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THE SYNTOMIC REGULATOR
FOR THEK-THEORY OF FIELDS

BY AMNON BESSER AND ROB DE JEU

ABSTRACT. – We define complexes analogous to Goncharov’s complexes for theK-theory of discrete
valuation rings of characteristic zero. Under suitable assumptions inK-theory, there is a map from th
cohomology of those complexes to theK-theory of the ring under consideration. In case the ring
localization of the ring of integers in a number field, there are no assumptions necessary. We c
the composition of our map to theK-theory with the syntomic regulator. The result can be describe
terms of ap-adic polylogarithm. Finally, we apply our theory in order to compute the regulator to syn
cohomology on Beilinson’s cyclotomic elements. The result is again given by thep-adic polylogarithm.
This last result is related to one by Somekawa and generalizes work by Gros.

 2003 Elsevier SAS

RÉSUMÉ. – On définit des complexes analogues à ceux introduits par Goncharov pour laK-théorie
des anneaux de valuation discrète de caractéristique zéro. Sous des hypothèses convenables enK-théorie, il
existe une application de la cohomologie de ces complexes vers laK-théorie de l’anneau considéré. Lorsq
l’anneau est un localisé de l’anneau des entiers d’un corps de nombres, aucune hypothèse n’est n
Nous calculons la composée de notre application vers laK-théorie par le régulateur syntomique. Le résu
peut se décrire à l’aide d’un polylogarithmep-adique. Enfin, nous mettons notre théorie en applica
pour calculer le régulateur à valeurs dans la cohomologie syntomique sur les éléments cyclotom
Beilinson. Le résultat est aussi donné par le polylogarithmep-adique. Ce dernier résultat s’apparente à
autre dû à Somekawa, et généralise des travaux de Gros.

 2003 Elsevier SAS

1. Introduction

Let K be a complete discrete valuation field of characteristic zero,R its valuation ring,
andκ its residue field. Assumeκ has positive characteristicp and is algebraic overFp. If X/R
is smooth, separated and of finite type, there is a regulator map fromK-theory to syntomic
cohomology

K(j)
n (X)→H2j−n

syn (X,j),

see [2]. In many interesting cases the target group of the regulator is isomorphic to th
cohomology group, in the sense of Berthelot,H2j−n−1

rig (Xκ/K), whereXκ is the special fibe
of X . We will be most interested in the situation whereX = Spec(R), and theK-group is

K
(n)
2n−1(R) for n � 2. The target group for the regulator in this case isH0

rig(Spec(κ)/K)∼=K
(see Definition 4.6 for the precise identification). Becauseκ is algebraic overFp, Kn(κ) is
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868 A. BESSER AND R. DE JEU

torsion for alln � 1, so from the long exact localization sequence

· · · →K(j−1)(κ)→K(j)(R)→K(j)(K)→K
(j−1)(κ)→ · · ·

or

]

see

y

age

ll, no
n n n n−1

we get an isomorphismK(n)
2n−1(R)∼=K

(n)
2n−1(K) for n � 2. Hence we get a regulator map (f

n � 2)

reg :K(n)
2n−1(K)∼=K

(n)
2n−1(R)→K.

In this paper we try to explicitly compute this regulator map. We note that ifF is a number field
with an embeddingF →K , we can combine the natural mapK(n)

2n−1(F )→K
(n)
2n−1(K) with this

regulator map to obtain a regulator map onK
(n)
2n−1(F ). Also, for a number fieldF , all Kn(F )

are torsion ifn is even and positive. For the odd ones, allK2n−1(F )⊗Z Q areK(n)
2n−1(F ), so the

computation forK(n)
2n−1(K) is the most interesting from the point of view of number fields.

Our principal tool of study will be the complexes̃M•
(n)(K), which were constructed in [12

for arbitrary fields of characteristic zero. WriteK∗
Q for K∗ ⊗Z Q. The complexM̃•

(n)(K) for
n � 2 is of the form

M̃n→ M̃n−1 ⊗K∗
Q→ M̃n−2 ⊗

2∧
K∗

Q→ · · ·→ M̃2⊗
n−2∧

K∗
Q→

n∧
K∗

Q

whereM̃k = M̃k(K) is aQ-vector space generated by symbols[x]k , with x in K , x �= 0 or 1,
and the differential is given by

d
(
[x]k ⊗ y1 ∧ · · · ∧ yn−k

)
= [x]k−1 ⊗ x∧ y1 ∧ · · · ∧ yn−k

if k � 3, and

d
(
[x]2 ⊗ y1 ∧ · · · ∧ yn−2

)
= (1− x) ∧ x∧ y1 ∧ · · · ∧ yn−2.

We give this complex a cohomological grading in degrees 1 throughn. Under suitable
assumptions about weights inK-theory (as formulated in the Beilinson–Soulé conjecture,
Definition 3.2), there is a map

Hr
(
M̃•

(n)(K)
)
→K

(n)
2n−r(K).(1.1)

We note in passing that the symbol[1]n also exists forn � 2, and satisfies[1]n = 2n−1([1]n +
[−1]n) (see [12, Lemma 3.19]).

In Section 3, we construct analogous complexesM̃•
(n)(R) for the ringR, whose cohomolog

(again under suitable assumptions) maps directly to theK-theory ofR, and in Section 7 we
compute the regulator map on its image. In the cases we are interested inM̃•

(n)(R) can be
identified with the subcomplex of the complex forK spanned in degreek+1 (k= 0, . . . , n− 2)
by all [u]n−k ⊗ v1 ∧ · · · ∧ vk with v1, . . . , vk in R∗, u in R∗ such that1− u is also inR∗, and in
degreen by all v1 ∧ · · · ∧ vn with all vi in R∗. But redoing the construction has the advant
that we can work overR all the time, which is required for the computation of the regulator.

The case that the field is a number field deserves special mentioning. First of a
assumptions about weights are necessary in this case. Furthermore, it is known that ifF is a
number field, the mapH1(M̃•

(n)(F ))→K
(n)
2n−1(F ) is an isomorphism forn= 2 andn= 3, as

4e SÉRIE– TOME 36 – 2003 –N◦ 6



THE SYNTOMIC REGULATOR FOR THEK-THEORY OF FIELDS 869

well as whenF is a cyclotomic field for alln � 2. (There is also substantial numerical evidence
that it should be an isomorphism for alln for number fields, which is part of a conjecture by
Zagier, as well as a corresponding conjecture for infinite fields by Goncharov.) Therefore one

g
e
o

tomic
r on the

t

, see

ng

ions
naive

these
uation
would have a complete description of the syntomic regulator for our discrete valuation rinR if
we knew that the image ofH1(M̃•

(n)(R)) in K
(n)
2n−1(R) would be everything. This may not b

the case, as perhapsR does not have enough unitsu such that1− u is also a unit. One can try t
overcome this difficulty by rewriting elements in the image ofH1(M̃•

(n)(F )) as being part of the

image ofH1(M̃•
(n)(R

′)) whereF ′/F is a finite field extension,R′ the corresponding ring inF ′.
We do this in the case of cyclotomic fields, so that we obtain a full description of the syn
regulator in this case. We also state a conjecture that the formulas found for the regulato
complex forR generalize to be the regulator on the complex forF .

In order to present our results, we shall need the following functions. Letlog :C∗
p→ Cp be a

branch of thep-adic logarithm. This means we definelog on the elementsz with |1− z|< 1 by
the usual power series, and we extend this toC∗

p by choosingπ in C∗
p with |π| < 1, declaring

log(π) = 0, and extending to a homomorphism fromC∗
p to Cp (see Definition 2.1). Note tha

the values on the elements inC∗
p with |z| = 1 is independent of the choice ofπ, but log

and the functionsLin(z) about to be described depend on this choice. For the relation
Proposition 2.6.

Let Li1(z) = − log(1 − z) for z �= 0 or 1. We follow Coleman to recursively define, usi
his integration theory, functionsLin(z) for n � 2. The defining relations aredLin(z) =
Lin−1(z)dlogz andlimz→0 Lin(z) = 0, and they have a unique solution in the class of funct
defined by Coleman. It is shown in [11] that those functions are locally analytic in the
topology onCp, and thatLin(z) is given by a convergent power series

∑∞
k=1 z

k/kn on the open
unit disc inCp. The functionLin(z) extends to a locally analytic function onCp \ {1} with
Lin(z) = 0 for n � 1. These functions satisfy the functional equation

Lin(z) + (−1)nLin(1/z) =−
1
n!

logn(z),(1.2)

see Proposition 6.4 of [11]. We also introduce the functionLn, defined as

Ln(z) =
n−1∑
m=0

(−1)m
m!

Lin−m(z) logm(z).(1.3)

In order to state the theorems below easily, we shall need linear combinations of
functions. Namely, we want a suitable combination that satisfies a clean functional eq

for z and1/z. It follows from (1.2) thatLk(z) + (−1)kLk(1/z) = (−1)k

k! logk(z). Therefore the
function

Lmod,n(z) =
n∑

m=1

amLm(z) logn−m(z)

with an = 1 satisfies

Lmod,n(z) + (−1)nLmod,n(1/z) = 0(1.4)

if
∑n

m=1 am
(−1)m

m! = 0. Below,Lmod,n will mean any of those choices. Forn = 2, there is a
unique such function, namely

L2(z) +
1
2
log(z)L1(z) = Li2(z)−

1
2
log(z)Li1(z),
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870 A. BESSER AND R. DE JEU

which is studied in Section 6 and beyond in [11], where it is calledD(z).
It is easily deduced from Coleman’s theory (see Remark 2.3) thatLin is Galois equivariant. In

particular, ifK ⊂Cp is a complete subfield, thenLin, and as a result alsoLn andLmod,n, send

n
r

,

-

part of

ble

the

]

elds of
K to K providedlog was defined such thatlog(π) = 0 with π ∈K .

Remark1.5. – By considering the coefficients of the termsLim(z) logn−m(z) in the functions
above, one sees that the functionsLm(z) logn−m(z) for m= 1, . . . , n andLmod,m(z) logn−m(z)
as above form= 1, . . . , n span the sameCp-vector space (or evenQ-vector space in case allai’s
are inQ), namely the space spanned byLim(z) logn−m(z) for m= 1, . . . , n. Therefore one ca
consider any function of the form

∑n−1
j=0 bj Lin−j(z) logj(z) with all bj in Cp as a candidate fo

Lmod,n, providedb0 = 1 and
∑n−1

j=0
bj

(n−j)! = 0. LetBi for i= 0,1, . . . be the Bernoulli numbers
defined by the identity of formal power-series

∞∑
i=0

Bi

i!
ti =

t

et − 1
.

Then the functionsLmod,n(z) defined by
∑n−1

j=0
Bj

j! Lin−j(z) log
j(z) satisfy the above require

ments asB0 = 1, and the other identity holds by definition of theBj if n � 2. Note that
this formula is different from the classical case, where one uses the real or imaginary

the functions
∑n−1

j=0
Bj2

j

j! Lin−j(z) logj |z|, see [28] and [12, Remark 5.2]. Another possi
natural candidate for the functionLmod,m(z) is Lmod,m(z) = Lm(z) + Lm−1(z) log(z)/m.
This function is distinguished by the following fact proved in [5, Theorem 1.1]: it is
unique combination of typeLmod,m with coefficients independent ofp such that the function
−mp1−mz(1− z)dLmod,m(z)/dz has a reduction modulop, for sufficiently largep, which is
the so-called(m− 1)-polylogarithm function introduced in them= 2 case by Kontsevich [21
and by Elbaz-Vincent and Gangl [15] in general.

If R is a ring with 1, letR� be the set of elementsu in R such that bothu and1− u are units.
We shall refer to those elements asspecial units.

We are now ready to state our main results.

THEOREM 1.6. – Let F be a field of characteristic zero. LetO ⊂ F be a discrete valuation
ring, and letF be the residue field. Assume that the Beilinson–Soulé conjecture holds for fi
characteristic0 and forF. For n � 2 let M̃•

(n)(O) be the subcomplex of the complex̃M•
(n)(F )

constructed in[12] (see also Section3) generated by symbols of the form[x]k ⊗ y1 ∧ · · · ∧ yn−k,
where allyi are elements inO∗, andx is inO�. Then

(1) There is a mapHr(M̃•
(n)(O))→K

(r)
2n−r(O) such that the diagram

Hr(M̃•
(n)(O)) K

(n)
2n−r(O)

Hr(M̃•
(n)(F )) K

(n)
2n−r(F )

commutes, where the lower horizontal map is the map in(1.1).
(2) If in addition σ :F → K (with K complete, etc., as before) is an embedding with

σ(O)⊂R, then forr = 1, the regulator map

H1
(
M̃•

(n)(O)
)
→K

(n)
2n−1(O)

σ→K
(n)
2n−1(R)→K
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is given by mapping[x]n to±(n− 1)!Lmod,n(σ(x)).
Moreover, if n = 2, those results hold without any assumptions on the Beilinson–Soulé
conjecture.

d
rious

tor

ding

t

m
for

e.
ism

of
Remark1.7. – The mapsHr(M̃•
(n)(O))→K

(n)
2n−r(O) andHr(M̃•

(n)(F ))→K
(n)
2n−r(F ) in

Theorem 1.6 are natural only up to a choice of sign (depending only onn andr). This is expresse
in the indeterminacy of the sign in the formula for the regulator, which will show up in va
places below as well.

Remark1.8. – Our computations in later sections will show that there is a mapM̃n(R)→K
given by mapping[x]n to (n− 1)!Lmod,n(x), and that this map is compatible with the regula

mapK(n)
2n−1(R)→K if the assumptions in Theorem 1.6 are fulfilled.

Remark1.9. – WithF , O andF as in Theorem 1.6, in the exact localization sequence

· · · →K
(n−1)
2n−r (F)→K

(n)
2n−r(O)→K

(n)
2n−r(F )→K

(n−1)
2n−r−1(F)→ · · ·

we have thatK(n−1)
2n−r (F) and K

(n−1)
2n−r−1(F) are both zero ifr = 1 and n � 2 because we

are assuming that the Beilinson–Soulé conjecture holds forF. Hence for r = 1 the map
K

(n)
2n−1(O)→K

(n)
2n−1(F ) in Theorem 1.6 above is an isomorphism. Note that if an embed

σ :F →K exists as in Theorem 1.6, this implies thatF is algebraic overFp, so allK(n)
m (F) are

torsion forn � 1. In particular, in that case we have an isomorphismK
(n)
2n−r(O) ∼= K

(n)
2n−r(F )

for all n � 2 and allr.

If F is a number field, the Beilinson–Soulé conjecture is known forF , and one can ge
the mapHr(M̃•

(n)(F )) → K
(n)
2n−r(F ) without making assumptions. In fact, forn = 2 and

n = 3, as well as in the caseF is a cyclotomic field, for alln � 2, one gets an isomorphis
H1(M̃•

(n)(F )) ∼= K
(n)
2n−1(F ) this way, see [12, Theorem 5.3]. We formulate our results

number fields separately, as there are no assumptions involved about weights in this cas
Note that becauseF will be a finite field in this case, as before we get an isomorph

K
(n)
2n−r(O)→K

(n)
2n−r(F ) for all n � 2 and allr.

THEOREM 1.10. – LetF be a number field. LetO be a localization of the ring of integers
F at a nonzero prime ideal. Then

(1) There is a mapHr(M̃•
(n)(O))→K

(r)
2n−r(O) such that the diagram

Hr(M̃•
(n)(O)) K

(n)
2n−r(O)

�

Hr(M̃•
(n)(F )) K

(n)
2n−r(F )

commutes, where the lower horizontal map is the map in(1.1).
(2) If in addition σ :F →K (K complete again) is an embedding withσ(O) ⊂ R, then for

r = 1, the regulator map

regσ :H
1
(
M̃•

(n)(O)
)
→K

(n)
2n−1(O)

σ→K
(n)
2n−1(R)→K

is given by mapping[x]n to±(n− 1)!Lmod,n(σ(x)).
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872 A. BESSER AND R. DE JEU

Remark1.11. – For any fixed element inH1(M̃•
(n)(F )), all elements involved are special

units for almost allp, so that this theorem applies to any given element inH1(M̃•
(n)(F )) for

ution

n
lts of

ifferent
sion of
d by

ds
ations

ified

tion
lé
almost allp.

If we try to apply Theorem 1.10 to cyclotomic elements, i.e., to the elements[ζ]n
corresponding to anmth root of unityζ we notice that it applies directly only ifm is not a power
of p since otherwiseζ is not special. However, using relations between symbols (the distrib
relation, see Proposition 2.11) we are able to prove the following theorem.

THEOREM 1.12. – Under the assumptions of Theorem1.10, the regulator map

regσ :H
1
(
M̃•

(n)(F )
)
→K

(n)
2n−1(F )∼=K

(n)
2n−1(O)

σ→K
(n)
2n−1(R)→K

maps[ζ]n to±(n− 1)!Lmod,n(σ(ζ)) if ζ is any root of unity inF ∗.

Remark1.13. – Because it is known that the elements[ζ]n for n � 2, whereζ runs through

the primitivemth roots of unity, generateK(n)
2n−1(Q(µm)), this gives a complete descriptio

of the syntomic regulator for cyclotomic fields. This particular result extends the resu
[18], where the corresponding result was proved only for roots of unity of orderm with
(m,p) = 1 (see Théorème 2.22), and is equivalent to the results of [26]. That paper has a d
formulation, with another version of a syntomic regulator and also using a specialized ver
the polylogarithm at roots of unity. The relation with Coleman’s polylogarithm was prove
Barsky (unpublished). The result of Gros is that, forσ :F →K as before, the element[ζ]n is
mapped under the syntomic regulator toLi(p)n (σ(ζ)), whereLi(p)n is defined by

Li(p)n (z) = Lin(z)−
1
pn

Lin(zp).

Note that the expansion ofLi(p)n at 0 is
∑

(k,p)=1 z
k/kn, and thatLmod,n(σ(ζ)) = Lin(σ(ζ))

for any root of unityζ becauselog(ζ) = 0, so the formula in Theorem 1.12 above rea
±(n−1)! Lin(σ(ζ)). The difference between the results is caused by the different normaliz
of the regulators. One has the relation

regGros =
(
1− Frob

pn

)
reg,

whereFrob is the Frobenius automorphism. (The Gros regulator is only defined for unram
fields.) From Galois equivariance it follows that

Frob
(
Lin(ζ)

)
=Lin

(
Frob(ζ)

)
=Lin(ζp).

The relation between the two results is therefore clear.

We now state the following conjecture.

Conjecture1.14. – LetK ⊂ Cp be a complete discrete valuation subfield (i.e., the valua
is induced from the one onCp). LetR be the valuation ring ofK . Assume the Beilinson–Sou
conjecture holds in characteristic zero ifn � 3. Then, for alln � 2, the regulator map

H1
(
M̃•

(n)(K)
)
→K

(n)
2n−1(K)∼=K

(n)
2n−1(R)→K

is given by the same formula as before,[x]n being mapped to±(n− 1)!Lmod,n(x).

4e SÉRIE– TOME 36 – 2003 –N◦ 6
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Remark1.15. – Of course, Conjecture 1.14 would imply that the map

M̃ (K)→K

on

hm, it

ast

e

oulé
There is

e

a brief

gram

a map

ic
n

given by mapping[x]n to Lmod,n(x) is well defined, as any relation among the[x]n would
give rise to the zero element inH1(M̃•

(n)(K)), and that this map induces the regulator map

H1(M̃•
(n)K). As the regulator does not depend on the choice of the branch of the logarit

implies that

H1
(
M̃•

(n)(K)
)
→K

given by mapping[x]n to Lmod,n(x) is independent of that choice. We shall verify this l

statement under the assumption that the mapM̃k(K)→K given by mapping[x]k to Lmod,k(x)
is well defined for allk � n in Proposition 2.8 below, after determining the dependence ofLin(z)
on the choice of the logarithm.

Remark1.16. – As will be described in Section 3,̃M•
(n)(K) and M̃•

(n)(R) are quotient
complexes of corresponding complexesM•

(n)(K) andM•
(n)(R), obtained by imposing th

relations[x]k + (−1)k[1/x]k for all k � 2. The general assumptions about the Beilinson–S
conjecture are necessary in order to prove this quotient map to be a quasi-isomorphism.
a mapHr(M•

(n)(R))→K
(n)
2n−r(R) assuming only the Beilinson–Soulé conjecture forK andκ.

Therefore, assuming only the Beilinson–Soulé conjecture forK andκ, we get a commutativ
diagram

H1(M•
(n)(R)) H1(M̃•

(n)(R))

[z]n �→±(n−1)!Lmod,n(z)

K
(n)
2n−1(R)

reg
K

As each of the steps in the proofs of Theorems 1.6 and 1.10 is fairly technical, we give
outline of the main steps and where in the paper they occur.

