) Let A(v) = sin(v) or A(v) = cos(v). Then A satisfies (1.5)–(1.8) with α = 1/2, β = 1 and κ = τ = 1 (cf. Exam-

ple 5 below).
(5) Our model one-dimensional velocity field a(v) = v� satisfies (1.5)–(1.8) with α = 1/�, β = 1 and κ = τ = � − 1.

The regularity for entropy solutions in the special case A(u) = u�+1 is an immediate consequence of Theorem 1.

Corollary 3. Let � ≥ 1, u0 ∈ L1(R), S ∈ L1([0, T ] × R) and u(t, x) be an entropy solution of (1.1) with n = 1, 
A(v) = |v|�+1 or A(v) = sgn(v)|v|�+1 and associated kinetic function f as in (1.2). Then, for all φ ∈ C∞

c (R),∫
f (t, x, v)φ(v) dv ∈ W

s,1
loc ((0, T ) ×R

n) ∀s < min

(
1

3
,

1

� + 1

)
.

In particular, if u0 ∈ L∞(Rn) and S ∈ L∞([0, T ] ×R
n) then

u ∈ W
s,1
loc ((0, T ) ×R

n) ∀s < min

(
1

3
,

1

� + 1

)
.
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Motivated by some ideas going back to Tadmor and Tao [19], the proof of Theorem 1 relies on introducing a new 
decomposition of entropy solutions u which allows to make use of the fact that apart from the degeneracy at u = 0, 
the flux A(u) = u�+1 has non-vanishing second derivative. Using this aspect alone we show that it is possible to 
improve the regularity in (1.4) to s < 1

2+�
. In the literature, a key draw-back of the methods to estimate the regularity 

of solutions to (1.4) based on averaging techniques is that these methods are not able to make use of the sign of 
the entropy dissipation measure m in (1.3). Indeed, these arguments could only use that m has locally finite mass. 
In contrast, we make use of the observation that for entropy solutions to (1.1) the entropy defect measure m has, 
thanks to its sign, locally finite singular moments, that is, |v|−γ m has locally finite mass for all γ ∈ [0, 1). This is, 
to our knowledge, the first time that a kinetic averaging lemma manages, when applied to scalar conservation laws, 
to take advantage of the sign of the entropy production (see also [11]). Specializing our results to the particular case 
A(u) = ul+1 we obtain the following result.

Remark 4. Solutions of (1.1) for which the entropy dissipation m is only assumed to be a locally finite signed measure 
are sometimes called quasi-solutions [8]. For the model case in Corollary 3, the arguments in [17] still apply to this 
larger class of solutions and provide the regularity (1.4). However, when � is an integer and S ≡ 0, Crippa, Otto and 
Westdickenberg obtain in [7, Proposition 4.4], without using averaging lemmata, a better order of differentiability 
s < 1/(2 + �) which has been shown to be optimal by De Lellis and Westdickenberg [9]. In the case where A is 
convex, Golse and Perthame [12] provide a proof of the same regularity that could be adapted to the presence of a 
forcing term S. Our arguments yield this optimal order of differentiability s < 1/(2 + �) for quasi-solutions and for 
all A as in Corollary 3 and in the presence of the forcing term S.

Example 5. Consider (1.1) with flux A(v) = sin(v) or A(v) = cos(v), u0 ∈ L∞(R) and S ∈ L∞([0, T ] ×R). Then

u ∈ W
s,r
loc ((0, T ) ×R) ∀s <

1

3
, r ≤ 3

2
,

despite the existence of degeneracy points, i.e. {v ∈ R : A′′(v) = 0} �= ∅. This improves the previously known regular-
ity of s < 1

5 [17].

Our estimates are based on the strategy introduced by Lions, Perthame and Tadmor in [17], namely applying 
averaging lemmas to the kinetic formulation (1.3). Accordingly, a general regularity estimate for solutions to kinetic 
equations will be given in the following section.

Averaging lemmas for kinetic equations. It is a well-known phenomenon that under suitable nonlinearity assump-
tions on the velocity field a(v), velocity averages of f solving (1.3) are more regular than f . In [17], Lions, Perthame 
and Tadmor use the following assumption: there exists an α ∈ (0, 1] such that for every bounded interval I ⊂ Rv and 
all δ > 0,

sup
τ 2+|ξ |2=1

|{v ∈ I : |τ + a(v) · ξ | < δ}| � δα. (1.9)

Note that this is exactly our assumption (1.6). They prove that if (1.9) holds and f ∈ Lp solves (1.3) with m ∈ Lq for 
some p, q ∈ (1, 2], then for any bump function φ ∈ C∞

c (I ), the velocity averages

f̄ (t, x) :=
∫

f (t, x, v)φ(v) dv,

satisfy

f̄ ∈ W
s,r
loc ((0, T ) ×R

n), ∀s < θ = α/p′

α(1/p′ − 1/q ′) + 2
,

1

r
= 1 − θ

p
+ θ

q
.

In [19], Tadmor and Tao introduce the additional assumption

sup
{∣∣a′(v) · ξ ∣∣ : v ∈ I, τ 2 + ξ2 = 1, |τ + a(v) · ξ | < δ

}
� δμ. (1.10)

They prove that if (1.9)–(1.10) hold, then the velocity averages satisfy

f̄ ∈ W
s,r
loc , ∀s < θ ′ = α/p′

′ ′ ,
1 = 1 − θ ′

+ θ ′
.

α(1/p − 1/q ) + 2 − μ r p q
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However, in many cases of interest this additional assumption is not satisfied. As an example let us consider the 
velocity field a(v) = v� for some � ≥ 1. Then (1.9) holds with α = 1

�
and this is used in [17] to obtain that entropy 

solutions of (1.1) enjoy differentiability of order s = 1/(1 + 2�). On the other hand, choosing ξ = −τ = 1/
√

2 and 
v = 1 in (1.10) shows that one cannot do better than μ = 0. Hence, for a(v) = v� the result in [19] can not provide 
any improvement on [17].

