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Abstract

We study invasion fronts and spreading speeds in two component reaction–diffusion systems. Using a variation of Lin’s method, 
we construct traveling front solutions and show the existence of a bifurcation to locked fronts where both components invade at the 
same speed. Expansions of the wave speed as a function of the diffusion constant of one species are obtained. The bifurcation can 
be sub or super-critical depending on whether the locked fronts exist for parameter values above or below the bifurcation value. 
Interestingly, in the sub-critical case numerical simulations reveal that the spreading speed of the PDE system does not depend 
continuously on the coefficient of diffusion.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We study invasion fronts for general systems of reaction–diffusion equations,

ut = uxx + F(u, v),

vt = σvxx + G(u,v),
(1.1)

where σ > 0 and x ∈ R. More specifically, we are interested in traveling wave solutions of the form (u(x − st), v(x −
st)) which satisfy

−su′ = u′′ + F(u, v),

−sv′ = σv′′ + G(u,v),
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Fig. 1. Illustration of our assumptions leading to the existence of locked traveling front solutions (in blue) of (1.1). In red, we have represented 
the pushed front (Up(x − s∗t), 0) connecting p1 = (u+, 0) to p0 = (0, 0) that propagates to the right with speed s∗ given by assumption (H2)
below. In green, we have sketched one traveling front solution (Up2→p1 (x − st), Vp2→p1 (x − st)) connecting p2 = (u∗, v∗) to p1 = (u+, 0)

that propagates to the right with some speed s ≈ s∗ given by assumption (H5) below. Our main result demonstrates the existence of locked fronts 
(U(x − s(σ )t), V (x − s(σ )t)) connecting p2 = (u∗, v∗) to p0 = (0, 0) that propagates to the right with speed s(σ ) for σ ≈ σ∗ , see (H3) below for 
the definition of σ∗ . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where we have set ξ = x − st and used the notation u′ for 
du

dξ
and u′′ for 

d2u

dξ2 . It will be more convenient to write this 

system as a first-order system

u′
1 = u2,

u′
2 = −su2 − F(u1, v1),

v′
1 = v2,

σv′
2 = −sv2 − G(u1, v1).

(1.2)

Throughout this paper, the reaction terms are assumed to have the form,

F(u, v) = uf (u, v), G(u, v) = vg(u, v), with f (0,0) > 0 and g(0,0) > 0. (1.3)

Precise assumptions regarding the functions F(u, v) and G(u, v) are listed in Section 2. We sketch those assump-
tions now to better set the stage and we refer to Fig. 1 for an illustration.

(H1) System (1.1) has three nonnegative homogeneous steady states: p0 = (0, 0), p1 = (u+, 0) and p2 = (u∗, v∗)
and the associated traveling wave equation (1.2) has three corresponding fixed points P0 = (0, 0, 0, 0), P1 =
(u+, 0, 0, 0) and P2 = (u∗, 0, v∗, 0).

(H2) There exists a pushed front (Up(x − s∗t), 0) connecting p1 to p0 that propagates to the right with speed s∗ and 
leaves the homogeneous state p1 in its wake.

(H3) There exists a σ ∗ > 0 such that the linearization of the v component about the pushed front has marginally 
stable spectrum at σ = σ ∗. If σ < σ ∗, then small perturbations of the front (Up(x − s∗t), 0) in the v component 
propagate slower than s∗ whereas for σ > σ ∗ these perturbations spread faster than s∗.

(H4) We assume an ordering of the eigenvalues for the linearization of the traveling wave equation (1.2) near P0 and 
P1 together with a condition on the ratio of the eigenvalues.

(H5) There is a family of traveling front solutions connecting p2 to p1 for all wave speeds s near s∗. These fronts 
have weak exponential decay representing the fact that the invasion speed of p2 into p1 is slower than s∗.

One can think of u and v as representing independent species that diffuse through space and interact through the 
reaction terms F(u, v) and G(u, v). When σ is small, we expect the spreading speed of the u component to exceed 
that of the v component. The dynamics in this regime is that of a staged invasion process: the zero state is first invaded 
by the u component, then at some later time is subsequently invaded by the v component, see Fig. 2(a). As σ is 
increased, the speed of this secondary front will increase until eventually the two fronts lock and form a coherent 
coexistence front where the unstable zero state p0 is invaded by the stable state p2, see Figs. 1 and 2(b). Broadly 
speaking, this transition to locking is the phenomena that we are concerned with in this article. Our primary goal is to 
determine parameter values for which this onset to locking is to be expected and whether the speed of the combined 
front is faster or slower than the speed of the individual fronts.
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Fig. 2. Profiles of the solutions of (1.1), evaluated at time t = 300, with nonlinear terms f (u, v) = (1 − u)(u + 1/16) − v and g(u, v) = 2u(1 −
u) + 1/8 − v for different values of σ . (a) We observe a staged invasion process where the zero state is first invaded by the u component, then 
at some later time is subsequently invaded by the v component. Here we have set σ = 0.25. (b) We observe locked fronts with both components 
traveling at the same wave speed. Here we have set σ = 0.3. Note that p0 = (0, 0), p1 = (1, 0) and p2 = (0, 1/8).

Fig. 3. Sketch of the different bifurcation scenarios covered by our main result. In each panel, the horizontal black line s = s∗ illustrates the 
marginal stability assumption (H3) of the linearization of the v component about the pushed front. The red diamond indicates the critical value σ∗
at which the pushed front has marginal stable spectrum. The solid part of the line indicates a negative principal eigenvalue of the corresponding 
linearized operator while the dashed part indicates a positive one. The bifurcating curve in blue illustrates the existence of locked front solutions 
with wave speed s(σ ) given by our main result. Two scenarios can happen: the bifurcation will occur either for σ > σ∗ (super-critical case) or for 
σ < σ∗ (sub-critical case), and in each case the direction of bifurcation can lead to larger wave speed (top panels) or slower wave speed (bottom 
panels). These different scenarios can be characterized by the signs of the constants Mρ and Ms (see Theorem 1).

Our main result is the existence of a bifurcation leading to locked fronts occurring at the parameter values (s, σ) =
(s∗, σ ∗). Depending on properties of the reaction terms the bifurcation will occur either for σ > σ ∗ (super-critical) 
or for σ < σ ∗ (sub-critical), see Fig. 3 for a sketch. In the super-critical case, the coexistence front does not appear 
until after the bifurcation at σ ∗ and the speed of the locked front changes continuously following the bifurcation – 
varying quadratically in a neighborhood of the bifurcation point (see Fig. 5 for an illustration on a specific example). 
The dynamics of the system in the sub-critical case are much different. In this scenario, the system transitions from a 
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staged invasion process to locked fronts at a value of σ strictly less than the critical value σ ∗ and the spreading speed 
at this point is not continuous as a function of σ and we refer to Fig. 6 for an illustration on a specific example.

We employ a dynamical systems approach and construct these traveling fronts as heteroclinic orbits of the cor-
responding traveling wave equation (1.2), see Fig. 4. The traveling front solutions that we are interested in lie near 
a concatenation of traveling front solutions: the first being the pushed front connecting P1 to P0 (see (H2)) and the 
second connecting the stable coexistence state P2 to this intermediate state P1 (see (H5)). A powerful technique for 
constructing solutions near heteroclinic chains is Lin’s method [14,16,17]. In this approach, perturbed solutions are 
obtained by variation of constants and these perturbed solutions are matched via Liapunov–Schmidt reduction leading 
to a system of bifurcation equations. Two common assumptions when using these techniques are a) that the dimen-
sions of the stable and unstable manifolds of each fixed point in the chain are equal and b) the sum of tangent spaces of 
the intersecting unstable and stable manifolds have co-dimension one. Neither of these assumptions hold in our case. 
As fixed points of the traveling wave equation the stable coexistence state P2 has two unstable eigenvalues and two 
stable eigenvalues, the intermediate saddle state P1 has three stable eigenvalues and one unstable eigenvalue and the 
unstable zero state P0 has four stable eigenvalues. Restricting to fronts with strong exponential decay, the zero state 
can be thought of as having a two-two splitting of eigenvalues, but no such reduction is possible for the intermediate 
state.

One interesting phenomena that we observe is a discontinuity of the spreading speed as a function of σ in the 
sub-critical regime. The discontinuous nature of spreading speeds with respect to system parameters has been observed 
previously, see for example [6,8,9,11]. However, the discontinuity in those cases is typically observed as a parameter 
is altered from zero to some non-zero value representing the onset of coupling of some previously uncoupled modes. 
The mechanism here appears to be different.

There is a large literature pertaining to traveling fronts in systems of reaction–diffusion equations. Directly related 
to the work here is [10], where system (1.1) is studied under the assumption that the second component is decoupled 
from the first, i.e. that g(u, v) = g(v). Further assuming that the system obeys a comparison principle, precise state-
ments regarding the evolution of compactly supported initial data can be made; see also [2]. Here, we do not assume 
monotonicity and therefore a dynamical system approach is required. A similar approach is used in [10], however, the 
decoupling of the v component reduces the traveling wave equation to a three dimensional system.

The present work is also partially motivated by recent studies of bacterial invasion fronts similar to [13]. In this 
context, the u component can be thought of as a bacterial population of cooperators while the v component are 
defectors. In a well mixed population the defectors out compete the cooperators. However, in a spatially extended 
system the cooperators may persist via spatial movement by outrunning the defectors. This depends on the relative 
diffusivities, where for σ small the cooperators are able to escape. However, for σ sufficiently large the defector front 
is sufficiently fast to lock with the cooperator front and slow its invasion. Our result characterizes how this locking 
may take place. See also [23,24] for similar systems of equations.

Discussion of methods: a dynamical systems viewpoint We have thus far focused primarily on properties of the 
PDE (1.1). Mathematically, our main result regards the construction of traveling fronts in the associated traveling 
wave ODE, (1.2). We include a short discussion now to connect these two perspectives; see also [22] for a longer 
discussion. To keep this discussion as straightforward as possible we restrict ourselves only to the simplest case of 
constant coefficient reaction–diffusion systems giving rise to fixed form traveling front solutions connecting homoge-
neous steady states and ignore complications that can arise for pattern forming systems, inhomogeneous problems, or 
systems including advective terms to name a few.

The notion of spreading speeds for a PDE typically refers to the asymptotic speed of invasion of compactly sup-
ported perturbations of an unstable state; see for example [1]. For scalar equations having a comparison principle or 
for monotone systems of equations, it is often possible to rigorously establish spreading speeds. In doing so, it is often 
the case that the compactly supported initial conditions eventually converge to a traveling front. Thus, the system 
identifies a unique selected front propagating at the selected spreading speed and the proof implies stability (in an 
appropriate sense) of this front with respect to a large class of initial conditions.

Many systems, including the ones considered here, lack a comparison structure and consequently it becomes ex-
tremely difficult to rigorously establish PDE spreading speeds in the traditional sense. In these cases, one approach 
is to consider the speed selection problem as a front selection problem and identify fronts which are consistent with 
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selection from compactly supported initial data. In doing this, one weakens the “global” stability requirement of the 
selected front to a local stability criterion. This local stability criterion is referred to as marginal stability; see [4,22].

Marginal stability requires that the selected front be pointwise marginally stable with respect to compactly sup-
ported perturbations. As fronts propagating into unstable states, the essential spectrum of any invasion front is unstable 
(in L2(R) for example). A common technique to stabilize the essential spectrum is to work in exponentially weighted 
spaces. Weights shift the essential spectrum and there is typically an optimal weight that pushes the essential spectrum 
as far to the left as possible; see [18] for an introduction to the absolute spectrum and its role in this regard. Marginal 
stability can then be defined in terms of stability properties in this optimally weighted space. Generally speaking, there 
are two possibilities. For a pushed front, the essential spectrum is stabilized while the point spectrum is stable with 
the exception of a translational eigenvalue on the imaginary axis. For a pulled front, the essential spectrum is itself 
marginally stable and there are no unstable eigenvalues.

Invasion fronts typically come in families parameterized by their speed of propagation. With the previous discus-
sion in mind, given this family of fronts we seek to identify the unique marginally stable front. The speed of this 
marginally stable front then provides a prediction for the spreading speed of compactly supported initial conditions 
for the original PDE (1.1).

We are interested in constructing candidate pushed fronts for (1.1) by constructing heteroclinic orbits for (1.2). The 
fronts of interest must possess two qualitative features that are indicative of the existence of a pushed front. First, it 
must be possible to stabilize the essential spectrum using exponential weights. Secondly, the decay of the front must 
be sufficiently steep so that the derivative of the front profile remains as an eigenvalue in the weighted space.

For the problem considered in this paper, the second property is key and we focus on constructing traveling front 
solutions with sufficiently steep exponential decay rates. These are candidate solutions for the selected front and their 
speed then gives a prediction for the spreading speeds of the original PDE system (1.1). We do not pursue a full 
stability analysis of the fronts that we construct, although such an analysis is conceivably possible through similar 
means as those used in the existence proof. In fact, we do not necessarily believe these fronts to always be marginally 
stable. For example, in the sub-critical regime depicted in Fig. 3 we expect the bifurcating fronts to be pointwise 
unstable and this feature is essential to the jump in spreading speed observed numerically in this regime.

We now proceed to outline our assumptions in more detail and state our main result.

2. Set up and statement of main results

In this section, we specify the precise assumptions required of (1.1) and state our main result. We first make some 
assumptions on the reaction terms F(u, v) and G(u, v) that have the specific form defined in (1.3).

Hypothesis (H1). Assume that homogeneous system

ut = F(u, v),

vt = G(u,v),

with F(u, v) = uf (u, v) and G(u, v) = vg(u, v), has three non-negative equilibrium points which we denote by 
p0 = (0, 0), p1 = (u+, 0) and p2 = (u∗, v∗) for some u∗ ≥ 0 and v∗ > 0. We assume that f (p0) > 0 and g(p0) > 0
so that p0 is an unstable node for the homogeneous system. We assume that Fu(p1) < 0 and g(p1) > 0 so that p1 is a 
saddle with one stable direction in the v = 0 coordinate axis and an unstable direction transverse to this axis. Finally, 
we assume that p2 is a stable node.

The traveling wave equation (1.2) naturally inherits equilibrium points from the homogeneous equation which 
we denote as P0 = (0, 0, 0, 0), P1 = (u+, 0, 0, 0) and P2 = (u∗, 0, v∗, 0). At either the fixed point P0 or P1, the 
linearization is block triangular and eigenvalues can be computed explicitly. At P0, the four eigenvalues are

μ±
u (s) = − s

2
± 1

2

√
s2 − 4f (p0),

μ±
v (s, σ ) = − s

2σ
± 1

2σ

√
s2 − 4σg(p0),

where we used the fact that Fu(p0) = f (p0) and Gv(p0) = g(p0). Similarly, at P1, the linearization has eigenvalues
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ν±
u (s) = − s

2
± 1

2

√
s2 − 4Fu(p1),

ν±
v (s, σ ) = − s

2σ
± 1

2σ

√
s2 − 4σg(p1),

where once again we used the fact that Gv(p1) = g(p1).
When the v component is identically zero, system (1.1) reduces to a scalar reaction–diffusion equation

ut = uxx + F(u,0), (2.1)

and the traveling wave equation (1.2) reduces to the planar system

u′
1 = u2,

u′
2 = −su2 − F(u1,0).

We now list assumptions related to traveling front solutions of (2.1).

Hypothesis (H2). We assume that there exists s∗ > 2
√

f (p0) for which (2.1) has a pushed front solution Up(x − s∗t)
moving to the right with speed s∗. By pushed front, we mean that the solution has steep exponential decay Up(ξ) ∼
Ceμ−

u (s∗)ξ as ξ → ∞ and has stable spectrum in the weighted space L2
α(R), for some α > 0, with the exception of an 

eigenvalue at zero due to translational invariance. There is, in fact, a one parameter family of translates of these fronts 
and we therefore impose that U ′′

p(0) = 0 and restrict to one element of the family.

To reiterate the connection to the PDE (1.1), we are interested in reaction terms for which non-negative and com-
pactly supported initial data for (1.1) of the form (u0(x), 0) would spread with speed s∗ > 2

√
f (p0). Note that the 

quantity 2
√

f (p0) is the linear spreading speed of the u component near p0 and so we require faster than linear inva-
sion speeds. For the traveling wave ODE, this translates to the existence of a marginally stable pushed front – which 
is exactly what is laid out by assumption (H2).

Now consider the linearization of the v component of (1.1) around the traveling front solution (Up(x − s∗t), 0),

Lv := σ∂ξξ + s∗∂ξ + g(Up(ξ),0).