Using multi-relativeK-theory and localization (both discussed in Section 3), we get a dia

K
(n)
2n−1(O)

∼=
K

(n)
n (Xn−1

O ;�n−1) K
(n)
n (Xn−1

O,loc;�n−1) · · ·

K
(n)
2n−1(R)

∼=
K

(n)
n (Xn−1

R ;�n−1) K
(n)
n (Xn−1

R,loc;�n−1) · · ·

The rows (except the first term) will be used to construct the complexesM̃•
(n)(O) and

M̃•
(n)(R) in Section 3. If the Beilinson–Soulé conjecture holds generally enough, there is

H1(M̃•
(n)(O))→ K

(n)
n (Xn−1

O ;�n−1) ∼= K
(n)
2n−1(O). On the other hand, there is a syntom

regulatorK(n)
2n−1(R)→K . Using the embeddingO→R as in Theorem 1.6 gives us the map

H1
(
M̃•

(n)(O)
)
→K

(n)
2n−1(O)→K

(n)
2n−1(R)→K.
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Similar results will be proved ifF is a number field, but without assumptions on weights in
algebraicK-theory. We will also compare the complexes̃M•

(n)(O) and M̃•
(n)(R) with the˜• ˜•

7 by

d tying

s
A

it will
mmary

uch an
ued

c”

ytic
cs

m
e

is is

isc
nsion
complexesM(n)(F )M(n)(K) and constructed in [12, Section 3].
After reviewing syntomic regulators in Section 4, we analyze this in Sections 5 through

extending the regulator map over the maps

K
(n)
2n−1(R)∼=K(n)

n

(
Xn−1
R ;�n−1

)
→K(n)

n

(
Xn−1
R,loc;�n−1

)
.

The computation involves Coleman integration, and we start the paper by reviewing it, an
up some loose ends, in Section 2.

Notation. – Throughout the paper, ifA is an Abelian group, we shall writeAQ for A⊗Z Q. If
S is a subset of an Abelian group, we write〈S〉 for the subgroup generated byS. Therefore, ifS
is a subset of aQ-vector space,〈S〉Q is theQ-subspace generated byS.

If T is any ring with nonzero identity we letT � denote the special units, i.e., the unitsu of T
such that1− u is also a unit ofT .

R will be a complete discrete valuation ring of characteristic zero, with field of fractionK ,
and residue fieldκ of characteristicp > 0 and algebraic overFp. (Please note that in Appendix
K will have a different meaning, whereasR will not.)

2. Some preliminary material

We begin with recalling Coleman’s integration theory in the form and to the extent that
be needed for this work. References for the theory are [11] and [9]. There is also a short su
in [3].

Our basic data is a “basic wide open” in the sense of Coleman. The data defining s
object consist of a complete curveC/Cp, which is defined over some complete discretely val
subfield and which has good reductionC (the reader may takeP1 for C since this is the only
case that will be used in this paper), together with a finite nonempty set of pointsS ⊂ C(Fp)
whereFp is the algebraic closure ofFp. To every pointy ∈C(Fp) corresponds a “residue dis
Uy, a subspace of the rigid analytic space associated withC, consisting of all points inC whose
reduction isy. The basic wide openU = Uλ associated with the data above is a rigid anal
space obtained fromC by “removing discs of radiusλ < 1 from the insides of the residue dis
Uy for y ∈ S”. Technically this means that if the pointy is locally defined by the equation̄z = 0,
with z = zy some local parameter neary, then one removes the points inUy where|z|� λ. This
procedure depends on the choice ofz but becomes independent of this choice asλ approaches1.
We will not fix λ but think of it as approaching1 and will take it as large as needed. Fro
now on we will useUy to denote the residue disc ofy in U , which is the intersection of th
residue disc withU . This is the same as before unlessy ∈ S in which caseUy is an annulus
given by the equationλ < |zy|< 1. Our final basic datum is a Frobenius endomorphism. Th
a rigid analytic mapφ :Uλ1 →Uλ2 , for someλ1 andλ2, whose reduction̄φ is some power of the
Frobenius endomorphism of some model ofC over a finite field, extendedFp linearly. A good
example of such a morphism isφ(z) = zq on P1 for some powerq of p.

The goal of Coleman’s theory is to integrate certain differential forms onU . This is first
done locally, on each residue discUy . If y /∈ S this residue disc is isomorphic to the open d
{|z| < 1}. A rigid differential form on such a disc has a convergent power series expa∑

n�0 anz
ndz and integration is done term by term. Wheny ∈ S the formdzy/zy is also analytic

onUy and so there is no choice but to introduce a logarithm.
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DEFINITION 2.1. – Letπ ∈ C∗
p be such that|π| < 1. The branch of thep-adic logarithm

determined byπ is the unique functionlog = logπ :C
×
p → Cp which is multiplicative, defined

by the usual power series when|z − 1|< 1 and satisfieslog(π) = 0.

s)
ly

r
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e
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ther

re

d

We fix once and for all a branch of the logarithm. Then the integral ofdzy/zy can be taken to
be log(zy) and that allows integration of an arbitrary rigid analytic form on anyUy.

LetA(U) (respectivelyΩ1(U)) be the ring of rigid analytic functions (respectively one form
on U and letAloc(U) (respectivelyΩ1

loc(U)) be the ring ofCp-valued functions (respective
module of one forms) onU which are inA(Uy) (respectivelyΩ1(Uy)) for eachy /∈ S and
are in the polynomial ringA(Uy)[log zy] (respectively inA(Uy)[log zy]dzy) when y ∈ S. It
is implicit in this definition that it is independent of the choice of the local parametezy,
a fact which follows because for any two choices ofzy the difference between thelog(zy) is
in A(Uy).

Eachω ∈ Ω1
loc(U) can be integrated inAloc(U) in many ways, because we can choos

different constant of integration for eachUy. Coleman’s theory finds a subclass of forms
which one can assign canonically an integral inAloc(U) defined up to a global constant. This
done recursively as follows. First one finds integrals to all formsω ∈ Ω1(U). At each stage on
integrates all forms that can be written as

∑
fiωi wherefi are integrals which have been fou

in previous stages andωi ∈Ω1(U). The rules for finding the integrals are:
(1) The integral is additive.
(2) Wheng ∈A(U),

∫
dg = g +C, for some constantC.

(3) We haveφ∗ ∫ ω =
∫
φ∗ω+C.

The fact that these rules suffice to carry out the integration process uniquely and th
independent of the choice ofφ is the main result of Coleman (see [11] and [9]). One o
result about Coleman integration that will be used is the following.

PROPOSITION 2.2. –Let f ∈A(U)∗. Then the Coleman integral of the formdf/f is log(f).

Proof. –See [9, Lemma 2.5.1].✷
The original reason that Coleman integrals were introduced is probably to give ap-adic

analogue of complex iterated integrals. Letω1, ω2, . . . , ωr be forms inΩ1(U) and letx ∈ U .
Then we can define an iterated integral

fr(z) =

z∫
x

ω1 ◦ ω2 ◦ · · · ◦ ωr

by definingf1(z) =
∫
ω1 normalized so thatf1(x) = 0 and then by inductionfk(z) =

∫
fk−1ωk

again normalized so thatfk(x) = 0.
The definition of thep-adic polylogarithmsLir(z) is a slight modification of the above. He

we takeω1 =−dlog(1− z) andωi = dlog z for i > 1. Notice thatdlog z has a simple pole at0.
However, if we normalizeLir(z) at each step to vanish at0 this zero will cancel with the pole an
we will obtain a form which is also integrable at the residue disc of0. This gives the definition
of the introduction.

Remark2.3. – LetU be a wide open defined over a complete subfieldL of Cp, containing
at least oneL-rational pointx, and suppose we have chosen the branchlogπ with π in L. If
one has formsω1, . . . , ωr which are all defined overL, then an iterated Coleman integralf =∫ z
x ω1 ◦ · · · ◦ωr, where the constants are fixed so that all the intermediate integrals

∫
ω1 ◦ · · · ◦ωk

take anL-rational value atx, is Galois equivariant in the sense that for every automorphismσ of
Cp overL we have thatf(zσ) = (f(z))σ for everyz in U . In particular, ifz is defined overL
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thenf(z) is in L. ForLin, since the forms are eitherdlog z or dlog(1− z), which are all defined
overQp, this means that if we take a branchlogπ , with π in Qp, thenLin is Galois equivariant
overQp.

in
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We now want to collect some facts about the functionsLin and other things that we need
the rest of the paper.

We begin with recalling some results from [11]. The following is contained in Propositio
and Corollary 7.1a of loc. cit. (Note that Proposition 6.1 of loc. cit. contains an obvious misp

The functionsLin(z) are defined onCp \ {1}. If L is a complete finitely ramified extensio
of Qp then the limitlim z→1

z∈L
Lin(z) exists forn � 2, and is independent ofL. Using this limit as

the value forLin at 1,Lin extends to a function onCp, which is continuous on finitely ramifie
extensions ofQp.

If m andn are integers at least equal to 2, then onCp

Lin(zm) =mn−1
∑
ζm=1

Lin(ζz).(2.4)

Clearly the same formula holds forn= 1 provided1− zm �= 0.
Let loga and logb be two different branches of the logarithm. Denote the correspon

different branches ofLin by Lin,a andLin,b. Let β = loga p− logb p, and letv be the valuation
such thatv(p) = 1. Note that

loga(z)− logb(z) = v(z)β.(2.5)

PROPOSITION 2.6. – We have

Lin,a(z)− Lin,b(z) =−
1
n!

v(1− z)β
(
logn−1

a z + logn−2
a z logb z + · · ·(2.7)

+ loga z log
n−2
b z + logn−1

b z
)
.

Proof. –We first remark that by the construction of Coleman integrals the polyloga
depends on the branch of the log chosen only on residue discs where one of the forms i
in the definition, i.e.,dz/z anddz/(z−1), has a pole. This means thatLin,a andLin,b can differ
at most on the residue discs of0, 1 and∞, and in fact only on the latter two discs becauseLin(z)
is analytic on|z|< 1. We note that a priori it would seem that because the constant of integ
is determined by the value at0 the function could depend on the branch of the log everywh
but this is not the case exactly because logs do not appear inLin at the residue disc of0. Because
v(1 − z) �= 0 only on the residue discs of1 and∞ the formula is proved except in the cas
|z|> 1 and|z − 1|< 1. Suppose|z|> 1. Using (1.2) we obtain

Lin,a(z)− Lin,b(z) = (−1)n
(
Lin,b(1/z)− Lin,a(1/z)

)
− 1

n!
(
logna z − lognb z

)
=− 1

n!
(
logna z − lognb z

)
=− 1

n!
(loga z − logb z)

(
logn−1

a z + logn−2
a z logb z + · · ·+ logn−1

b (z)
)

=− 1
n!

v(1− z)β
(
logn−1

a z + logn−2
a z logb z + · · ·+ logn−1

b (z)
)
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becausev(z) = v(1− z) for suchz. It remains to consider the case|z − 1|< 1. Note that here
log(z) is independent of the branch so the formula to be proved reads

c

we

the

h to
lator

the
Lin,a(z)− Lin,b(z) =−
1

(n− 1)!
v(1− z)β logn−1 z.

We prove this by induction onn. Forn= 1 this follows immediately from (2.5). Assumen > 1.
According to [11, Proposition 7.1],Lin,a(z) − 1

n−1 Lin−1,a(z) log(z) extends to an analyti
function on|1 − z| < 1. (Note thatB(0,1) should be replaced withB(1,1) everywhere in the
formulation and the proof of loc. cit.) The result will follow from the induction hypothesis if
show that

γn(z) :=
(
Lin,a(z)−

1
n− 1

log(z)Lin−1,a

)
−
(
Lin,b(z)−

1
n− 1

log(z)Lin−1,b

)
= 0.

When we differentiateγn(z) we find

d
(
Lin,a(z)−

1
n− 1

log(z)Lin−1,a

)
− d

(
Lin,b(z)−

1
n− 1

log(z)Lin−1,b

)
=
((

1− 1
n− 1

)
Lin−1,a(z)−

1
n− 1

log(z)Lin−2,a(z)
)
dlog(z)

−
((

1− 1
n− 1

)
Lin−1,b(z)−

1
n− 1

log(z)Lin−2,b(z)
)
dlog(z)

=
n− 2
n− 1

γn−1(z)dlog(z) = 0

by induction. Soγn(z) is a constant on|z− 1|< 1, call it C, and we must show thatC = 0. But
γn(z) satisfies the distribution relation corresponding to (2.4). For|z − 1| < 1 andm = p this
relation now readsC =mn−1 ·m ·C, which showsC = 0 as required. ✷

PROPOSITION 2.8. – Let loga andlogb denote two branches of the logarithm, and denote
corresponding functions involvingLi’s by a subscripta or b. If the maps

M̃k(K)→Cp

given by mapping[x]k to Lmod,k,a(x) are well defined for2 � k � n, then the map oñMn(K)
mapping[x]n to Lmod,n,b(z) is well defined, and the map it induces on

H1
(
M̃•

(n)(K)
)
→Cp

is the same as the one induced by mapping[x]n to Lmod,n,a(x).

Remark2.9. –M̃k(K) will be constructed below in Section 3, but for a heuristic approac
working with it we refer to the beginning of the introduction. Our computation of the regu
map in Sections to come will show that, for a fixed choice oflog, the map

M̃n(R)→Cp

given by mapping[x]n to Lmod,n(x) is well defined, but we have to assume this for̃Mn(K).
Note also that for the special units, the functionLmod,n(x) does not depend on the branch of
logarithm by Proposition 2.8.
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Proof of Proposition2.8. – First of all observe that the functionsLn−m(z) logm(z) (m =
0, . . . , n − 1) andLin−m(z) logm(z) (m = 0, . . . , n − 1) span the sameQ-vector space, and
thereforeLmod,n(z) is any

∑n−1
amLin−m(z) logm(z) for which a0 = 1 andLmod,n(z) +

ther

e of

that

our
n

e

p

)

m=0

(−1)nLmod,n(1/z) = 0 (see (1.4)). The functionsfn(z) = Lin(z) − 1
n log(z)Lin−1(z) and

gn(z) = Lin(z) + 1
n! log

n−1(z) log(1 − z) satisfy this so they can be used asLmod,n(z). In
fact, anyLmod,n(z) =

∑
am Lin−m logm(z) can be expressed as linear combination of ei

fn−m(z) logm(z) (m= 0, . . . , n− 2) or gn−m(z) logm(z) (m= 0, . . . , n− 2), with coefficients
in the field generated overQ by theaj . Using this, one sees that, no matter what the choic
the Lmod,k(z) is, provided thatL is a subfield ofCp containing allaj ’s for all Lmod,k(z)’s,
the L-vector spaces spanned byLmod,m(z) logm(z) (m = 0, . . . , n − 2), fn−m(z) logm(z)
(m = 0, . . . , n − 2) andgn−m(z) logm(z) (m = 0, . . . , n− 2) are the same. Iterating thed on
M̃k(K), we get maps

M̃n(K)→ M̃n−1(K)⊗K∗
Q→ M̃n−2(K)⊗

(
K∗

Q

)⊗2→ · · ·→
2∧
K∗

Q ⊗
(
K∗

Q

)⊗n−2

mapping[x]n to ((1 − x) ∧ x) ⊗ (x ⊗ · · · ⊗ x). Because a functionLmod,k,a(z) logn−ka (z)
defines a map oñMk(K) ⊗ (K∗

Q)
⊗n−k by assumption, the intermediate steps tell us

all suchLmod,k,a(z) logn−ka (z) for k = 2, . . . , n are well defined functions oñMn(K), and
that this is equivalent to the same statement for thefk,a(z) logn−ka (z) (k = 2, . . . , n) or the
gk,a(z) logn−ka (z) (k = 2, . . . , n). (This also shows that our assumptions do not depend on
particular choice ofLmod,k(z)’s.) Applying this ton− 1 rather thann, we see that the functio

gn−1,a(z) is well defined onM̃n−1(K), and therefore the functiongn−1,a(z)v(z) is a well
defined function oñMn(K). By (2.7), if we let

Fk(z) =−
1
k!

v(1− z)β
(
logk−1

a z + logk−2
a z logb z + · · ·+ loga z log

k−2
b z + logk−1

b z
)

thenfn,a(z)− fn,b(z) equals

Fn(z)−
1
n

(
Lin−1,a(z)−Lin−1,b(z)

)
logb(z)−

1
n
Lin−1,a(z)

(
loga(z)− logb(z)

)
= Fn(z)−

1
n
Fn−1(z) logb(z)−

1
n
v(z)β Lin−1,a(z)

=− 1
n!

v(1− z)β logn−1
a (z)− 1

n
v(z)β Lin−1,a(z)

=− 1
n
v(z)βgn−1,a(z) +

1
n!

β
[
v(z) loga(1− z)− v(1− z) loga(z)

]
logn−2

a (z).

This allows[x]n �→ fn,b(x) to be expressed in terms of functions that are well defined onM̃n(K).
Finally, note that this also tells us that[x]n �→ fn,a(x) − fn,b(x) can be factorized through th
mapM̃n(K)→ M̃n−1(K)⊗K∗

Q, so thatfn,a andfn,b induce the same map onH1(M̃•
(n)(K)).

For the same reason,Lmod,n,a andfn,a (respectivelyLmod,n,b andfn,b) induce the same ma
onH1(M̃•

(n)(K)), so thatLmod,n,a andLmod,n,b induce the same map onH1(M̃•
(n)(K)). ✷

Remark2.10. – TheM̃n(K)’s will be constructed in Section 3 as quotients ofMn(K)’s.
These areQ-vector spaces generated by symbols[x]n for x in K , x �= 0,1, subject to (unknown
relations. Forn � 3, there is a mapd :Mn(K)→Mn−1(K)⊗K∗

Q mapping[x]n to [x]n−1 ⊗ x,
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and for n = 2 there is a mapM2(K)→ K∗
Q ⊗ K∗

Q mapping[x]2 to (1 − x) ⊗ x. M̃n(K)
is constructed as the quotientQ-vector space by imposing the relations[x]n + (−1)n[1/x]n
for n � 2. One can check along the lines of the proof of Proposition 2.8 that if the map

ap

es
king
entle

9],
s
two

of the
tions 2.1
r
also a

en
ition

t to
d Gysin
2.3]).

it
Mn(K)→Cp given by mapping[x]n to Lin,a(x) is well defined for somen � 2, then the map
Mn(K)→Cp given by mapping[x]n toLin,b(x) is also well defined, and induces the same m
onH1(M•

(n)(K)). Similarly, if the map given by mapping[x]k toLk,a(x) is well defined for all

2� k � n, then the map[x]n �→ Ln,b(x) is well defined, and the induced map onH1(M•
(n)(K))

is the same as when we useLn,b instead ofLn,a.

Finally, we shall also need the distribution relation for elements inMn(F ), as given in [12,
Proposition 6.1].

PROPOSITION 2.11. – If F is a field of characteristic zero that contains themth roots of
unity, then inMn(F ) (and hencẽMn(F )) we have

[xm]n =mn−1
∑
αm=1

[αx]n.(2.12)

3. Some K-theory

In this section we construct the complexes̃M•
(n)(O) as quotient complexes of complex

M•
(n)(O) for n � 2. The main idea is the same as in [12], but the fact that we will be wor

with a discrete valuation ring rather than a field gives rise to complications. For a fairly g
introduction to this method, for a field rather than forO, we refer the reader to [13, pp. 526–52
where there is an exposition forn= 2 andn= 3. A brisk overview of the construction for field
for all n is given in [14, pp. 144–148]. The notation below will follow the notation in those
papers closer than the one in [12].

In order to highlight the idea we start with a rather gentle exposition. For the proofs
statements that are used in the construction, we refer the reader to loc. cit., especially Sec
through 2.3, and 3. In loc. cit. most of the work was done overQ, but in fact the proofs hold ove
our baseO , a discrete valuation ring of characteristic zero, without any change. There is
very brief introduction to multi-relativeK-theory in Appendix A.