Theorem 1 will be obtained as a corollary of a general averaging lemma for the kinetic equation

∂tf + a(v) · ∇xf = ∂vg + h on Rt ×R
n
x ×Rv. (1.11)

As outlined above, our argument is based on the idea underlying the assumption (1.10) in [19] but requires a finer 
decomposition, relying on our technical assumptions (1.5)–(1.8).

Theorem 6. Let a ∈ C1(R; Rn) satisfy (1.5)–(1.8). Let p, q ∈ [1, 2] with p ≥ q , γ ∈ [0, 1] and σ ∈ [0, 1). Assume that 
f ∈ L

p
loc(Rt ×R

n
x; Wσ,p

loc (Rv)) solves the kinetic equation (1.11) with

h, (1 + dist(v,Z)−γ )g ∈
{

L
q
loc(Rt ×R

n
x ×Rv) if q ∈ (1,p],

Mloc(Rt ×R
n
x ×Rv) if q = 1.

(1.12)

Then, for any φ ∈ C∞
c (R), the average f̄ (t, x) = ∫

f (t, x, v)φ(v) dv satisfies

f̄ ∈ W
s,r
loc (Rt ×R

n
x) ∀s ∈ [0, s∗),

where the order of differentiability s∗ is given by

s∗ = (1 − η)θα + ηθβ,

θa = a/p̄

a(1/p̄ − 1/q ′) + 2
(a = α,β), η = E1

E1 + E2
,

p̄ ∈ [ p′

1 + σp′ ,p
′] ∩ (1,∞),

E1 = min

(
(κ + γ ),

1

α
− (1 − γ )

)
θα,

E2 = max

(
2τ

β
− κ − γ,

τ − 1

β
+ 1 − γ,0

)
θβ,

and the order of integrability r is given by

1

r
= 1 − η

rα
+ η

rβ
,

1

ra
= 1 − θa

p
+ θa

q
(a = α,β).

The proof of Theorem 6 consists in splitting the velocity average into velocities which are close to the degeneracy 
set {v ∈ R : dist(v, Z) ≤ λ} and far away from it {v ∈ R : dist(v, Z) ≥ λ}. Close to Z, assumption (1.6) only allows 
us to obtain a differentiability of order θα by arguing as in [17], but assumption (1.7) allows us (in the spirit of [19]) 
to estimate the corresponding norms with λE1 . Away from Z, assumption (1.8) allows us to obtain differentiability of 
the better order θβ , with a corresponding estimate in λ−E2 . Then optimizing the choice of λ yields the conclusion.

Notation. All along the proofs of the main results Theorem 6 and Theorem 1 in Section 2 below, the functions f, g, h
will be fixed, as well as the cut-off function φ, and we will systematically denote by C a constant that may depend on 
these functions and may change from line to line, but that will be independent of the interpolation parameters λ and δ
to be introduced.

Further, F =Ft,x denotes the Fourier transform in the (t, x) variables and for (τ, ξ) ∈R
n+1 let

(τ ′, ξ ′) := 1√
τ 2 + |ξ |2 (τ, ξ),

so that (τ ′)2 + |ξ ′|2 = 1. For p ≥ 1 we let p′ be the conjugate exponent, that is, 1
p

+ 1
p′ = 1. For Z ⊆R, dist(v, Z) :=

infz∈Z |v − z|.



510 B. Gess, X. Lamy / Ann. I. H. Poincaré – AN 36 (2019) 505–521
Structure of the paper. The plan of the paper is as follows. In Section 2 we present the proof of the main results 
Theorem 6 and Theorem 1. Some background material on scalar conservation laws with an L1-force is presented in 
Appendix A. In Appendix B we recall a basic Lp estimate for Fourier multipliers.

2. Proofs of the main results

Reduction to Z ∩ suppφ = {0} and localization. If Z ∩ suppφ = ∅ then Theorem 6 does not improve on [17], so we 
may assume that Z ∩ suppφ contains at least one element. If Z ∩ suppφ = {v1, . . . , vN }, we may choose a smooth 
partition of unity φ1(v) +· · ·+φN(v) = 1 such that Z∩suppφj = {vj } for all j ∈ {1, . . . , N}. Since f̄ = f̄1 +· · ·+ f̄N

with f̄j = ∫
f (t, x, v)φ(v)φj (v) dv, it suffices to prove Theorem 6 in the case where Z ∩ suppφ contains exactly one 

element. Translating v, we may moreover assume that this element is 0.
Note that we may moreover assume that f, g, h have compact support: for φ(t, x, v) smooth and compactly sup-

ported, the function f̃ = φf is compactly supported and satisfies

∂t f̃ + a(v) · ∇xf̃ = ∂vg̃ + h̃, (2.1)

with

h̃ = f ∂tφ + a(v)f ∇xφ − (∂vφ)g + hφ

g̃ = φg.

We note that h̃, g̃ are compactly supported and satisfy (1.12) since q ≤ p.
Hence, the assumptions (1.7)–(1.12) become

sup
v∈I, |v|≤λ

∣∣a′(v)
∣∣ � λκ, (2.2)

sup
τ 2+|ξ |2=1

|{v ∈ I : |v| ≥ λ, |τ + a(v) · ξ | ≤ δ}| � λ−τ δβ, (2.3)

h, (1 + |v|−γ )g ∈
{

Lq(Rt ×R
n
x ×Rv) if q ∈ (1,2],

M(Rt ×R
n
x ×Rv) if q = 1.

(2.4)

Separating small and large velocities. We fix a bounded interval I ⊂ [−�, �] ⊂R and a bump function φ ∈ C∞
c (I ). 

We further fix a cut-off function η1 ∈ C∞
c (R) satisfying

η1(v) ∈ [0,1] for all v ∈ R,

η1(v) ≡ 1 for |v| ≤ 1, η1(v) ≡ 0 for |v| ≥ 2.