The spectrum of this operator posed on L2(R) is unstable due to the instability of the asymptotic rest states. However, 
this spectrum may be stable when Lv is viewed as an operator on the exponentially weighted space

L2
d(R) =

{
φ(ξ) ∈ L2(R) | φ(ξ)edξ ∈ L2(R)

}
.

Let d = s∗
2σ

. Then the operator Lv = σ∂ξξ + s∗∂ξ + g(Up(ξ), 0) restricted to L2
d is isomorphic to the operator Hσ :

L2(R) → L2(R), where

Hσ := σ∂ξξ +
(

− (s∗)2

4σ
+ g(Up(ξ),0)

)
.

We now state our assumptions on the spectrum of Hσ .

Hypothesis (H3). We suppose that the most unstable spectra of Hσ is point spectra and define

λ(σ ) = sup
ω∈spec(Hσ )

ω.

Let σ ∗ be defined such that λ(σ ∗) = 0. Associated to this eigenvalue is a bounded eigenfunction which we denote 

φ̃(ξ). In the unweighted space, this eigenfunction becomes φ(ξ) = e− s∗
2σ∗ ξ φ̃(ξ) which is unbounded as ξ → −∞. We 

further assume that Gv(u, 0) = g(u, 0) > 0 for all u ∈ [0, u+] such that φ′(ξ) < 0 for all ξ .

We will require some properties of the eigenvalues of the linearization of P0 and P1 in a neighborhood of the 
critical parameter values (s∗, σ ∗). These are outlined next.
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Hypothesis (H4). The eigenvalues of the linearization of (1.2) at P0 has four unstable eigenvalues. We assume for 
some open neighborhood of parameter space including (s∗, σ ∗) that there exists an α > 0 such that

μ−
u (s) < −α < μ+

u (s), μ−
v (s, σ ) < −α < μ+

v (s, σ ). (2.2)

The fixed point P1 is a saddle point of (1.2) with a 3 : 1 splitting of the eigenvalues. We assume that the eigenvalues 
of the linearization at P1 can be ordered

ν−
v (s, σ ) < ν−

u (s) < ν+
v (s, σ ) < 0 < ν+

u (s), (2.3)

again for some open set of parameters including (s∗, σ ∗). In addition, we assume the following condition on the ratio 
of the eigenvalues:

ν−
u (s) < 2ν+

v (s, σ ). (2.4)

The eigenvalue splitting (2.2) in Hypothesis (H4) guarantees the existence of a two dimensional strong stable 
manifold which we denote Wss(P0). Initial conditions in Wss(P0) correspond to solutions of (1.2) that decay to P0
with exponential rate greater than e−αξ at ξ = +∞.

The final set of assumptions pertain to the existence and character of traveling front solutions connecting P2 to P1.

Hypothesis (H5). We assume a transverse intersection of the manifolds Wu(P2) and Ws(P1) for all (s, σ) in a neigh-
borhood of (s∗, σ ∗). For (s∗, σ ∗) we assume the existence of a heteroclinic connection between P2 and P1 that 
approaches P1 tangent to the weak-stable eigenspace corresponding to the eigenvalue ν+

v (s∗, σ∗), see (2.3). Thus, the 
two dimensional tangent space of Wu(P2) enters a neighborhood of P1 approximately tangent to the unstable/weak-
stable manifold of P1.

In terms of PDE assumptions, (H5) is consistent with a staged invasion process where compactly supported per-
turbations of the steady state p1 form a traveling front propagating with speed s < s∗ replacing the unstable state p1
with the stable state p2. Since the selected invasion speed of fronts propagating into the state p1 is slower than s∗, any 
traveling front solution with speed s∗ should be pointwise stable which requires that they converge to p1 with weak 
exponential decay precluding the existence of a marginally stable translational eigenvalue.

Remarks on assumptions (H1)–(H5) We remark that (H1) and (H4) are straightforward to verify for a specific 
choice of F(u, v) and G(u, v). Assumption (H2) is more challenging, but due to the planar nature of the traveling 
wave equation it is plausible that such a condition could be checked in practice. We refer the reader to [15] for a 
general variational method suited to such problems. Assumption (H3) is yet more challenging to verify, however as 
a Sturm–Liouville operator there are many results in the literature pertaining to qualitative features of the spectrum 
of these operators. Finally, assumption (H5) is the most difficult to verify in practice, as it requires a rather complete 
analysis of a fully four dimensional system of differential equations (1.2). Nonetheless, our assumptions there simply 
state that the traveling front solutions have the most generic behavior possible as heteroclinic orbits between P2 and 
P1. In this sense, we argue that assumption (H5) is not so extreme, in spite of the challenge presented in actually 
verifying that it would hold in specific examples.

We also remark that the precise ordering of the eigenvalues assumed in (H4) are technical assumptions and could 
likely be relaxed in some cases.

Main result We can now state our main result.

Theorem 1. Consider (1.1) and assume that Hypotheses (H1)–(H5) hold. Then there exists a constant Mρ such that:

• (sub-critical) if Mρ < 0 then there exists δ > 0 such that there exists positive traveling front solutions 
(U(x − s(σ )t),V (x − s(σ )t)) for any σ ∗ − δ < σ < σ ∗ with speed

s(σ ) = s∗ + Ms(σ − σ ∗)2 +O(3);
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Fig. 4. Geometrical illustration in R4 of the construction of locked fronts. Locked fronts are heteroclinic orbits connecting P2 to P0 that lie at 
the intersection of the unstable manifold Wu(P2) and the strong stable manifold Wss(P0). We track Wss(P0) backwards along the pushed front 
heteroclinic (Up(ξ), U ′

p(ξ), 0, 0)T , represented by the dark red heteroclinic orbit on the figure, to a neighborhood of P1 and track Wu(P2) forwards 
past the fixed point P1 from �in to �out to compare the two manifolds near a common point on the heteroclinic (Up(ξ), U ′

p(ξ), 0, 0)T in �out . 
In the figure, we represented in dark green one heteroclinic orbit connecting P2 to P1 within Wu(P2). Schematically, the locked front, represented 
by the blue heteroclinic orbit on the figure, is found to be close to the concatenation of the two heteroclinic orbits connecting first P2 to P1 (dark 
green) and then P1 to P0 (dark red). In that respect, our strategy of proof is a variation of Lin’s method.

• (super-critical) if Mρ > 0 then there exists δ > 0 such that there exists positive traveling front solutions 
(U(x − s(σ )t),V (x − s(σ )t)) for any σ ∗ < σ < σ ∗ + δ with speed

s(σ ) = s∗ + Ms(σ − σ ∗)2 +O(3).

These traveling fronts belong to the intersection of the unstable manifold Wu(P2) and the strong stable manifold 
Wss(P0).

We make several remarks.

Remark 2. As part of the proof of Theorem 1 we obtain expressions for Mρ and Ms . In particular,

sign(Mρ) = sign

⎛
⎜⎝−r2

∞∫
ξ0

e
s∗
σ∗ ξ

(
Guv(Up(ξ),0)

σ ∗ a1(ξ)φ(ξ)2 + Gvv(Up(ξ),0)

2σ ∗ φ3(ξ)

)
dξ

− r1

(
φ̃′′(ξ0)φ̃(ξ0) − (φ̃′(ξ0))

2
)

+ 1

r2
e

s∗
σ∗ ξ0γ (2)(s∗, σ ∗)

(
ν−
v (s∗, σ ∗)φ(ξ0) − φ′(ξ0)

))
,

where r1,2, a1(ξ) and γ (2)(s∗, σ ∗) are all defined below. A similar expression holds for Ms , but is quite complicated.

Remark 3. We comment on the sub-critical case. Our analysis holds only in a neighborhood of the bifurcation point. 
However, we expect that this curve could be followed in (s, σ) parameter space to a saddle-node bifurcation where 
the curve would subsequently reverse direction with respect to σ . This curve can be found numerically using numer-
ical continuation methods, see Fig. 6. These numerics reveal two branches of fronts that appear via a saddle node 
bifurcation. It is the lower branch of solutions that appear to be marginally stable and reflect the invasion speed of the 
system.

For systems of equations without a comparison principle, the selected front is classified as the marginal stable front, 
see [4,22] and the discussion at the end of Section 1. It is interesting to note that in these examples there appear to be 
two marginally (spectrally) stable fronts – the original front (Up(x − s∗t), 0) and the coexistence front – and the full 
system selects the slower of these two fronts.

We now comment on the strategy of the proof that employs a variation of Lin’s method; see Fig. 4 for a geomet-
rical illustration of our dynamical systems approach. The traveling fronts that we seek are heteroclinic orbits in the 
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Fig. 5. Numerically computed wave speeds of the u-component, black circles, and of the v-component, green plus sign for ε = 1 in (2.5). The 
horizontal blue line s = s∗ = √

2(a + 1/2) represents the sign of the associated principal eigenvalue of the operator Hσ and the red diamond 
indicates the critical value σ∗ at which this principal eigenvalue vanishes. The solid part of the line indicates a negative principal eigenvalue while 
the dashed part indicates a positive one. Here, σ∗ � 0.314. For all numerical simulations we have set a = 1/16.

traveling wave equations connecting P2 to P0. We further require that these fronts have strong exponential decay in a 
neighborhood of P0. As such, these traveling fronts belong to the intersection of the unstable manifold Wu(P2) and 
the strong stable manifold Wss(P0). Therefore, the goal is to track Wss(P0) backwards along the pushed front hetero-
clinic (Up(ξ), U ′

p(ξ), 0, 0)T to a neighborhood of P1. The dependence of this manifold on the parameters s and σ can 
be characterized using Melnikov type integrals and the manifold can be expressed as a graph over the strong stable 
tangent space. To track Wu(P2) forwards we use (H5) to get an expression for this manifold as it enters a neighbor-
hood of P1. To track this manifold past the fixed point requires a Shilnikov type analysis near P1. Finally, we compare 
the two manifolds near a common point on the heteroclinic (Up(ξ), U ′

p(ξ), 0, 0)T and following a Liapunov–Schmidt 
reduction we obtain the required expansions of s as a function of σ .

Numerical illustration of the main result Before proceeding to the proof of Theorem 1, we illustrate the result on an 
example. We consider the following nonlinear functions fε(u, v) and g(u, v) that lead to a supercritical bifurcation 
when ε = 1 and exhibit a sub-critical bifurcation for ε = −1:

fε(u, v) = (1 − u)(u + a) + εv, and g(u, v) = 2u(1 − u) + 2a − v, (2.5)

where ε ∈ {±1}. In both cases, when v is set to zero the system reduces to the scalar Nagumo’s equation

ut = uxx + u(1 − u)(u + a). (2.6)

The dynamics of (2.6) are well understood, see for example [7]. For a < 1/2, the system forms a pushed front 
propagating with speed s∗ = √

2
( 1

2 + a
)
. For the numerical computations presented in both Figs. 5 and 6, we have 

discretized (1.1) by the method of finite differences and used a semi-implicit scheme with time step δt = 0.05 and 
space discretization δx = 0.05 with x ∈ [0, 400] and imposed Neumann boundary conditions. All simulations are 
done from compactly initial data and the speed of each component was calculated by computing how much time 
elapsed between the solution surpassing a threshold at two separate points in the spatial domain. In Fig. 5, we present 
the case of a super-critical bifurcation where locked fronts are shown to exist past the bifurcation point σ = σ ∗. In 
Fig. 6, we illustrate the case of a sub-critical bifurcation where locked fronts are shown to exist before the bifurcation 
point σ = σ ∗. We observe a discontinuity of the wave speed as σ is increased. We then implemented a numerical 
continuation scheme to continue the wave speed of these locked fronts back to the bifurcation point σ = σ ∗. In 
the process, we see a turning point for some value of σ near 0.273. We expect that locked fronts on this branch to 
be unstable as solutions of (1.1) which explains why one observes the lower branch of the bifurcation curve. It is 
interesting to note the relative good agreement between the wave speed obtained by numerical continuation and the 
wave speed obtained by direct numerical simulation of the system (1.1).
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Fig. 6. (a) Numerically computed wave speeds of the u-component, black circles, and of the v-component, green plus sign for ε = −1 in (2.5). 
We observe a discontinuity in the value of the measured wave speed as σ is varied indicating a sub-critical bifurcation of the locked fronts. The 
horizontal blue line s = s∗ = √

2(a + 1/2) represents the sign of the associated principal eigenvalue of the operator Hσ and the red diamond 
indicates the critical value σ∗ at which this principal eigenvalue vanishes. The solid part of the line indicates a negative principal eigenvalue while 
the dashed part indicates a positive one. Here, σ∗ � 0.314. The red curve is a continuation of the wave speed of locked fronts up to the bifurcation 
point σ = σ∗. (b) Refinement of Figure (a) near the fold point. Here, the red dots are wave speeds obtained by numerical continuation. For all 
numerical simulations we have set a = 1/16.

Outline of the paper In Section 3, we track the strong stable manifold Wss(P0) backwards and derive expansions. 
In the following Section 4, we track the unstable manifold Wu(P2) forwards using the Shilnikov Theorem to obtain 
precise asymptotics past the saddle point P1. Finally, in the last Section 5 we prove our main Theorem 1 by resolving 
the bifurcation equation when matching the strong stable manifold Wss(P0) with the unstable manifold Wu(P2) in a 
neighborhood of P1. Some proofs and calculations are provided in the Appendix.

3. Tracking the strong stable manifold Wss(P0) backwards

In this section, we derive an expression for the strong stable manifold of the fixed point P0 near the fixed point 
P1. Recall that for (s, σ) = (s∗, σ ∗), there exists a heteroclinic orbit given by (Up(ξ), U ′

p(ξ), 0, 0)T that connects P1
to P0. By assumption (H2), this orbit lies in the strong stable manifold. We will use this orbit to track the strong 
stable manifold back to a neighborhood of P1. Before proceeding, we remark that (H2) and (H3) combine to pro-
vide a description of the tangent space to Wss(P0) for (s, σ) = (s∗, σ ∗) and at any point along the heteroclinic 
(Up(ξ), U ′

p(ξ), 0, 0)T . Importantly, we will see that the criticality of the principle eigenvalue in (H3) implies that the 
tangent space of Wss(P0) at (s∗, σ ∗) aligns with the unstable/weak-stable eigenspace near P1; see also (H4). Looking 
ahead to Section 4, we recall that the tracked manifold Wu(P2) also enters a neighborhood of P1 tangent to the un-
stable/weak-stable manifold; see (H5). Thus, on a linear level we anticipate intersections of these two manifolds for 
parameter values near (s∗, σ ∗) with a precise description involving how these individual manifolds vary with respect 
to s, σ and their nonlinear characteristics.

We first prove the existence of the manifold Wss(P0) and derive expansions of the manifold near P1. To begin, 
change variables via

u1 = Up(ξ) + p1

u2 = U ′
p(ξ) + p2

v1 = q1

v2 = q2.

Writing z = (p1, p2, q1, q2)
T , then we can express (1.2) as the non-autonomous system in compact form,
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z′ = A(ξ, s∗, σ ∗)z + n(ξ, s) + N(ξ, z, s, σ ), (3.1)

where

A(ξ, s∗, σ ∗) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

−Fu(Up(ξ),0) −s∗ −Fv(Up(ξ),0) 0

0 0 0 1

0 0 − g(Up(ξ),0)

σ ∗ − s∗
σ ∗

⎞
⎟⎟⎟⎟⎠ , (3.2)

and

n(ξ, s) =

⎛
⎜⎜⎝

0
−(s − s∗)U ′

p(ξ)

0
0

⎞
⎟⎟⎠ , N(z, ξ, s, σ ) =

⎛
⎜⎜⎝

0
Np(z, ξ, s, σ )

0
Nq(z, ξ, s, σ )

⎞
⎟⎟⎠ (3.3)

with

Np(z, ξ, s, σ ) = − (s − s∗)p2 − Fuu(Up(ξ),0)

2
p2

1 − Fuv(Up(ξ),0)p1q1 − Fvv(Up(ξ),0)

2
q2

1 +O(3)

Nq(z, ξ, s, σ ) = − 1

σ ∗ (s − s∗)q2 + s∗

(σ ∗)2 (σ − σ ∗)q2 − Guv(Up(ξ),0)

σ ∗ p1q1

− Gvv(Up(ξ),0)

2σ ∗ q2
1 + g(Up(ξ),0)

(σ ∗)2 q1(σ − σ ∗) +O(3).

These expressions have been simplified by noting that Gu(Up(ξ), 0) = 0 and Guu(Up(ξ), 0) = 0, together with 
Gv(Up(ξ), 0) = g(Up(ξ), 0).