The idea of the whole construction is the following. IfB is a regular Noetherian scheme, th
the pullbackK∗(B)→K∗(A1

B) is an isomorphism. We shall be using an Adams decompos

with respect to weights,Km(X)Q =
⊕

iK
(i)
m (X). The weight behaves naturally with respec

pullback, and under suitable hypotheses for a closed embedding, there is a pushforwar
map with a shift in weights corresponding to the codimension (see, e.g., [12, Proposition

Let XB = P1
B \ {t= 1} with t the standard affine coordinate onP1. Write �1

B for the closed
subset{t= 0,∞} in P1

B . Then the relative exact sequence for the couple(XB ;�1
B) gives us

· · · →Kn+1(XB)→Kn+1

(
�1
B

)
→Kn

(
XB;�1

B

)
→Kn(XB)→Kn

(
�1
B

)
→ · · ·

for n � 0. Because the pullbackKn+1(B) → Kn+1(XB) is an isomorphism, combining
with the pullbackKn+1(XB)→Kn+1(�1

B) = Kn+1(B)2 shows that the mapKn+1(XB)→
Kn+1(�1

B) corresponds to the diagonal embeddingKn+1(B)→Kn+1(B)2. As this holds for
all n � 0, we get that we have an isomorphismKn(XB;�1

B) ∼= Kn+1(B) for n � 0. Note
that we have a choice of sign here in the isomorphism of the cokernel ofKn(B)→ Kn(B)2

with Kn(B).
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We can iterate this procedure using multi-relativeK-theory. (The construction of this is
recalled in Appendix A.) For the sake of exposition we give the argument here for the next level
of relativity. If we let�2

B = {t1 = 0,∞};{t2 = 0,∞}, then we can get a long exact sequence

g,
t

backs,
s
onal

t

e
ctral

one is

,

· · · →Kn+1

(
X2
B;{t1 = 0,∞}

)
→Kn+1

(
{t2 = 0,∞};{t1 = 0,∞}

)
→Kn

(
X2
B;�2

B

)
→Kn

(
X2
B;{t1 = 0,∞}

)
→Kn

(
{t2 = 0,∞};{t1 = 0,∞}

)
→ · · · .

Using induction on the degree of relativity one sees that the composition

Kn+1

(
XB;{t1 = 0,∞}

)∼=Kn+1

(
X2
B;{t1 = 0,∞}

)
→Kn+1

(
{t2 = 0,∞};{t1 = 0,∞}

)∼=Kn+1

(
XB;{t1 = 0,∞}

)2
(with the first map the pullback along the projection(t1, t2) �→ t2) is the diagonal embeddin
hence we obtain an isomorphismKn(X2

B;�2
B)∼=Kn+1(XB;�1

B) for n � 0. Therefore we ge
Kn(X2

B ;�2
B)∼=Kn+1(XB;�B)∼=Kn+2(B) for n � 0. By induction one proves that

Kn

(
Xm
B ;�m

B

)∼=Kn+m(B)(3.1)

for n � 0 and m � 1, with �m
B shorthand for{t1 = 0,∞}; . . . ;{tm = 0,∞} (mth order

relativity). One can also do this with weights, and as the weights are compatible with pull
we get isomorphismsK(j)

n (Xm
B ;�m

B )∼=K
(j)
n+m(B) for n � 0 andm � 1. In those isomorphism

we will always pick the one that, at the stage of identifying the cokernel of the diag
embedding

Kn+j

(
Xm−j
B ;�m−j

B

)
→Kn+j

(
{tm−j+1 = 0,∞};�m−j

B

)∼=Kn+j

(
Xm−j
B ;�m−j

B

)2
with Kn+j(X

m−j
B ;�m−j

B ), subtracts the contribution attm−j+1 = ∞ from the one a
tm−j+1 = 0.

In order to get elements in groups likeKn+m(Xm
B ;�m

B ), we use localization sequences. W
shall explain the idea form= 1. (Form � 2 the localization sequences get replaced by a spe
sequence, see below.) Ifu is an element in our discrete valuation ringO such that bothu and
1− u are units, then we get an exact localization sequence

· · · →Km(O)→Km

(
XO;�1

O
)
→Km

(
XO,loc;�1

O
)
→Km−1(O)→ · · ·

whereXO,loc =XO \ {t= u} and we identified{t= u} ⊂XO with O (or ratherSpec(O)). We
used here thatu and1 − u are units inO so that{t = u} does not meet�1

O or {t = 1}, and
thatO is regular in order to identifyKm(O) with K ′

m(O). (If we want to leave out{t= u} and
{t= v} simultaneously for two distinct elementsu andv in O such that all ofu, v, 1− u and
1− v are units, which we shall do below, this already becomes far more complicated and
forced to use a spectral sequence.) The image ofK2(O)→K2(XO;�1

O) can be controlled by
looking at the weights, which for the bit that we are interested in gives us

· · · →K
(1)
2 (O)→K

(2)
2

(
XO;�1

O
)
→K

(2)
2

(
XO,loc;�1

O
)
→K

(1)
1 (O)→ · · · .

Because of weights inK-theory, one knows thatK(1)
2 (O) = 0, so we can analyzeK(2)

2 (XO;�1
O)

as subgroup ofK(2)
2 (XO,loc;�1

O). In [12, Section 3.2] universal elements[S]n were constructed

of which we want to use[S]2 here. It gives rise to an element[u]2 in K
(2)
2 (XO,loc;�1

O) with
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boundary(1−u)−1 in K
(1)
1 (O). If we use this for variousu (suitably modifying the localization

sequence above into a spectral sequence) and consider elements coming from the cup product

nd-

dy to
tion for

e) from

é

d
, see

e

nce

a

tion go
K
(1)
1

(
XO,loc;�1

O
)
×K

(1)
1 (O)→K

(2)
2

(
XO,loc;�1

O
)

we can get part ofK(2)
2 (XO;�1

O)∼=K
(2)
3 (O) by intersecting the kernel of the map correspo

ing toK
(2)
2 (XO,loc;�1

O)→K
(1)
1 (O) with the space generated by the symbols[u]2 and the image

K
(1)
1 (XO,loc;�1

O) ∪K
(1)
1 (O) of the cup product.

Unfortunately, this gets fairly technical, but after this gentle introduction we are now rea
begin. The reader is encouraged to compare this construction with the simpler construc
fields, which is carried out in [12, Section 3].

To ease the notation somewhat, we will drop the subscript (indicating the base schem
�n.

DEFINITION 3.2. – A schemeB has no low weightK-theory if the Beilinson–Soul
conjecture holds forB, i.e.,K(j)

m (B) = 0 if 2j � m andm > 0. A ring A is said to have no
low weightK-theory ifSpec(A) does not have low weightK-theory.

We shall use the following notation. Lett be the standard affine coordinate onP1. We let
X = P1

Z \ {t= 1}. If B is any scheme, we letXB =X ×Z B, andXn
B =XB ×B · · · ×B XB .

If U is a subset ofΓ(B,O∗) such that ifb is in U , then1 − b is also inΓ(B,O∗), we let
XB,loc =XB \ {t= b, b ∈ U}, andXn

B,loc =XB,loc×B · · ·×BXB,loc. The setU will normally
be clear from the context. We shall also abuse notation by writingXn

B,loc even after we took
direct limits over finite setsU . In the multi-relativeK-theory below, we shall write�n for
{t1 = 0,∞}; . . . ;{tn = 0,∞}. We will also write(Y ;�n) for (Y ;Y ∩�n).

Notation 3.3. – For the remainder of the section,O will be a discrete valuation ring with fiel
of fractionsF and residue fieldF. (Later on, we want to make another assumption as well
Assumption 3.9.)

LEMMA 3.4. – AssumeF and F have no low weightK-theory. Then for2j � q + m and
m> q, all of K(j)

m (Xq
F,loc;� q), K(j)

m (Xq
O,loc;� q) andK

(j)
m (Xq

F,loc;� q) are zero.

Proof. –Lemma 3.4 of [12] shows the statement to be true forF or F. The result forO follows
immediately from the exact localization sequence

· · · →K(j−1)
m

(
Xq

F,loc;�q
)
→K(j)

m

(
Xq

O,loc;�q
)
→K(j)

m

(
Xq
F,loc;� q

)
→ · · · . ✷

Remark3.5. – F has no low weightK-theory ifF is algebraic overFp, because allKn(F) are
torsion forn � 1. It also holds ifF is of transcendence degree 1 overFp by a result of Harder, se
[19, Korollar 2.3.2]. BecauseKn(F ) is torsion forn � 1 for a finite fieldF , using localization it
is enough to show thatKn(O) is torsion for a Dedekind ring in a function field of transcende
degree 1 over a finite field, which is the result quoted.

Remark3.6. –F has no low weightsK-theory if F is a number field, or more generally
subfield of the algebraic closure ofQ. As the residue field is an algebraic extension ofFp in this
case, the conditions of Lemma 3.4 are certainly satisfied, and all constructions in this sec
through without assumptions about the weights on theK-groups involved.

Consider the divisors onXn
O defined by puttingti = uj for someuj in O�. PutW 0 = Xn

O,
and letW 1 be the union of divisors{ti = uj} for all uj in some finite setU ⊂O�. Considering
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the singular locus ofW 1, it is easy to see that one can extend this to a stratificationW 0 ⊃W 1 ⊃
· · · ⊃Wn+2 = ∅ onXn

O, with all W s \W s+1 for s= 0, . . . , n+1 consisting of a finite union of
Xn−s

O,loc, X
n−s
F,loc andXn−s+1

F,loc ’s, which are regular. Using the localization sequences

ves

e that

he

e

· · · →K
(j+s)

n,W s+1

(
Xn

O;�n
)
→K

(j+s)
n,W s

(
Xn

O;�n
)

→K
(j+s)
n,W s\W s+1

(
Xn

O \W s+1;�n
)
→K

(j+s)
n−1,W s+1

(
Xn

O;�n
)
→ · · ·

whereK(j+s)
n,W s+1(Xn

O;�n) etc. isK-theory with support. We get an exact couple, which gi

rise to a spectral sequence converging toK
(j)
n (Xn

O;�n). We have isomorphisms

K
(j+s)
n,W s\W s+1

(
Xn

O \W s+1;�n
)∼=K(j)

n

(
W s \W s+1;�n

)
and we can identify the terms in the spectral sequence with terms of this type. Not
the components of(W s \ W s+1;�n) are of the form(Xn−s

O,loc;�n−s), (Xn−s
F,loc;�n−s) and

(Xn−s+1
F,loc ;�n−s+1). Takingj = n+1 we get a spectral sequence withEs,t

1 equal to

K
(n−s)
−s−t (X

n−s−1
O,loc ;�n−s−1)�K

(n−s)
−s−t (X

n−s−1
F,loc ;�n−s−1)�K

(n−s)
−s−t (X

n−s
F,loc;�n−s)

and converging toK(n)
−s−t(X

n−1
O ;�n−1). If we write K

(j),m
n,O for K

(j)
n (Xm

O,loc;�m) for
typographical reasons, and similarly forF andF, this looks as

...
...

...

K
(n),n−1
n−1,O K

(n−1),n−2
n−2,O �K

(n−1),n−2
n−2,F

K
(n−2),n−3
n−3,O �K

(n−2),n−3
n−3,F

�K
(n−2),n−2
n−3,F

. . .

K
(n),n−1
n,O K

(n−1),n−2
n−1,O �K

(n−1),n−2
n−1,F

K
(n−2),n−3
n−2,O �K

(n−2),n−3
n−2,F

�K
(n−2),n−2
n−2,F

. . .

K
(n),n−1
n+1,O K

(n−1),n−2
n,O �K

(n−1),n−2
n,F

K
(n−2),n−3
n−1,O �K

(n−2),n−3
n−1,F

�K
(n−2),n−2
n−1,F

. . .

...
...

...

(3.7)

Observe that, due to the choice of the stratification,K
(n−s)
∗ (Xn−s

F,loc;�n−s) occurs only when
s � 2. Also, by Lemma 3.4, if bothF and F have no low weightsK-theory, then in the
spectral sequence (3.7) converging toK

(n)
∗ (Xn−1

XO ,loc
;�n−1) there are no nonzero terms in t

row below the one beginning withK(n)
n (Xn−1

O,loc;�n−1) (i.e., the middle row of (3.7), wher

K
(n)
n (Xn−1

O,loc;�n−1) is denoted byK(n),n−1
n,O ).

LEMMA 3.8. – If F has no low weightK-theory, then the map

K(n)
n

(
Xn−1

O,loc;�n−1
)
→K(n)

n

(
Xn−1
F,loc;�n−1

)
is injective.

Proof. –Immediate from the localization sequence

· · · →K(n−1)
n

(
Xn−1

F,loc;�n−1
)
→K(n)

n

(
Xn−1

O,loc;�n−1
)
→K(n)

n

(
Xn−1
F,loc;�n−1

)
→ · · ·

as the first term here is zero by Lemma 3.4.✷
We now notice that all our localizations are compatible with localizing in a larger setU , and

that we can take direct limits of our localizations over finite setsU if we want. In order not to
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overburden the notation we shall suppressU from the notation. Notice that this means also that
all components in the spectral sequence (3.7) of codimension at least one withO as base become
the corresponding components withF as base, but that the corresponding coproducts are taken

n ring

(3.7)
h

f there
overti in O� rather thanF � = F \ {0,1}.

Assumption3.9. – We assume for the remainder of the section that the discrete valuatio
O has characteristic zero.

We now define symbols inK-theory. LetG = Spec(Z[S,S−1, (1 − S)−1]). In [12, Sec-
tion 3.2] universal symbols

[S]n ∈K(n)
n

(
Xn−1
G,loc;�n−1

)
(3.10)

were constructed. Here we only remove allti = S from Xn−1
G in order to obtainXn−1

G,loc. The
boundary of[S]n is

n−1∑
i=1

(−1)i[S]n−1|ti=S

in
∐
iK

(n−1)
n−1 (Xn−2

G,loc;�n−2) under the boundary in the spectral sequence corresponding to
for G. (Although the proofs in loc. cit. were formulated overQ, the constructions hold for a muc
larger class of base schemes without any change.) Recall that we denote byO∗ the units inO,
and byO� the set of elementsu in O∗ such that1− u is also inO∗.

DEFINITION 3.11. – Foru in O� we define the symbol

[u]n ∈K(n)
n

(
Xn−1

O,loc;�n−1
)

as the pullback of the universal symbol[S]n under the mapSpec(O)→G induced by mapping
S to u.

It was also shown in loc. cit. that the symbol[1]n exists forn � 2, but we shall tacitly ignore
this symbol here, as it can also be defined by the distribution relation Proposition 2.11 i
are other roots of unity inF .

We define inductively the symbolic part of theK-theory. Let

(1 + I)∗ =K
(1)
1

(
X1

O,loc;�1
)
=
{∏

j

(
t− uj
t− 1

)nj

such that
∏
j

u
nj

j = 1
}
,(3.12)

where theuj are inO∗ and thenj are inZ, and letSymbk(O)⊆K
(k)
k (Xk−1

O,loc;�k−1) be defined
by settingSymb1(O) =O∗

Q, and

Symbk+1(O) =
〈
[u]k+1, u∈O�

〉
Q
+ (1 + I)∗ ∪̃ Symbk(O)

for k � 1. The notation∪̃ means the following. There arek projections ofXk
O,loc to Xk−1

O,loc,
giving rise tok cup products

(1 + I)∗ ×K
(k)
k

(
Xk−1

O,loc;�k−1
)
→K

(k+1)
k+1

(
Xk

O,loc;�k
)
.

(1 + I)∗ ∪̃ Symbk(O) is theQ-subspace spanned by the image of all thosek cup products.
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Becaused[x]n =
∑n−1

i=1 (−1)i[x]n−1|ti=x whered is the differential in the spectral sequence,

we get a complexSymb•
(n)(O) mapping to the row of (3.7) which starts withK(n),n−1

n,O =
(n) n−1 n−1

roups

a

d-
to

we
ing

lizing

n

e

ero
n

al

l

ing
Kn (XO,loc;� ), given by

Symbn(O)→�Symbn−1(O)→�Symbn−2(O)→ · · ·→�Symb2(O)→�O∗.

If F has no low weightK-theory, then by Lemma 3.8 we can view those groups as subg
of the corresponding spaces forF . As the components corresponding toF in (3.7) will never
play a role in the boundary for elements inSymb•(n)(O), we can view the above complex as
subcomplex of the complex

K(n)
n

(
Xn−1
F,loc;�n−1

)
→�K(n−1)

n−1

(
Xn−2
F,loc;�n−2

)
→�K(n−2)

n−2

(
Xn−3
F,loc;�n−3

)
→ · · ·

where all coproducts for codimensionr are taken overr-tuples(u1, . . . , ur) in (O�)r.
LEMMA 3.13. – AssumeF has no low weightK-theory. Then the map correspon

ing to further localization fromK
(n)
n (Xn−1

F,loc;�n−1) for one set of localizing elements

K
(n)
n (Xn−1

F,loc;�n−1) for a larger one is injective.

Proof. –Forn= 1 there is nothing to prove. Forn � 2, we use the exact sequence (which
obtain from (3.7) asF has no low weightK-theory so we can consider the lowest nonvanish
row)

0→K(n)
n

(
Xn−1
F ;�n−1

)
→K(n)

n

(
Xn−1
F,loc;�n−1

)
→�K(n−1)

n−1

(
Xn−2
F,loc;�n−2

)
for two different set of localizing elements. As clearly the rightmost term injects under loca
more (i.e., make the coproduct larger as well), we are done by induction.✷

By Lemmas 3.8 and 3.13, if bothF andF have no low weightK-theory, then we also have a
inclusionSymbn(O) ⊂ Symbn(F ), so thatSymb•(n)(O) is a subcomplex ofSymb•

(n)(F ). We

can also forget about exactly which finite subsetU of O� or F ∗ \ {1} we use, and work in th
direct limit for suchU from now on.

If both F andF have no low weightK-theory, then all this takes place in the lowest nonz
row of the spectral sequence (3.7) above, and if we giveSymb•

(n) a cohomological grading i
degrees 1 throughn, we get a commutative diagram of maps

Hr(Symb•(n)(O)) K
(n)
n−r+1(X

n−1
O ;�n−1)

∼=
K

(n)
2n−r(O)

Hr(Symb•
(n)(F )) K

(n)
n−r+1(X

n−1
F ;�n−1)

∼=
K

(n)
2n−r(F )

because the differentials inSymb•(n)(O) and Symb•(n)(F ) are induced from the spectr
sequence (3.7).

Remark3.14. – Note that if bothF andF have no low weightK-theory, then the horizonta
maps here are injections by construction forr = 1.

The complexSymb•(n)(O) can be changed into a tensor complex, using the follow
subcomplex. DefineJk = Jk(O) as (1 + I)∗ ∪̃ Symbk(O) for k � 2. Let J •

(n)(O) be the
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subcomplex ofSymb•(n)(O) given by

Jn→ dJn +�Jn−1→ d(. . .) +�Jn−2→ · · ·→ d(. . .) +�J2→ d(. . .).

parts

n
f

PROPOSITION 3.15. – The subcomplexJ •
(n)(O) is acyclic.

Proof. –The same as the proof of Lemma 3.7 of [12], see also Remark 3.10 in loc. cit.✷
Note that the symmetric groupSn−1 acts onSymb•(n) and J •

(n)(O) because[S]n is in

K
(n)
n (Xn−1

G,loc;�n−1) by Lemma 2.12 and the beginning of Section 3.2 of [12]. Denote the
of those complexes on whichSn−1 acts alternatingly by the superscriptalt. Let the complex
M•

(n) be the quotient complex(Symb•
(n))

alt/(J •
(n)(O))alt. It has the form

Mn→Mn−1⊗O∗
Q→Mn−2 ⊗

2∧
O∗

Q→ · · ·→M2 ⊗
n−2∧
O∗

Q→O∗
Q ⊗

n−1∧
O∗

Q

with Mk(O) = Symbk(O)alt/Jalt
(k), which is generated by the classes of the elements[u]k with

u in O�. Denote the class of[u]k simply by [u]k. Then the differential is given by

d
(
[x]k ⊗ y1 ∧ · · · ∧ yn−k

)
= [x]k−1 ⊗ x∧ y1 ∧ · · · ∧ yn−k

if k � 3, and

d
(
[x]2 ⊗ y1 ∧ · · · ∧ yn−2

)
= (1− x)⊗ x∧ y1 ∧ · · · ∧ yn−2.

Remark3.16. – Note that we now have maps

Hp
(
M•

(n)(O)
)
→K

(n)
2n−p(O)(3.17)

if eitherF andF have no low weightK-theory, or ifF is a number field.

PROPOSITION 3.18. – If F and F have no low weightK-theory, then the localizatio
mapMn(O)→Mn(F ) is injective. In particular, we can viewM•

(n)(O) as a subcomplex o
M•

(n)(F ).

Proof. –From the localization sequence

· · · →K
(n−1)
2n−1 (F)→K

(n)
2n−1(O)→K

(n)
2n−1(F )→ · · ·

we get that the mapK(n)
2n−1(O)→K

(n)
2n−1(F ) is injective. Consider the commutative diagram

0 H1(M•
(k)(O)) M(k)(O) M(k−1)(O)⊗O∗

Q

0 H1(M•
(k)(F )) M(k)(F ) M(k−1)(F )⊗ F ∗

Q.