Then we set η2 := 1 − η1, so that for any λ > 0 it holds

f̄ (t, x) =
∫

f (t, x, v)φ(v)η1(
v

λ
) dv +

∫
f (t, x, v)φ(v)η2(

v

λ
) dv

=: Aλ
1f + Aλ

2f.

(2.5)

Note that for all λ ≥ � we have Aλ
1f = f̄ and Aλ

2f = 0 so that in the sequel we will only need to consider λ ≤ �.
Since Aλ

2f does not see small velocities, we could use assumption (2.3) and obtain from [17] that Aλ
2f has dif-

ferentiability of order s = θβ . In contrast, for Aλ
1f we can only use (1.6) to see that it has differentiability of order 

s = θα < θβ . But our assumptions allow us to take advantage of the fact that Aλ
1f only sees small velocities in two 

ways: first, by using that a′(v) is small thanks to (2.2) – along the idea that led to introducing the assumption (1.10)
in [19]; and second, by using the finite singular moment assumption (2.4) on g. That way we find that the estimate for 
Aλ

1f comes with a constant that goes to zero when λ approaches zero (cf. Lemma 7 below). On the other hand, the 
estimate for Aλ

2f comes with a constant that blows up when λ approaches zero (cf. Lemma 8 below).

Lemma 7. For all s ∈ [0, θα) there exists a constant C > 0 such that for any λ ≤ � it holds∥∥Aλ
1f

∥∥
s,rα ≤ CλE1,
W
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where E1 is given by

E1 = min

(
(κ + γ ),

1

α
− (1 − γ )

)
θα.

Proof. The proof will follow the strategy of [19, Averaging Lemma 2.1], the main difference residing in the fact that 
we want to keep track of the dependence on λ of all the estimates.

We fix ψ0(z) supported in |z| ≤ 2 and ψ1(z) supported in 1/2 ≤ |z| ≤ 2 such that

1 ≡ ψ0(z) +
∑
j≥1

ψ1(2
−j z), ∀z ∈C.

For any δ > 0 we decompose f as

f = f 0 + f 1, (2.6)

where

f 0 =F−1ψ0

(
iτ ′ + ia(v) · ξ ′

δ

)
Ff, (2.7)

f 1 =
∑
j≥1

F−1ψ1

(
iτ ′ + ia(v) · ξ ′

2j δ

)
Ff =

∑
j≥1

f (j).

Then we estimate the Lp norm of Aλ
1f

0 and the Ẇ 1,q norm of Aλ
1f 1 and conclude using real interpolation.

We treat first the case q > 1. Invoking Lemma 13 and using (1.6) we have∥∥∥Aλ
1f 0

∥∥∥
Lp

≤ C sup
τ 2+|ξ |2=1

|{v ∈ I : |v| ≤ 2λ, |τ + a(v) · ξ | ≤ 2δ}|1/p̄

≤ C min(δα, λ)1/p̄. (2.8)

Using (1.3) in Fourier variables yields, for all (τ, ξ, v) ∈R
2+n such that τ ′ + iξ ′ · a(v) �= 0,

Ff = 1

|(τ, ξ)|
1

iτ ′ + iξ ′ · a(v)
F(∂vg + h)

=F(−�t,x)
−1/2F−1 1

iτ ′ + iξ ′ · a(v)
F(∂vg + h).

Hence, setting ψ̃1(z) := ψ1(z)/z we find that for j ≥ 1 we have

F(−�t,x)
1/2Aλ

1f (j) = 1

2j δ

∫
ψ̃1

(
iτ ′ + ia(v) · ξ ′

2j δ

)
F∂vg φ(v)η1

(v

λ

)
dv

+ 1

2j δ

∫
ψ̃1

(
iτ ′ + ia(v) · ξ ′

2j δ

)
Fhφ(v)η1

(v

λ

)
dv.

Integrating by parts thus yields

F(−�t,x)
1/2Aλ

1f (j) = − 1

(2j δ)2

∫
ψ̃ ′

1

(
iτ ′ + ia(v) · ξ ′

2j δ

)
ia′(v)|v|γ · ξ ′F |v|−γ g φ(v)η1

(v

λ

)
dv

− 1

2j δλ

∫
ψ̃1

(
iτ ′ + ia(v)ξ ′

2j δ

)
|v|γF |v|−γ g φ(v)η′

1

(v

λ

)
dv

− 1

2j δ

∫
ψ̃1

(
iτ ′ + ia(v)ξ ′

2j δ

)
|v|γF |v|−γ g φ′(v)η1

(v

λ

)
dv

+ 1

2j δ

∫
ψ̃1

(
iτ ′ + ia(v) · ξ ′

2j δ

)
Fhφ(v)η1

(v

λ

)
dv.

Invoking Lemma 13 with p = q, σ = 0, r = q ′, recalling that ξ ′ is a bounded Lq multiplier, that |v|−γ g ∈ Lq and 
using (2.2), we deduce
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∥∥∥Aλ
1f (j)

∥∥∥
Ẇ 1,q

≤ C
(

2−2j δ−2λκ+γ (2j δ)
α
q′ + 2−j δ−1λγ−1(2j δ)

α
q′ + 2−j δ−1λγ (2j δ)

α
q′ + 2−j δ−1(2j δ)

α
q′

)
≤ C

(
2−2j δ−2λκ+γ (2j δ)

α
q′ + 2−j δ−1λγ−1(2j δ)

α
q′ ).

In the second inequality we were able to discard the two last terms in the previous line because λ ≤ � and γ ≤ 1. 
Since α < q ′, summing over j ≥ 1 yields∥∥∥Aλ

1f 1
∥∥∥

Ẇ 1,q
≤ C

(
δ
−2+ α

q′ λκ+γ + δ
−1+ α

q′ λγ−1
)
. (2.9)

From (2.8)–(2.9) we obtain for all t > 0 that

K(t,Aλ
1f ) := inf

Aλ
1f =f̃ 0+f̃ 1

(∥∥∥f̃ 0
∥∥∥

Lp
+ t

∥∥∥f̃ 1
∥∥∥

Ẇ 1,q

)
≤ C

(
δ

α
p̄ + tδ

α
q′ −2

λκ+γ + tδ
α
q′ −1

λγ−1).
Next we optimize in δ. We choose it of the form δ = taλb , where b will be chosen later and a is determined by 
balancing the powers of t in the first two terms:

a
α

p̄
= 1 + a

(
α

q ′ − 2

)
i.e. a = p̄

α
θα.