Lemma 4. Recall α as defined in (H4). Let �(ξ, ξ̃ ) be the fundamental matrix solution of

z′ = A(ξ, s∗, σ ∗)z. (3.4)

Then (3.4) has a generalized exponential dichotomy on [ξ0, ∞) with strong stable projection Pss(ξ) satisfying 
dim(Rg(Pss(ξ))) = 2, and there exists a K > 0 and 0 < γ < α for which∥∥∥�(ξ, ξ̃ )Pss(ξ̃ )

∥∥∥≤ Ke−α(ξ−ξ̃ ) for ξ > ξ̃,∥∥∥�(ξ, ξ̃ )
(

Id − Pss(ξ̃ )
)∥∥∥≤ Keγ (ξ̃−ξ) for ξ < ξ̃ .

Proof. This is a standard result on exponential dichotomies, see for example [3]. Define A∞(s∗, σ ∗) = limξ→∞ A(ξ,

s∗, σ ∗). Since the convergence is exponential and there is a gap between the strong stable and weak stable eigenvalues, 
see (H4), the constant-coefficient asymptotic system has an exponential dichotomy and the non-autonomous system 
inherits one with the same decay rates. �

With the existence of an exponential dichotomy, we can express the strong stable manifold in the usual way as the 
fixed point of a variation-of-constants formula. In the following, we use the notation

�ss(ξ, ξ0) = �(ξ, ξ0)P
ss(ξ0), �ws(ξ, ξ0) = �(ξ, ξ0)

(
Id − Pss(ξ0)

)
.

Lemma 5. Let ξ0 < 0 be arbitrary and let α and γ be as in Lemma 4. Define

S =
{
φ ∈ C0

β([ξ0,∞),R4)
}

,

with norm ‖φ‖S = supξ∈[ξ0,∞) e
β(ξ−ξ0)‖φ(ξ)‖ for γ < β < α. Given Y ∈ Rg (Pss(ξ0)), consider the operator T de-

fined for all ξ ≥ ξ0 as
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T Q(ξ) := �ss(ξ, ξ0)Y +
ξ∫

ξ0

�ss(ξ, τ ) (n(τ, s) + N(Q(τ), τ, s, σ ))dτ

−
∞∫

ξ

�ws(ξ, τ ) (n(τ, s) + N(Q(τ), τ, s, σ ))dτ.

(3.5)

There exists an r > 0 and a c > 0 such that for any small Y ∈ Rg (Pss(ξ0)) and all (|s − s∗| + |σ − σ ∗|) < c the 
operator T is a contraction mapping on Br (0) ⊂ S, where Br (0) stands for the ball of radius r centered at Q = 0
in S.

Proof. The proof is standard, but we include it since we will require some information regarding the value of the 
contraction constant. Note first that ‖n(τ, s, σ)‖ < C|s − s∗|e−ατ . Also, for r sufficiently small there exist positive
constants l(r), ls and lσ such that for any τ ∈ [ξ0, ∞),

‖N(Q1(τ ), τ, s, σ ) − N(Q2(τ ), τ, s, σ )‖ ≤ (l(r) + ls |s − s∗| + lσ |σ − σ ∗|)‖Q1(τ ) − Q2(τ )‖.
Note that l(r) → 0 as r → 0. For brevity, let

L(r, s, σ ) = l(r) + ls |s − s∗| + lσ |σ − σ ∗|.
Then

eβ(ξ−ξ0)‖T Q(ξ)‖ ≤ Ke(β−α)(ξ−ξ0)‖Y‖ + e(β−α)ξ

ξ∫
ξ0

Ke−ατ−βξ0
(
C|s − s∗|e−ατ + L(r, s, σ )‖Q(τ)‖)dτ

+ e(β−γ )ξ

∞∫
ξ

Keγ τ−βξ0
(
C|s − s∗|e−ατ + L(r, s, σ )‖Q(τ)‖)dτ.

Since β − α < 0 we obtain constants Cg , CN such that

‖T Q‖S ≤ K‖Y‖ + Cg|s − s∗| + L(r, s, σ )CN‖Q‖S, (3.6)

and we observe that for |s − s∗|, |σ − σ ∗| and ‖Y‖ sufficiently small the operator maps T : Br (0) → Br (0). For any 
fixed Y , we have

eβ(ξ−ξ0)‖T Q1(ξ) − T Q2(ξ)‖ ≤ eβ(ξ−ξ0)

ξ∫
ξ0

�ss(ξ, τ )‖N(Q1(τ ), τ, s, σ ) − N(Q2(τ ), τ, s, σ )‖dτ

+ eβ(ξ−ξ0)

∞∫
ξ

�ws(ξ, τ )‖N(Q1(τ ), τ, s, σ ) − N(Q2(τ ), τ, s, σ )‖dτ

≤ eβ(ξ−ξ0)e−αξKL(r, s, σ )||Q1 − Q2||S
ξ∫

ξ0

e(α−β)τ dτ

+ eβ(ξ−ξ0)e−γ ξKL(r, s, σ )||Q1 − Q2||S
∞∫

ξ

e(γ−β)τ dτ.

Since γ < β < α the integrals converge and we obtain that T is a contraction for L sufficiently small, or equivalently 
for r > 0 and c > 0 sufficiently small. And for future reference, we denote by κ(r, s, σ) the associated contraction 
constant so that

‖T Q1 − T Q2‖S ≤ κ(r, s, σ )||Q1 − Q2||S. �
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The strong stable manifold is therefore given as the fixed point of (3.5) and at ξ0 this manifold can be expressed as 
a graph from Rg(Pss(ξ0)) to Rg(Id − Pss(ξ0)). We now select coordinates. The range of the strong stable projection 
is spanned by the vectors

θ1 =

⎛
⎜⎜⎜⎝

U ′
p(ξ0)

U ′′
p(ξ0)

0
0

⎞
⎟⎟⎟⎠ , θ2 =

⎛
⎜⎜⎜⎜⎝

a1(ξ0)

a2(ξ0)

φ(ξ0)

φ′(ξ0)

⎞
⎟⎟⎟⎟⎠ , (3.7)

where φ(ξ) is defined in (H3) and a1(ξ) and a2(ξ) are solutions of

a′
1(ξ) = a2(ξ)

a′
2(ξ) = −Fu(Up(ξ),0)a1(ξ) − s∗a2(ξ) − Fv(Up(ξ),0)φ(ξ).

The homogeneous equation has a pair of linearly independent solutions,

A1(ξ) = U ′
p(ξ), A2(ξ) = U ′

p(ξ)

ξ∫
ξ0

e−s∗τ

(Up(τ)′)2 dτ. (3.8)

Note that A1(ξ) < 0 and A2(ξ) < 0 for ξ > ξ0. A family of solutions with strong exponential decay as ξ → ∞ is 
given by

a1(ξ) = c1A1(ξ) + A1(ξ)

ξ∫
ξ0

es∗τA2(τ )Fv(Up(τ),0)φ(τ)dτ

+ A2(ξ)

∞∫
ξ

es∗τA1(τ )Fv(Up(τ),0)φ(τ)dτ. (3.9)

Then

a2(ξ) = c1A
′
1(ξ) + A′

1(ξ)

ξ∫
ξ0

es∗τA2(τ )Fv(Up(τ),0)φ(τ)dτ

+ A′
2(ξ)

∞∫
ξ

es∗τA1(τ )Fv(Up(τ),0)φ(τ)dτ.

We select c1 so that θ1 and θ2 are orthogonal at ξ0. This implies

c1

(
(U ′

p(ξ0))
2 + (U ′′

p(ξ0)
2)
)

= −U ′′
p(ξ0)

U ′
p(ξ0)

e−s∗ξ0

∞∫
ξ0

es∗τA1(τ )Fv(Up(τ),0)φ(τ)dτ.

We make several observations here that will be of importance later. First, the sign of c1 depends on the value of 
Fv(Up(ξ), 0). If Fv(Up(ξ), 0) has one sign, then c1 shares that sign. Second, if we set ξ = ξ0 we observe that the 
integrand es∗τA1(τ )Fv(Up(τ), 0)φ(τ) converges exponentially as τ → −∞. Finally, we note that a1(ξ) and a2(ξ)

share the same decay rate as φ(ξ) as ξ → −∞ while their decay rate exceeds that of φ(ξ) as ξ → ∞.
The range of (Id − Pss(ξ0)) can be expressed in terms of solutions to the adjoint equation,

ψ ′ = −A(ξ, s∗, σ ∗)T ψ. (3.10)

Note that the adjoint equation also admits a generalized exponential dichotomy with fundamental matrix solution 
�̃(ξ, ξ0) =

(
�(ξ, ξ0)

−1
)T

. The generalized exponential dichotomy distinguishes between solutions with weak and 
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strong unstable dynamics. The weak unstable projection for the adjoint equation has two dimensional range spanned 
by,

ψ1 =

⎛
⎜⎜⎜⎜⎝

−es∗ξ0U ′′
p(ξ0)

es∗ξ0U ′
p(ξ0)

b1(ξ0)

b2(ξ)

⎞
⎟⎟⎟⎟⎠ , ψ2 = e

s∗
σ∗ ξ0

⎛
⎜⎜⎜⎝

0
0

−φ′(ξ0)

φ(ξ0)

⎞
⎟⎟⎟⎠ , (3.11)

where b1(ξ) and b2(ξ) satisfy

b′
1(ξ) = g(Up(ξ),0)

σ ∗ b2(ξ) + Fv(Up(ξ),0)es∗ξU ′
p(ξ)

b′
2(ξ) = −b1(ξ) + s∗

σ ∗ b2(ξ).

This system can be re-expressed as the second order equation,

σ ∗b′′
2(ξ) − s∗b′

2(ξ) + g(Up(ξ),0)b2(ξ) = −σ ∗Fv(Up(ξ),0)es∗ξU ′
p(ξ). (3.12)

The homogeneous system has a pair of linearly independent solutions,

B1(ξ) = e
s∗
σ∗ ξφ(ξ), B2(ξ) = e

s∗
σ∗ ξφ(ξ)

ξ∫
ξ0

e− s∗
σ∗ τ

φ2(τ )
dτ.

Note that B1(ξ) possesses weak unstable growth as ξ → ∞ and B2(ξ) has strong unstable growth. For ξ tending to 
−∞, we have that B1(ξ) and B2(ξ) both converge exponentially to zero.

Variation of parameters yields a solution to the inhomogeneous equation (3.12) with weak-unstable growth as 
ξ → ∞,

b2(ξ) = c̃1B1(ξ) + B1(ξ)

ξ∫
ξ0

e− s∗
σ∗ τB2(τ )Fv(Up(τ),0)es∗τU ′

p(τ )dτ

+ B2(ξ)

∞∫
ξ

e− s∗
σ∗ τB1(τ )Fv(Up(τ),0)es∗τU ′

p(τ )dτ, (3.13)

where we note that the integrand converges exponentially as τ → ∞ and, hence, the integral converges. Finally, we 
select c̃1 so that ψ1 and ψ2 are orthogonal. Orthogonality requires that

−φ′(ξ0)

(
s∗

σ ∗ b2(ξ0) − b′
2(ξ0)

)
+ b2(ξ0)φ(ξ0) = 0,

from which

c̃1

(
(φ(ξ0))

2 + (φ′(ξ0))
2
)

= −φ′(ξ0)

φ(ξ0)

∞∫
ξ0

e− s∗
σ∗ τB1(τ )Fv(Up(τ),0)es∗τU ′

p(τ )dτ.

We introduce the notation,

�1 = 〈ψ1(ξ0),ψ1(ξ0)〉, �2 = 〈ψ2(ξ0),ψ2(ξ0)〉. (3.14)
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Lemma 6. There exists functions h1 and h2 such that the manifold Wss(P0) can be expressed as⎛
⎜⎜⎜⎝

Up(ξ0)

U ′
p(ξ0)

0
0

⎞
⎟⎟⎟⎠+ η1θ1 + η2θ2 + (s − s∗)�0ψ1 + h1(η1, η2, s, σ )ψ1 + h2(η1, η2, s, σ )ψ2, (3.15)

where h1,2 are quadratic or higher order in all their arguments. Expansions of h1,2 are obtained in Appendix A.

Proof. Given Y = η1θ1 + η2θ2 ∈ Rg (Pss(ξ0)) and |η1| + |η2| + |s − s∗| + |σ − σ ∗| small enough, let Q∗(·, η1, η2,

s, σ) ∈ S be the unique fixed point solution to T Q∗ = Q∗ in Br (0) from which evaluating (3.5) at ξ = ξ0 we obtain

Q∗(ξ0, η1, η2, s, σ ) = η1θ1 + η2θ2 −
∞∫

ξ0

�ws(ξ0, τ )
(
n(τ, s) + N(Q∗(τ, η1, η2, s, σ ), τ, s, σ )

)
dτ. (3.16)

Using the fact that Pss(ξ)�(ξ, τ) = �(ξ, τ)Pss(τ ) we have that

�ws(ξ0, τ ) = �(ξ0, τ )
(
Id − Pss(τ )

)= (Id − Pss(ξ0)
)
�(ξ0, τ ),

which shows that the second term in (3.16) belongs to Rg (Id − Pss(ξ0)) and thus

Pss(ξ0)Q
∗(ξ0, η1, η2, s, σ ) = η1θ1 + η2θ2,

(
Id − Pss(ξ0)

)
Q∗(ξ0, η1, η2, s, σ ) = −

∞∫
ξ0

�ws(ξ0, τ )
(
n(τ, s) + N(Q∗(τ, η1, η2, s, σ ), τ, s, σ )

)
dτ.

It is first easy to check, using the specific form of n(τ, s) that

∞∫
ξ0

〈
ψ1(ξ0),�

ws(ξ0, τ )n(τ, s)
〉
dτ =

∞∫
ξ0

〈
ψ1(τ ), n(τ, s)

〉
dτ = −(s − s∗)

∞∫
ξ0

es∗τ
(
U ′

p(τ )
)2

dτ,

together with

∞∫
ξ0

〈
ψ2(ξ0),�

ws(ξ0, τ )n(τ, s)dτ
〉=

∞∫
ξ0

〈
ψ2(τ ), n(τ, s)

〉
dτ = 0.

As a consequence, there exists h1,2(η1, η2, s, σ) so that equation (3.16) can be written as

Q∗(ξ0, η1, η2, s, σ ) = η1θ1 + η2θ2 + (s − s∗)�0ψ1 + h1(η1, η2, s, σ )ψ1 + h2(η1, η2, s, σ )ψ2,

where

�0 := 1

�1

∞∫
ξ0

es∗τ
(
U ′

p(τ )
)2

dτ,

h1,2(η1, η2, s, σ ) := − 1

�1,2

∞∫
ξ0

〈
ψ1,2(ξ0),�

ws(ξ0, τ )N(Q∗(τ, η1, η2, s, σ ), τ, s, σ )
〉
dτ,

and �1,2 have been introduced in (3.14).
In the remaining of the proof, we show that the maps h1,2(η1, η2, s, σ) are at least quadratic in their arguments and 

present a procedure which allows one to compute the leading order terms in their expansions, the explicit formulae 
being provided in Appendix A. Let Q0(ξ) := η1θ1(ξ) + η2θ2(ξ) + (s − s∗)θs(ξ) where
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(s − s∗)θs(ξ) =
ξ∫

ξ0

�ss(ξ, τ )n(τ, s)dτ −
∞∫

ξ

�ws(ξ, τ )n(τ, s)dτ,

with θs(ξ0) = �0ψ1. Define now Q1 := T Q0, that is

Q1(ξ) = �ss(ξ, ξ0)Y +
ξ∫

ξ0

�ss(ξ, τ )
(
n(τ, s) + N(Q0(τ ), τ, s, σ )

)
dτ

−
∞∫

ξ

�ws(ξ, τ )
(
n(τ, s) + N(Q0(τ ), τ, s, σ )

)
dτ.

(3.17)

Let us remark that �ss(ξ, ξ0)Y = �ss(ξ, ξ0) (η1θ1 + η2θ2) = η1θ1(ξ) + η2θ2(ξ) for any ξ ≥ ξ0 such that (3.17) can 
be written in a condensed form

Q1(ξ) = Q0(ξ) +
ξ∫

ξ0

�ss(ξ, τ )N(Q0(τ ), τ, s, σ )dτ −
∞∫

ξ

�ws(ξ, τ )N(Q0(τ ), τ, s, σ )dτ.

From the contraction mapping theorem, we find that ‖Q1 − Q∗‖S < κ
1−κ

‖Q1 − Q0‖S where κ(r, s, σ) is the con-
traction constant from Lemma 5. Essentially repeating the estimate in (3.6), we also find that there exists a constant 
CL > 0 for which

‖Q1 − Q0‖S ≤ CLL(r, s, σ )‖Q0‖S. (3.18)

Let ξ = ξ0 in (3.17) to obtain

Q1(ξ0) = η1θ1 + η2θ2 + (s − s∗)�0ψ1 −
∞∫

ξ0

�ws(ξ0, τ )N(η1θ1(τ ) + η2θ2(τ ) + (s − s∗)θs(τ ), τ, s, σ )dτ.