Because the maps toK(n)
2n−1(O) (respectivelyK(n)

2n−1(F )) from the H1’s are injective by
Remark 3.14, we find that the mapH1(M•

(k)(O))→H1(M•
(k)(F )) is injective. It follows by

induction onk that the mapsMk(O)→Mk(F ) are injective, as this is clear fork = 2, where
the vertical map on the right is the inclusionO∗

Q ⊗O∗
Q→ F ∗

Q ⊗F ∗
Q. ✷
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LetNk =Nk(O) = 〈[u]k+(−1)k[u−1]k〉Q where theu runs throughO�. This is the analogue
of Nk(F ) defined in [12, Proposition 3.20]. We consider the subcomplexN •

(n)(O) ofM•
(n)(O)

given by

n

es

ator
ap
f

ur
e

3.20
re,
of

s
he
Nn→Nn−1 ⊗O∗
Q→ · · ·→N2 ⊗

n−2∧
O∗

Q→ d
(
N2 ⊗

n−2∧
O∗

Q

)
.

LEMMA 3.19. – If F has more than two elements, or equivalently, ifO� �= ∅, thendN2(O) =
Sym2O∗

Q, and similarly forF .

Proof. –Becaused[u]2 +d[u−1]2 = u⊗ u in Sym2O∗
Q, dN2 = 〈u⊗ u,u ∈O�〉Q. Sym2O∗

Q

is spanned by elements of the formv ⊗ v wherev runs throughO∗. If v is a special unit, the
it is clear from the formula above thatv ⊗ v is in dN2. If not, v reduces to1 in F. Let w be a
special unit inO∗. Thenw, wv andwv−1 are special units, and they give the elementsw ⊗w,
(wv) ⊗ (wv) and (wv−1) ⊗ (wv−1) in Sym2(O∗

Q), and a linear combination of them giv
v⊗ v. ✷

PROPOSITION 3.20. – If the Beilinson–Soulé conjecture holds forF and for fields of
characteristic zero, then the complexN •

(n)(O) is acyclic.

Proof. –If there are no special units, there is nothing to prove as the complexN •
(n)(O) is zero.

If O� is nonempty, we show thatN •
(n)(O) is quasi-isomorphic to the complex

Symn
(
O∗

Q

)
→ Symn−1

(
O∗

Q

)
⊗QO∗

Q→ Symn−2
(
O∗

Q

)
⊗Q

2∧
O∗

Q→ · · ·

→ Sym2
(
O∗

Q

)
⊗Q

n−2∧
O∗

Q→ d
(
Sym2

(
O∗

Q

)
⊗Q

n−2∧
O∗

Q

)
.

It is well known that this last complex is acyclic, with an explicit homotopy oper
given in Corollary 3.22 of [12]. It was proved in Proposition 3.20 of [12] that the m
[u]k+(−1)k[1/u]k �→ u⊗ · · ·⊗u induces an isomorphism betweenNk(F ) and the subspace o
Symk(F ∗

Q) generated by the elementsu⊗· · ·⊗u with u in F ∗. Considering Proposition 3.18, o
complex is a subcomplex of the corresponding complex forF . So it will suffice to check that th
image ofNk(O) is Symk(O∗

Q) for k = 2, . . . , n. This is done as in the proof of Lemma 3.19.✷
Remark3.21. – In caseF is a number field, we can prove the statement of Proposition

without assuming the Beilinson–Soulé conjecture.F satisfies the Beilinson–Soulé conjectu
because by [7, Theorem 10.9] and [8], form � 2 the Beilinson regulator gives an injection
K

(j)
m (F ) into H2j−m−1

dR (Spec(F ⊗Q C);R(j − 1)). This can only be nonzero ifm = 2j − 1,

i.e., the only nontorsionKm(F )’s with m � 2 areK
(j)
2j−1(F )’s with j � 2. It was shown in

[12, Proposition 5.1] that the map[u]k + (−1)k[1/u]k �→ u ⊗ · · · ⊗ u gives an injection from
Nk(F ) into Symk F ∗

Q. BecauseF is finite, Km(F) is torsion form � 1, we have inclusion
Nk(O)⊂Nk(F ) by Proposition 3.18. The proof thatN •

(k)(O) is acyclic then proceeds as in t
general case.

Let M̃•
(n)(O) be the quotient complexM•

(n)(O)/N •
(n)(O). It has the form

M̃n(O)→ M̃n−1(O)⊗O∗
Q→ M̃n−2

(
O∗

Q

)
⊗

2∧
O∗

Q→ · · ·→ M̃2(O)⊗
n−2∧
O∗

Q→
n∧
O∗

Q

4e SÉRIE– TOME 36 – 2003 –N◦ 6



THE SYNTOMIC REGULATOR FOR THEK-THEORY OF FIELDS 887

with M̃k(O) =Mk(O)/Nk(O), and is clearly still generated by the classes of the elements[u]k,
whereu∈O�. We have similarly the complex̃M•

(n)(F ) defined in [12, Corollary 3.22]. In both
cases, the differential is now given by

and
at the

, either
or

n 3.15,
row of
teristic

ecture

2,

re
and the

n

d
(
[x]k ⊗ y1 ∧ · · · ∧ yn−k

)
= [x]k−1 ⊗ x∧ y1 ∧ · · · ∧ yn−k

if k � 3, and

d
(
[x]2 ⊗ y1 ∧ · · · ∧ yn−2

)
= (1− x) ∧ x∧ y1 ∧ · · · ∧ yn−2.

Remark3.22. – If the Beilinson–Soulé conjecture holds for fields of characteristic zero
for F, or F is a number field, then one proves in the same way as in Proposition 3.18 th
mapM̃n(O)→ M̃n(F ) is injective forn � 2, so we can identifỹM•

(n)(O) with a subcomplex

of M̃•
(n)(F ).

We have now proved the assertions (1) in Theorem 1.6 and Theorem 1.10. Namely
assume the Beilinson–Soulé conjecture is true for fields of characteristic zero as well as fF, or
thatF is a number field. We then have a map

Hr
(
M̃•

(n)(O)
)
→K

(n)
2n−r(O),

which is obtained as the composition of the maps

Hr
(
M̃•

(n)(O)
) ∼←Hr

(
M•

(n)(O)
) ∼←Hr

(
Symb•

(n)(O)
)
→K

(n)
2n−r(O).(3.23)

From left to right, those maps are justified by Proposition 3.20 or Remark 3.21, Propositio
and Lemma 3.4, as that lemma implies that we are working in the lowest nonvanishing
the spectral sequence (3.7). Note that the Beilinson–Soulé conjecture for fields of charac
zero in general is only needed for the leftmost map to be an isomorphism.

If the Beilinson–Soulé conjecture holds forF , one has similar maps when replacingO with
F everywhere, with the leftmost map being an isomorphism if the Beilinson–Soulé conj
holds for fields in characteristic zero, or ifF is a number field.

If the Beilinson–Soulé conjecture holds forF andF, then the inclusion ofO intoF induces an
injection of complexesM•

(n)(O) intoM•
(n)(F ) by Proposition 3.18. Similarly, by Remark 3.2

the map fromM̃•
(n)(O) toM̃•

(n)(F ) is an injection if in addition the Beilinson–Soulé conjectu
holds for fields of characteristic zero. Those maps are compatible with the maps in (3.23)
corresponding ones forF , i.e., the diagram

Hr(M̃•
(n)(O)) Hr(M•

(n)(O))
∼

K
(n)
2n−r(O)

Hr(M̃•
(n)(F )) Hr(M•

(n)(F ))∼
K

(n)
2n−r(F )

(3.24)

commutes.

Remark3.25. – IfF ′/F is an arbitrary field extension, andO′ ⊂ F ′ is a discrete valuatio
ring withO ⊂O′ ∩F , then there are obvious maps̃M•

(n)(O)→M̃•
(n)(O′), and similarly forF

andF ′, as well as for the complexesM•
(n). The corresponding map fromM•

(n)(F ) toM•
(n)(F

′)
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is injective provided eitherF is a number field, or the Beilinson–Soulé conjecture is true forF ′

(and hence forF ), cf. [12, Remark 3.17]. Again, if in addition the Beilinson–Soulé conjecture
holds for fields of characteristic zero, orF ′ is algebraic overQ, the map fromM̃• (F ) to

s the

,

zero,

fields
s

ing the
briefly

f still

.

s
get

ap
(n)

M̃•
(n)(F

′) is injective. This is proved as in the proof of Proposition 3.18 or Remark 3.22, a

assumptions mean that the necessary maps toK
(n)
2n−1(F ) andK(n)

2n−1(F
′) exist and are injective

and because the mapK(r)
2n−r(F )→K

(r)
2n−r(F

′) is always injective.
Similarly, if the Beilinson–Soulé conjecture holds forF ′ andF′ (and hence forF andF),

the mapK(n)
2n−1(O)→K

(n)
2n−1(O′) is injective as those inject intoK(n)

2n−1(F ) andK
(n)
2n−1(F

′)
respectively. It then follows in the same way that the map fromM•

(n)(O) to M•
(n)(O′) is

injective. If in addition the Beilinson–Soulé conjecture holds for fields of characteristic
or F ′ is algebraic overQ, then the map from̃M•

(n)(O) to M̃•
(n)(O′) is injective.

In particular, all those maps are injective if the Beilinson–Soulé conjecture is true for
of characteristic zero and forF′, or F ′ is algebraic overQ. If this is the case, we shall alway
view all complexes as being subcomplexes of the corresponding complexes ofF ′, and view all
K-groups (tensored withQ) as being contained in the correspondingK-groups ofF ′.

Remark3.26. – We make a few remarks about the above constructions without assum
Beilinson–Soulé conjecture. There are various places where it plays a role, and we will
run through them.

It is well known thatK(1)
n (O) = 0 for n � 2, K(0)

n (F) = 0 for n � 1, andK
(1)
n (F) = 0 for

n � 2. This means that in (3.7), the last two columns (which would correspond to degreesn and
n + 1 for our complexes) are always zero below our main row. Lemma 3.8 and its proo
apply forn= 1 andn= 2. Forn= 1, the localization sequence used in the proof is simply

· · · →K
(0)
1 (F)→K

(1)
1 (O)→K

(1)
1 (F )→ · · · ,

and forn= 2 we conclude from

· · · →K
(1)
2

(
X1

F ;�1
)
→K

(1)
2

(
X1

F,loc;�1
)
→�K(0)

1 (F)→ · · ·

andK(1)
2 (X1

F ;�1)∼=K
(1)
3 (F) = 0 thatK(1)

2 (X1
F,loc;�1) = 0, allowing the proof to go through

Lemma 3.13 still applies withn= 2. Together this gives us that we have inclusions

Symb2(O) Symb2(F )

K
(2)
2 (X1

O,loc;�1) K
(2)
2 (X1

F,loc;�1),

as well as mapsHr(Symb•(n)(O))→K
(n)
2n−r(O) andHr(Symb•(n)(F ))→K

(n)
2n−r(F ) (which

are compatible with the localization fromO to F ) for r = n− 1 andr = n. Again those map
are injections by construction ifn = 2 andr = 1. Proposition 3.15 always applies, and we
corresponding statements forM•

(n)(O) andM•
(n)(F ). Because the mapK(2)

3 (O)→K
(2)
3 (F )

is always an injection, we see as in Proposition 3.18 thatM2(O) injects intoM2(F ), and that
we may identify it with the subspace of the latter generated by all[u]2 with u in O�.

Moving on to theM̃•
(n)(. . .)’s, it follows from the proof of [12, Proposition 3.20] that the m

N2(F )→ Sym2(F ∗
Q) given by mapping[x]2 tox⊗x is an injection asK(1)

2 (L) andK(1)
3 (L) are
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zero for any fieldL. Therefore the complexN •
(n)(F ) is acyclic in degreesn− 1 andn. Because

we already know thatM2(O) injects intoM2(F ), the proof of Proposition 3.20 still shows that
N • (O) is acyclic in degreesn− 1 andn. This gives us a commutative diagram

inally
theory
ertain

e
emes
e need
ology

nition of
ever, be
aps on
s that

t in the

style
ic

5],
,

of

of
.

ing
(n)

Hr(M̃•
(n)(O)) Hr(M•

(n)(O))
∼

K
(n)
2n−r(O)

Hr(M̃•
(n)(F )) Hr(M•

(n)(F ))∼
K

(n)
2n−r(F )

for r = n− 1 andr = n without any assumptions.

Finally, one checks as in Remark 3.22 that̃M2(O) injects intoM̃2(F ).

4. Syntomic regulators

In this section we briefly recall some parts of the theory of rigid syntomic regulators, orig
due in the affine case to Gros [18], as described in detail in [2]. Our goal is to describe the
in the minimal details required to understand constructions to follow and to develop c
computational tools that are needed in later sections.

Recall thatR is a complete discrete valuation ring with quotient fieldK of characteristic0 and
residue fieldκ of characteristicp. We will assume thatκ is algebraic over the prime field sinc
this is required for some of the versions of syntomic cohomology we will be using. All sch
will be separated and of finite type over their respective bases. We describe as little as w
of the general theory, referring the interested reader to [2]. All versions of syntomic cohom
are defined as cohomologies of certain huge complexes. These are needed for the defi
the regulators but are useless when it comes to calculations. The cohomology can, how
realized, using some auxiliary data, as the cohomology of very explicit complexes, and m
cohomology can similarly be realized explicitly. The theory developed in loc. cit. guarantee
these explicit maps are indeed the correct maps and we avoid explicit mentioning of tha
sequel.

For the purpose of this work, the version best suited for computations is the Gros
modified syntomic cohomology denoted bỹHms in [2]. This is the weakest version of syntom
cohomology and all other versions, in particularHsyn has natural maps to it [2, Proposition 9.
which, by definition, are compatible with Chern classes in algebraicK-theory. Fortunately
according to [2, Proposition 8.6.3], whenX/R is proper and smooth, and2n �= i, i− 1, i− 2,
the canonical mapHi

syn(X,n)→ H̃i
ms(X,n) is an isomorphism. Therefore, for the purpose

computing the syntomic regulators for theK-groups we are interested in, working with̃Hms is
just as good as working withHsyn. To further simplify matters, we only give the description
H̃ms given certain additional data that may not exist in general but do exist in our situation

Suppose first thatX is a scheme over a fieldκ of characteristicp. Following Berthelot we

define the rigid complex ofX overK as follows: we choose an open immersionX
j→X into

a properκ-scheme and a closed immersionX → P into a p-adic formalR-scheme which is
smooth in a neighborhood ofX . We remark that in general there may be some difficulty do
this but in the cases we will consider it will be totally obvious how to do so.

In the above situation we can, following Berthelot, define the complex

RΓrig(X/K)P := RΓ
(
]X[P , j†Ω•

]X[

)
.
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Here, the notation]X[P stands for the tube ofX in P , which roughly means the space of points
in the rigid analytic space associated toP that reduce to a point inX . The functorj† of “sections
of overconvergent support” goes from the category of Abelian sheaves on]X[P to itself and is

d
ve
p to
s
.
be

will

hat
re

this

f

e

o quasi-
plex

e

defined by

j†(F ) = lim
−→
U

(jU )∗(F |U ),

where the direct limit is over allU which are strict neighborhoods of]X [P in ]X [P in the sense
of Berthelot andjU is the inclusion ofU in ]X[P . We recall thatU is a strict neighborhoo
if {U, ]X [P − ]X [P} is an admissible cover of]X[P in the sense of rigid analysis. We ha
indexed the complex for simplicity byP but we should remember the entire setup leading u
the definition. In any case, Berthelot shows that in the derived category ofK-vector spaces thi
complex is independent of all choices, so its cohomology,H∗

rig(X/K), is entirely well defined
To simplify notation we will drop theP subscript from the notation. In the applications it will
clear which additional data is being used.

We will often need to let a (κ-linear) Frobenius act on our complexes. To do that we
consider a morphismϕ :X → X which is aκ-linear base change from a model ofX defined
over a finite field withq = pr elements of therth power of the absolute Frobenius. We insist t
ϕ preservesX . Such aϕ is called aFrobenius endomorphismof X . We then assume that the
is a lift φ of ϕ to P . We callq the degree ofϕ andφ. It is then clear thatφ acts on the rigid
complex.

Next we describe the construction of the syntomic complexes. Here we assume thatX is a
smoothR-scheme and that we have an open immersionX → X into a properR-scheme and
a closed immersionX → P into aR-scheme, smooth in a neighborhood ofX , and that there
is a R-morphismφ :P → P inducing on the special fiber a Frobenius endomorphism. In
situation we can clearly embedXκ intoXκ and this last scheme into thep-adic completion̂P of
P to get to the situation we had when we defined the rigid complex, andφ will induce a lift of a
Frobenius endomorphism.

The given data induces a filtration on the complexRΓrig(Xκ/K) defined as follows: letJ
be the sheaf of ideals defining the generic fiberXK inside]Xκ[P̂ and consider the filtration o
Ω•
]Xκ[

P̂

given by the complexes

Fn
J Ω

•
]Xκ[

P̂

:= JnΩ0→ Jn−1Ω1→ · · · ,

where it is understood thatJr =O for non positiver. This filtration induces a filtration on th
rigid complex by

FnRΓrig(Xκ/K) := RΓ
(]
Xκ

[
P̂
, j†Fn

J Ω
•
]Xκ[

P̂

)
.

Berthelot shows that these complexes are again independent of the additional data up t
isomorphism. We can now define the Gros style modified syntomic complex to be the com

R̃Γms(X,n) := Cone
(
FnRΓrig(Xκ/K)

1−φ∗/qn

−−−−−→RΓrig(Xκ/K)
)
[−1].

The map in the cone is a shorthand for the composition of the indicated map1 − φ∗/qn with
the natural map ofFnRΓrig(Xκ/K) into RΓrig(Xκ/K). To fix notation for Cones we use th
following sign convention here. Iff :A•→ B•, thenCone(A•→B•)[−1] is given in degreei
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by

Ai ⊕Bi−1 with differentiald(a, b) =
(
da, f(a)− db

)
.(4.1)

f the
sible

ic are
quasi-

ic
ake the

ions.

.
igid
in
of

ism

ond

.

One can show that̃RΓms(X,n) is independent of the additional data except for the choice o
Frobenius endomorphismϕ. Here, in the general case one takes a direct limit over all pos
Frobenius endomorphisms as described in [2, Definition 8.4]. For a properX , in particular when
X =R, and under the same conditions where the map from syntomic to modified syntom
isomorphisms as described before, all the connecting homomorphisms of the limit are
isomorphisms so we may in fact fix a singleϕ.

In [2] syntomic regulators from theK-theory ofX into the various versions of syntom
cohomology were constructed. For the cohomology theory we are considering these t
form of Chern classes,

ci,j :Kj(X)→ H̃2i−j
ms (X, i).

In this work we will need to consider similar maps in the relative and multi-relative situat
These were not constructed in loc. cit. but are constructed in Appendix A.

We recall the computation of the regulator on a part of theK-theory of affineR-schemes
SupposeX = Spec(A) is such a scheme. We will give an explicit description of the r
and syntomic cohomology ofX . We can choose an embedding ofX as an open subset
the projectiveP = X . SupposeXκ is defined inXκ by the nonvanishing of the reductions
functionshi. Then forλ < 1 we define a rigid spaceUλ by the conditions|hi|> λ. TheUλ are
strict neighborhoods of]Xκ[P̂ in ]Xκ[P̂ . It follows that there exists a map

lim
−→
λ<1

Γ
(
Uλ,Ω•)→RΓrig(Xκ/K).

PROPOSITION 4.2. – This map is a quasi-isomorphism. In addition, this quasi-isomorph
is functorial with respect to maps of pairs(X,X).

Proof. –The first statement follows from the proof of Proposition 1.10 in [1]. The sec
statement is a consequence of the construction of the rigid complexes in [2].✷

To obtain the modified syntomic complex, suppose we have a mapφ :X→X whose reduction
is a Frobenius endomorphism fixingXκ. The idealJ considered above is the0 ideal in this case
We thus get a quasi-isomorphism

Cone
(
lim
−→
λ

Γ
(
Uλ,Ω�n) 1−φ∗/qn

−−−−−→ lim
−→
λ

Γ
(
Uλ,Ω•))[−1]∼= R̃Γms(X,n).

We formally writeU for the system of spaces{Uλ} and define

Ωi(U) := lim
−→
λ

Γ
(
Uλ,Ωi

)
.(4.3)

It follows that

H̃i
ms(X,n) =

{(ω, ε): ω ∈ FnΩi(U), ε ∈Ωi−1(U), dω = 0, dε= (1− φ∗/qn)ω}
{(dω, (1− φ∗/qn)ω− dε), ω ∈ FnΩi−1(U), ε ∈Ωi−2(U)} ,(4.4)

with FnΩj(U) = 0 if n < j andΩj(U) otherwise.
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As mentioned in the introduction, in many cases syntomic cohomology becomes isomorphic
to rigid cohomology. The normalization of this isomorphism is perhaps not the obvious one
and since the computation of the regulator depends on the particular normalization, we describe

t
d

r-

f syn-
0.1.3]
rela-

e
. This

ations.
ne

at
he

n to
this here at least in a special case (see [2] for a fuller discussion). Suppose thatX has relative
dimensioni− 1 overR. Suppose in the description above that(ω, ε) ∈ H̃i

ms(X,n). We see tha
ω = 0 sodε= 0. Thusε defines a class inHi−1

rig (Xκ/K) which is easily seen to be well define

up to an element of(1− ϕ∗/qn)FnHi−1
rig (Xκ/K). Whenn � i > relative dimension ofX , as

will be the case for us, the map(
1− ϕ∗/qn

)
:Hi−1

rig (Xκ/K)/FnHi−1
rig (Xκ/K)(4.5)

→Hi−1
rig (Xκ/K)/

(
1− ϕ∗/qn

)
FnHi−1

rig (Xκ/K)

is an isomorphism by [2, Proposition 8.6.3].