This gives

t−θαK(t,Aλ
1f ) ≤ C

(
λ

b α
p̄ + λ

b
(

α
q′ −2

)
+κ+γ + t

p̄
α
θαλ

b
(

α
q′ −1

)
+γ−1

)
.

Note that the last term is small for small t . On the other hand for large t we can use the fact (obtained from (2.8) by 
sending δ → ∞) that∥∥Aλ

1f
∥∥

Lp ≤ Cλ
1
p̄ ,

to deduce, for any μ > 0,

t−θαK(t,Aλ
1f ) ≤ C

⎧⎨⎩λ
b α

p̄ + λ
b
(

α
q′ −2

)
+κ+γ + μ

p̄
α
θαλ

b
(

α
q′ −1

)
+γ−1

for t ≤ μ,

μ−θαλ
1
p̄ for t ≥ μ.

Next we choose μ in order to balance the last terms of the above two lines, i.e.

μ = λ
α

α+p̄
1
θα

(
1
p̄

+b
(

1− α
q′

)
+1−γ

)
,

and conclude that

t−θαK(t,Aλ
1f ) ≤ C

(
λ

b α
p̄ + λ

b
(

α
q′ −2

)
+κ+γ + λ

1
α+p̄

(
1−α(1−γ )−bα

(
1− α

q′
)))

.

Finally we want to choose b to optimize the above powers of λ: set

E1 := sup
b∈R

min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α

p̄
b

κ + γ −
(

2 − α

q ′

)
b

1

α + p̄

(
1 − α(1 − γ ) − α

(
1 − α

q ′

)
b

)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

We denote by L1(b), L2(b), L3(b) the three affine functions of b appearing in the definition of E1. Since L1 is 
increasing and L2, L3 are decreasing, the function min(L1, L2, L3) is bounded from above, thus E1 < +∞. Moreover 
E1 is given by
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E1 = min(L1(L1 = L2),L1(L1 = L3))

= min

(
(κ + γ ),

1

α
− (1 − γ )

)
θα.

Then, denoting by ‖·‖θ the norm in the real interpolation space [Lp, Ẇ 1,q ]θ,∞ (see e.g. [2] for definition and 
properties), we have∥∥Aλ

1f
∥∥

θα
≤ CλE1,

which implies the conclusion of Lemma 7.
In the case q = 1, we obtain the same estimates, but the space Ẇ 1,q = (−�t,x)

−1/2Lq has to be replaced with 
(−�t,x)

−1/2M. Since this space contains Ẇ s,1 for all s < 1 we still obtain the conclusion. �
Lemma 8. For all s ∈ [0, θβ) there exists C > 0 such that for any λ ≤ � it holds∥∥Aλ

2f
∥∥

W
s,rβ ≤ Cλ−E2 ,

where E2 is given by

E2 = max

(
2τ

β
− κ − γ,

τ − 1

β
+ 1 − γ,0

)
θβ.

Proof. As in the proof of Lemma 7 we consider the decomposition (2.6) and treat first the case q > 1.
Let ̃η(v) = η1(v/2) −η1(v), so that ̃η is supported inside {1 ≤ |v| ≤ 4} and η2(v) = ∑

k≥0 η̃(v/2k). Hence, it holds

Aλ
2f =

∑
k≥0

A
(k)
2 f,

A
(k)
2 f =

∫
f (t, x, v)φ(v)̃η

( v

2kλ

)
dv.

Next we estimate 
∥∥∥A

(k)
2 f

∥∥∥
θβ

. Fix k ≥ 0 and let μ := 2kλ, so that

A
(k)
2 f =

∫
f (t, x, v)φ(v)̃η(v/μ)dv

=
∑
j≥1

∫
f (j)(t, x, v)φ(v)̃η(v/μ)dv =:

∑
j≥1

A
(k)
2 f (j),

with f (j) defined as in (2.7). Analogously,

A
(k)
2 f 0 =

∫
f 0(t, x, v)φ(v)̃η(v/μ)dv.

Note that A(k)
2 f is nonzero only for k such that μ = 2kλ ≤ �, since φ is supported in [−�, �] and ̃η(v/μ) vanishes 

for |v| ≤ μ. By Lemma 13 and assumption (2.3) it holds∥∥∥A
(k)
2 f 0

∥∥∥
Lp

≤ C sup
τ 2+ξ2=1

|{v ∈ I : 4μ ≥ |v| ≥ μ, |τ + a(v)ξ | ≤ 2δ}|1/p̄

≤ C min(μ−τ δβ,μ)
1
p̄ . (2.10)

As in the proof of Lemma 7 we have

F(−�t,x)
1/2A

(k)
2 f (j) = − 1

(2j δ)2

∫
ψ̃ ′

1

(
iτ ′ + ia(v) · ξ ′

2j δ

)
ia′(v)|v|γ · ξ ′F |v|−γ g φ(v)̃η

(
v

μ

)
dv

− 1
j

∫
ψ̃1

(
iτ ′ + ia(v) · ξ ′

j

)
|v|γF |v|−γ g φ(v)̃η′

(
v

)
dv
2 δμ 2 δ μ
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− 1

2j δ

∫
ψ̃1

(
iτ ′ + ia(v) · ξ ′

2j δ

)
|v|γF |v|−γ g φ′(v)̃η

(
v

μ

)
dv

+ 1

2j δ

∫
ψ̃1

(
iτ ′ + ia(v) · ξ ′

2j δ

)
Fhφ(v)̃η

(
v

μ

)
dv

which yields, using assumptions (2.2)–(2.4),∥∥∥A
(k)
2 f 1

∥∥∥
Ẇ 1,q

≤ C
(
δ
−2+ β

q′ μ
− τ

q′ +κ+γ + δ
−1+ β

q′ μ
−1− τ

q′ +γ
)
. (2.11)