The inequality (3.18) implies that h1,2 are at least quadratic in their arguments and that we can compute terms up to 
quadratic order in h1,2 by projecting Q1(ξ0) onto ψ1,2. We now refer to Appendix A for the quadratic expansions of 
the maps h1,2. �
Remark 7. An explicit expression for θs can be obtained in a fashion analogous to that of the terms a1,2(ξ). Namely, 
we find that θs(ξ) = (θ1

s (ξ), θ2
s (ξ), 0, 0)T solves

dθ1
s

dξ
= θ2

s

dθ1
s

dξ
= −s∗θ2

s − Fu(Up(ξ),0)θ1
s − U ′

p(ξ).

Then a solution with strong exponential decay as ξ → ∞ is given by

θ1
s (ξ) = ĉ1A1(ξ) + A1(ξ)

ξ∫
ξ0

es∗τA2(τ )U ′
p(τ )dτ + A2(ξ)

∞∫
ξ

es∗τA1(τ )U ′
p(τ )dτ, (3.19)

where A1,2(ξ) are defined in (3.8) and ĉ1 is chosen so that θs(ξ0) is orthogonal to θ1.
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3.1. The tangent space of Wss(P0)

Before proceeding to a local analysis of the dynamics near P1, we pause to comment on the behavior of the tangent 
space of Wss(P0) in the limit as ξ → −∞. This is most easily accomplished in the coordinates of (3.1), where we 
focus on the system z′ = A(ξ, s∗, σ ∗)z with z = (p1, p2, q1, q2)

T .
We will be interested in tracking the tangent space of Wss(P0) backwards along (Up(ξ), U ′

p(ξ), 0, 0) until it 
reaches a neighborhood of P1. We will first show that for s = s∗ and σ = σ ∗ that this tangent space will align with the 
weak-unstable eigenspace of P1. Here the weak-unstable eigenspace includes both the unstable eigendirection as well 
as the weak-stable eigendirection corresponding to the eigenvalue ν+

v (s, σ); recall assumption (H4). The fact that this 
alignment occurs at s = s∗ and σ = σ ∗ is to be expected. First, due to the existence of the pushed front we know that 
Wu(P1) ∩ Wss(P0) �= ∅ so that their tangent spaces must also intersect. Second, assumption (H3) gives the existence 
of second, linearly independent vector (see θ2(ξ) in (3.7)) that converges to the weak-stable eigendirection associated 
to ν+

v (s∗, σ ∗). After verifying this, we turn our attention to computing how this tangent space perturbs with s and σ . 
This is more involved and complicated by the unboundedness of individual vectors near the weak-stable eigenspace 
as ξ → −∞. To deal with this, we use a generalization of projective coordinates that was used in [19].

To begin, we track two dimensional subspaces using the coordinates,(
p2
q2

)
=
(

z11 z12
0 z22

)(
p1
q1

)
wherein,

z′
11 = −s∗z11 − Fu(Up(ξ),0) − z2

11

z′
12 = −s∗z12 − Fv(Up(ξ),0) − z12(z11 + z22) (3.20)

z′
22 = − s∗

σ ∗ z22 − 1

σ ∗ g(Up(ξ),0) − z2
22.

Using the expressions for the vectors θ1(ξ) and θ2(ξ), we find corresponding solutions

Z11(ξ) = U ′′
p(ξ)

U ′
p(ξ)

, Z22(ξ) = φ′(ξ)

φ(ξ)
, Z12(ξ) = a2(ξ)

φ(ξ)
− U ′′

p(ξ)

U ′
p(ξ)

a1(ξ)

φ(ξ)
.

The tangent space of the manifold Wss(P0) is then expressed as a graph over p1 and q1 coordinates(
p2
q2

)
=
(

Z11(ξ) Z12(ξ)

0 Z22(ξ)

)(
p1
q1

)
.

A calculation reveals that the expression for Z12 can be simplified to

Z12(ξ) = 1

φ(ξ)

⎛
⎜⎝ e−s∗ξ

U ′
p(ξ)

∞∫
ξ

es∗τU ′
p(τ )Fv(Up(τ),0)φ(τ)dτ

⎞
⎟⎠ .

It follows from Hypothesis (H3) that as ξ → −∞,

Z11(ξ) → ν+
u (s∗), Z22(ξ) → ν+

v (s∗, σ ∗), Z12(ξ) → −Fv(p1)

s + ν+
u (s∗) + ν+

v (s∗, σ ∗)
,

which we verify to be fixed points of the system (3.20). These fixed points correspond to the unstable and weak stable 
eigenvectors for P1 (see (4.1) below) and we have shown that span{θ1(ξ), θ2(ξ)} coincides with the weak-unstable 
eigenspace of P1 in the limit as ξ → −∞.

To understand how this heteroclinic perturbs with s and σ , we let⎛
⎝ z11

z12
z22

⎞
⎠=

⎛
⎝Z11(ξ) + ζ11

Z12(ξ) + ζ12
Z22(ξ) + ζ22

⎞
⎠ .

Let � = (ζ11, ζ12, ζ22)
T , then we obtain
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�′ = A(ξ, s∗, σ ∗)� + (s − s∗)n(ξ) + (σ − σ ∗)m(ξ) + N(�, s, σ ), (3.21)

where we have momentarily re-purposed the notations A, n and m with,

A(ξ, s∗, σ ∗) :=
⎛
⎝−s∗ − 2Z11(ξ) 0 0

−Z12(ξ) −s∗ − Z11(ξ) + Z22(ξ) −Z12(ξ)

0 0 − s∗
σ ∗ − 2Z22(ξ)

⎞
⎠

and

n(ξ) :=
⎛
⎜⎝

−Z11(ξ)

−Z12(ξ)

− 1
σ ∗ Z22(ξ)

⎞
⎟⎠ , m(ξ) :=

⎛
⎝ 0

0
1

(σ ∗)2 g(Up(ξ),0) + s∗
(σ ∗)2 Z22(ξ)

⎞
⎠ .

Since we are only interested in the linear dependence on s and σ , we henceforth ignore the nonlinear terms N(�, s, σ). 
We will also require linearly independent solutions to the associated adjoint equation,

ψ ′ = −AT (ξ, s∗, σ ∗)ψ.

The adjoint equations form a system

ψ ′
11 = (s∗ + 2Z11(ξ))ψ11 + Z12ψ12,

ψ ′
12 = (s∗ + Z11(ξ) + Z22(ξ))ψ12,

ψ ′
22 = Z12(ξ)ψ12 +

(
s∗

σ ∗ + 2Z22(ξ)

)
ψ22.

We have solutions

ψ3(ξ) =
⎛
⎝C3(ξ)

0
0

⎞
⎠ ,ψ4(ξ) =

⎛
⎝ C4(ξ)

D4(ξ)

E4(ξ)

⎞
⎠ ,ψ5(ξ) =

⎛
⎝ 0

0
E5(ξ)

⎞
⎠ ,

with

C3(ξ) =
(
U ′

p(ξ)
)2

es∗ξ , D4(ξ) = U ′
p(ξ)φ(ξ)es∗ξ , E5(ξ) = φ(ξ)2e

s∗
σ∗ ξ .

Requiring orthogonality of the three vectors at ξ = ξ0 implies that C4(ξ0) = E4(ξ0) = 0. Let �(ξ, ξ0) be the funda-
mental matrix solution to �′ = A(ξ, s∗, σ ∗)�. Bounded solutions of (3.21) can be expressed in integral form as

�(ξ) =
ξ∫

−∞
�(ξ, τ )

(
(s − s∗)n(τ) + (σ − σ)∗m(τ) + N(�(τ), s, σ )

)
dτ.

We focus on the leading order dependence on σ . At ξ = ξ0, we write

�(ξ0) = h3(σ )ψ3(ξ0) + h4(σ )ψ4(ξ0) + h5(σ )ψ5(ξ0).

Observe that h3(σ ) = 0 due to the block structure of �(ξ, ξ0) and the specific form of m(ξ). We focus first on the 
projection onto ψ5

h5(σ ) = 〈ψ5(ξ0),�(ξ0)〉
E2

5(ξ0)
= (σ − σ ∗)

E2
5(ξ0)

ξ0∫
−∞

〈ψ5(ξ0),�(ξ0, τ )m(τ)〉dτ

= (σ − σ ∗)
E2

5(ξ0)

ξ0∫
−∞

E5(τ )

(
1

(σ ∗)2 g(Up(τ),0) + s∗

(σ ∗)2 Z22(τ )

)
dτ

= (σ − σ ∗)
E2

5(ξ0)

ξ0∫
−∞

e
s∗
σ∗ τ

(
1

(σ ∗)2 g(Up(τ),0)φ(τ)2 + s∗

(σ ∗)2 φ(τ)φ′(τ )

)
dτ. (3.22)
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In a similar fashion we compute,

h4(σ ) = 〈ψ4(ξ0),�(ξ0)〉
D2

4(ξ0)
= (σ − σ ∗)

D2
4(ξ0)

ξ0∫
−∞

〈ψ4(ξ0),�(ξ0, τ )m(τ)〉dτ

= (σ − σ ∗)
D2

4(ξ0)

ξ0∫
−∞

E4(τ )

(
1

(σ ∗)2 g(Up(τ),0) + s∗

(σ ∗)2 Z22(τ )

)
dτ. (3.23)

Returning now to the original change of coordinates, we find(
p2
q2

)
=
(

Z11(ξ0) Z12(ξ0) + h4(σ )D4(ξ0)

0 Z22(ξ0) + h5(σ )E5(ξ0)

)(
p1
q1

)
.

This describes a two dimensional subspace of the form,

R(p1, q1, σ ) =

⎛
⎜⎜⎝

p1
Z11(ξ0)p1 + Z12(ξ0)q1 + h4(σ )D4(ξ0)q1

q1
(Z22(ξ0) + h5(σ )E5(ξ0)) q1

⎞
⎟⎟⎠ . (3.24)

We now decompose this subspace into the basis {θ1, θ2, ψ1, ψ2}. To recover θ1, we require σ = σ ∗, p1 = U ′
p(ξ0) and 

q1 = 0. To recover θ2, we require σ = σ ∗, p1 = a1(ξ0) and q1 = φ(ξ0). Projecting onto ψ2, we find

〈ψ2,R(p1, q1, σ )〉 = q1(σ − σ ∗)
φ(ξ0)

ξ0∫
−∞

e
s∗
σ∗ τ

(
1

(σ ∗)2 g(Up(τ),0)φ(τ)2 + s∗

(σ ∗)2 φ(τ)φ′(τ )

)
dτ, (3.25)

and projecting onto ψ1, we find

〈ψ1,R(p1, q1, σ )〉 = q1(σ − σ ∗)
φ(ξ0)

ξ0∫
−∞

b2(τ )

(
1

(σ ∗)2 g(Up(τ),0)φ(τ) + s∗

(σ ∗)2 φ′(τ )

)
dτ. (3.26)

We refer to Lemma 17 of the Appendix for the details of the computations.

4. Tracking the unstable manifold Wu(P2) forwards

We now derive an expression for Wu(P2) in a neighborhood of the fixed point P1. Hypothesis (H5) will be key 
here. We delay a precise description of this assumption and its consequences until Section 4.2 and instead begin with 
a required normal form transformation for the traveling wave equation in a neighborhood of P1.

4.1. A normal form in a neighborhood of P1

We begin with a local analysis of the dynamics of (1.2) near the fixed point P1 = (u+, 0, 0, 0)T . The Jacobian 
evaluated at this fixed point is

Df (P1) =

⎛
⎜⎜⎝

0 1 0 0
−Fu(p1) −s −Fv(p1) 0

0 0 0 1
σ

0 0 − g(p1)
σ

− s
σ

⎞
⎟⎟⎠ ,

where we note that Gu(p1) = 0 and hence the linearization is block triangular and the eigenvalues and eigenvectors can 
be computed explicitly. The characteristic polynomial is d(ν) = du(ν)dv(ν) = (ν2 + sν +Fu(p1))(σν2 + sν +g(p1)). 
The eigenvalues are
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ν±
u (s) = − s

2
± 1

2

√
s2 − 4Fu(p1)

ν±
v (s, σ ) = − s

2σ
± 1

2σ

√
s2 − 4σg(p1).

Recall Hypothesis (H4) and the assumed ordering ν−
v (s, σ) < ν−

u (s) < ν+
v (s, σ) < 0 < ν+

u (s). The corresponding 
eigenvectors are

e±
u (s) =

⎛
⎜⎜⎝

1
ν±
u (s)

0
0

⎞
⎟⎟⎠ , e±

v (s, σ ) =

⎛
⎜⎜⎜⎜⎜⎝

− Fv(p1)

du(ν±
v (s,σ ))

−Fv(p1)ν
±
v (s,σ )

du(ν±
v (s,σ ))

1

ν±
v (s, σ )

⎞
⎟⎟⎟⎟⎟⎠ . (4.1)

We introduce new coordinates, first by shifting the fixed point P1 to the origin and then diagonalizing the linearization 
via ⎛

⎜⎜⎝
u1 − u+

u2
v1
v2

⎞
⎟⎟⎠= T (s, σ )

⎛
⎜⎜⎝

yu

yss,u

yws

yss,v

⎞
⎟⎟⎠ ,

where

T (s, σ ) :=

⎛
⎜⎜⎜⎜⎜⎝

1 1 − Fv(p1)

du(ν+
v (s,σ ))

− Fv(p1)

du(ν−
v (s,σ ))

ν+
u (s) ν−

u (s) −Fv(p1)ν
+
v (s,σ )

du(ν+
v (s,σ ))

−Fv(p1)ν
−
v (s,σ )

du(ν−
v (s,σ ))

0 0 1 1

0 0 ν+
v (s, σ ) ν−

v (s, σ )

⎞
⎟⎟⎟⎟⎟⎠ . (4.2)

In these new coordinates, the vector field assumes the form,

dyu

dξ
= ν+

u (s)yu +Nu(y
u, yws, yss,u, yss,v, s, σ ),

dyws

dξ
= ν+

v (s, σ )yws +Nws(y
u, yws, yss,u, yss,v, s, σ ),

dyss,u

dξ
= ν−

u (s)yss,u +Nss,u(y
u, yws, yss,u, yss,v, s, σ ),

dyss,v

dξ
= ν−

v (s, σ )yss,v +Nss,v(y
u, yws, yss,u, yss,v, s, σ ).

(4.3)

Invariance of the v1 = v2 = 0 subspace implies that Nws(y
u, 0, yss,u, 0, s, σ) = 0 and Nss,v(y

u, 0, yss,u, 0, s, σ) = 0. 
We expand the nonlinear terms as follows to isolate the quadratic terms,

Nu(y
u, yws, yss,u, yss,v, s, σ ) =

∑
i+j+k+l=2

(yu)i(yws)j (yss,u)k(yss,v)lN(i,j,k,l)
u (s, σ ) +O(3), (4.4)

with the natural analogs for Nws Nss,u and Nss,v .
The goal is to perform a Shilnikov type analysis of the origin in (4.3) and obtain asymptotic expansions for solutions 

that enter a neighborhood of the origin near the weak-stable eigendirection and exit near the unstable manifold. To 
do this a sequence of near-identity coordinate changes are required to place (4.3) into a suitable normal form. These 
changes of coordinates are outlined in [12], but we include them in detail here because they will be relevant for 
deriving the bifurcation equations later.
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Straightening of the stable and unstable manifolds The origin is a hyperbolic equilibrium for (4.3) with correspond-
ing stable and unstable manifolds. The following result transforms (4.3) into new coordinates where these stable and 
unstable manifolds have been straightened.

Lemma 8. There exists a smooth change of coordinates,

zu = yu −Hs(y
ws, yss,u, yss,v, s, σ )

zws = yws

zss,u = yss,u −Hu(y
u, s)

zss,v = yss,v,

(4.5)

defined on a neighborhood of the origin that transforms (4.3) to the system

dzu

dξ
= ν+

u (s)zu +Mu(z
u, zws,Zs, s, σ )

dzws

dξ
= ν+

v (s, σ )zws + γ11(z
u, zws,Zs, s, σ )zws + γ12(z

u, zws,Zs, s, σ )Zs (4.6)

dZs

dξ
= �ss(s, σ )Zs + γ21(z

u, zws,Zs, s, σ )zws + γ22(z
u, zws,Zs, s, σ )Zs,

where we have let Zs = (zss,u, zss,v)T and �ss(s, σ) = diag(ν−
u (s), ν−

v (s, σ)) and we have that Mu(0, zws, Zs,

s, σ) = 0.