DEFINITION 4.6. – Whenn � i > relative dimension ofX , we have a canonical isomo
phism,

H̃i
ms(X,n)∼=Hi−1

rig (Xκ)/Fn, (0, ε) �→
(
1− ϕ∗/qn

)−1 (class ofε).

The justification for this normalization requires a longer tour into the general theory o
tomic cohomology than we would like to present. The reader may refer to [2, Proposition 1
for example. In any case, note that this choice is functorial. We will make this definition in
tive situations as well.

We now describe the regulator in this special case. First of all, considerf ∈ A∗. If f̄ is the
reduction off one finds thatϕ∗f̄ = f̄ q and therefore thatf0 := f q/φ∗f is congruent to1 mod
the maximal ideal ofR. One can deduce from this that the functionlog(f0) is analytic on some
Uλ.

LEMMA 4.7 [2, Proposition 10.3]. –The syntomic Chern characterch11 sends the class off in
K1(X) to the cohomology class of(dlog f, log(f0)/q) in the representation(4.4)of H̃1

ms(X,1).

The value of the regulator on a cup productf1 ∪ · · · ∪ fr in Kn(X) is the cup product of th
regulators of thefj ’s, so it is enough to describe the cup product on syntomic cohomology
is given, in the notation of (4.4), by any of the formulas, depending on the parameterγ,

(ω1, ε1)∪ (ω2, ε2)(4.8)

=
(
ω1 ∧ ω2, ε1 ∧

(
γ + (1− γ)

φ∗

qj

)
ω2 + (−1)degω1

((
(1− γ) + γ

φ∗

qi

)
ω1

)
∧ ε2

)
.

We need to describe the pullback map in syntomic cohomology in certain special situ
Suppose thatX is an affine scheme andf :Y → X is a closed embedding on an affi
subscheme, and choose the same auxiliary data forX as before. We may compactifyY by
embedding it into its closureY in X . The difficulty in describing the pullback map fromX to
Y is that the lift of a Frobenius morphismφ will not preserveY in general. Note however th
we may and do assume thatϕ preservesYκ. The way to overcome this difficulty is to use t
embedding ofY into X to compute the syntomic complex ofY . This gives us the following
model forR̃Γms(Y,n),

R̃Γms(Y,n)∼=Cone
(
RΓ

(]
Y κ

[
X̂
, j†Fn

J Ω
•
]Y κ[

X̂

) 1−φ∗/qn

−−−−−−→RΓ
(]
Y κ

[
X̂
, j†Ω•

]Y κ[
X̂

))
[−1]

(X̂ is thep-adic completion ofX) and the pullback map is now simply obtained by restrictio
the tube]Y κ[

X̂
. HereJ is the ideal ofY K in XK .
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Suppose now thatY is of relative dimensioni− 1 overR and that we are given an element
of H̃i

ms(X,n) represented by the pair of forms(ω, ε) as in (4.4). We would like to study
the pullback of this element toY , identified with an element ofHi−1

rig (Yκ/K)/Fn as in

p

xes

backs
fine

ll
y

ge
Definition 4.6. Note that this pullback does not factor throughHi−1
rig (Xκ/K)/Fn becauseX

is of higher dimension thanY in general. Recalling the setsUλ we see that for eachλ the set
Uλ ∩ ]Y κ[

X̂
is a strict neighborhood of]Yκ[

X̂
in ]Y κ[

X̂
. It follows that we may factor the ma

RΓrig(Xκ/K)→RΓrig(Yκ/K), respectivelyFnRΓrig(Xκ/K)→ FnRΓrig(Yκ/K), as

lim
−→
λ

Γ
(
Uλ,Ω•)→ lim

−→
λ

Γ
(
Uλ ∩

]
Y κ

[
X̂
,Ω•)→RΓ

(]
Y κ

[
X̂
, j†Ω•

]Y κ[
X̂

)
,

respectively withΩ• replaced byFn
J Ω

•. We may therefore factor the map of syntomic comple
R̃Γms(X,n)→ R̃Γms(Y,n) via

Cone
(
lim
−→
λ

Γ
(
Uλ ∩

]
Y κ

[
X̂
, Fn

J Ω
•) 1−φ∗/qn

−−−−−−→ lim
−→
λ

Γ
(
Uλ ∩

]
Y κ

[
X̂
,Ω•))[−1].(4.9)

LEMMA 4.10. – In the situation described above, letθ ∈ lim
−→λ

Γ(Uλ ∩ ]Y κ[
X̂
, Fn

J Ω
i−1) be

such thatdθ = ω|]Y κ[
X̂

. Then the image off∗(ω, ε) in

Hi−1
rig (Yκ/K)/

(
1− ϕ∗/qn

)
FnHi−1

rig (Yκ/K)

is the same as the image ofε|]Y κ[
X̂

− (1 − φ∗/qn)θ ∈ lim
−→λ

Γ(Uλ ∩ ]Y κ[
X̂
,Ωi−1) in the same

group.

Proof. –Subtract the boundaryd(θ,0) = (dθ, (1− φ∗/qn)θ) from (ω, η)|]Y κ[
X̂

in (4.9). ✷
Finally we specialize even further and show how to compute the difference of the pull

at two nearby points. We assume thati = n. Consider a situation where we are given an af
X together with a smooth affine mapπ :X → B to another affine schemeB smooth overR.
Suppose thatπ extends tōπ :X→B. Let z′ ∈B(κ) and letD be the rigid analytic space of a
points ofB reducing toz′ (this is the residue disc ofz′ in the terminology of Coleman). For an
z ∈D(K) let fz be the embedding ofYz := π−1(z) in X . TheYz for z ∈D(K) have a common
reduction which we denote byYκ, and theπ̄−1(z) have a common reductionY κ, which is a
compactification ofYκ. Finally, the tube]Y κ[

X̂
is simplyπ̄−1(D).

PROPOSITION 4.11. – In the situation described above let(ω, ε) represent a class in
H̃i

ms(X, i). Let z1, z2 ∈ D(K), let Jj be the ideal definingYzj and let θj in lim
−→λ

Γ(Uλ ∩
π̄−1(D), Fn

Jj
Ωi−1) be such thatdθj = ω|π̄−1(D). Then, the images inHi−1

rig (Yκ/K) of the
pullbacksf∗

z1(ω, ε) minus the image in the same group off∗
z2(ω, ε) is the image ofθ2 − θ1 ∈

lim
−→λ

Γ(Uλ ∩ π̄−1(D),Ωi−1).

Proof. –As seen in Lemma 4.10, the image inHi−1
rig (Yκ/K)/(1− ϕ∗/qn)F iHi−1

rig (Yκ/K) is
the image of(1− ϕ∗/qi)(θ2 − θ1) and the result thus follows from Definition 4.6 of the ima
in Hi−1

rig (Yκ/K). ✷
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In the situation as above the following immediate corollary will also be useful. For any point
x ∈ D(K) the fiberπ̄−1(x) is a lift of Y κ and therefore the rigid cohomology ofYκ can be
computed as the cohomology oflim Γ(Uλ ∩ π̄−1(x),Ω•).

nd in
ns to

logy

f

a
of

the

to the
pect
is
−→λ

COROLLARY 4.12. – In Hi−1
rig (Yκ/K) the image of the differencef∗

z1(ω, ε)− f∗
z2(ω, ε) is the

image of(θ2 − θ1)|Uλ∩π̄−1(x) ∈ lim
−→λ

Γ(Uλ ∩ π̄−1(x),Ωi−1).

All of our considerations are also valid for the cohomology of diagrams of schemes, a
particular for the relative and multi-relative cohomologies that will be considered in sectio
come.

5. The integration down process

A key ingredient in the computation of the regulator will be a functional on rigid cohomo
obtained by repeated integration, which we now go on to describe.

Let κ be a field of characteristicp. SetXn = (P1
κ \ {t= 1})n. Let B be an affineκ-variety.

Let Y be an open affine subset ofXn × B. Let �n be the subset ofY where at least one o
the coordinates is either0 or∞. We write cohomology relative to�n to mean the multi-relative
cohomology taken in exactly the same way as was done in Section 3 forK-theory. We would
like to write an explicit complex computing the multi-relative rigid cohomology ofY .

We first choose the rigid dataXn ↪→ (P1
κ)
n ↪→ (P1

Spf(R))
n andB ↪→ B ↪→ PB whereB and

PB are projective spaces of some degree overκ and Spf(R) respectively. We thus obtain
rigid datum forY as well. As in Section 4 we obtain forλ < 1 a certain inverse system
rigid spacesU = {UY

λ }. We know that there exists a canonical quasi-isomorphismΩ•(UY ) :=
lim
−→λ→1

Ω•
UY

λ

→RΓrig(Y/K). Similarly, the complexes of rigid forms on the subspace ofUλ cut

out by equations of the formti = 0 or ti =∞ are quasi-isomorphic to the rigid complexes of
various components in�n.

As discussed (at length) in Appendix A, we can now write a complex quasi-isomorphic
multi-relativeRΓrig(Xn;�n/K) by taking iterated cones on the complexes above with res
to the restriction maps toti ∈ {0,∞}. We want to do the “battle of signs” correctly to write th
iterated cone as a simple complex. This can be done as follows: for0 � j � n consider all strictly
increasing functionsf : [1, . . . , j]→ [1, . . . , n]. To such a functionf we associate the subspace

Yf :=
{
(x1, . . . , xn) ∈ Y : xi ∈ {0,∞}, i /∈ imf

}
.

We can similarly define rigid spacesUY
f,λ forming an inverse systemUY

f , and like in (4.3) we can
formally define complexes of differential formsΩ•(UY

f ). Let us calln− j the degree off (this
includes the empty function∅ with degreen), which is the same as the codimension ofYf . The
complex computing our multi-relative cohomology can then be written as

⊕
i+deg f=kΩ

i(UY
f )

in degreek. Let us write an element in thef component of this complex as(ω, f). Then the
differential is given by

d(ω, f) = (dω, f)− (−1)degω
∑
g

χ(f, g)(ω|UY
g
, g)(5.1)

where

χ(f, g) =
{
(−1)f(r)+r if imf = img ∪· {f(r)},
0 otherwise,

with ∪· denoting disjoint union.
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DEFINITION 5.2. – The complex above is denotedΩ•(UY ;�n). We letF jΩ•(UY ;�n) be
the subcomplex having

⊕
i+deg f=k, i�j Ω

i(UY
f ) in degreek.

s
ons

nes

First
mplex

) and

re
Remark5.3. – Let us write this explicitly forn = 1 andn = 2. For n = 1 we haveX1 =
P1
κ−{t= 1} andY ⊂X1 is an open subset, which is the complement of{t= αj , j = 1, . . . , l},

with αj the reduction of someαj in R�. In this case the spaceUY
λ is defined by the inequalitie

|z−αj |> λ and|z−1|> λ andUY is the inverse limit of these. We have two possible functi
∅ and1 �→ 1 of degrees1 and0 respectively. We haveUY

∅ = {0,∞} andUY
1�→1 = UY . This

gives

O
(
UY

)
→ Ω1

(
UY

)
⊕
(
(K)0 ⊕ (K)∞

)
,

in degrees0 and1, where the index onK corresponds to being the functions ont= 0 andt=∞
respectively. The term of degree0 and the first summand in degree1 correspond to1 �→ 1. Work-
ing out the signs the differential is

d(h) =
(
dh,−

(
h(0), h(∞)

))
.

In the casen = 2, Y ⊂ X2 will typically be defined as the complement of the hyperpla
t1 = αj , t2 = αj , t1 = 1 andt2 = 1 andUY

λ is similarly defined by the conditions|zi − αj |> λ
and|zi − 1|> λ. The complex now becomes

O
(
UY

)
→Ω1

(
UY

)
⊕

⊕
i=1,2

O
(
UY ∩

{
ti ∈ {0,∞}

})
→Ω2

(
UY

)
⊕

⊕
i=1,2

Ω1
(
UY ∩

{
ti ∈ {0,∞}

})
⊕
(
(K)0,0 ⊕ (K)0,∞ ⊕ (K)∞,0 ⊕ (K)∞,∞

)
and the differentials are given by

d(h) = (dh,−h|t1∈{0,∞},−h|t2∈{0,∞})

in degree 0 and

d(ω,0,0)= (dω,ω|t1∈{0,∞}, ω|t2∈{0,∞})

d(0, h1, h2) =
(
0,dh1,dh2, (h1 − h2)

(
(0,0), (0,∞), (∞,0), (∞,∞)

))
in degree 1.

The following lemma is mostly an exercise in sign fixing.

LEMMA 5.4. – The complexesF jΩ•(UY ;�n) andF jRΓrig(Y ;�n/K) are quasi-isomor-
phic.

Proof. –We prove this without the filtrations. The result for the filtered part is then clear.
we note that by Proposition 4.2 this complex is quasi-isomorphic to the corresponding co
with Ωi(UY

f ) replaced by the degreei part of RΓrig(Yf/K) which we now denote byΓi for
simplicity. Consider now the double complex introduced in Appendix A (compare (A.18
(A.15)). Forβ : [1, k]→ [1, n] an increasing function, defineYβ = {(x1, . . . , xn) in Y : xβ(i) ∈
{0,∞}}. Then the complex in degreeq is

⊕
k+|β|=q Γ

k(Yβ). We can again write elements the
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as pairs(ω,β) and the differential is defined by

d(ω,β) = (dω,β) + (−1)q(−1)|β|
∑

χ′(β,β′)(ω|Y ′ , β
′)

ing
e

y
is

t. Let

l.
nique.
that

ned
β′
β

where

χ′(β,β′) =
{
(−1)r if imβ′ = imβ ∪· {β′(r)},
0 otherwise.

Now we want to switch to a dual point of view. The relation is as follows: forf a strictly
increasing function as before, we defineβ(f) to be the increasing function enumerat
[1, . . . , n] \ imf . Then we have|β(f)| = deg f andYf = Yβ(f). The key thing to check is th
following: if g is obtained fromf by deletingf(r), thenβ = β(f) is obtained fromβ′ = β(g)
by deletingβ′(f(r)− r+ 1). This easily gives the result.✷

Consider now the case whereB = Spec(κ) andY =Xn. Then the relative rigid cohomolog
Hn

rig(X
n;�n/K) is well known to be isomorphic toK , cf. (3.1). We can explicitly describe th

isomorphism. The basic idea (compare [18]) is of iterated integration between0 and∞. We can
takeUY

λ to beUn
λ whereUλ denotes the spaceP1

K \ {|t− 1|< λ} andUn
λ is thenth power of

Uλ. Let (ω, f) be inΩn(Un;�n) and suppose that

ω =G(tf(1), . . . , tf(j))dtf(1) ∧ · · · ∧ dtf(j)

(here the ordering is critical). Define

π(ω, f) =

0∫
∞

· · ·
0∫

∞

G(tf(1), . . . , tf(j))dtf(1) · · ·dtf(j).

Notice that now the order is not critical and we can integrate in whatever order we wan
HdR(Un;�n) be the homology ofΩ•(Un;�n). We have the following.

LEMMA 5.5. – There is a unique isomorphismHn
dR(U

n;�n) → K normalized by the
condition that on the class of a closed form(ω, f) with deg f = 0 it is given byπ(ω, f). This
functional is given as follows: consider a form(η, g) where g has degreem and of them
coordinates onUn

g which are fixed,i are fixed to be∞. Set

Π
(
(η, g)

)
= (−1)i+

∑
(g(k)+k)π(η, g).

Then the functional is given by the restriction of theK-linear extension ofΠ to closed forms.

Proof. –We can find a form(ω, f), with deg f = 0, whose cohomology class is non-trivia
The required isomorphism is determined by its value on such a form and is therefore u
To show thatΠ provides the required map, we only need to show, in view of the fact
Π(ω, f) = π(ω, f) whendeg(f) = 0, that it kills exact forms. The exact forms are span
by forms

d
(
F (tg(1), . . . , tg(j)) · dtg(1) ∧ · · · ∧ d̂tg(k) ∧ · · · ∧ dtg(j), g

)
= (−1)k−1

(
∂

∂tg(k)
F · dtg(1) ∧ · · · ∧ dtg(j), g

)
+ (−1)j+g(k)+k

(
F |tg(k)∈{0,∞} · dtg(1) ∧ · · · ∧ d̂tg(k) ∧ · · · ∧ dtg(j), h

)
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with h obtained fromg by removing thekth value andF a function on a component ofUn
h with

i coordinates forced to∞. Notice that( )

l
e

he

hoice of

ngs of
s

π
∂

∂tg(k)
F · dtg(1) ∧ · · · ∧ dtg(j), g

= π
(
F |tg(k)=0 · dtg(1) ∧ · · · ∧ d̂tg(k) ∧ · · · ∧ dtg(j), h

)
− π

(
F |tg(k)=∞ · dtg(1) ∧ · · · ∧ d̂tg(k) ∧ · · · ∧ dtg(j), h

)
because in the computation ofπ we can begin the integration on theg(k) coordinate. Now cal
the two terms on the right-hand side of the last equationα0 andα∞ respectively, and write th
sign in the definition ofΠ asSign(g, i). We therefore obtain

Π
(
d
(
F (tg(1), . . . , tg(j)) · dtg(1) ∧ · · · ∧ d̂tg(k) ∧ · · · ∧ dtg(j), g

))
= (−1)k−1 Sign(g, i)(α0 − α∞) + (−1)j+g(k)+k

(
Sign(h, i)α0 +Sign(h, i+ 1)α∞

)
.

Thus, clearly, to make this cancel, we need to chooseSign(g, i) = (−1)sign(g)+i with sign(g)
satisfying the relation

sign(g) + k− 1≡ sign(h) + j + g(k) + k+1 (mod 2)

(the last1 is there to make this alternating) whenh is obtained fromg by deletingg(k). After
cancellations this becomes

sign(g)≡ sign(h) + g(k) + j (mod 2).

It is easily seen thatsign(g) =
∑

(g(k) + k) satisfies this condition, which completes t
proof. ✷

Like in K-theory (see the discussion around (3.1)), the isomorphismHn
rig(X

n;�n/K)∼=K
can be obtained by a repeated application of boundary maps. At each stage there is a c
signs. Here we have taken the approach of writing down the isomorphismΠ directly and we
would now like to know how it can be obtained using boundary maps.

We have a short exact sequence

0→Hn−1
rig

(
Xn;�n−1/K

)
→Hn−1

rig

(
�n;�n−1/K

)
→Hn

rig

(
Xn;�n/K

)
→ 0,

and an isomorphismHn−1
rig (Xn;�n−1/K) ∼= Hn−1

rig (Xn−1;�n−1/K) under pullback. It fol-
lows from this that we can get two isomorphisms as the composition of the maps

Hn−1
rig

(
Xn−1;�n−1/K

)
→Hn−1

rig

(
�n;�n−1/K

)
→Hn

rig

(
Xn;�n/K

)
,

where there are two choices for the first map, corresponding to the two embeddi
(Xn−1;�n−1) in (�n;�n−1) as eithertn = 0 or tn =∞. The two different isomorphism
differ by a minus sign. Iterating this we get an isomorphism

K =H0
rig(pt/K) ∼→H1

rig

(
X1;�1/K

) ∼→ · · · ∼→Hn
rig

(
Xn;�n/K

)
.(5.6)
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PROPOSITION 5.7. – The composed mapK
(5.6)−−−−→ Hn

rig(X
n;�n/K) Π→ K is the identity

provided at each stage we choose the embedding asti = 0.

cit

e map

ot of
m
ger

oleman
can be

ted in
ows
vanishes
the
e

egree of
locks”
Proof. –From the proof of Proposition A.16 it is not difficult to get the following expli
description of the mapΩ•(�n;�n−1)→Ω•+1(Xn;�n) (dual to the map�(C•)→�(Y•)[−1]
in the notation of the proof of Proposition A.16): it is simply given by(ω, f) �→ (ω, f) where
f : [1, . . . , j]→ [1, . . . , n− 1] is considered on the right as a functionf : [1, . . . , j]→ [1, . . . , n]. It
follows that the map (5.6) with the choice of signs as in the proposition corresponds to th
sendingα in K to (α,∅) on the component withti = 0 for all i. ApplyingΠ to this we getα. ✷

Now comes a crucial point. In applications we will want to consider the cohomology n
(Xn;�n) but rather of an open subsetY obtained fromXn by removing subsets of the for
{tj = u} with u in κ∗ (e.g., sets of the formXn

loc as in Section 3). That means that it is no lon
possible to perform the integrals needed to constructΠ (and of course the isomorphism thatΠ
represents does not exist). It is sometimes possible, however, to replace the integral by a C
integral. We want to show that when this is possible it corresponds to an operation which
made sense out of in general.