Here as in the proof of Lemma 7 we estimated the third and fourth term by the second term on the right hand side 
since they come with higher powers of μ � 1. The estimates (2.10)–(2.11) then imply

K(t,A
(k)
2 f ) := inf

A
(k)
2 f =f̃ 0+f̃ 1

(∥∥∥f̃ 0
∥∥∥

Lp
+ t

∥∥∥f̃ 1
∥∥∥

Ẇ 1,q

)
≤ C

(
μ

− τ
p̄ δ

β
p̄ + tδ

β

q′ −2
μ

− τ
q′ +κ+γ + tδ

β

q′ −1
μ

−1− τ
q′ +γ

)
.

Equilibrating the first and the second term yields the choice δ = t
p̄
β
θβ μb. Since ‖A(k)

2 f ‖Lp ≤ μ
1
p̄ we also have 

K(t, A(k)
2 f ) � 1 for all t ≥ 0. We thus obtain

t−θβ K(t,A
(k)
2 f ) ≤ C

⎧⎨⎩μ
− τ

p̄
+b

β
p̄ + μ

− τ
q′ +κ+γ−b

(
2− β

q′
)
+ ν

p̄
β
θβ μ

−1− τ
q′ +γ−b

(
1− β

q′
)

for t ≤ ν,

ν−θβ μ
1
p̄ for t ≥ ν.

We choose ν = μ
1
θβ

β
β+p̄

(
1−γ+ τ

q′ +b
(

1− β

q′
)
+ 1

p̄

)
to deduce

t−θβ K(t,A
(k)
2 f ) ≤ C

(
μ

− τ
p̄

+b
β
p̄ + μ

− τ
q′ +κ+γ−b

(
2− β

q′
)
+ μ

− 1
β+p̄

(
−1+β

(
1−γ+ τ

q′
)
+β

(
1− β

q′
)
b
))

.

Then optimizing in b we set

E = inf
b∈Rmax

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τ

p̄
− β

p̄
b

τ

q ′ − κ − γ +
(

2 − β

q ′

)
b

1

β + p̄

(
−1 + β

(
1 − γ + τ

q ′

)
+ β

(
1 − β

q ′

)
b

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

and obtain (recall μ ≤ �) that∥∥∥A
(k)
2 f

∥∥∥
θβ

≤ Cμ−E = 2−kEλ−E. (2.12)

We denote by L1(b), L2(b), L3(b) the three affine functions of b appearing in the definition of E. Since L1 is increas-
ing while L2, L3 are increasing, the function max(L1, L2, L3) is bounded from below, thus E > −∞. Moreover it 
holds

E = max(L1(L1 = L2),L1(L1 = L3))

= max

(
2τ

β
− κ − γ,

τ − 1

β
+ 1 − γ

)
θβ.

If E > 0, then summing (2.12) over k ≥ 0 yields 
∥∥Aλ

2f
∥∥

θβ
≤ Cλ−E . If E ≤ 0, then summing (2.12) over those k

satisfying μ = 2kλ ≤ � yields∥∥∥Aλ
βf

∥∥∥
θ2

≤ Cλ−E
∑

0≤k≤log(�/λ)

(2−E)k ≤ Cλ−E2E log(λ/�) ≤ C.

Hence we conclude that 
∥∥Aλ

2f
∥∥ ≤ Cλ− max(E,0).
θβ
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To treat the case q = 1 we argue as in the proof of Lemma 7. �
Proofs of Theorem 6 and Theorem 1.

Proof of Theorem 6. By (2.5), Lemma 7 and Lemma 8, for λ � 1 and t ≥ 0,

K(t, f̄ ) := inf
f̄ =f̃ 0+f̃ 1

(∥∥∥f̃ 0
∥∥∥

θα

+ t

∥∥∥f̃ 1
∥∥∥

θβ

)
≤ ∥∥Aλ

1f
∥∥

θα
+ t

∥∥Aλ
2f

∥∥
θβ

≤ C
(
λE1 + tλ−E2

)
.

Choosing, λ = t
1

E1+E2 yields

K(t, f̄ ) ≤ Ct
E1

E1+E2 = tη ∀t � 1.

Since 
∥∥f̄

∥∥
θα

≤ C (as can be seen e.g. by choosing λ = � in Lemma 7) we have

K(t, f̄ ) ≤ C
∥∥f̄

∥∥
θα

≤ C ∀t ≥ 0.

Hence, f̄ belongs to the real interpolation space[
[Lp, Ẇ 1,q ]θ1,∞, [Lp, Ẇ 1,q ]θ2,∞

]
η,∞ = [Lp, Ẇ 1,q ]θ,∞,

where θ = (1 − η)θα + ηθβ and the equality follows from the reiteration Theorem of real interpolation. We further 
note that this space contains Ws,r for all s < s∗ = θ . This argument works for q > 1 and for q = 1 we may adapt it as 
in the proof of Lemma 7. �
Proof of Theorem 1. We apply the kinetic formulation for (1.1) (cf. Appendix A), that is,

f = 10<v<u(t,x) − 10>v>u(t,x),

satisfies, in the sense of distributions,

∂tf + a(v) · ∇xf = ∂vm + δv=uS on [0, T ] ×R
n
x ×Rv (2.13)

for some Radon measure m ≥ 0. We further note that

f ∈ L1([0, T ] ×R
n
x ×Rv) ∩ L∞([0, T ] ×R

n
x ×Rv)

and f ∈ L∞([0, T ] ×R
n
x; BV (Rv)). Hence, by interpolation,

f ∈ L2
loc([0, T ] ×R

n
x;Wσ,2(Rv))

for all σ ∈ [0, 12 ).
For a bounded interval I ⊆ Rv let Z ∩ I = {z1, . . . , zN }. By Proposition 12 below, |v − zi |α−1m has locally finite 

mass for every α ∈ (0, 1) and i ∈ 1, . . . , N . It follows that dist(v, Z)−γ m has locally finite mass for any γ ∈ (0, 1).
Let η ∈ C∞

c (0, T ). Then f̃ := f η satisfies (1.11) with g = mη, h = δv=uSη + η̇f and f̃ ∈ L2
loc(Rt × R

n
x;