Proof. The origin in (4.3) is hyperbolic with smooth stable and unstable manifolds. The unstable manifold is con-
tained within the invariant sub-space yws = yss,v = 0 and can be expressed as the graph

yss,u =Hu(y
u, s),

which admits the expansion,

Hu(y
u, s) = N(2,0,0,0)

ss,u (s, σ )

2ν+
u (s) − ν−

u (s)
(yu)2 +O(3).

Let us remark here that N(2,0,0,0)
ss,u (s, σ) does not depend on σ and can be expressed as

N(2,0,0,0)
ss,u (s, σ ) = − Fuu(p1)

2(ν−
u (s) − ν+

u (s))
.

The proof of this statement is left to the Appendix (see Lemma 18). The stable manifold has a similar expansion,

Hs(y
ws, yss,u, yss,v) =

∑
j+k+l=2

n(i,j,k)(s, σ )(yws)j (yss,u)k(yss,v)l +O(3),

where

n(j,k,l)(s, σ ) = N(0,j,k,l)
u (s, σ )

jν+
v (s, σ ) + kν−

u (s) + lν−
v (s, σ ) − ν−

u (s)
.

Following these changes of coordinates, we have transformed system (4.3) into (4.6) as required. �
Removal of terms γj1(z

u, 0, 0, s, σ) We will eventually employ a Shilnikov type analysis where solutions of (4.6)
are obtained as solutions of a boundary value problem on the interval ξ ∈ [0, T ] with T � 1. This boundary value 
problem imposes conditions on the unstable coordinate at ξ = T and thereby the instability is controlled by evolving 
that coordinate backwards. One would then hope that the linear behavior would dominate in (4.6). This is not the 
case due to the presence of the terms γj1(z

u, 0, 0, s, σ). To obtain useful asymptotics, we require a further change of 
coordinates that removes those terms. This is accomplished in the following lemma.
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Lemma 9. There exists functions p(zu, s, σ) and q(zu, s, σ), with p : R3 →R, and q : R3 →R
2, valid for |zu| +|s −

s∗| + |σ − σ ∗| sufficiently small such that the change of coordinates,

z̄ws = zws(1 − p(zu, s, σ ))

Z̄s = Zs − q(zu, s, σ )zws,
(4.7)

transforms (4.6) to the normal form

dzu

dξ
= ν+

u (s)zu +Mu(z
u, z̄ws, Z̄s, s, σ )

dz̄ws

dξ
= ν+

v (s, σ )z̄ws + γ̄11(z
u, z̄ws, Z̄s, s, σ )z̄ws + γ̄12(z

u, z̄ws, Z̄s, s, σ )Z̄s

dZ̄s

dξ
= �ss(s, σ )Z̄s + γ̄21(z

u, z̄ws, Z̄s, s, σ )z̄ws + γ̄22(z
u, z̄ws, Z̄s, s, σ )Z̄s,

(4.8)

where γ̄11(z
u, 0, 0, s, σ) = 0 and γ̄21(z

u, 0, 0, s, σ) = 0.

Proof. We use a change of coordinates outlined in [5,21]. In a first step, we let

z̄ws = zws(1 − gws)

Z̄s = Zs − Gszws,

for two smooth functions gws : R → R and Gs : R → R
2. We substitute this change of coordinates into (4.6) and 

obtain

dz̄ws

dξ
= ν+

v (s, σ )z̄ws + z̄ws

(
γ11 + γ12G

s − 1

1 − gws

dgws

dξ

)
+ γ12Z̄

s(1 − gws),

dZ̄s

dξ
= �ssZ̄

s + z̄ws

1 − gws

(
�ssG

s − ν+
v (s, σ )Gs + γ21 + γ22G

s − dGs

dξ
− γ11G

s

)
+ γ22Z̄

s − Gsγ12G
s,

(4.9)

where we have suppressed the functional dependence of γij for convenience. Recall our original intention – to remove 
those terms γj1(z

u, 0, 0, s, σ) from (4.6). To accomplish this, we set the terms multiplying z̄ws in (4.9) to zero and 
find differential equations for gws and Gs . Since we are interested in these changes of coordinates along the unstable 
manifold, we augment these equations with the one for zu and obtain

dgws

dξ
= (1 − gws)

(
γ11(z

u,0,0, s, σ ) + γ12(z
u,0,0, s, σ )Gs

)
,

dGs

dξ
= (�ss(s, σ ) − ν+

v (s, σ )I + γ22(z
u,0,0, s, σ ) − γ11(z

u,0,0, s, σ )
)
Gs + γ21(z

u,0,0, s, σ ),

dzu

dξ
= ν+

u (s)zu +Mu(z
u,0,0, s, σ ).

(4.10)

The origin is a fixed point for (4.10) with one unstable eigenvalue (ν+
u (s)), one zero eigenvalue and two stable eigen-

values (ν−
u (s) − ν+

v (s, σ), ν−
v (s, σ) − ν+

v (s, σ)). Thus, there exists a one dimensional unstable manifold given as 
graphs over the zu coordinate. These graphs provide the requisite change of variables, namely we have

gws := p(zu, s, σ ),

Gs := q(zu, s, σ ).

We also obtain expansions,

p(zu, s, σ ) = γ
(1)
11 (s, σ )

ν+
u (s)

zu +O
(
(zu)2

)
, (4.11a)

q(zu, s, σ ) = − (�ss(s, σ ) − (ν+
v (s, σ ) + ν+

u (s))I
)−1

γ
(1)
21 (s, σ )zu +O

(
(zu)2

)
, (4.11b)
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where we have employed the notations

γi1(z
u,0,0, s, σ ) = γ

(1)
i1 (s, σ )zu + γ

(2)
i1 (s, σ )(zu)2 +O

(
(zu)3

)
, i ∈ {1,2}.

Quadratic expansions of p(zu, s, σ) and q(zu, s, σ) can be found in Lemma 20 in the Appendix. �
The Shilnikov theorem

Theorem 10. Consider the boundary value problem consisting of (4.8) with boundary conditions

z̄ws(0) = κ, Z̄s(0) = Z0, zu(T ) = −κ,

for some T > 0. Then there exists a δ > 0 such that for any |2κ + |Z0|| < δ and any T > 1/δ then the boundary value 
problem has a unique solution and the following asymptotic expansions hold for large T ,

zu(0) = −κe−ν+
u (s)T +O(e(−ν+

u (s)+ω)T )

z̄ws(T ) = κeν+
v (s,σ )T +O(e(ν+

v (s,σ )−ω)T )

Z̄s(T ) = γ (s, σ )κ2e2ν+
v (s,σ )T +O(e(2ν+

v (s,σ )−ω)T ),

(4.12)

for some ω > 0 where

γ (s, σ ) = ∂γ̄21

∂z̄ws
(0,0,0, s, σ ) =

⎛
⎜⎝

N(0,2,0,0)
ss,u (s,σ )

2ν+
v (s,σ )−ν−

u (s)

N(0,2,0,0)
ss,v (s,σ )

2ν+
v (s,σ )−ν−

v (s,σ )

⎞
⎟⎠ .

Proof. A full proof of this result is detailed elsewhere and we refer the reader to [20] for example. We sketch the 
ideas here. Transform the system of differential equations (4.8) into a system of integral equations using variation of 
constants,

zu(ξ) = eν+
u (s)(ξ−T )zu(T ) − eν+

u (s)ξ

T∫
ξ

e−ν+
u (s)τMu(z

u(τ ), z̄ws(τ ), Z̄s(τ ))dτ

z̄ws(ξ) = eν+
v (s)ξ z̄ws(0) + eν+

v (s,σ )ξ

ξ∫
0

e−ν+
v (s,σ )τ

(
γ̄11(z

u(τ ), z̄ws(τ ), Z̄s(τ ))z̄ws(τ )

+γ̄12(z
u(τ ), z̄ws(τ ), Z̄s(τ ))Z̄s(τ )

)
dτ

Z̄s(ξ) = e�ss(s,σ )ξZ0 + e�ss(s,σ )ξ

ξ∫
0

e−�ss(s,σ )τ
(
γ̄21(z

u(τ ), z̄ws(τ ), Z̄s(τ ))z̄ws(τ )

+γ̄22(z
u(τ ), z̄ws(τ ), Z̄s(τ ))Z̄s(τ )

)
dτ.

The solution is obtained as a fixed point of the mapping defined by the right hand side of the above equations for any 
T > 0 and |2κ + |Z0|| < δ with δ > 0 small enough for the right hand side to be a contraction. The requirement that 
T > 1/δ is only to ensure that T is large enough in order to obtain the desired asymptotics.

Recall the ratio condition (H4). Under this assumption, the quadratic terms in z̄ws are sufficient to derive an 
expansion for Z̄s(T ). To do this, we recall that the leading order expansion for Z̄s can be obtained from the integral 
equation for Z̄s , where we identify the dominant terms are found in the integral

Z̄s(ξ) = e�ss(s,σ )ξ

ξ∫
0

e−�ss(s,σ )τ ∂γ21

∂z̄ws
(−κe−ν+

u (s)τ ,0,0, s, σ )κ2e2ν+
v (s,σ )τ dτ.

Of these terms, the dominant contribution comes from the quadratic terms that are independent of zu and we obtain 
the desired expansion. �
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4.2. Application of Theorem 10 to the manifold Wu(P2)

Let κ > 0 and fix the sections

�out = {zu = −κ}, �in = {z̄ws = κ}.
We suppose that κ is sufficiently small so that these sections intersect the neighborhood on which the changes of 
variables in Lemma 8 and Lemma 9 are valid and for which the existence of solutions in Theorem 10 holds.

The goal is to derive an expansion for Wu(P2) within the section �out so as to facilitate a comparison with the 
manifold Wss(P0). Note that for fixed values of σ and s, Wu(P2) is a two dimensional manifold, so that its intersection 
with �out is one dimensional. Recall Hypothesis (H5), where we assume that Wu(P2) enters a neighborhood of P1
near the weak-stable eigendirection. In terms of the coordinates of (4.8), this assumption implies that

zu(0) = hu(χ, s, σ ),

z̄ss,u(0) = hss,u(χ, s, σ ),

z̄ss,v(0) = hss,v(χ, s, σ ),

(4.13)

where χ parametrizes the intersection and we have that hu(0, s, σ), hss,u(0, s, σ) and hss,u(0, s, σ) are all zero. We 
first match the terms in the zu component. We find that to leading order

−κe−ν+
u T +O(e(−ν+

u +ω)T ) = r(s, σ )χ +O(χ2),

where r(s, σ) = ∂hu

∂χ
(0, s, σ) �= 0 because the tangent space of Wu(P2) intersects Ws(P1) transversely, see (H5). We 

then have the expansion

χ(ρ, s, σ ) = − κ

r(s, σ )
e−ν+

u T + χ̃ (T , s, σ ),

see Remark 11. Therefore, for every T ≥ 1
δ

we can solve for χ(ρ, s, σ) and obtain expressions for Wu(P2) within 
�out . These expressions can be given as a graph over the weak-stable direction, namely

z̄ws(T ) = ρ,

Z̄s(T ) = ρ2 (γ (s, σ ) +Zss(ρ, s, σ )) .
(4.14)

Remark 11. It is at this stage that the condition (2.4) on the ratio of the eigenvalues in (H4) comes into play. Were this 
condition to fail to hold, then the expansions for the strong stable components in (4.12) would depend on the initial 
character of the manifold Wu(P2) within �in. Then the particular form of the matching condition χ(ρ, s, σ) would 
be relevant and it would prove more challenging to match solutions in the following section.

4.3. Transforming to original coordinates

To compare the description of the manifold Wu(P2) in (4.14) to the one for Wss(P0) we need to transform back 
to the original coordinates. To do this, we first transform from (zu, ̄zws, Z̄s) coordinates to (zu, zws, Zs) coordinates. 
This change of coordinates is performed in Lemma 9 and can be inverted explicitly. We obtain

zu = −κ

zws = ρ

1 − p(−κ, s, σ )

Zs = ρ
q(−κ, s, σ )

1 − p(−κ, s, σ )
+ ρ2 (γ (s, σ ) +Zss(ρ, s, σ )) .

(4.15)

Next, we need to transform this expression from the coordinates (zu, zws, Zs) to the coordinates (yu, yws, yss,u,

yss,v). This involves inverting the change of coordinates given in Lemma 8, i.e. solving the following set of implicit 
equations,
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−κ = yu −Hs(y
ws, yss,u, yss,v)

ρ

1 − p(−κ, s, σ )
= yws

ρ
q(1)(−κ, s, σ )

1 − p(−κ, s, σ )
+ ρ2

(
γ (1)(s, σ ) +Zss,u(ρ,σ, s)

)
= yss,u −Hu(y

u)

ρ
q(2)(−κ, s, σ )

1 − p(−κ, s, σ )
+ ρ2

(
γ (2)(s, σ ) +Zss,v(ρ, σ, s)

)
= yss,v.

(4.16)

The change of coordinates can be inverted by first inputting the expressions for yws, yss,u, and yss,v into the first 
equation in (4.16). This yields a scalar equation for yu,

−κ = yu −Hs

⎛
⎜⎜⎜⎝

ρ
1−p(−κ,s,σ )

Hu(y
u) + ρ

q(1)(−κ,s,σ )
1−p(−κ,s,σ )

+ ρ2
(
γ (1)(s, σ ) +Zss,u(ρ,σ, s)

)
ρ

q(2)(−κ,s,σ )
1−p(−κ,s,σ )

+ ρ2
(
γ (2)(s, σ ) +Zss,v(ρ, σ, s)

)

⎞
⎟⎟⎟⎠ .

Applying the implicit function theorem, we obtain a solution

yu = Yu(ρ, s, σ ) = Y0
u(s) + ρY1

u(s, σ ) + ρ2Y2
u(s, σ ) +O(ρ3).

Note that Y0
u(s) is a solution of

0 = κ +Y0
u(s) −Hs

(
0,Hu

(
Y0

u(s)
)

,0
)

and we find an expansion in κ of Y0
u(s) = −κ +O(κ4). We observe that the independence of the leading order term 

on σ follows from the fact that the vector field restricted to yws = yss,v = 0 is independent of σ .
We then obtain an explicit representation for yss,u in terms of Yu. For convenience we make a similar expansion,

Yuu,s(ρ, s, σ ) =Hu(Yu(ρ, s, σ )) = Y0
uu,s(s, σ ) + ρY1

uu,s(s, σ ) + ρ2Y2
uu,s(s, σ ) +O(ρ3).

These terms have similar expansions in κ , for example

Y0
uu,s(s, σ ) = N(2,0,0,0)

ss,u (s, σ )

2ν+
u (s) − ν−

u (s)
κ2 +O(κ3).

To summarize, we have found the expressions

yu = Yu(ρ, s, σ )

yws = ρ

1 − p(−κ, s, σ )

yss,u = ρ
q(1)(−κ, s, σ )

1 − p(−κ, s, σ )
+ ρ2

(
γ (1)(s, σ ) +Zss,u(ρ,σ, s)

)
+Yuu,s(ρ, σ, s)

yss,v = ρ
q(2)(−κ, s, σ )

1 − p(−κ, s, σ )
+ ρ2

(
γ (2)(s, σ ) +Zss,v(ρ, σ, s)

)
.

(4.17)

Therefore, the manifold Wu(P2) ∩ �out in the original variables is

⎛
⎜⎜⎝

u1
u2
v1
v2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

u+
0
0
0

⎞
⎟⎟⎠+ T (s, σ )

⎛
⎜⎜⎜⎜⎜⎝

Yu(ρ, s, σ )

ρ
q(1)(−κ,s,σ )
1−p(−κ,s,σ )

+ ρ2
(
γ (1)(s, σ ) +Zss,u(ρ,σ, s)

)+Yuu,s(ρ, σ, s)

ρ
1−p(−κ,s,σ )

ρ
q(2)(−κ,s,σ )
1−p(−κ,s,σ )

+ ρ2
(
γ (2)(s, σ ) +Zss,v(ρ, σ, s)

)

⎞
⎟⎟⎟⎟⎟⎠ . (4.18)

For future reference, we refer to
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W(ρ, s, σ ) := T (s, σ )

⎛
⎜⎜⎜⎜⎜⎝

Yu(ρ, s, σ )

ρ
q(1)(−κ,s,σ )
1−p(−κ,s,σ )

+ ρ2
(
γ (1)(s, σ ) +Zss,u(ρ,σ, s)

)+Yuu,s(ρ, σ, s)

ρ
1−p(−κ,s,σ )

ρ
q(2)(−κ,s,σ )
1−p(−κ,s,σ )

+ ρ2
(
γ (2)(s, σ ) +Zss,v(ρ, σ, s)

)

⎞
⎟⎟⎟⎟⎟⎠ . (4.19)

4.4. Expansions of relevant quantities

Before proceeding to compare Wss(P0) and Wu(P2), we first interpret some of the terms in W and derive alternate 
expressions that will prove useful later.