LEMMA 5.8. –There is a short exact sequence

0→Hn
rig

(
Xn;�n/K

)
→Hn

rig

(
Y ;Y ∩�n/K

)
→E→ 0,

where Frobenius acts onHn
rig(X

n;�n) trivially and onE with strictly positive weights.

Proof. –Write Hi(∗) for Hi
rig(∗/K). From the diagram of pairs(

Xn \ Y ;�n \ Y
)
→

(
Xn;�n

)
←

(
Y ;Y ∩�n

)
we get the standard long exact sequence

· · · →Hn
(
Xn;�n

)
→Hn

(
Y,Y ∩�n

)
→Hn+1

(Xn\Y ;�n\Y )

(
Xn;�n

)
→ · · · .

The action of Frobenius onHn
rig(X

n;�n/K) is trivial because the isomorphism

Hn
rig(X

n;�n/K)∼=H0
rig(pt/K)

is Frobenius equivariant. To prove the lemma we need to show that the first arrow indica
the diagram is not0 while the last term has strictly positive weights. The first assertion foll
because it is easy to see that the same integration process described in Lemma 5.5 also
on exact relative forms on the pair(Y ;Y ∩ �n). It remains to show the statement about
weights. To do that we “peel off” the relativity step by step: we have a long exact sequenc

· · · →Hn
({tn∈{0,∞}}\Y ;�n−1\Y )

({
tn ∈ {0,∞}

}
;�n−1

)
→Hn+1

(Xn\Y ;�n\Y )

(
Xn;�n

)
→Hn+1

(Xn\Y ;�n−1\Y )

(
Xn;�n−1

)
→ · · ·

and the two terms on the sides fit into similar sequences. The key observation is that the d
the cohomology is always one more than the dimension of the space. The final “building b
are of the formHi+1

Xi\Y (X
i). By [10] such a term has weights betweeni + 1 and2i (because

X i \ Y is always of codimension1 by our assumptions) except that the term withi= 0 clearly
vanishes. Thus all terms have positive weights.✷
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COROLLARY 5.9. – Let M ⊂ Hn
rig(Y ;Y ∩ �n/K) be any Frobenius invariant subspace

containingHn
rig(X

n;�n/K). Then there exists a uniqueK-linear functional

erent

.
n

icative

gid

h
ary

al

tion
Π̃M :M →K

that is fixed under Frobenius and coincides with the functional induced byΠ onHn
rig(X

n;�n/K).

Of course the conclusion is also true withM = Hn
rig(Y ;Y ∩�n/K) in which case we will

denoteΠ̃M simply byΠ̃. We will need the uniqueness statement, however, for possibly diff
subspaces.

The mapΠ̃ gives a splitting ofV =Hn
rig(Y ;Y ∩�n/K) into a direct sumV =K ⊕E as a

φ-module, whereE has noφ-fixed vectors. We will need a certain result aboutφ-modules with
such a structure.

LEMMA 5.10. – Let Vi = K ⊕ Ei for i = 1,2,3 be threeφ-modules such thatφ has no
invariant vectors onEi for eachi and onE1 ⊗E2. LetΠi :Vi→K be the natural projection
Suppose there is aφ-equivariant pairing〈 , 〉 :V1⊗V2→ V3 which gives the usual multiplicatio
when restricted toK ⊗K . Then we haveΠ3(〈x1, x2〉) = Π1(x1) ·Π2(x2).

Proof. –The conditions of the lemma imply that the algebraic multiplicity of1 as an
eigenvalue ofφ onV1 ⊗ V2 is 1. It follows that the space ofφ-invariant functionals onV1 ⊗ V2
is 1-dimensional. Therefore the statement of the lemma has to be true up to a multipl
constant. This constant has to be1 because the statement is true forxi = 1. ✷

By assumption all components ofY are affine. We can therefore compute relative ri
cohomology using the complexΩ•(UY ;�n) of Definition 5.2.

DEFINITION 5.11. – A relative form inΩn(UY ;�n) is called Coleman integrable if for eac
of its component(ω, f) the expression definingπ(ω, f) makes sense when we replace ordin
integration with Coleman integration. Ifx is such a form we denote byΠCol(x) the expression
derived from theπ(ω, f) as in Lemma 5.5.

LEMMA 5.12. –Coleman integrable relative forms form a subspace ofΩn(UY ;�n) which is
closed underφ. Exact forms and forms extending toUn are Coleman integrable. The function
ΠCol is φ-invariant.

Proof. –The only thing which possibly requires proof is the fact that ifx is a relative form
which is Coleman integrable, then so isφ∗(x) andΠCol(φ∗(x)) = ΠCol(x). This is an easy
explicit computation. We may assume that

x=
(
G(tf(1), . . . , tf(j)) · dtf(1) ∧ · · · ∧ dtf(j), f

)
.

Then

φ∗(x) =G
(
tqf(1), . . . , t

q
f(j)

)
· d
(
tqf(1)

)
∧ · · · ∧ d

(
tqf(j)

)
.

The assumption thatx is Coleman integrable means the following: there is a func
F1(tf(1), . . . , tf(j)) which is a Coleman function in the first variable and such that

∂

∂tf(1)
F1 =G.
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SettingG1(tf(2), . . . , tf(j)) = F1|
tf(1)=0
tf(1)=∞ we can find a functionF2(tf(2), . . . , tf(j)) which is

again Coleman in the first variable such that

ed
logy

ss

ng
ction 5.
by
∂

∂tf(2)
F2 =G1

and we continue like this until we reachGj which is just a number equalingΠCol(x). Now we
start with

G̃(tf(1), . . . , tf(j)) =G
(
tqf(1), . . . , t

q
f(j)

)
qtq−1
f(1) · · ·qt

q−1
f(j).

The functoriality of the Coleman integral implies that we may take

F̃1(tf(1), . . . , tf(j)) = F1

(
tqf(1), . . . , t

q
f(j)

)
qtq−1
f(2) · · ·qt

q−1
f(j).

Then, as0q = 0 and∞q =∞ we get

G̃1(tf(2), . . . , tf(j)) =G1

(
tqf(2), . . . , t

q
f(j)

)
qtq−1
f(2) · · ·qt

q−1
f(j)

and we can continue this process until we findΠCol(φ∗(x)) = ΠCol(x). ✷
We call a cohomology class inHn

rig(Y ;Y ∩ �n/K) Coleman integrable if it is represent
by a Coleman integrable form. LetMCol denote the space of Coleman integrable cohomo
classes. It is an immediate consequence of the above thatΠCol induces a functionalMCol→K
which is Frobenius invariant. By the construction it is also clear thatΠCol is justΠ on forms that
extend toUn. By Corollary 5.9 this functional must coincide with the restriction toMCol of Π̃.
We therefore obtain

PROPOSITION 5.13. –For any Coleman integrable formx representing a cohomology cla
[x] we haveΠCol(x) = Π̃([x]).

6. Regulators for special elements

Recall that we have universal symbols (3.10)

[S]n ∈K(n)
n

(
Xn−1
G,loc;�n−1

)
whereG= Spec(Z[S,S−1, (1−S)−1]). Now letB =Spec(R[S,S−1, (1−S)−1]). Pulling back
via the canonical mapB→G we obtain elements, for which we retain the notation,

[S]n ∈K(n)
n

(
Xn−1
B,loc;�n−1

)
.

In this section we obtain some information on the regulators

reg
(
[S]n

)
∈ H̃n

ms

(
Xn−1
B,loc;�n−1, n

)
.

We embedXn−1
B,loc in P = (P1

R)
n−1 × P1

R (B is mapped to the last coordinate). Taki
the special fiber corresponds to the compactification discussed at the beginning of Se
Therefore, we obtain certain rigid subspacesUλ of PK . We denote the inverse system of these
Un−1
B,loc and we have complexesΩ•(Un−1

B,loc;�n−1) andF •Ω•(Un−1
B,loc;�n−1) as in Definition 5.2.
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A map φ whose reduction is a Frobenius endomorphism and which is compatible with all
boundaries is given by raising toqth power for a sufficiently largeq. One checks easily that
the sign convention for cones (4.1) is such that it commutes with taking the complex computing

phism:

ve.

these

at
g an
multi-relative cohomology. From Lemma 5.4 we therefore have a canonical quasi-isomor

Cone
(
F jΩ•(Un−1

B,loc;�n−1
) 1−φ∗/qj

−−−−−→Ω•(Un−1
B,loc;�n−1

)) ∼→ R̃Γms

(
Xn−1
B,loc;�n−1, j

)
.

From degree considerations it is very easy to see that

FnΩn
(
Un−1
B,loc;�n−1

)
=
(
Ωn

(
Un−1
B,loc

)
, [1, . . . , n− 1]→ [1, . . . , n− 1]

)
.

We can identify this space withΩn(Un−1
B,loc). On the other hand,FnΩn−1(Un−1

B,loc;�n−1) = 0.
Thus we obtain (compare (4.4)) the following expression, with the identification made abo

H̃n
ms

(
Xn−1
B,loc;�n−1, n

)
(6.1)

=
{(ω, ε): ω ∈Ωn(Un−1

B,loc), ε ∈Ωn−1(Un−1
B,loc;�n−1), dω = 0, dε= (1− φ∗/qn)ω}

{(0,dε), ε ∈Ωn−2(Un−1
B,loc;�n−1)}

.

We take this opportunity to consider two other situations that will be needed later. In
cases we compute the syntomic cohomology of(Xn

loc;�n) and so there is noB present. The
corresponding rigid spaces were already considered in previous sections. We denote byUn

loc the
spaceUXn

κ,loc . We then have

H̃n
ms

(
Xn
R,loc;�n, n

)
(6.2)

=
{(ω, ε): ω ∈Ωn(Un

loc), ε ∈Ωn−1(Un
loc;�n), dω = 0, dε= (1− φ∗/qn)ω}

{(0,dε), ε ∈Ωn−2(Un
loc;�n)} .

Note that this abuses the notation somewhat since the differential ofω is its differential as a
relative form. Also, since there are non+ 1 relative forms on(Un

loc;�n) we have

H̃n+1
ms

(
Xn
R,loc;�n, n+1

)
=
{(0, ε): ε ∈Ωn(Un

loc;�n), dε= 0}
{(0,dε), ε ∈Ωn−1(Un

loc;�n)} .(6.3)

This is simply thenth rigid cohomology of(Xn
κ,loc;�n) but note the twisted identification th

we have by Definition 4.6. Also note that in some of the computations we will be usin
altogether different model of this syntomic cohomology group.

Let

ωn := dlog(1− S)∧ dlog t1 − S

t1 − 1
∧ · · · ∧ dlog tn−1 − S

tn−1 − 1
.(6.4)

Our main result in this section gives the following partial data about the regulator of[S]n.

PROPOSITION 6.5. – The regulator of [S]n in H̃n
ms(X

n−1
B,loc;�n−1, n) is given, in the

representation(6.1), by(ωn, εn), with someεn in Ωn−1(Un−1
B,loc;�n−1).

Forgetting the relativity gives a mapK(n)
n (Xn−1

B,loc;�n−1)→K
(n)
n (Xn−1

B,loc). Let us denote the
image of[S]n by (S)n. The corresponding map in syntomic cohomology,

H̃n
ms

(
Xn−1
B,loc;�n−1, n

)
→ H̃n

ms

(
Xn−1
B,loc, n

)
,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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simply takes the pair(ω, ε) of (6.1) to (ω, ε′) in the representation (4.4), whereε′ is the
component ofε corresponding to the index function[1, . . . , n− 1]→ [1, . . . , n− 1]. Thus, our
proposition follows immediately from the following proposition.

n

tomic
ily by

he

ence

e to

.8

tive
PROPOSITION 6.6. –The regulator of(S)n in H̃n
ms(X

n−1
B,loc, n) is given, in the representatio

(4.4), by(ωn, ε′n), with someε′n in Ωn−1(Un−1
B,loc).

Using the formulas for the regulator map for functions, and the cup-product in syn
cohomology given by Lemma 4.7 and (4.8) respectively, this last proposition follows eas
pullback toB = Spec(R[S,S−1, (1− S)−1]) from the following purelyK-theoretic result.

PROPOSITION 6.7. – Let G = Spec(Z[S,S−1, (1 − S)−1]). Write (S)n also for the image

in K
(n)
n (Xn−1

G,loc) of [S]n in K
(n)
n (Xn−1

G,loc;�n−1) under the map corresponding to forgetting t
relativity. Then

(S)n = (1− S)∪ t1 − S

t1 − 1
∪ · · · ∪ tn−1 − S

tn−1 − 1
.

Proof. –Forgetting the relativity is compatible with the construction of the spectral sequ
used in (3.7), so in the map

K(n)
n

(
Xn−1
G,loc

)
→

∐
i=1,...,n−1

K
(n−1)
n−1

(
Xn−2
G,loc

)∣∣
ti=S

the element(S)n will be mapped under the differential in the spectral sequenc∑n−1
i=1 (−1)i(S)n−1|ti=S . (Recall that in this caseXn−1

G,loc is obtained fromXn−1
G by remov-

ing all tj = S.) From this we can determine(S)n very easily by induction using Lemma 6
below, as(S)1 = (1− S).

LEMMA 6.8. – For m>n> 0, the map

K(m)
m

(
Xn
G,loc

)
→

∐
i=1,...,n

K
(m−1)
m−1

(
Xn−1
G,loc

)∣∣
ti=S

is injective.

Proof. –Induction onn. Forn= 1, this is clear from the localization sequence

· · · →K(m)
m (XG)→K(m)

m (XG,loc)→K
(m−1)
m−1 (G)→ · · · ,

as K
(m)
m (XG) ∼= K

(m)
m (G) = 0 if m > 1. For the induction step, consider the commuta

diagram

K
(m)
m (Xn−1

G,loc ×G XG)
φ1

ψ1

∐
i=1,...,n−2

K
(m−1)
m−1 (Xn−2

G,loc ×GXG)|ti=S

ψ3

K
(m)
m (Xn−1

G,loc ×GXG,loc)
φ2

ψ2

∐
i=1,...,n−1

K
(m−1)
m−1 (Xn−2

G,loc ×G XG,loc)|ti=S

K
(m−1)
m−1 (Xn−1

G,loc)
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Here the first vertical column is part of an exact localization sequence.ψ3 is injective because
K

(m−1)
m−1 (Xn−2

G,loc ×G XG) is isomorphic toK(m−1)
m−1 (Xn−2

G,loc) under pullback from the base, and
(m−1) n−2 t

s
Here
we can restrict the image inKm−1 (XG,loc×GXG,loc) to tn−1 = 0 in order to find the elemen
back.φ1 is injective because again using pullback from the base this reduces to the casen− 1,
where it is true by induction. In particular, ifφ2(α) = 0 for someα, ψ2(α) = 0, andα= ψ1(β)
for someβ. Thenψ3(φ1(β)) = φ2(α) = 0, which impliesβ = 0 as bothφ1 andψ3 are injective.
Thereforeα= 0. ✷

By Lemma 6.8,(S)n is determined by its image under the boundary. Because(S)1 = (1− S)
and(S)2 has boundary−[S]1 =−(S)1 = (1− S)−1, one checks by induction that

(S)n = (1− S)∪ t1 − S

t1 − 1
∪ · · · ∪ tn−1 − S

tn−1 − 1
.

(We use normalizations so that theK-theory acts on the right in localization sequences.)✷
To end this section, we give the following lemma.

LEMMA 6.9. –LetF (t) be an element of(1+I)∗(R) =K
(1)
1 (X1

R,loc;�1). Then its regulator

in H̃1
ms(X1

R,loc;�1,1) is given, in the representation(6.2), by(
dlogF (t), log

(
F0(t)

)
/q
)
.(6.10)

Proof. –Note that forn= 1, (6.2) reduces to

H̃1
ms

(
X1
R,loc;�1,1

)
(6.11)

=
{
(ω, ε): ω ∈Ω1

(
U1
loc

)
, ε ∈Ω0

(
U1
loc

)
, dω = 0, dε=

(
1− φ∗/q

)
ω
}
.

In this way of writing it looks exactly the same as̃H1
ms(XR,loc,1). As remarked after (6.2) thi

is slightly misleading since the differentials are different and take relativity into account.
this means that the map̃H1

ms(XR,loc;�,1)→ H̃1
ms(XR,loc,1) given simply by(ω, ε) �→ (ω, ε)

embedsH̃1
ms(XR,loc;�,1) as the subspace of pairs(ω, ε) whereε vanishes at0 and∞. Thus,

our lemma is an immediate consequence of Lemma 4.7.✷
7. End of the proof

We denote the composed map

K(n)
n

(
Xn−1
R,loc;�n−1

) reg→ H̃n
ms

(
Xn−1
R,loc;�n−1, n

) ∼→Hn−1
rig

(
Xn−1
κ,loc;�n−1/K

) Π̃→K

byR. Here, the isomorphism is normalized according to Definition 4.6 and the mapΠ̃ is defined
immediately following Corollary 5.9.

PROPOSITION 7.1. – We have the following commutative diagram(up to sign)

K
(n)
n (Xn−1

R,loc;�n−1)

R

K
(n)
n (Xn−1

R ;�n−1)
∼

K
(n)
2n−1(R)

reg

K K
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Proof. –The vertical maps factor through the regulator maps. By the functoriality of the
regulator map the commutativity of the diagram follows if we show the commutativity of the
diagram

-
as we

t
ct
Def-

ology.
Hn−1
rig (Xn−1

κ,loc;�n−1/K)

Π̃

Hn−1
rig (Xn−1

κ ;�n−1/K) ∼
H0

rig(Spec(κ)/K)

K K

But as explained in Proposition 5.7 the composed mapHn−1
rig (Xn−1

κ ;�n−1/K)→K is simply
the mapΠ and therefore the commutativity follows from Corollary 5.9.✷

PROPOSITION 7.2. – The composition

Symbn(R)⊂K(n)
n

(
Xn−1
R,loc;�n−1

) R→K

factors through the quotientSymbn(R)/(1 + I)∗ ∪̃ Symbn−1(R) =Mn(R).

Proof. –In fact, we can show thatR vanishes on(1 + I)∗ ∪̃K(n−1)
n−1 (Xn−2

R,loc;�n−2). This
will follow by symmetry for all possible products involved iñ∪ if we show that the
composition

H̃1
ms

(
X1
R,loc;�1; 1

)
× H̃n−1

ms

(
Xn−2
R,loc;�n−2, n− 1

)
∪→ H̃n

ms

(
Xn−1
R,loc;�n−1, n

) ∼→Hn−1
rig

(
Xn−1
κ,loc;�n−1/K

) Π̃→K

vanishes on pairs where the first coordinate is used for(1 + I)∗. Let F (t) be in (1 + I)∗. By
(6.10), its regulator is given, in the representation (6.2) by(dlogF (t), ?), where the first coor
dinate belongs toΩ1(U1

loc) and the precise form of the second coordinate does not matter
will see in a second. On the other hand, elements ofH̃n−1

ms (Xn−2
R,loc;�n−2, n− 1) are, by (6.3),

always of the form(0, δ), with δ in Ωn−2(Un−2
loc ;�n−2). Choosingγ = 0 in (4.8), we see tha

(dlogF (t), ?) ∪ (0, δ), will be of the form(0,dlogF (t) ∧ δ) where∧ here means the produ
in complexes of relative differential forms as defined in Remark A.19 in Appendix A. By
inition 4.6 the image of(dlogF (t), ?) ∪ (0, δ) in Hn−1

rig (Xn−1
κ,loc;�n−1/K) is the inverse of the

operator1− ϕ∗/qn−1 applied to the cohomology class[dlogF (t) ∧ δ]. Since the operator̃Π is
Frobenius equivariant we see that applied to this image it gives(1 − q1−n)Π̃([dlogF (t) ∧ δ])
and so our goal is to show that

Π̃
([
dlogF (t) ∧ δ

])
= Π̃

([
dlogF (t)

]
∪ [δ]

)
vanishes, where the cup product on the right is a cup product in multi-relative rigid cohom
By Lemma 5.10 it equals̃Π([dlogF (t)]) · Π̃([δ]) and the result follows since

Π̃
([
dlogF (t)

])
=ΠCol

(
dlogF (t)

)
= log

(
F (∞)

)
− log

(
F (0)

)
= 0. ✷

We continue to denote the induced map byR,

R :Mn(R)→K.(7.3)
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Recall that in Definition 3.11 we defined for anyz in R� a symbol[z]n in K
(n)
n (Xn−1

R,loc;�n−1)

by pullback of the universal symbol[S]n in K
(n)
n (Xn−1

G,loc;�n−1) along the map sendingS to z,
−1 −1

ce of

tor

2,
out the
bit
whereG= Spec(Z[S,S , (1− S) ]). We now computeR([z]n). We begin this by exploring
some auxiliary functions.