Wσ,2(Rv)) for all σ ∈ [0, 12 ).
We now apply Theorem 6 with p = 2, q = 1, any σ ∈ [0, 12 ) and any γ ∈ [0, 1), to obtain, for all φ ∈ C∞

c (R),∫
f̃ φ dv ∈ W

s,r
loc

for all s < s∗, where r is as in the conclusion of Theorem 1, and the value of s∗ can be chosen, depending on σ and γ , 
in the way described by the conclusion of Theorem 6. It can be checked directly that taking σ arbitrarily close to 1

2
and γ arbitrarily close to 1 allows to take s∗ arbitrarily close to the value given by the conclusion of Theorem 1. �
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Appendix A. Kinetic solutions for scalar conservation laws with a force

In this section we present some brief comments on the extension of the concept of kinetic solutions and their 
well-posedness for scalar conservation laws with an L1-force (1.1). This proceeds along the lines of [5,18]. We will 
refer to kinetic solutions also as entropy solutions.

Definition 9. A kinetic/entropy solution to (1.1) is a function u ∈ C([0, T ]; L1(Rn)) such that the corresponding 
kinetic function

f (t, x, v) = χ(v,u(t, x)) = 10<v<u(t,x) − 10>v>u(t,x)

satisfies, in the sense of distributions,

∂tf + a(v) · ∇xf = ∂vm + δu=vS on (0, T ) ×R
n (A.1)

f|t=0 = χ(v,u0) on R
n,

where a := A′, m is a non-negative Radon measure and∫
m(t, x, v) dtdx ≤ μ(v) ∈ L∞

0 (R),

where L∞
0 (R) denotes the space of all essentially bounded functions decaying to zero for |v| → ∞.

Remark 10. For a comparison of the concept of renormalized entropy solutions introduced in [1] and kinetic solutions 
we refer to [13]. A proof that entropy solutions give rise to kinetic solutions is contained in the proof of Theorem 11
below.

Theorem 11. Let u0 ∈ L1(Rn), S ∈ L1([0, T ] ×R
n). Then there is a unique kinetic solution u to (1.1). For two kinetic 

solutions u1, u2 with initial conditions u1
0, u

2
0 and forces S1, S2 respectively we have

sup
t∈[0,T ]

‖(u1(t) − u2(t))+‖L1(Rn) ≤ ‖(u1
0 − u2

0)+‖L1(Rn) + ‖S1 − S2‖L1([0,T ]×Rn). (A.2)

Proof. Contraction: We first note that the function g(t, x, v) = 1v<u(t,x) satisfies the same kinetic equation as f , 
since

f (t, x, v) − g(t, x, v) = −1v>0 − 1v=01u(t,x)≥0 − 1v<01u(t,x)=v,

(∂t + a(v) · ∇x)1v<0 = 0 in D′
t,x,v,

and 1v=0 = 1u(t,x)=v = 0 for a.e. (t, x, v).

The proof of the contraction inequality (A.2) relies on the identity∫
g1(1 − g2)dv = (u1 − u2)+.

We introduce nonnegative mollifiers �ε(t, x) and let the subscript ε denote the convolution in (t, x) with �ε . In 
particular, we have

(∂t + a(v) · ∇x)gε = ∂vmε + (
δv=u(t,x)S(t, x)

)
ε
,

where 
(
δv=u(t,x)S(t, x)

)
ε

is the distribution given by〈(
δv=u(t,x)S(t, x)

)
ε
, θ(t, x, v)

〉 = ∫
S(t, x)

∫
θ(s, y,u(t, x))�ε(s − t, y − x)dsdydxdt.
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We also introduce a nonnegative cut-off function χ(v). By dominated differentiation, for any ε1, ε2 > 0 we have

T := ∂t

∫
g1

ε1
(1 − g2

ε2
)χ(v)dv + ∇x ·

∫
g1

ε1
(1 − g2

ε2
)χ(v)a(v)dv

=
∫

χ(v)(1 − g2
ε2

)(∂t + a(v) · ∇x)g
1
ε1

dv +
∫

χ(v)g1
ε1

(∂t + a(v) · ∇x)(1 − g2
ε2

)dv

= lim
δ→0

(
T 1

δ + T 2
δ

)
,

where

T 1
δ (t, x) =

∫
χ(v)(1 − g2

ε2
(t, x,w))(∂t + a(v) · ∇x)g

1
ε1

(t, x, v)ρδ(v − w)dvdw,

T 2
δ (t, x) =

∫
χ(v)g1

ε1
(t, x,w)(∂t + a(v) · ∇x)(1 − g2

ε2
(t, x, v))ρδ(v − w)dvdw,

and ρδ(v) is an even nonnegative mollifier. Using the equation satisfied by g1 we have, for any nonnegative test 
function θ(t, x),〈

T 1
δ , θ

〉
= −

∫
m1

ε1
(dt, dx, dv)θ(t, x)χ ′(v)

∫
(1 − g2

ε2
(t, x,w))ρδ(v − w)dvdw

−
∫

m1
ε1

(dt, dx, dv)θ(t, x)χ(v)

∫
(1 − g2

ε2
(t, x,w))(ρδ)

′(v − w)dvdw

+
∫

θ(t, x)

∫
S1(s, y)�ε1(t − s, x − y)χ(u1(s, y))

·
∫

(1 − g2
ε2

(t, x,w))ρδ(u
1(s, y) − w)dwdsdydtdx.