Lemma 12. Recall W(ρ, s, σ) from (4.19). We have that W(0, s, σ) ⊂ Wu(P1). Furthermore, W(0, s∗, σ) is colinear 
with θ1 and

∂W
∂s

(0, s∗, σ ) = θs = (θ1
s , θ2

s ,0,0)T ,
∂W
∂σ

(0, s∗, σ ∗) = 0.

Proof. First observe that

W(0, s, σ ) = T (s, σ )

⎛
⎜⎜⎜⎝

Y0
u(s)

Y0
uu,s(s)

0
0

⎞
⎟⎟⎟⎠ .

Recalling the expression in (4.15) we see that the limit ρ = 0 corresponds to a value in the unstable manifold of P1. 
When s = s∗, the unstable manifold includes the heteroclinic orbit (Up(ξ), U ′

p(ξ), 0, 0)T , with tangent vector θ1. �
Lemma 13. The vector

∂W

∂ρ
(0, s∗, σ ∗) = r1θ1 + r2θ2 = T (s∗, σ ∗)

⎛
⎜⎜⎜⎜⎜⎜⎝

Y1
u(s∗, σ ∗)

q(1)(−κ,s∗,σ ∗)
1−p(−κ,s∗,σ ∗) +Y1

uu,s(σ
∗, s∗)

1
1−p(−κ,s∗,σ ∗)
q(2)(−κ,s∗,σ ∗)
1−p(−κ,s∗,σ ∗)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where it follows that

r1 = 1

〈θ1, θ1〉

(
Y1

u(s∗, σ ∗)〈θ1, e
+
u 〉 +

(
q(1)(−κ, s∗, σ ∗)

1 − p(−κ, s∗, σ ∗)
+Y1

uu,s(σ
∗, s∗)

)
〈θ1, e

−
u 〉

+ 1

1 − p(−κ, s∗, σ ∗)
〈θ1, e

+
v 〉 + q(2)(−κ, s∗, σ ∗)

1 − p(−κ, s∗, σ ∗)
〈θ1, e

−
v 〉
)

r2 = 1

〈θ2, θ2〉

(
Y1

u(s∗, σ ∗)〈θ2, e
+
u 〉 +

(
q(1)(−κ, s∗, σ ∗)

1 − p(−κ, s∗, σ ∗)
+Y1

uu,s(σ
∗, s∗)

)
〈θ2, e

−
u 〉

+ 1

1 − p(−κ, s∗, σ ∗)
〈θ2, e

+
v 〉 + q(2)(−κ, s∗, σ ∗)

1 − p(−κ, s∗, σ ∗)
〈θ2, e

−
v 〉
)

,

where
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〈θ1, e
±
u 〉 = U ′

p(ξ0) + U ′′
p(ξ0)ν

±
u

〈θ1, e
±
v 〉 = −Fu(p1)

du(ν
±
v )

(
U ′

p(ξ0) + U ′′
p(ξ0)ν

±
v

)
〈θ2, e

±
u 〉 = a1(ξ0) + a2(ξ0)ν

±
u

〈θ2, e
±
v 〉 = −Fu(p1)

du(ν
±
v )

(
a1(ξ0) + a2(ξ0)ν

±
v

)+ φ(ξ0) + ν±
v φ′(ξ0).

Proof. Recall that those terms that are linear in ρ originate in (4.14) and result from following the weak-unstable 
eigenspace along the unstable manifold of P1 to the section �out . The subspace z̄ss,u = z̄ss,v = 0 is invariant in (4.6)
and therefore this vector is the weak stable tangent space of P1 tracked forward along the unstable manifold. In 
Section 3.1, we calculated that this space coincides with span{θ1, θ2} and the result therefore follows. �
Lemma 14. We have the further expansions of W(ρ, s, σ)

θρσ := ∂2W
∂ρ∂σ

(0, s∗, σ ∗) = r2 (β1ψ1 + β2ψ2) ,

and

θρ2 := 1

2

∂2W
∂ρ2 (0, s∗, σ ∗) = T (s∗, σ ∗)

⎛
⎜⎜⎜⎜⎝

Y2
u(s∗, σ ∗)

γ (1)(s∗, σ ∗) +Y2
uu,s(s

∗, σ ∗)
0

γ (2)(s∗, σ ∗)

⎞
⎟⎟⎟⎟⎠ .

Proof. The expression for θρ2 follows from a calculation.
For θρσ , we recall Section 3.1 where the tangent space to the weak- unstable manifold was tracked and its depen-

dence on σ was ascertained; see (3.24) for the expression R(p1, q1, σ). Using the parameterization of the subspace 
in terms of r1 and r2, we can write the subspace as

∂W
∂ρ

(0, s∗, σ ) = r1θ1 + r2θ2 + 〈ψ1,R(r1U
′
p(ξ0) + r2a1(ξ0), r2φ(ξ0), σ )〉

�1
ψ1

+ 〈ψ2,R((r1U
′
p(ξ0) + r2a1(ξ0), r2φ(ξ0), σ )〉

�2
ψ2,

where

〈ψ1,R〉 = r2(σ − σ ∗)
ξ0∫

−∞
b2(τ )

(
1

(σ ∗)2 g(Up(τ),0)φ(τ) + s∗

(σ ∗)2 φ′(τ )

)
dτ,

and

〈ψ2,R〉 = r2(σ − σ ∗)
ξ0∫

−∞
e

s∗
σ∗ τ

(
1

(σ ∗)2 g(Up(τ),0)φ(τ)2 + s∗

(σ ∗)2 φ(τ)φ′(τ )

)
dτ. �

5. Resolving the bifurcation equation: proof of Theorem 1

We now establish Theorem 1. Recall the expression (3.15) that describes the manifold Wss(P0) near the section 
�out . Similarly, we have expansion (4.18) that describes Wu(P2) within the section �out . Equating these expressions 
we obtain an implicit bifurcation equation

0 =F(ρ, η1, η2, s, σ ; ξ0, κ) := �f (ξ0) + η1θ1 + η2θ2 + (s − s∗)�0ψ1 + h1(η1, η2, s, σ )ψ1 + h2(η1, η2, s, σ )ψ2

−W(ρ, s, σ ).
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First, we relate ξ0 and κ by imposing that F(0, 0, 0, 0, s∗, σ ∗; ξ0, κ) = 0. This is possible since �f (ξ0) and 
W(0, s∗, σ ∗) both lie in the heteroclinic orbit (Up(ξ), U ′

p(ξ), 0, 0)T . We henceforth suppress the dependence of F
on κ .

Using the expansions in Lemma 12 through Lemma 14, we simplify F to

F(ρ, η1, η2, s, σ ) = η1θ1 + η2θ2 + (s − s∗)�0ψ1 + h1(η1, η2, s, σ )ψ1 + h2(η1, η2, s, σ )ψ2

−(s − s∗)θs − ρ(r1θ1 + r2θ2) − ρ2θρ2 − ρ(s − s∗)θρs − ρ(σ − σ ∗)θρσ +O(3).

We wish to employ a Liapunov–Schmidt reduction and so we compute the partials of F ,

Dη1,η2,ρ,sF = ( θ1 θ2 −r1θ1 − r2θ2 �0ψ1 − θs

)
.

The Jacobian has rank three, so we project onto the range by projecting onto the vectors θ1, θ2 and ψ1. We obtain

0 = η1〈θ1, θ1〉 − (s − s∗)〈θ1, θs〉 − ρr1〈θ1, θ1〉
−ρ2〈θ1, θρ2〉 − ρ(s − σ)〈θ1, θρs〉 − ρ(σ − σ ∗)〈θ1, θρσ 〉 +O(3),

0 = η2〈θ2, θ2〉 − (s − s∗)〈θ2, θs〉 − ρr2〈θ2, θ2〉
−ρ2〈θ2, θρ2〉 − ρ(s − σ)〈θ2, θρs〉 − ρ(σ − σ ∗)〈θ2, θρσ 〉 +O(3),

0 = (s − s∗)�0〈ψ1,ψ1〉 + h1(η1, η2, s, σ )〈ψ1,ψ1〉 − (s − s∗)〈ψ1, θs〉
−ρ2〈ψ1, θρ2〉 − ρ(s − s∗)〈ψ1, θρs〉 − ρ(σ − σ ∗)〈ψ1, θρσ 〉 +O(3).

This constitutes an implicit set of equations which we write as G(η1, η2, s, ρ, σ) = 0. Now, a simple computation 
leads to

Dη1,η2,sG(0, s∗, σ ∗) =
⎛
⎜⎝

〈θ1, θ1〉 0 〈θ1, θs〉
0 〈θ2, θ2〉 〈θ2, θs〉
0 0 �1�0 − 〈ψ1, θs〉

⎞
⎟⎠ .

At the same time, we compute

DρG(0, s∗, σ ∗) =
⎛
⎜⎝

−r1〈θ1, θ1〉
−r2〈θ2, θ2〉

0

⎞
⎟⎠ .

Therefore, the implicit function theorem ensures a solution G(η1(ρ, σ), η2(ρ, σ), s(ρ, σ)) = 0 with

η1(ρ,σ ) = r1ρ + g1(ρ,σ ),

η2(ρ,σ ) = r2ρ + g2(ρ,σ ),

s(ρ,σ ) − s∗ = Gs(ρ, σ ) = ρ2 1

�

(
〈ψ1, θρ2〉 − r2

1�1
∂2h1

∂η2
1

− r2
2�1

∂2h1

∂η2
2

)

+ ρ(σ − σ ∗) 1

�

(
〈ψ1, θρσ 〉 − r2�1

∂2h1

∂η2∂σ

)
+O(3),

where the functions g1, g2 and Gs are all quadratic order or higher and

� = �1�0 − 〈ψ1, θs〉 =
∞∫

−∞
es∗τ (U ′

p(τ ))2dτ.

We then consider the implicit equation

0 =H(ρ,σ ) := 〈ψ2,F
(
ρ, r1ρ + g1(ρ,σ ), r2ρ + g2(ρ,σ ), s∗ + Gs(ρ, σ ), σ

)〉
= h2 (r1ρ + g1(ρ,σ ), r2ρ + g2(ρ,σ ),Gs(ρ, σ ), σ ) 〈ψ2,ψ2〉 − 〈ψ2,W(ρ, s∗ + Gs(ρ, σ ), σ )〉.
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Note that H(ρ, σ) = ρH̃(ρ, σ). We therefore expand, focusing on quadratic terms in H,

H(ρ,σ ) = h
(2)
2 (r1ρ, r2ρ,0, σ ) − ρ2〈ψ2, θρ2〉 − ρ(σ − σ ∗)〈ψ2, θρσ 〉.

There are three non-zero terms in h(2)
2 that contribute to the quadratic term – namely the terms η2

2, η1η2 and η2σ . After 
factoring, we find the solution

ρ = Mρ(σ − σ ∗) + Gσ (σ ),

where

Mρ = 〈ψ2, θρσ 〉 − r2�2
∂2h2

∂η2∂σ

r2
2�2

∂2h2
∂η2

2
+ r1r2�2

∂2h2
∂η1∂η2

− 〈ψ2, θρ2〉
,

and Gσ (σ ) collects higher-order terms. We require ρ to be positive to ensure positivity of the solution. Therefore, the 
sign of Mρ dictates whether the bifurcation to locked fronts is sub or super critical. With this solution, we can then 
determine whether the front is sped up or slowed down by inputting this into Gs(ρ, σ).

Simplification of the term Mρ We now make several simplifications. First, note that by Lemma 14 the numerator 
simplifies with

1

r2
〈ψ2, θρσ 〉 − �2

∂2h2

∂η2∂σ
=

∞∫
−∞

e
s∗
σ∗ ξ

(
g(Up(ξ),0)

(σ ∗)2 (φ(ξ))2 + s∗

(σ ∗)2 φ′(ξ)φ(ξ)

)
dξ.

We then use the identity g(Up(ξ), 0)φ(ξ) + s∗φ′(ξ) = −σ ∗φ′′(ξ) and integrate by parts

1

r2
〈ψ2, θρσ 〉 − �2

∂2h2

∂η2∂σ
= − 1

σ ∗

∞∫
−∞

e
s∗
σ∗ ξφ(ξ)φ′′(ξ)dξ,

= 1

σ ∗

∞∫
−∞

φ′(ξ)

(
φ′(ξ)e

s∗
σ∗ ξ + s∗

σ ∗ φ(ξ)e
s∗
σ∗ ξ

)
dξ,

= 1

σ ∗

∞∫
−∞

φ′(ξ)φ(ξ)e
s∗
σ∗ ξ

(
φ′(ξ)

φ(ξ)
+ s∗

σ ∗

)
dξ.

Now, we note that the term inside the parenthesis is positive, since for any ξ we have that g(Up(ξ), 0) > 0 from (H3), 
and therefore

Z22(ξ) = φ′(ξ)

φ(ξ)
> − s∗

2σ ∗ − s∗

2σ ∗
√

(s∗)2 − 4g(Up(ξ),0) > − s∗

σ ∗ .

We finally find that

sign

(
1

r2
〈ψ2, θρσ 〉 − �2

∂2h2

∂η2∂σ

)
= sign(φ′) = −1,

since φ′ < 0. And thus the sign of Mρ is determined by the opposite sign of its denominator:

signMρ = −sign

(
r2�2

∂2h2

∂η2
2

+ r1�2
∂2h2

∂η1∂η2
− 1

r2
〈ψ2, θρ2〉

)
,

where we recall the following expressions for each term
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�2
∂2h2

∂η2
2

=
∞∫

ξ0

e
s∗
σ∗ ξ

(
Guv(Up(ξ),0)

σ ∗ a1(ξ)φ(ξ)2 + Gvv(Up(ξ),0)

2σ ∗ φ3(ξ)

)
dξ,

�2
∂2h2

∂η1∂η2
=
(
φ̃′′(ξ0)φ̃(ξ0) − (φ̃′(ξ0))

2
)

,

〈ψ2, θρ2〉 = e
s∗
σ∗ ξ0γ (2)(s∗, σ ∗)

(
ν−
v (s∗, σ ∗)φ(ξ0) − φ′(ξ0)

)
,

with from Lemma 19,

γ (2)(s∗, σ ∗) = 1

σ(ν−
v (s, σ ) − ν+

v (s, σ ))(2ν+
v (s, σ ) − ν−

v (s, σ ))

(
Fv(p1)

du(ν
−
v (s, σ ))

Guv(p1) − Gvv(p1)

2

)
.

Expansion of s − s∗ With an expansion for ρ as a function of σ − σ ∗, we finally obtain an expansion for s − s∗ as a 
function of σ − σ ∗. Let

s − s∗ = Ms(σ − σ ∗)2 +O(3),

where

Ms = Mρ

�

⎛
⎝Mρ

(
〈ψ1, θρ2〉 − r2

1�1
∂2h1

∂η2
1

− r2
2�1

∂2h1

∂η2
2

)
+ r2

∞∫
−∞

b2(ξ)

(
g(Up(ξ),0)

(σ ∗)2 φ(ξ) + s∗

(σ ∗)2 φ′(ξ)

)
dξ

⎞
⎠.
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Appendix A. Expansions of h1,2

We return to derive expressions for those terms in the quadratic expansions of h1 and h2 from Lemma 6 that are 
required for the resolution of the bifurcation equation. To simplify the presentation, we recall some of the notations 
that were used in Section 3. The maps h1,2 are determined by projecting equation (3.16) onto ψ1,2 to obtain the 
expressions

h1,2(η1, η2, s, σ ) = − 1

�1,2

∞∫
ξ0

〈
ψ1,2(ξ),N(Q∗(ξ, η1, η2, s, σ ), ξ, s, σ )

〉
dξ, (A.1)

where �1,2 = 〈ψ1,2(ξ0), ψ1,2(ξ0)〉 and Q∗(·, η1, η2, s, σ) is the fixed point solution of the operator T introduced in 
Lemma 5 (see equation (3.5)). As shown in the proof of Lemma 6, the maps h1,2 are at least quadratic or of higher 
order in all their arguments, and the associated quadratic expansions of h1,2 can be obtained by collecting the quadratic 
expansions of the following quantities:

h̃1,2(η1, η2, s, σ ) := − 1

�1,2

∞∫
ξ0

〈
ψ1,2(ξ),N(η1θ1(ξ) + η2θ2(ξ) + (s − s∗)θs(ξ), ξ, s, σ )

〉
dξ, (A.2)

where we approximated Q∗(ξ, η1, η2, s, σ) by Q0(ξ) = η1θ1(ξ) + η2θ2(ξ) + (s − s∗)θs(ξ). The definition of the 
nonlinear term N(z, ξ, s, σ) is
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N(z, ξ, s, σ ) =

⎛
⎜⎜⎝

0
Np(z, ξ, s, σ )

0
Nq(z, ξ, s, σ )

⎞
⎟⎟⎠ , z = (p1,p2, q1, q2)

T ,

with quadratic expansions of Np,q denoted N(2)
p,q given by

N(2)
p (z, ξ, s, σ ) = − (s − s∗)p2 − Fuu(Up(ξ),0)

2
p2

1 − Fuv(Up(ξ),0)p1q1 − Fvv(Up(ξ),0)

2
q2

1 ,

N(2)
q (z, ξ, s, σ ) = − 1

σ ∗ (s − s∗)q2 + s∗

(σ ∗)2 (σ − σ ∗)q2 − Guv(Up(ξ),0)

σ ∗ p1q1 − Gvv(Up(ξ),0)

2σ ∗ q2
1

+ g(Up(ξ),0)

(σ ∗)2 q1(σ − σ ∗).