DEFINITION 7.4. – Whenz andS belong to the same residue disc we define a sequen
functionsfk(z,S) inductively as follows:

f0(z,S) =
S

1− S
, fk+1(z,S) =

S∫
z

fk(z, t)dlog t.(7.5)

Note that there is no Coleman integration here because of the assumption onz andS. It is
immediately noticed thatfk(z,S) vanishes to orderk at z = S.

LEMMA 7.6. – We have

fn(z,S) = Lin(S)−
n−1∑
k=0

1
k!
(logS − log z)k Lin−k(z).

Proof. –The proof is by induction onn. Forn= 1 it is immediately verified that

f1(z,S) = log(1− z)− log(1− S) = Li1(S)−Li1(z).

Suppose that the statement is true forn. Then forn+ 1 we get

fn+1(z,S) =

S∫
z

(
Lin(t)−

n−1∑
k=0

1
k!
(log t− log z)k Lin−k(z)

)
dt
t

=

(
Lin+1(t)−

n−1∑
k=0

1
(k+ 1)!

(log t− log z)k+1 Lin−k(z)

)∣∣∣∣∣
S

z

=Lin+1(S)− Lin+1(z)−
n−1∑
k=0

1
(k+ 1)!

(logS − log z)k+1 Lin−k(z)

= Lin+1(S)−
n∑
k=0

1
k!
(logS − log z)k Lin+1−k(z). ✷

PROPOSITION 7.7. – Let z1, z2 ∈R� belong to the same residue disc. Then we have

R
(
[z1]n

)
−R

(
[z2]n

)
= (−1)n(n− 1)!

(
Ln(z1)−Ln(z2)

)
.

Proof. –For anyz ∈R� we may factor the mapSpec(R)→G defined by sendingS to z via
the mapSpec(R)→ B = G ⊗Z R defined in the same way. By functoriality of the regula
map it follows thatreg([z]n) equalsi∗z reg([S]n), whereiz : (Xn

R,loc;�n)→ (Xn
B,loc;�n) is the

embedding in(Xn
B,loc;�n) of the fiber atz. Thus we are in position to apply Corollary 4.1

but in the relative case, which, as mentioned after its statement, also applies. To carry
computation we also shift the index fromn to n+ 1 as the computation seems to come out a
cleaner this way.
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We begin withH̃n+1
ms (Xn

B,loc;�n, n+1) in the representation (6.1) (withn shifted ton+1).
In there we have the regulator of[S]n+1, given, according to Proposition 6.5, by the pair(ω, ε),
where

e

c,

rm

le

. In

ion
ω= ωn+1 =dlog(1− S) ∧ dlog t1 − S

t1 − 1
∧ · · · ∧ dlog tn − S

tn − 1

is the form defined in (6.4), whileε is unknown. Note thatω should really be thought of as th
relative formω̃ = (ω, [1, . . . , n]→ [1, . . . , n]) ∈Ωn+1(Un

B,loc;�n).
We have the projectionπ : (Xn

B,loc;�n)→ B, which we can compactify tōπ : (P1
B)

n → B,
where the power is taken overB. By assumption,z1 andz2 belong to the same residue dis
which we callD.

The recipe for computing

reg
(
[z1]n+1

)
− reg

(
[z2]n+1

)
= i∗z1 reg

(
[S]n+1

)
− i∗z2 reg

(
[S]n+1

)
,

according to Corollary 4.12, calls for computing, forz = z1 andz = z2, a formθz such that

θz ∈ Fn+1
J Ωn

(
Un
B,loc ∩ π̄−1(D);�n

)
and dθz = ω̃|π̄−1(D),(7.8)

whereJ is the ideal defininḡπ−1(z). Such a form is given in the following lemma.

LEMMA 7.9. –Let

θz =−
n∑
k=0

(−1)kk!
∑

degh=k

(
(−1)

∑
(h(i)+i)fk+1(z,S)

n−k∧
i=1

dlog
th(i) − S

th(i) − 1
, h

)
.

Thenθz satisfies(7.8). Here,fk is the function introduced in Definition7.4and the form indicated
only for the component in which all the constant coordinates are0, otherwise the form is0.

Proof. –Recall that the condition for being inFn+1
J is that the sum of the degree of the fo

and its order of vanishing atS = z is n + 1, and this is clear forθz . Now we prove that the
differential is correct. We will show thatd(−θz) =−ω̃. Consider first the differential of a sing
term in−θz.

(−1)k+
∑

(h(i)+i)k!

(
fk+1(z,S)

n−k∧
i=1

dlog
th(i) − S

th(i) − 1
, h

)
,

with h of degreek. Using (5.1) the differential is

(−1)k+
∑

(h(i)+i)k!

(
fk(z,S)dlog(S)∧

n−k∧
i=1

dlog
th(i) − S

th(i) − 1
, h

)

minus (except whenn= k) a sum of terms obtained by restricting one of the coordinatesth(j) to
be0 (when we restrict any coordinate to∞ we get0 and there is no need to keep track of that)
the wedge product atj we getdlog(S) and moving it to the front gives a sign of(−1)j−1. This
form is then associated with a functiong for whichχ(h, g) = (−1)h(j)+j . In addition there is an
overall sign of(−1)n−k on the entire sum. Thus, the sign on the component with the functg
obtained fromh by deletingh(j) has a sign of(−1) to the power
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n− k+ k+
∑(

h(i) + i
)
+ h(j)− 1

∑ n−k∑ ∑( )

utions

econd

ll
s

e

≡ n+ 1+ g(i) +
i=1

i≡ k+ 1+ g(i) + i (mod 2).

Thus we find

d(−1)k+
∑

(h(i)+i)k!

(
fk+1(z,S)

n−k∧
i=1

dlog
th(i) − S

th(i) − 1
, h

)

= (−1)k+
∑

(h(i)+i)k!

(
fk(z,S)dlog(S)∧

n−k∧
i=1

dlog
th(i) − S

th(i) − 1
, h

)

−
∑

χ(h,g) �=0

(−1)k+1+
∑

(g(i)+i)k!

(
fk+1(z,S)dlog(S)∧

n−k−1∧
i=1

dlog
tg(i) − S

tg(i) − 1
, g

)
.

Now we consider the coefficient ind(−θz) in theg component whendeg g =m. If m> 0 then
it gets contributions from both lines in the right-hand side of the last equation. The contrib
from the second line correspond tok =m− 1. There are exactlym differenth’s that would give
g and the contributions are identical. Thus it is visibly seen that the contributions from the s
line cancel the ones from the first line. The only term that survives is the one withm= 0. Here
there is only a contribution from the first line. So we find

d(−θz) =
(
f0(z,S)dlog(S)∧

n∧
i=1

dlog
ti − S

ti − 1
, id

)

=−
(
dlog(1− S) ∧

n∧
i=1

dlog
ti − S

ti − 1
, id

)
=−ω̃. ✷

Now, again according to Corollary 4.12,i∗z1 reg([S]n)− i∗z2 reg([S]n) = θz2 − θz1 restricted
to the fiber above anyS in D(K). On this difference we need to applyΠCol. We will in fact
computeΠCol(θz) for anyz. We integrate with respect to thet’s keepingS fixed. We see that a
the terms we need to successively integrate are products ofdlog’s, which the integration proces

converts into logs. The extra sign coming from the formula forΠ is (−1)
∑

(h(i)+i) because we
are always in the component where all the fixed coordinates are0. So using Lemma 7.6 and th
definition ofLn+1(S) as in (1.3), we findΠCol(θz) equals

−
n∑
k=0

(−1)kk! ·
(
n

k

)
fk+1(z,S) logn−k(S)

=−n!
n∑
k=0

(−1)k 1
(n− k)!

fk+1(z,S) logn−k(S)

=−n!
n∑
k=0

(−1)k 1
(n− k)!

Lik+1(S) logn−k(S)

+ n!
n∑
k=0

(−1)k 1
(n− k)!

[
k∑
l=0

1
l!
(
log(S)− log(z)

)l Lik+1−l(z)

]
logn−k(S)

= (−1)n−1n!Ln+1(S)
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+ n!
n∑
k=0

(−1)k 1
(n− k)!

[
k∑
r=0

1
(k− r)!

(
log(S)− log(z)

)k−r
Lir+1(z)

]
logn−k(S)

7.7

[12,

t
.

right-
s
e
d

g. In
= (−1)n−1n!Ln+1(S)

+ n!
n∑
r=0

n∑
k=r

(−1)n 1
(n− r)!

(
n− r

k− r

)(
log(S)− log(z)

)k−r(− log(S)
)n−k Lir+1(z)

= (−1)n−1n!Ln+1(S)

+ (−1)nn!
n∑
r=0

1
(n− r)!

(
log(S)− log(z)− log(S)

)n−r Lir+1(z)

= (−1)nn!
(
Ln+1(z)−Ln+1(S)

)
.

Thus we find

R
(
[z1]n+1

)
−R

(
[z2]n+1

)
= (−1)nn!

((
Ln+1(z2)−Ln+1(S)

)
−
(
Ln+1(z1)−Ln+1(S)

))
= (−1)n+1n!

(
Ln(z1)−Ln(z2)

)
. ✷

PROPOSITION 7.10. – For z in R� we have

R
(
[z]n

)
= (−1)n(n− 1)!Ln(z).(7.11)

Proof. –Let En(z) be the difference of the two sides of the equation. By Proposition
En(z) is constant on each residue disc. The functionEn(z) satisfies the distribution relation

1
m

∑
ζm=1

En(ζz) =
En(zm)

mn
(7.12)

for each positive integerm. The left-hand side of (7.11) satisfies the relation because by
Proposition 6.1] we have the relation

1
m

∑
ζm=1

[ζz]n =
[zm]n
mn

in K
(n)
n (Xn−1

R,loc;�n−1) (modulo terms involving(1 + I)∗) and we then applyR. (Note, in loc.
cit., the relation is stated for elements in a field containingQ(ζ). But the proof of the statemen
shows there is a corresponding universal relation overZ[X,X−1] which can be pulled back
Alternatively, it can be deduced from the relation inQ[X,X−1] becauseFp[X,X−1] has no
low weight K-theory, and the localization map (in the limit) corresponding toZ→ Q will
induce an injection (up to torsion) on the level of symbols, cf. Proposition 3.18.) The
hand side satisfies the relation because it is true forLin by (2.4) and for the remaining term
by a straightforward standard computation. Multiplication by apkth root of unity preserves th
residue discs, as does raising to thepkth power for sufficiently divisiblek (here we need to exten
R to include these roots of unity). Therefore, it is immediately seen that the functionEn must
be0. ✷

Remark7.13. – The following comparison with the work of De Jeu is perhaps interestin
the complex case one again relies only on the explicit description of the formω to obtain the
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corresponding formula for the regulator. A similar constant must be fixed in that computation as
well. There however, one relies on the fact that the final result should be single valued. One then
derives the distribution relation from the corresponding formula for the complex polylogarithm

on the
k on
tional
and
which

ulé
at

re

n 3.

,

i-
and Borel’s theorem. Here we have used this distribution relation so our proof relies
proof in the complex case. It may be interesting to mention that in the work of Wojtkowia
functional equations for polylogarithms [27] a similar phenomenon occurs: to obtain a func
equation forp-adic polylogs one starts with a functional equation for the complex polylog
uses the multivaluedness to show that a certain “motivic” functional equation is satisfied,
then translates into ap-adic functional equation.

PROPOSITION 7.14. – Let F be a field of characteristic zero for which the Beilinson–So
conjecture holds,O ⊂ F a discrete valuation ring. Letσ :F →K be an embedding, such th
σ(O) ⊆ R (so that in particular the Beilinson–Soulé conjecture holds for the residue fieldF of
O). Then the map

H1
(
M•

(n)(O)
) Φ→K

(n)
2n−1(O)

σ→K
(n)
2n−1(R)

reg−→K,

where the mapΦ is part of(3.17), is induced by the mapMn(O)→K sending the symbol[x]n
to±(n− 1)!Ln(σ(x)).

Proof. –Suppose
∑

ai[xi]n is in H1(M•
(n)(O)). Let

α=Φ
(∑

ai[xi]n
)
∈K

(n)
2n−1(O)∼=K(n)

n

(
Xn−1

O ;�n−1
)
.

By definition, the image ofα in K
(n)
n (Xn−1

O,loc;�n−1) is equal to
∑

ai[xi]n modulo (1 +

I)∗ ∪̃ Symbn−1(O). By functoriality, the image ofσ(α) in K
(n)
n (Xn−1

R,loc;�n−1) equals∑
ai[σ(xi)]n modulo (1 + I)∗ ∪̃ Symbn−1(R). By Propositions 7.1 and 7.2 we therefo

have

reg
(
σ(α)

)
=±R

(∑
ai
[
σ(xi)

]
n

)
=±

∑
aiR

([
σ(xi)

]
n

)
=±

∑
ai(n− 1)!Ln

(
σ(xi)

)
by Proposition 7.10. ✷

Proof of Theorems1.6and1.10. – Part (1) of each theorem was already proved in Sectio
To prove part (2), note that any of the functionsLmod,n(z) differs from Ln(z) by a linear
combination of the functionsz �→ logk(z)Ln−k(z) for k � 1. Any function in this combination
when composed withσ, factors through the composed differential

Mn(O)→Mn−1(O)⊗O∗
Q→ · · ·→Mn−k(O)⊗

(
O∗

Q

)⊗k
which maps[x]n to [x]n−k ⊗ x⊗ · · · ⊗ x. Therefore the functionsLn(σ(x)) andLmod,n(σ(x))
(and in fact, alsoLin(σ(x))), coincide onH1(M•

(n)(O)). But any functionLmod,n(z) satisfies
Lmod,n(z) + (−1)nLmod,n(1/z) = 0. Therefore the map[x]n �→ ±(n − 1)!Lmod,n(σ(x))
factors through the mapMn(O)→ M̃n(O). But the composition

H1
(
M•

(n)(O)
)
→H1

(
M̃•

(n)(O)
)
→K

is still given by [x]n �→ ±(n − 1)!Ln(σ(x)). Thus, the theorems follow from Propos
tion 7.14. ✷
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Proof of Theorem1.12. – Let F be a number field. Note that roots of unity will not be special
units in general, so we have to work in the complex forF rather than forO. Namely, letζ in
F be a root of unity of orderm > 1. If (m,p) = 1, thenζ is a special unit, and we have the

tor

r the

l
, our

ketch
ct our
tained

ts
e

d
m
ote

e result
d

terated
(in
in

oleman
its
ish on
ration
result already. Ifm= psl with s > 1 and(p, l) = 1, write ζ = ζ1ζ2 with ζ1 of orderps andζ2
of order l. As the reduction ofζ is the same as the reduction ofζ2, we see thatζ is special
unlessm= ps. If m= ps, let r > 1 be an integer congruent to1 modulops. Thenζr = ζ, and
from the distribution relations Proposition 2.11 and (2.4) we find that[ζ]n = rn−1

∑
αr=1[ζα]n

in Mn(F ′) with F ′ = F (µr). According to [2, Lemma 8.8] the modified syntomic regula
commutes with finite base change. This means in the case we are considering that ifR′ is a finite
extension ofR there is a commutative diagram

K
(n)
2n−1(R) K

K
(n)
2n−1(R

′) K ′,

where the mapK →K ′ is the natural inclusion. We can therefore do our computations fo
regulator just as well inK ′ =K(µr). As all ζα in the sum are special units except whenα= 1,
we can solve forreg([ζ]n) asrn−1 �= 1. As reg([x]n) = ±(n− 1)!Lmod,n(x) if x is a specia
unit, andLmod,n satisfies the corresponding distribution relation by [11, Proposition 6.1]
result follows form> 1. Forζ = 1 one uses the distribution relation similarly.✷

Remark7.15. – Although not needed for the purposes of this paper, we would like to s
a somewhat less explicit method of doing the computations of this section. This was in fa
original method. The idea is quite easy to explain: out of our regulator computations, we ob
the fact that for certain constantsαk the function

P (z,S) =
n∑
k=0

αkfk(z,S) logn−k S

is a sum of a function ofz and a function ofS (first line of final computation). In other words, i
mixed derivatives vanish. We get this relation initially only forz andS which belong to the sam
residue disc, even though we know that using Coleman integration the functionsfn themselves
extend to allz andS. What we did was to write explicitlyfn(z,S) in terms of logarithms an
polylogarithms inz andS separately and then show thatP (z,S) can indeed be written as a su
of a function ofS and a function ofz, the latter being our sought after regulator function. N
that the separation of variables now holds for anyz andS.

The alternative approach is to deduce the “global” separation of variables from the sam
for z andS in the same residue disc using Coleman theory in2-variables. The theory develope
in [4] defines a notion of a Coleman function in several variables. One then shows that i
integrals of the kind used to definefn(z,S) make it a Coleman function in both variables
particular for fixedS it is a Coleman function inz, but note that the notion of being Coleman
two variables is stronger than the notion of begin Coleman in each variable separately). C
functions form a ring, which shows thatP (z,S) is also a Coleman function, and so are
mixed derivatives. The theory then shows that the fact that the mixed derivatives van
some residue disc imply that they vanish identically which in turn implies a global sepa
of variables.
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Knowing a global separation of variables is very convenient, for ifP (z,S) = P (z) + g(S),
and all we need to know isP (z) up to a constant, then this is supplied byP (z,S0) for anyS0

we take. In our particular situation, if one substitutesS0 =−1, whoselog is 0, in the first line of

work

relative
aterial
urrent
is the
ntered

s not
e one
l in
ielding
he
is the
reprint

ly [20,

inted

the

is
ther
e.

e.
e

oint
the final computation we find that up to a constant,P (z) =−(−1)nn! · fn+1(z,−1). So one is
then left with computing this function.
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Appendix A. Chern classes in relative cohomology

In this appendix we give the necessary constructions for the main paper as far as
K-theory and Chern classes in syntomic cohomology are concerned. Most of this m
is rather standard and has to be modified in a rather minor way in order to fit the c
context, so we are sketchy in places. One thing that we work out in glorious detail
description of a complex that computes the multi-relative syntomic cohomology encou
in Section 5.

In [2] the first named author described a theory of rigid syntomic regulators. This i
sufficient in all applications, for example those described in the present work, sinc
often needs to extend the regulators (= Chern classes) to the relative situation. Our goa
this appendix is to explain how the construction extends to more general “spaces”, y
in particular Chern classes from relativeK-theory to relative syntomic cohomology. T
construction is completely formal, and we follow known sources. The primary source
preprint version of [17]. As the final version uses unpointed spaces as opposed to the p
using pointed spaces, we actually follow mostly treatments based on loc. cit., name
Appendix B] and [12].

We consider the categoryS of Noetherian finite-dimensional schemes overR and the topos
T of sheaves on it with respect to the Zariski topology. Following [20, B.1] we call a po
simplicial object ofT a space. IfX ∈ S, Y �→ hom(Y,X) gives us an element ofT , which
we still denote byX . With X+ we will denote the space consisting of the disjoint union of
constant simplicial sheafX and the constant simplicial basepoint∗.

Following [12, Section 2.2] we make the following definition.

DEFINITION A.1. – A spaceX• is called a smooth pointed simplicial scheme if it
represented in each degree by a smoothR-scheme of finite type (interpreted as sheaf) toge
with a disjoint base point and if it is furthermore degenerate above a finite simplicial degre

Clearly, if X is smooth of finite type overR, then X+ is a pointed simplicial schem
According to [12, Lemma 2.1] a smooth pointed simplicial scheme isK-coherent in the sens
of [20, Definition B.2.1] (this notion is also defined in [12, top of p. 201]).

WhenX• and Y• are spaces,[X•, Y•] denotes the set of homotopy classes of base p
preserving maps betweenX• andY ∼

• , whereY ∼
• is a fibrant resolution ofY• in the category

of spaces, as described in [20, Definition B.1.2]. The point is that there is a spaceK such
that if X is of finite type (hence Noetherian and of finite Krull dimension) overR, then
[Sm ∧X+,K]∼=Km(X) (loc. cit. Proposition B.2.3.a).

Gillet and Soulé therefore make the following definition.
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DEFINITION A.2 [20, Definition B.2.1]. – IfX• is a space, we define

Km(X•) =H−m(X•,K) =
[
Sm ∧X•,K

]

n

].

.4],
f

l
e

.

d
o a

of
ponents

e

e
the
s a
for m � 0.

In the body of the paper we have systematically used theK-theoretic notation for this, but i
this appendix we shall also use the notationH−m(X•,K).