The second term on right-hand side is nonpositive since w �→ (1 − g2
ε2

(t, x, w)) = (1w≥u2(t,x))ε2 is nondecreasing. 
Moreover, since ρδ is even, for any (t, x, v) we have as δ → 0,∫

(1 − g2
ε2

(t, x,w))ρδ(v − w)dw

=
∫

�ε2(t − s, x − y)

∫
1w≥u2(s,y)ρδ(v − w)dwdsdy

→
∫

�ε2(t − s, x − y) sgn+
1
2
(v − u2(s, y)) dsdy

= [sgn+
1
2
(v − u2)]ε2(t, x),

where sgn+
1
2
(z) = 1(0,∞)(z) + 1

21{0}(z). Hence, we find

lim sup
δ→0

〈
T 1

δ , θ
〉
≤

∫
θ(t, x)|χ ′(v)|m1

ε1
(dt, dx, dv)

+
∫

θ(t, x)

∫
S1(s, y)�ε1(t − s, x − y)χ(u1(s, y))

· [sgn+
1
2
(u1(s, y) − u2)]ε2(t, x) dsdydtdx.

A similar computation shows

lim sup
δ→0

〈
T 2

δ , θ
〉
≤

∫
θ(t, x)|χ ′(v)|m2

ε2
(dt, dx, dv)

−
∫

θ(t, x)

∫
S2(s, y)�ε2(t − s, x − y)χ(u2(s, y))

· [sgn+
1
2
(u1 − u2(s, y))]ε1(t, x) dsdydtdx.
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By Fatou’s lemma these inequalities imply

〈T , θ〉 ≤ 〈 ∫ |χ ′(v)|m1
ε1

(·, ·, dv), θ
〉 + 〈 ∫ |χ ′(v)|m2

ε2
(·, ·, dv), θ

〉
+ 〈(

S1χ(u1) sgn+
1
2
(u1 − u2)ε2

)
ε1

, θ
〉 − 〈(

S2χ(u2) sgn+
1
2
(u1 − u2)ε1

)
ε2

, θ
〉
.

Next we “integrate” this inequality in x, that is, we apply it to a test function θ(t, x) = ζ(t)K(x) ≥ 0 and let K(x)

approach K ≡ 1. Note that since∫
|g1(s, y, v)| · |1 − g2(s′, y′, v)|dv = (u1(s, y) − u2(s′, y′))+,

for any θ(t, x) ∈ L∞ and ψ(v) ∈ L∞
loc we have∫ ∣∣∣g1

ε1
(1 − g2

ε2
)θ(t, x)ψ(v)χ(v)

∣∣∣ dtdxdv ≤ ‖ψ‖L∞(supp χ)‖θ‖L∞
(
‖u1‖L1

t,x
+ ‖u2‖L1

t,x

)
.

Using this together with Sj ∈ L1 and 
∫

mj(dt, dx, dv)|χ ′(v)| < ∞, and letting K(x) approach K ≡ 1 nicely enough, 
we obtain

∂t

∫
g1

ε1
(1 − g2

ε2
)χ(v) dxdv ≤

∫
|χ ′(v)|m1

ε1
(·, dx, dv) +

∫
|χ ′(v)|m2

ε2
(·, dx, dv)

+
∫ (

S1χ(u1) sgn+
1
2
(u1 − u2)ε2

)
ε1

dx −
∫ (

S2χ(u2) sgn+
1
2
(u1 − u2)ε1

)
ε2

dx.

The same integrability properties also allow to let ε1, ε2 → 0 and to find

∂t

∫
g1(1 − g2)χ(v) dxdv ≤

∫
|χ ′(v)|m1(·, dx, dv) +

∫
|χ ′(v)|m2(·, dx, dv)

+
∫

S1χ(u1) sgn+
1
2
(u1 − u2) dx −

∫
S2χ(u2) sgn+

1
2
(u1 − u2) dx.

We apply this inequality to a nonnegative test function ζ(t) and choose χ = χn for a sequence χn → 1 a.e. with 
χ ′

n(v) ≡ 0 for |v| ≤ n and |χ ′
n| ≤ 1. Then the first two terms in the right-hand side are estimated by

‖ζ‖L∞ · sup
|v|>n

(
μ1(v) + μ2(v)

)
,

which tends to 0 as n → ∞ since μj ∈ L∞
0 . The two last terms converge by dominated convergence, which yields

∂t

∫
g1(1 − g2) dxdv ≤

∫
(S1 − S2) sgn+

1
2
(u1 − u2) dx.

Applying this to a nonnegative test function ζ approaching ζ = 1[0,t] and using that uj ∈ C([0, T ], L1(Rn
x)), we 

conclude that∫
(u1(t) − u2(t))+ dx ≤

∫
(u1

0 − u2
0)+ dx + ‖S1 − S2‖L1((0,t)×Rn).

Interchanging the roles of u1, u2 thus yields

sup
t∈[0,T ]

‖u1(t) − u2(t)‖L1(Rn) ≤ ‖u1
0 − u2

0‖L1(Rn) + ‖S1 − S2‖L1([0,T ]×Rn). (A.3)

Existence: Let uε
0 ∈ W 1,∞(Rn), Sε ∈ W 1,∞([0, T ] ×Rn) with uε

0 → u0 in L1(Rn) and Sε → S in L1([0, T ] ×Rn). 
By [15] and [16, Corollary 2.5] there is a unique entropy solution uε ∈ C([0, T ]; L1(Rn)) to (1.1) with initial condition 
uε

0 and force Sε .
To see that uε is also a kinetic solution we follow the arguments given in [18]: Let

f ε(t, x, v) = χ(v,uε(t, x)) = 10<v<uε(t,x) − 10>v>uε(t,x)
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and define the distribution m by

mε :=
v∫

0

∂tf
ε dw +

v∫
0

a(w) · ∇xf
ε dw −

v∫
0

δuε=wSε dw.