To continue, we need expansions for N(2)
p,q in terms of η1, η2, (s − s∗) and (σ − σ ∗). To accomplish this, we recall 

that we have

p1(ξ) = η1U
′
p(ξ) + η2a1(ξ) + (s − s∗)θ1

s (ξ),

p2(ξ) = η1U
′′
p(ξ) + η2a2(ξ) + (s − s∗)θ2

s (ξ),

q1(ξ) = η2φ(ξ),

q2(ξ) = η2φ
′(ξ).

To simplify the presentation, we will use the following notation

N(2)
p,q(z, ξ, s, σ ) =

∑
i+j+k+l=2

ηi
1η

j
2(s − s∗)k(σ − σ ∗)lN(i,j,k,l)

p,q (ξ).

We then obtain the expressions:

O(η2
1) : N(2,0,0,0)

p (ξ) = −Fuu(Up(ξ),0)

2

(
U ′

p(ξ)
)2

,

O(η1η2) : N(1,1,0,0)
p (ξ) = −

(
Fuu(Up(ξ),0)U ′

p(ξ)a1(ξ) + Fuv(Up(ξ),0)U ′
p(ξ)φ(ξ)

)
,

O(η2
2) : N(0,2,0,0)

p (ξ) = −
(

Fuu(Up(ξ),0)

2 a2
1(ξ) + Fuv(Up(ξ),0)a1(ξ)φ(ξ) + Fvv(Up(ξ),0)

2 φ2(ξ)
)

O(η1|s − s∗|) : N(1,0,1,0)
p (ξ) = −

(
U ′′

p(ξ) + Fuu(Up(ξ),0)U ′
p(ξ)θ1

s (ξ)
)

,

O(η2|s − s∗|) : N(0,1,1,0)
p (ξ) = − (a2(ξ) + Fuv(Up(ξ),0)φ(ξ)θ1

s (ξ) + Fuu(Up(ξ),0)a1(ξ)θ1
s (ξ)

)
,

O(|s − s∗|2) : N(0,0,2,0)
p (ξ) = −

(
θ2
s (ξ) + Fuu(Up(ξ),0)

2 (θ1
s (ξ))2

)
,

all other quadratic terms in the expansion being equal to zero. Regarding N(2)
q , we get

O(η1η2) : N(1,1,0,0)
q (ξ) = −Guv(Up(ξ),0)

σ ∗ U ′
p(ξ)φ(ξ),

O(η2
2) : N(0,2,0,0)

q (ξ) = −
(

Guv(Up(ξ),0)

σ ∗ a1(ξ)φ(ξ) + Gvv(Up(ξ),0)

2σ ∗ φ2(ξ)
)

,

O(η2|s − s∗|) : N(0,1,1,0)
q (ξ) = −

(
1
σ ∗ φ′(ξ) + Guv(Up(ξ),0)

σ ∗ θ1
s (ξ)φ(ξ)

)
,

O(η2|σ − σ ∗|) : N(0,1,0,1)
q (ξ) = g(Up(ξ),0)

(σ ∗)2 φ(ξ) + s∗
(σ ∗)2 φ′(ξ),

all other quadratic terms in the expansion being equal to zero.
As a consequence, we can now collect all quadratic terms in the expansions of the maps h1,2 by identification. 

Namely, if one sets

h1,2(η1, η2, s, σ ) :=
∑

i,j,k,l≥0

ηi
1η

j
2(s − s∗)k(σ − σ ∗)lh(i,j,k,l)

1,2 ,
i+j+k+l≥2
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then using equation (A.2), we get the following relations for the quadratic terms. For all i, j, k, l ≥ 0 with i + j + k +
l = 2 we have

h(i,j,k,l)
1 = − 1

�1

∞∫
ξ0

(
es∗ξU ′

p(ξ)N(i,j,k,l)
p (ξ) + b2(ξ)N(i,j,k,l)

q (ξ)
)

dξ,

h(i,j,k,l)
2 = − 1

�2

∞∫
ξ0

e
s∗
σ∗ ξφ(ξ)N(i,j,k,l)

q (ξ)dξ.

We have the following Lemma which summarizes the previous computations.

Lemma 15. The nonlinear maps h1(η1, η2, s, σ) and h2(η1, η2, s, σ) from Lemma 6 admit the following quadratic 
expansions. For all i, j, k, l ≥ 0 with i + j + k + l = 2 we have for h1(η1, η2, s, σ):

O(η2
1) : h(2,0,0,0)

1 = 1

�1

∞∫
ξ0

es∗ξ Fuu(Up(ξ),0)

2

(
U ′

p(ξ)
)3

dξ,

O(η1η2) : h(1,1,0,0)
1 = 1

�1

∞∫
ξ0

es∗ξU ′
p(ξ)

(
Fuu(Up(ξ),0)U ′

p(ξ)a1(ξ) + Fuv(Up(ξ),0)U ′
p(ξ)φ(ξ)

)
dξ

+ 1

�1

∞∫
ξ0

b2(ξ)
Guv(Up(ξ),0)

σ ∗ U ′
p(ξ)φ(ξ)dξ,

O(η2
2) : h(0,2,0,0)

1 = 1

�1

∞∫
ξ0

es∗ξU ′
p(ξ)

(
Fuu(Up(ξ),0)

2
a2

1(ξ) + Fuv(Up(ξ),0)a1(ξ)φ(ξ)

)
dξ

+ 1

�1

∞∫
ξ0

b2(ξ)

(
Guv(Up(ξ),0)

σ ∗ a1(ξ)φ(ξ) + Gvv(Up(ξ),0)

2σ ∗ φ2(ξ)

)
dξ

+ 1

�1

∞∫
ξ0

es∗ξU ′
p(ξ)

Fvv(Up(ξ),0)

2
φ2(ξ)dξ,

O(η1|s − s∗|) : h(1,0,1,0)
1 = 1

�1

∞∫
ξ0

es∗ξU ′
p(ξ)

(
U ′′

p(ξ) + Fuu(Up(ξ),0)U ′
p(ξ)θ1

s (ξ)
)

dξ,

O(η2|s − s∗|) : h(0,1,1,0)
1 = 1

�1

∞∫
ξ0

es∗ξU ′
p(ξ)

(
a2(ξ)+Fuv(U

′
p(ξ),0)φ(ξ)θ1

s (ξ)+Fuu(Up(ξ),0)a1(ξ)θ1
s (ξ)

)
dξ

+ 1

�1

∞∫
ξ0

b2(ξ)

(
1

σ ∗ φ′(ξ) + Guv(Up(ξ),0)

σ ∗ θ1
s (ξ)φ(ξ)

)
dξ,

O(η2|σ − σ ∗|) : h(0,1,0,1)
1 = − 1

�1

∞∫
ξ0

b2(ξ)

(
g(Up(ξ),0)

(σ ∗)2 φ(ξ) + s∗

(σ ∗)2 φ′(ξ)

)
dξ,

O(|s − s∗|2) : h(0,0,2,0)
1 = 1

�1

∞∫
ξ0

es∗ξU ′
p(ξ)

(
θ2
s (ξ) + Fuu(Up(ξ),0)

2
(θ1

s (ξ))2
)

dξ,
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Table 1
Asymptotic exponential decay rates of the terms arising in Lemma 15. These expressions 
are derived from (3.9) for a1 and a2, (3.13) for b2 and (3.19) for θ1

s and θ2
s .

Term Exponential rate as ξ → −∞
φ(ξ), a1(ξ), a2(ξ) ν+

v (s∗, σ∗) = − s∗
2σ∗ + 1

2σ∗
√

(s∗)2 − 4σ∗g(p1)

U ′
p(ξ), U ′′

p(ξ), θ1
s (ξ), θ2

s (ξ) ν+
u (s∗) = − s∗

2 + 1
2

√
(s∗)2 − 4Fu(p1)

b2(ξ) −ν−
u (s∗) = s∗

2 + 1
2

√
(s∗)2 − 4Fu(p1)

and for h2(η1, η2, s, σ):

O(η1η2) : h(1,1,0,0)
2 = 1

�2

∞∫
ξ0

e
s∗
σ∗ ξ Guv(Up(ξ),0)

σ ∗ U ′
p(ξ) (φ(ξ))2 dξ,

O(η2
2) : h(0,2,0,0)

2 = 1

�2

∞∫
ξ0

e
s∗
σ∗ ξ

(
Guv(Up(ξ),0)

σ ∗ a1(ξ)φ(ξ)2 + Gvv(Up(ξ),0)

2σ ∗ φ3(ξ)

)
dξ,

O(η2|s − s∗|) : h(0,1,1,0)
2 = 1

�2

∞∫
ξ0

e
s∗
σ∗ ξ

(
1

σ ∗ φ′(ξ)φ(ξ) + Guv(Up(ξ),0)

σ ∗ θ1
s (ξ)(φ(ξ))2

)
dξ,

O(η2|σ − σ ∗|) : h(0,1,0,1)
2 = − 1

�2

∞∫
ξ0

e
s∗
σ∗ ξ

(
g(Up(ξ),0)

(σ ∗)2 (φ(ξ))2 + s∗

(σ ∗)2 φ′(ξ)φ(ξ)

)
dξ.

All stated integrals converge in the limit ξ0 → −∞.

Proof. Asymptotic exponential decay rates for the relevant quantities are collected in Table 1. We focus on the con-
vergence of the integrands as ξ0 → −∞. Recall Hypothesis (H4) and the assumed ordering of the eigenvalues

ν−
v (s∗, σ ∗) < ν−

u (s∗) < ν+
v (s∗, σ ∗) < 0 < ν+

u (s∗),

as well as the condition on the ratio of the eigenvalues ν−
u (s∗) < 2ν+

v (s∗, σ ∗).
We now proceed through the terms in the quadratic expansions of h1,2 and show that each of the integrands 

converge exponentially as ξ → −∞. The condition on the ratio of the eigenvalues is key for the convergence of the 
integrals listed – in particular those that are quadratic in η1,2.

• For h(2,0,0,0)
1 , the asymptotic exponential rate of the integrand is s∗ + 3ν+

u > 0 and the integral converges as 
ξ → −∞.

• For h(1,1,0,0)
1 , the asymptotic exponential rate of the first term in the expansions is

s∗ + 2ν+
u (s∗) + ν+

v (s∗, σ ∗) > s∗ + 2ν+
u (s∗) + ν−

u (s∗)
2

= 1

2
s∗ + 3

4
ν+
u (s∗) > 0.

The second term has exponential rate

−ν−
u (s∗) + ν+

u (s∗) + ν+
v (s∗, σ ∗) > ν+

u (s∗) − ν+
v (s∗, σ ∗) > 0.

• For h(0,2,0,0)
1 , the asymptotic exponential rate of the first term in the expansions is s∗ + ν+

u (s∗) + 2ν+
v (s∗, σ ∗) >

s∗ + ν+
u (s∗) + ν−

u (s∗) = 0 and those terms converge. For the second integral, the rate is −ν−
u (s∗) + 2ν+

v (s∗,
σ ∗) > 0 and the final integral has exponential rate s∗ + ν+

u (s∗) + 2ν+
v (s∗, σ ∗) = −ν−

u (s∗) + 2ν+
v (s∗, σ ∗) > 0.

• For h(1,0,1,0) all exponential rates are positive and the integral therefore converges as ξ → −∞.
1
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• For the first integral in h(0,1,1,0)
1 , the term es∗ξU ′

p(ξ)a2(ξ) as asymptotic exponential rate s∗ + ν+
u (s∗) +

ν+
v (s∗, σ ∗) > 0 and therefore converges. All other terms in the first integral possess stronger decay rates and 

therefore also converge. The exponential rate of the first term in the second integral is −ν−
u (s∗) + ν+

v (s∗, σ ∗) >
−ν+

v (s∗, σ ∗) > 0. The second term has stronger decay and therefore the second integral also converges.
• For h(0,1,0,1)

1 , the asymptotic exponential rate is again −ν−
u (s∗) + ν+

v (s∗, σ ∗) > 0 and the integral converges.

• For h(0,0,2,0)
1 , all exponential rates are positive and the integral converges.

• For h(1,1,0,0)
2 , the asymptotic exponential rate is

s∗

σ ∗ + ν+
u (s∗) + 2ν+

v (s∗, σ ∗) >
s∗

σ ∗ + ν+
u (s∗) + ν+

v (s∗, σ ∗) + ν−
v (s∗, σ ∗) = ν+

u (s∗) > 0,

and the integral converges.
• For h(0,2,0,0)

2 , the asymptotic exponential rate is

s∗

σ ∗ + 3ν+
v (s∗, σ ∗) >

s∗

σ ∗ + ν+
v (s∗, σ ∗) + ν−

v (s∗, σ ∗) = 0,

and the integral converges.
• For h(0,1,1,0)

2 , the asymptotic rate of the first term in the integral is

s∗

σ ∗ + 2ν+
v (s∗, σ ∗) >

s∗

σ ∗ + ν+
v (s∗, σ ∗) + ν−

v (s∗, σ ∗) = 0,

while the term gives

s∗

σ ∗ + ν+
u (s∗) + 2ν+

v (s∗, σ ∗) >
s∗

σ ∗ + ν+
u (s∗) + ν+

v (s∗, σ ∗) + ν−
v (s∗, σ ∗) = ν+

u (s∗) > 0,

and the integral converge. A similar argument implies the convergence of h(0,1,0,1)
2 . �

Lemma 16. We have that

h(1,1,0,0)
2 = 1

�2

(
φ̃′′(ξ0)φ̃(ξ0) − (φ̃′(ξ0))

2
)

,

and

h(1,1,0,0)
2 ∼ γ11e

(ν+
v (s∗,σ ∗)−ν−

v (s∗,σ ∗)+ν+
u (s∗))ξ0,

as ξ0 → −∞ where

sign(γ11) = sign (gu(p1)) .

Proof. Recall from Lemma 15 that

h(1,1,0,0)
2 = 1

�2

∞∫
ξ0

e
s∗
σ∗ ξ Guv(Up(ξ),0)

σ ∗ U ′
p(ξ) (φ(ξ))2 dξ.

Observe that

Guv(Up(ξ),0)U ′
p(ξ) = d

dξ
g(Up(ξ),0).

After also recalling that φ(ξ) = e− s∗
2σ∗ ξ φ̃(ξ) we are able to transform the integral as follows and obtain the desired 

result
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h(1,1,0,0)
2 = 1

σ ∗�2

∞∫
ξ0

(
d

dξ
g(Up(ξ),0)

)
φ̃2(ξ)dξ

= 1

σ ∗�2

[
g(Up(ξ),0)φ̃2(ξ)

]∞
ξ=ξ0

− 2

σ ∗�2

∞∫
ξ0

g(Up(ξ),0)φ̃(ξ)φ̃′(ξ)dξ

= − 1

σ ∗�2
g(Up(ξ0),0)φ̃2(ξ0) − 2

σ ∗�2

∞∫
ξ0

(
−σ ∗φ̃′′(ξ) + (s∗)2

4σ ∗ φ(ξ)

)
φ̃′(ξ)dξ

= − 1

σ ∗�2

(
g(Up(ξ0),0)φ̃2(ξ0) + σ ∗ (φ̃′(ξ0)

)2 − (s∗)2

4σ ∗
(
φ̃(ξ0)

)2
)

= 1

�2

(
φ̃′′(ξ0)φ̃(ξ0) − (φ̃′(ξ0))

2
)

.

To determine the asymptotics of the final form, we expand the second order system defining φ̃(ξ) into a system,

φ̃′ = ψ̃

ψ̃ ′ = (s∗)2

4(σ ∗)2 φ̃ − g(Up(ξ),0)

σ ∗ φ̃

We then diagonalize and expand g(Up, 0) = g(p1) +gu(p1)Up +O(2), arriving at the following system that is relevant 
for the determination of the asymptotic decay rates,

φ̃′
ws = ν̃+

v (s∗, σ ∗)φ̃ws + gu(p1)

σ ∗(ν̃−
v (s∗, σ ∗) − ν̃+

v (s∗, σ ∗))
(
Up − u+) φ̃ws +O(2),

U ′
p = ν+

u (s∗)(Up − u+) +O(2),

where ν̃±
v = 1

2σ ∗
√

(s∗)2 − 4σ ∗g(p1). Then

Up(ξ) ∼ u+ − cue
ν+
u (s∗)ξ ,

from which we determine that

(
φ̃′′(ξ0)φ̃(ξ0) − (φ̃′(ξ0))

2
)

= −C2 gu(p1)ν
+
u (s∗)

σ ∗(ν̃−
v (s∗, σ ∗) − ν̃+

v (s∗, σ ∗))
e
(
2ν̃+

v (s∗,σ ∗)+ν+
u (s∗)

)
ξ0 .

Therefore γ11 is the constant multiplying the exponential and the exponential decay rate is obtained by noting that 
2ν̃+

v = ν+
v − ν−

v . �
Appendix B. Expressions for 〈ψ1, R(p1, q1, σ)〉 and 〈ψ2, R(p1, q1, σ)〉

Lemma 17. We have the following expressions for the projections of R(p1, q1, σ), defined in (3.24), onto ψ1 and ψ2:

〈ψ1,R(p1, q1, σ )〉 = q1(σ − σ ∗)
φ(ξ0)

ξ0∫
−∞

b2(τ )

(
1

(σ ∗)2 g(Up(τ),0)φ(τ) + s∗

(σ ∗)2 φ′(τ )

)
dτ, (B.1a)

〈ψ2,R(p1, q1, σ )〉 = q1(σ − σ ∗)
φ(ξ0)

ξ0∫
−∞

e
s∗
σ∗ τ

(
1

(σ ∗)2 g(Up(τ),0)φ(τ)2 + s∗

(σ ∗)2 φ(τ)φ′(τ )

)
dτ. (B.1b)
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Proof. We first prove the second equality of (B.1) on R(p1, q1, σ). From the definition of ψ2 in (3.11), we have that

〈ψ2,R(p1, q1, σ )〉 = q1e
s∗
σ∗ ξ0

(−φ′(ξ0) + φ(ξ0)Z22(ξ0) + φ(ξ0)E5(ξ0)h5(σ )
)
,

= q1(σ − σ ∗)
φ(ξ0)

ξ0∫
−∞

e
s∗
σ∗ τ

(
1

(σ ∗)2 g(Up(τ),0)φ(τ)2 + s∗

(σ ∗)2 φ(τ)φ′(τ )

)
dτ,

where we used the facts that Z22(ξ0) = φ′(ξ0)/φ(ξ0) and E5(ξ0) = φ(ξ0)
2e

s∗
σ∗ ξ0 , together with (3.22).

We now turn our attention to the first equality of (B.1). Using this time the definition of ψ1, we get that

〈ψ1,R(p1, q1, σ )〉 = p1

(
−es∗ξ0U ′′

p(ξ0) + es∗ξ0U ′
p(ξ0)Z11(ξ0)

)
+ q1

(
es∗ξ0U ′

p(ξ0)Z12(ξ0) + b1(ξ0) + Z22(ξ0)b2(ξ0)
)

+ q1

(
es∗ξ0U ′

p(ξ0)D4(ξ0)h4(σ ) + b2(ξ0)E5(ξ0)h5(σ )
)

.

As Z11(ξ0) = U ′′
p(ξ0)/U ′

p(ξ0) the first term in the factor of p1 vanishes. We are going to show that the second term 
also vanishes. From the definition of Z12, we have

es∗ξ0U ′
p(ξ0)Z12(ξ0) = 1

φ(ξ0)

∞∫
ξ0

es∗τU ′
p(τ )Fv(Up(τ),0)φ(τ)dτ.

By definition, b1 and b2 satisfy

b′
1(ξ) = g(Up(ξ),0)

σ ∗ b2(ξ) + Fv(Up(ξ),0)es∗ξU ′
p(ξ)

b′
2(ξ) = −b1(ξ) + s∗

σ ∗ b2(ξ).

Multiplying the first equation by φ(ξ) and integrating we get that

∞∫
ξ0

es∗τU ′
p(τ )Fv(Up(τ),0)φ(τ)dτ =

∞∫
ξ0

φ(τ)b′
1(τ )dτ −

∞∫
ξ0

φ(τ)
g(Up(τ),0)

σ ∗ b2(τ )dτ

= −φ(ξ0)b1(ξ0) −
∞∫

ξ0

φ′(τ )b1(τ )dτ −
∞∫

ξ0

φ(τ)
g(Up(τ),0)

σ ∗ b2(τ )dτ.

On the other hand, we have

−
∞∫

ξ0

φ′(τ )b1(τ )dτ =
∞∫

ξ0

φ′(τ )b′
2(τ )dτ − s∗

σ ∗

∞∫
ξ0

φ′(τ )b2(τ )dτ

= −φ′(ξ0)b2(ξ0) −
∞∫

ξ0

φ′′(τ )b2(τ )dτ − s∗

σ ∗

∞∫
ξ0

φ′(τ )b2(τ )dτ.

Combining all the terms, and using the fact that Lvφ = 0, we obtain that

∞∫
ξ0

es∗τU ′
p(τ )Fv(Up(τ),0)φ(τ)dτ = −φ(ξ0)b1(ξ0) − φ′(ξ0)b2(ξ0)

from which we deduce that
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es∗ξ0U ′
p(ξ0)Z12(ξ0) + b1(ξ0) + Z22(ξ0)b2(ξ0) = 0,

as Z22(ξ0) = φ′(ξ0)/φ(ξ0). So far, we have thus obtained

〈ψ1,R(p1, q1, σ )〉 = q1

(
es∗ξ0U ′

p(ξ0)D4(ξ0)h4(σ ) + b2(ξ0)E5(ξ0)h5(σ )
)

,

and each term simplifies to

es∗ξ0U ′
p(ξ0)D4(ξ0)h4(σ ) = (σ − σ ∗)

φ(ξ0)

ξ0∫
−∞

E4(τ )

(
1

(σ ∗)2 g(Up(τ),0) + s∗

(σ ∗)2 Z22(τ )

)
dτ,

b2(ξ0)E5(ξ0)h5(σ ) = c̃1(σ − σ ∗)
φ(ξ0)

ξ0∫
−∞

E5(τ )

(
1

(σ ∗)2 g(Up(τ),0) + s∗

(σ ∗)2 Z22(τ )

)
dτ,

where we used the fact that b2(ξ0) = c̃1e
s∗
σ∗ ξ0φ(ξ0) from (3.13) and E5(ξ0) = e

s∗
σ∗ ξ0φ(ξ0)

2. As a consequence, we have

〈ψ1,R(p1, q1, σ )〉 = (σ − σ ∗)
φ(ξ0)

ξ0∫
−∞

(E4(τ ) + c̃1E5(τ ))

(
1

(σ ∗)2 g(Up(τ),0) + s∗

(σ ∗)2 Z22(τ )

)
dτ.

To conclude, we are going to show that

E4(ξ) + c̃1E5(ξ) = b2(ξ)φ(ξ).

We recall that by definition, E4(ξ) satisfies

E′
4(ξ) = Z12(ξ)U ′

p(ξ)φ(ξ)es∗ξ +
(

s∗

σ ∗ + 2Z22(ξ)

)
E4(ξ), E4(ξ0) = 0.

As a consequence, E4(ξ) can be written as

E4(ξ) =
⎛
⎜⎝

ξ∫
ξ0

e− s∗
σ∗ ζ

φ(ζ )2

⎡
⎢⎣

∞∫
ζ

es∗τU ′
p(τ )Fv(Up(τ),0)φ(τ)dτ

⎤
⎥⎦dζ

⎞
⎟⎠E5(ξ).

Integrating by parts, we obtain

ξ∫
ξ0

e− s∗
σ∗ ζ

φ(ζ )2

⎡
⎢⎣

∞∫
ζ

es∗τU ′
p(τ )Fv(Up(τ),0)φ(τ)dτ

⎤
⎥⎦dζ =

⎛
⎜⎝

ξ∫
ξ0

e− s∗
σ∗ ζ

φ(ζ )2 dζ

⎞
⎟⎠
⎛
⎜⎝

∞∫
ξ

es∗τU ′
p(τ )Fv(Up(τ),0)φ(τ)dτ

⎞
⎟⎠

+
ξ∫

ξ0

⎛
⎜⎝

τ∫
ξ0

e− s∗
σ∗ ζ

φ(ζ )2 dζ

⎞
⎟⎠ es∗τU ′

p(τ )Fv(Up(τ),0)φ(τ)dτ.

Using the fact that E5(ξ) = B1(ξ)φ(ξ) and equation (3.13), we obtain that

E4(ξ) = b2(ξ)φ(ξ) − c̃1B1(ξ)φ(ξ) = b2(ξ)φ(ξ) − c̃1E5(ξ).

As a conclusion, we get

〈ψ1,R(p1, q1, σ )〉 = (σ − σ ∗)
φ(ξ0)

ξ0∫
−∞

b2(τ )φ(τ)

(
1

(σ ∗)2 g(Up(τ),0) + s∗

(σ ∗)2 Z22(τ )

)
dτ,

which proves the lemma. �
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Appendix C. Expressions for N(0,0,2,0)
u (s, σ) and N(2,0,0,0)

ss,u (s, σ)

Lemma 18. The coefficients N(0,0,2,0)
u (s, σ) and N(2,0,0,0)

ss,u (s, σ) appearing in the expansions of Nu and Nss,u defined 
in equation (4.4) depend only on s and have the expressions:

N(0,0,2,0)
u (s, σ ) = Fuu(p1)

2(ν−
u (s) − ν+

u (s))
, (C.1a)

N(2,0,0,0)
ss,u (s, σ ) = − Fuu(p1)

2(ν−
u (s) − ν+

u (s))
. (C.1b)

Proof. Let us recall that we have the change of variables⎛
⎜⎜⎝

u1 − u+
u2
v1
v2

⎞
⎟⎟⎠= T (s, σ )

⎛
⎜⎜⎝

yu

yss,u

yws

yss,v

⎞
⎟⎟⎠ ,

where T (s, σ) is defined in (4.2). We set U := (u1 − u+, u2, v1, v2)
T and Y := (yu, yss,u, yws, yss,v)T . Let us also 

remark that in the original coordinates, the quadratic terms in (u1 −u+, u2, v1, v2)
T of the nonlinear part are given by

N2(U) :=

⎛
⎜⎜⎜⎜⎝

0

−Fuu(p1)
2 (u1 − u+)2 − Fuv(p1)(u1 − u+)v1 − Fvv(p1)

2 v2
1

0

−Guv(p1)
σ

(u1 − u+)v1 − Gvv(p1)
2σ

v2
1

⎞
⎟⎟⎟⎟⎠ ,

where we have used the fact that Guu(p1) = 0. Then, we note that with our change of variables both v1 and v2 in the 
new coordinates do not depend in yu and yss,u. As consequence, if one keeps only the quadratic terms in yu and yss,u

in the expression of N2, expressed in the new coordinates, we get

N2(T (s, σ )Y ) =

⎛
⎜⎜⎜⎜⎝

0

−Fuu(p1)
2 (yu)2 − Fuu(p1)

2 (yss,u)2 − Fuu(p1)y
uyss,u

0

0

⎞
⎟⎟⎟⎟⎠+O(2).

To conclude, it is enough to remark that⎛
⎜⎜⎝

Nu(Y, s, σ )

Nss,u(Y, s, σ )

Nws(Y, s, σ )

Nss,v(Y, s, σ )

⎞
⎟⎟⎠= T (s, σ )−1N2(T (s, σ )Y ) +O(3),

and that the matrix T (s, σ) is block triangular so that

T (s, σ ) =
(

T11(s) T12(s, σ )

0 T22(s, σ )

)
and T (s, σ )−1 =

(
T −1

11 (s) −T −1
11 (s)T1,2(s, σ )T −1

22 (s, σ )

0 T −1
22 (s, σ )

)
.

Finally, a direct computation shows that

T −1
11 (s) = 1

ν−
u (s) − ν+

u (s)

(
ν−
u (s) −1

−ν+
u (s) 1

)
,

which in turns implies that the quadratic terms in yu and yss,u in the expression of Nu(Y, s, σ) are

Nu(Y, s, σ ) = 1

ν−
u (s) − ν+

u (s)

(
Fuu(p1)

2
(yu)2 + Fuu(p1)

2
(yss,u)2 + Fuu(p1)y

uyss,u

)
+O(2),

and similarly for Nss,u(Y, s, σ)
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Nss,u(Y, s, σ ) = − 1

ν−
u (s) − ν+

u (s)

(
Fuu(p1)

2
(yu)2 + Fuu(p1)

2
(yss,u)2 + Fuu(p1)y

uyss,u

)
+O(2),

which concludes the proof. �
Appendix D. Expression for N(0,2,0,0)

ss,v (s, σ)

Lemma 19. The coefficient N(0,2,0,0)
ss,v (s, σ) appearing in the expansion of Nss,v defined in equation (4.4) has the 

following expression:

N(0,2,0,0)
ss,v (s, σ ) = 1

σ(ν−
v (s, σ ) − ν+

v (s, σ ))

(
Fv(p1)

du(ν
−
v (s, σ ))

Guv(p1) − Gvv(p1)

2

)
. (D.1)

Proof. The proof is similar to the proof of Lemma 18. One only needs to keep track of the quadratic terms yws in the 
nonlinear part of the system and notice that

N2(T (s, σ )Y ) =

⎛
⎜⎜⎜⎜⎝

0

−Fuu(p1)
2

(
Fv(p1)

du(ν−
v (s,σ ))

)2
(yws)2 + Fuv(p1)

Fv(p1)

du(ν−
v (s,σ ))

(yws)2 − Fvv(p1)
2 (yws)2

0
Fv(p1)

du(ν−
v (s,σ ))

Guv(p1)
σ

(yws)2 − Gvv(p1)
2σ

(yws)2

⎞
⎟⎟⎟⎟⎠+O(2).

This implies that

Nss,v(Y, s, σ ) = 1

σ(ν−
v (s, σ ) − ν+

v (s, σ ))

(
Fv(p1)

du(ν
−
v (s, σ ))

Guv(p1) − Gvv(p1)

2

)
(yws)2 +O(2),

where we have used the explicit form of the inverse of T −1
22 (s, σ). �

Appendix E. Quadratic expansions of p(zu, s, σ) and q(zu, s, σ)

In the following Lemma we will use the notations

γij (z
u,0,0, s, σ ) = γ

(1)
ij (s, σ )zu + γ

(2)
ij (s, σ )(zu)2 +O

(
(zu)3

)
, i, j ∈ {1,2}

together with

Mu(z
u,0,0, s, σ ) =M(2)

u (s, σ )(zu)2 +O
(
(zu)3

)
,

where γij and Mu are defined in equation (4.6), Lemma 8.

Lemma 20. The quadratic expansions for the maps p(zu, s, σ) and q(zu, s, σ) defined in equations (4.7) from 
Lemma 9 are:

p(zu, s, σ ) =P1(s, σ )zu +P2(s, σ )(zu)2 +O
(
(zu)3

)
,

q(zu, s, σ ) =Q1(s, σ )zu +Q2(s, σ )(zu)2 +O
(
(zu)3

)
,

with

P1(s, σ ) = γ
(1)
11 (s, σ )

ν+
u (s)

,

Q1(s, σ ) = − (�ss(s, σ ) − (ν+
v (s, σ ) + ν+

u (s))I
)−1

γ
(1)
21 (s, σ ),

and
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P2(s, σ ) = 1

2ν+
u (s)

[
−P1(s, σ )

(
γ

(1)
11 (s, σ ) +M(2)

u (s, σ )
)

+ γ
(2)
11 (s, σ ) + γ

(1)
12 (s, σ )Q1(s, σ )

]
,

Q2(s, σ ) = (�ss(s, σ ) − (ν+
v (s, σ ) + 2ν+

u (s))I
)−1

×
(
−γ

(2)
21 (s, σ ) + (M(2)

u (s, σ ) − γ
(1)
22 (s, σ ) + γ

(1)
11 (s, σ ))Q1(s, σ )

)
.
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