Hence, f ε satisfies (A.1) and it remains to show that mε is a non-negative measure. Given η ∈ C∞
c (R) convex we 

obtain, in the sense of distributions,

−
∫

mεη′′(v) dv =
∫

∂tf
εη′(v) dv +

∫
η′(v)a(v) · ∇xf

ε dv −
∫

η′(v)δuε=vS
ε dv

= ∂tη(uε) + divAη(uε) − η′(uε)Sε.

(A.4)

Since uε is an entropy solution, the right hand side is non-positive. This implies that mε is a non-negative distribution 
and thus a measure.

A standard approximation argument (cf. e.g. [18, Proposition 3.2.3]) allows to choose η′(v) = sgn+(v−k) in (A.4), 
which yields∫

(uε(t) − k)+ dx +
∫

mε(t, x, k) dtdx =
∫

(uε(0) − k)+ dx +
∫

sgn+(uε − k)Sε dtdx. (A.5)

An analogous equality is satisfied for (uε(t) − k)−. Hence, with

με(k) :=1k≥0(‖uε(0) − k)+‖L1
x
+ ‖ sgn+(uε − k)Sε‖L1

t,x
)1k≤0(‖uε(0) − k)−‖L1

x
+ ‖ sgn−(uε − k)Sε‖L1

t,x
)

we have με ∈ L∞
0 (R) by dominated convergence, and∫

mε(t, x, k) dtdx ≤ με(k).

Hence, uε is a kinetic solution.
By (A.3) we have

‖uε − uδ‖C([0,T ];L1(Rn)) ≤ ‖uε
0 − uδ

0‖L1(Rn) + 2‖Sε − Sδ‖L1([0,T ]×Rn).

Since uε and Sε were chosen to converge in L1(Rn) and L1([0, T ] ×R
n), this implies that uε is a Cauchy sequence in 

C([0, T ]; L1(Rn)). Hence, there is a u ∈ C([0, T ]; L1(Rn)) and a sequence εk converging to zero such that uεk → u

in C([0, T ]; L1(Rn)) and almost everywhere in [0, T ] × R
n. Moreover, by (A.5) we obtain that mεk has locally 

uniformly bounded mass. Thus, choosing a diagonal sequence we obtain a subsequence (again denoted by εk) such 
that mεk ⇀∗ m in the space of measures on R+ ×R

n ×R. It is then easy to see that u is a kinetic solution to (1.1). �
Proposition 12. Let u0 ∈ L1(Rn), S ∈ L1([0, T ] ×R

n) and u be the corresponding entropy solution to (1.1). For each 
α ∈ (0, 1) and each v0 ∈R the measure |v − v0|α−1m has locally finite mass.

Proof. Let α ∈ (0, 1). Let φ be a non-negative smooth compactly supported function in (0, T ) ×R
n ×R. Then (A.1)

implies, with f̃ := φf , m̃ := φm,

∂t f̃ + a(v) · ∇xf̃ = ∂vm̃ − (∂vφ)m + φδu=vS + ∂tφf + (a(v) · ∇xφ)f. (A.6)

By translation we may assume v0 = 0. We next choose a sequence of smooth, compactly supported functions ηε such 
that sgn(ηε(v)) = sgn(v), ηε(v) ≤ 1

α
|v|α and (ηε)

′ ↑ |v|α−1 pointwise. Multiplying (A.6) by ηε and integrating yields

∫
(ηεf̃ )(t) dxdv +

t∫
0

∫
(ηε)′m̃ dxdv dr =

∫
x,v

(ηεf̃ )(0)

+
t∫

0

∫ ( − ηε(∂vφ)m + ηεφδu=vS + ηε∂tφf + ηε(a(v) · ∇xφ)f
)
dxdv dr.
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Since m ≥ 0, by Fatou’s Lemma we may pass to the limit ε → 0 to obtain

t∫
0

∫
|v|α−1m̃ dxdv dr ≤C < ∞

for some constant C depending on ‖u0‖L1
loc

, ‖m‖Mloc
, ‖S‖L1

loc
. �

Appendix B. A basic estimate

From [11] we recall the following basic Lp-estimate for certain Fourier multipliers. This result generalizes [19, 
Lemma 2.2] by taking into account possible v-regularity of f . This allows to avoid bootstrapping arguments in the 
application to scalar conservation laws. This is crucial in the case of scalar conservation laws with L1-forcing, since 
in this case bootstrapping arguments do not apply.

Lemma 13. Let m(τ ′, ξ ′, v) := iτ ′ + ia(v) · ξ ′, ϕ, φ be bounded, smooth functions, ψ be a smooth cut-off function and 

Mψ be the Fourier multiplier with symbol ϕ(τ ′, ξ ′)ψ
(

m(τ ′,ξ ′,v)
δ

)
. Then, for all 1 < p ≤ 2, σ ≥ 0, r ∈ [ p′

1+σp′ , p′] ∩
(1, ∞),

‖
∫

Mψf φ dv‖Lp(Rt×Rn
x) � ‖f φ‖Lp(Rt×Rn

x ;Wσ,p(Rv)) sup
τ ′,ξ ′∈suppϕ

|�m(τ ′, ξ ′, δ)| 1
r ,

where �m(τ ′, ξ ′, δ) = {v ∈ suppφ : |m(τ ′, ξ ′, v)| ≤ δ}. Moreover,

‖
∫

Mψf φ dv‖M(Rt×Rn
x) � ‖f φ‖M(Rt×Rn

x).

Lemma 13 relies on the fact that ψ
(

iτ ′+ia(v)·ξ ′
δ

)
is a bounded Lp (and M) multiplier uniformly in v ∈ I and δ > 0

(the truncation property in [19]). This can be deduced, arguing as in [10], from the invariance of the Lp multiplier 
norm under partial dilations and the Marcinkiewicz multiplier theorem. For details we refer to [11, Lemma A.3].
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