If X• is K-coherent, one can defineλ-operations onH−m(X•), see [20, Theorem B.2.10
From these one constructs Adams operationsψk. In particular, whenX• is K-coherent of
cohomological dimension at mostd, then according to [17, Proposition 8 of Section 4
Km(X•)Q =

⊕m+d
i=α K

(i)
m (X•), with K

(i)
m (X•) = H−m(X•,K)(i) the Q subvector space o

Km(X•)Q = H−m(X•,K)Q of elementsx such thatψk(x) = kix for all k � 2, andα = 2 if
m � 2, α = 1 if m = 1 andα = 0 if m = 0. This will certainly apply to a pointed simplicia
spaceX• which is degenerate above simplicial degreeN and where the maximum relativ
dimension of scheme components overR is M , with d=M +N+1, cf. loc. cit. Lemma 1.2.2.2
or 3.2.4.

For two K-coherent spacesX• and Y• we get a product mapKm(X•) × Kn(Y•) →
Km+n(X• ∧ Y•) from the composition of

Sm+n ∧X• ∧ Y•→ Sm ∧X• ∧ Sn ∧ Y•→K ∧K→K

becauseSm ∧ Sn = Sm+n andK comes equipped with a mapK ∧K →K , see [20, p. 103]
Under this product mapK(i)

m (X•)×K
(j)
n (Y•) maps toK(i+j)

m+n (X• ∧ Y•), cf. [17, top of p. 136].
If X• and Y• are spaces with a base pointed preserving mapY• → X•, then the reduce

mapping coneC• = C(Y•,X•), whose definition will be recalled later, see (A.13), is als
pointed space, and one gets an exact sequence

· · · →Km+1(X•)→Km+1(Y•)→Km(C•)→Km(X•)→ · · · .

The most important applications of these are ifY• is a pointed closed simplicial subscheme
X• (i.e., the map corresponds to a closed embedding of schemes on all the scheme com
of X•), in which case one gets theK-theory ofX• relative toY•: Km(C•) = Km(X•;Y•).
Iterating this one gets multi-relativeK-groups as in the body of the paper. E.g., ifY1• and
Y2• are closed simplicial subschemes ofX•, andY12• = Y1• ∩ Y2•, with C1• = C(Y1•,X•),
C2• =C(Y12•, Y2•) andC3• =C(C2•,C1•) we get an exact sequence

· · · →Km+1(X•;Y1•)→Km+1(Y2•;Y12•)→Km(X ;Y1•;Y2•)→Km(X•;Y1•)→ · · ·

where we writeKm(X ;Y1•;Y2•) for Km(C3•).
The other application isK-theory with support, in which caseY• is an open pointed subschem

of X•. LetZ• be the closed pointed simplicial scheme complement ofY• in X• (i.e., the closed
complement in every scheme component, together with the base point∗), and assume all schem
components ofZ• are regular. If also conditions (TC1) and (TC2) of [12, p. 202] hold for
embeddings inZ• → X•, thenKm(Z•) ∼= Km(C(Y• → X•)). The sequence then become
localization sequence

· · · →Km+1(X•)→Km+1(Y•)→Km(Z•)→Km(X•)→ · · · .

4e SÉRIE– TOME 36 – 2003 –N◦ 6



THE SYNTOMIC REGULATOR FOR THEK-THEORY OF FIELDS 913

Under very restrictive hypotheses whereZ• is of codimensiond in all scheme components
(see [12, Proposition 2.3]) one can prove a Gysin exact sequence

elian

3,

over
logy

n 6.2]
sequence

plicial

me

is
at we
n
tending
ical tool

ned in

ups

putes
i-
elow,
lations
· · · →K
(i+d)
m+1 (X•)→K

(i+d)
m+1 (Y•)→K(i)

m (Z•)→K(i+d)
m (X•)→ · · · .

In order to be able to define regulators with values in the cohomology of a complex of Ab
groups, we briefly review how this is put into the context of spaces.

WhenA• is a homological chain complex of Abelian objects inT , X• is a space, andn � 0,
we write H−n(X•,A•) := [Sn ∧ X•,K(A•)], whereK is the Dold–Puppe functor, see [2
II 4.11].

LetS′ ⊂ S be the subcategory of schemes which are in addition smooth and separatedR,
again equipped with the Zariski topology. In [2] the different versions of syntomic cohomo
are constructed as cohomologies of bounded below complexes of presheavesΓ•

?(i) onS′, where
? could stand for any of the versions of syntomic cohomology considered. By [2, Propositio
these presheaves are pseudo-flasque in the sense that there is a Mayer–Vietoris exact
involvingU , V , X = U ∩ V andU ∪ V for two open subsetsU andV of X .

We will give a simpler name to what could be called a smooth separated pointed sim
scheme:

DEFINITION A.3. – A pointed simplicialS′-scheme is a smooth pointed simplicial sche
where in addition all scheme components are separated (hence are inS′).

We want to define Chern classes fromK-theory landing in syntomic cohomology. For th
we would like to use the theory developed in [17]. However, this theory demands th
work with sheaves onS. To do this, we will produce out ofΓ•

?(i) a complex of sheaves o
S. We caution the reader not to regard the cohomology groups of these complexes as ex
syntomic cohomology to non-smooth schemes. They should merely be viewed as a techn
to allow us to use [17]. What we will need to verify is that as long as we stay inS′, i.e., work with
pointed simplicialS′-schemes, the cohomology is the same as syntomic cohomology defi
terms of the syntomic presheaves.

DEFINITION A.4. – LetP (S) andP (S′) be the categories of presheaves of Abelian gro
onS andS′ respectively. Letr :S′→S be the obvious inclusion. Letr! :P (S′)→ P (S) be the
functor defined in [25, I, Proposition 5.1] (a left adjoint to the obvious functorr∗). Let Γ̃•

?(i) be
the complex of sheaves onS associated to the complex of presheavesr!Γ•

?(i). For a spaceX•
we define

H2i−n(X•,Γ•
?(i)

)
=
[
Sn ∧X•,K

(
2i, Γ̃•

?(i)
)]

where, for any cohomological complexA• in nonnegative degree,K(2i,A•) is the Dold–
Puppe construction applied to the homological complexA0→A1→ · · ·→A2i−1→ ker(A2i→
A2i+1) in degrees2i through 0.

The remainder of this appendix mainly consists of getting an explicit complex that com
H−m(X•,Γ•

?(i)), specifically for the pointed simplicialS′-schemes underlying the mult
relativeK-theory. Together with the construction of Chern classes in Proposition A.22 b
this provides the reference for the regulator and the complexes used in the explicit calcu
in the body of the paper.

If we write DT for the derived category of Abelian chain complexes inT ,

H2i−m(X•,Γ•
?(i)

)
=
[
Sm ∧X•,K

(
2i, Γ̃•

?(i)
)]

(A.5)
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is also isomorphic to[N∗(Sm ∧X•), Γ̃•
?(i)]DT , cf. [12, (24) on p. 213], whereN∗(·) denotes the

reduced chain complex associated to the pointed simplicial objects involved. As in loc. cit., the
Alexander–Whitney map, in degreen given by

t of
e

ves.

n

g the
ism
Xn ∧ Yn �→
n∑
i=0

di+1 · · ·dn−1dnXn ⊗ di0Yn(A.6)

induces a quasi-isomorphism ofN∗(X• ∧ Y•) with N∗(X•) ⊗ N∗(Y•). As N∗(Sn) is quasi-
isomorphic toN∗(S1) ⊗ · · · ⊗ N∗(S1) (n times) andN∗(S1) = Z[−1] (a copy of Z in
homological degree 1), we find that we have to compute[N∗(X•)[−n], Γ̃•

?(i)]DT . Note that
we have not changed the differential inN∗(X•). As we want to multiply it by(−1)n to view
it as a shifted chain complex, we identify the two complexes via multiplication by(−1)k−1 in
(shifted) degreek. If Γ̃•

?(i)→ I• is an injective resolution, this equals[N∗(X•)[−n], I•] (maps
up to chain homotopy), cf. [17, Lemma 2].

Using the Yoneda lemma, we can compute this as in [12, pp. 214–216] as the(2i − n)th
cohomology of the complexC•(X•, I

•) given by

Cq(X•, I
•) =

⊕
t+s=q

hom
(
Xs, I

t
)
=

⊕
s+t=q

Γ
(
Xs, I

t
)

(A.7)

with d(s,t) = (−1)q(dN∗(X•)
s )∗ + dI

•

t , where of course we ignore the degenerate par
the scheme component ofXs as well as the basepoint∗ as we are working with th
complexN∗(X•).

Now we can show that for pointed simplicialS′-schemes we can use our syntomic preshea

PROPOSITION A.8. – LetX• be a pointed simplicialS′-scheme. ThenH2i−n(X•,Γ•
?(i)) is

functorially the(2i− n)th cohomology of the complexC•(X•,Γ•
?(i)) given by

Cq
(
X•,Γ•

?(i)
)
=

⊕
s+t=q

Γ
(
Xs,Γt?(i)

)
(A.9)

with d(s,t) = (−1)q(dN∗(X•)
s )∗ +dΓ

•
? (i)

t .

Proof. –By definition we have, for anyF ∈ P (S′) and anyU ∈ S,

Γ(U, r!F ) = lim
−→

U→U ′∈S′

F (U ′),

where the limit is over the category of objects inS′ underU . If U ∈ S′ there is an adjunctio
mapΓ(U,F )→ Γ(U, r!F ) and since the category of objects underU has the initial objectidU
the adjunction map is an isomorphism. We have the functorial maps

Γ
(
Xs,Γ•

?(i)
)
→ Γ

(
Xs, r!Γ•

?(i)
)
→ Γ

(
Xs, Γ̃•

?(i)
)
→ Γ(Xs, I

•),(A.10)

where the maps from left to right are adjunction, sheafification and resolution, givin
functorial mapCq(X•,Γ•

?(i))→Cq(X•, I
•). We want to show that this induces an isomorph

on cohomology forX•. By using the spectral sequence

Ht
(
Xs,Γ•

?(i)
)
⇒Hs+t

(
C•
(
X•,Γ•

?(i)
))

,
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and similarly with I•, we are immediately reduced to proving that the map (A.10) induces
an isomorphismHt(Γ(Xs,Γ•

?(i))) ∼= Ht(Xs, Γ̃•
?(i)). We note thatXs is in S′. By [22,

Proposition II.1.10 and Remark III.3.2] the last cohomology group, as well as the map in
n
to the
s

as
e
nishes

es of
let
global

amely,

ubsets
x

in
r such
g

d

e of

s
s

l

question, can be computed on the small Zariski site ofXs. It easily follows from the descriptio
of sheafification on p. 62 of [22] that we can commute sheafification and restriction
small site ofXs. Therefore, the restriction of̃Γ•

?(i) to the small site ofXs is the same a
the sheafification of the restriction ofr!Γ•

?(i) to this site. This last presheaf is the same
the restriction ofΓ•

?(i) since any openU in the small site ofXs is again smooth and th
adjunction map is an isomorphism on these objects. Therefore, the following lemma fi
the proof. ✷

LEMMA A.11. – Let P • be a bounded below complex of pseudo-flasque presheav
Abelian groups on the small Zariski site of a finite-dimensional Noetherian scheme, andI•

be an injective resolution of the associated complex of sheaves. Then the natural map on
sections

Γ(X,P •)→ Γ(X,I•)

is a quasi-isomorphism of complexes of Abelian groups.

Proof. –The proof follows the proofs of Theorems 4 and 1′ of [6] extremely closely, but it is
easier as it is in the context of complexes of Abelian groups rather than simplicial sets. N
for every open setU of X , let F •(U) = Cone(P •(U) → I•(U)). Then it follows that the
cohomology ofF •(U) satisfies a Mayer–Vietoris exact sequence associated to two open s
U andV , hence is pseudo-flasque. If we letT q(U) be theqth cohomology group of the comple
F •(U), then the proof of Theorem 1′ applies verbatim if we replace∗ with 0 everywhere, and
take into account that our indexing is cohomological rather than homological.✷

RemarkA.12. – Note that we are not using the fact thatX• is degenerate above a certa
degree. Therefore, the description of cohomology as the cohomology of (A.9) is valid fo
spaces as well, provided the components belong toS′. In particular, it is valid for the classifyin
spacesBGLn overR.

In the paper, we have to use the complex (A.9) for specific pointed simplicialS′-schemes
arising as iterated simplicial reduced mapping conesC•. We recall the definition of the reduce
mapping cone:

For f :Y•→X• a map of pointed simplicial schemes, define the reduced mapping conf
by

C(Y•,X•) =X• � Y• × I/∼,(A.13)

where I is the simplicial version of the unit interval, given in degrees by all sequence
{0, . . . ,0,1 . . . ,1} of lengths+1, and pointed by{1, . . . ,1}, and∼ are the usual identification
to obtain the reduced mapping cone.

Let X be a scheme, and letY1, . . . , Yn, be subschemes. Denote byX+ the pointed simplicia
scheme consisting ofX in every degree, together with a disjoint basepoint∗. Consider the
iterated mapping coneC(X,{Y1, . . . , Ys}) inductively defined by

C
(
X,{Y1}

)
=C(Y1+,X+),

C
(
X,{Y1, . . . , Ys+1}

)
=C

(
C
(
Ys+1,{Y1,s+1, . . . , Ys,s+1}

)
,C

(
X,{Y1, . . . , Ys}

))
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where Yi,j = Yi ∩ Yj . Using induction, one sees easily that the spaceC• one finds for
X,Y1, . . . , Yn is as follows, writing the elements corresponding toI as indices.

inclu-
s,

hain
es as

ex

gree

lex

e
he maps

s.
Cm = ∗ �
∐

α1,...,αn

Yα1,...,αn(A.14)

with αi ∈ {{0, . . . ,0},{0, . . . ,0,1}, . . . ,
m+1︷ ︸︸ ︷

{0,1, . . . ,1}}, Yα1,...,αs =
⋂
αi �={0,...,0} Yi and⋂

∅ Yi =X . The boundary and degeneracy maps are the natural maps coming from the
sions and the identity, which we get by deleting or doubling theith place in the zeros and one
with the convention that we identifyYα1,...,αs with ∗ if at least one of theα’s consists of only
1’s. Clearly,C• is a pointed simplicial scheme, smooth ifX , all Yj and all of their possible
intersections are smooth, and it is a pointed simplicialS′-scheme ifX , all Yj and all of their
possible intersections are inS′. Due to our definition of the mapping cone, the reduced c
complexN∗(C•) no longer looks like an iterated mapping cone of reduced chain complex
there are too many nondegenerate copies of intersections forn � 2, and neither does the compl
in (A.9).

So we also define�(C•) to be the sheaf of homological chain complexes given in de
k by

∐
|β|=k Z[Yβ ], with β a subset of{1, . . . , n}, Yβ =

⋂
i∈β Yi, and Y∅ = X . (This has

to be interpreted as the sheaf that to everyU associates the homological chain comp∐
|β|=kZ[Yβ(U)].) The boundary is given on generators of�(C•) by

d(Yβ) = (−1)k−1
k∑
j=1

(−1)jYβ\{βj}(A.15)

if β = {β1, . . . , βk} with β1 <β2 < · · ·< βk. (Just as in the complexesN∗(·), the maps here ar
the ones induced from the maps in the pointed spaces, which means they correspond to t
of sheaves that the scheme component represents in our toposT .)

PROPOSITION A.16. – N∗(C•) and�(C•) are quasi-isomorphic.

Proof. –Define a map

Ψ:�(C•)→N∗(C•)

via

Yβ �→
∑
σ∈Sk

(−1)σY(β,σ)

in degreek, where(−1)σ is the sign ofσ, and(β,σ) = α1, . . . , αn is an index defined as follow
We makeαj = {0, . . . ,0} unlessj is an element ofβ. The remainingk αj are indexed byβ. We
consider thek standard(k+1)-tuples{0, . . . ,0,1}, . . . ,{0,1, . . . ,1}, and putαβσ(j) equal to the
jth (k+ 1)-tuple in this list.

We have to check thatΨ defines a map of complexes. This is clear ifk = 0. Fork � 1,Ψk−1 ◦d
is given by mappingYβ (with |β|= k) to

Ψk−1

(
(−1)k−1

k∑
j=1

(−1)jYβ\{βj}

)
=

k∑
j=1

(−1)k+j−1
∑

τ∈Sk−1

(−1)τY(β\{βj},τ).
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On the other hand,Ψk mapsYβ to
∑

σ∈Sk
(−1)σY(β,σ), whichd maps to

k

es

ying

all

d

egree
ribed

for

bution

d in
ll

t
ts
f

∑
σ∈Sk

(−1)σ
∑
j=0

(−1)jYdj(β,σ)

wheredj is thejth simplicial face. Now notice that thej = 0 term here is zero, as it introduc
{1, . . . ,1} among the indices so this corresponds to∗ in C•, which maps to zero inN∗(C•).
Also, for j = 1, . . . , k− 1, thejth and(j + 1)st standard tuples become the same after appl
dj , so thatσ andσ ◦ (j j+1) give the same contributions, which cancel due to(−1)σ. Therefore
only one term survives, corresponding toj = k, i.e.,dk, which eliminates the last element of
the indices. So we are left with

(−1)k
∑
σ∈Sk

(−1)σYdk(β,σ) = (−1)k
k∑
j=1

∑
τ∈Sk−1

(−1)j−1(−1)τY(β\{βj},τ)

because ifσ(1) = j, the first standard(k + 1)-tuple (corresponding toαβj ) gives only zeros
after applyingdk, and therefore thedk applied to the remainingk − 1 standard(k + 1)-
tuples give the standardk-tuples. This means thatdkαβσ(2) , · · · , dkαβσ(k) are the standar
k-tuples (in the standard order). Withγ = {γ1, . . . , γk−1} = β \ {βj}, we can also write
this asαγτ(1) , . . . , αγτ(k−1) as long as we can findτ in Sk−1 with, for i = 1, . . . , k − 1,
τ(i) = σ(i + 1) if σ(i + 1) < j andτ(i) = σ(i + 1) − 1 if σ(i + 1) > j. This holds only for
τ = (k . . . j) ◦ σ ◦ (1 . . .k).

In order to check thatΨ defines a quasi isomorphism, we proceed by induction on the d
of relativity n, and investigate howΨ behaves with respect to taking iterated cones as desc
explicitly in and preceding (A.14).

So let Y• → X• correspond to taking the last (nth) relativity into account, withC• the
corresponding reduced mapping cone, i.e.,C• is the reduced mapping cone as in (A.13)
the mapY•→X•, where, with notation as in (A.14),Ym = ∗ �

∐
α1,...,αn−1

Yα1,...,αn−1 ∩ Yn,
Xm = ∗�

∐
α1,...,αn−1

Yα1,...,αn−1 , andCm exactly as in (A.14). The mapY•→X• corresponds
to the obvious inclusions on the scheme components. In terms of (A.13), a contri
Yα1,...,αn−1 ∩ Yn × α1 × · · · × αn−1 × α, with α in the mth simplicial degree ofI, maps to
Yα1,...,αn−1,α×α1× · · ·×αn−1×α in Cm, unlessα= {1, . . . ,1}, in which case it is identified
with ∗. Note that ifα = {0, . . . ,0}, then this takes into account the identification require
the reduced mapping cone.X• is a pointed simplicial subscheme ofC•, corresponding to a
αn = {0, . . . ,0} (together with∗ of course).

Let us first note that�(C•) is the cone of the map�(Y•)→�(X•). Namely, any componen
Cβ of �(C•) comes from�(X•) if and only if β does not containn, and that the componen
containingn correspond toYβ\{n}’s, i.e., to �(Y•)[−1]. So �(C•) is the mapping cone o
�(Y•)→�(X•) provided the differential is the one on the cone. As�(X•) is a subcomplex, we
only need to check what the differential does onCβ with n in β. Let k = |β|. Applyingd we get

(−1)k−1
k∑
j=1

(−1)jCβ\{βj} =−Cβ\{n} − (−1)k−2
k−1∑
j=1

(−1)jCβ\{βj},

which is exactly what we want.
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We shall verify that we have a map of triangles

p

using
ion
nce in
n that

e,

uare

ing

in
t
,

�(Y•)

Ψ

�(X•)

Ψ

�(C•)

Ψ

�(Y•)[−1]

Ψ[−1]

N∗(Y•) N∗(X•) N∗(C•) N∗(Y•)[−1]

(A.17)

with the maps as follows. The map�(Y•)→�(X•) comes directly fromY•→X•, and similarly
for N∗(Y•)→ N∗(X•). The map�(X•)→ �(C•) just viewsβ, a subset of{1, . . . , n − 1},
as a subset of{1, . . . , n}. The mapN∗(X•) → N∗(C•) is the natural map from the ma
X• → C•. The map�(C•)→ �(Y•)[−1] mapsYβ to 0 if n is not in β, and toYβ\{n} if n
is in β. The mapN∗(C•)→ N∗(Y•)[−1] is the composition of the natural mapN∗(C•)→
N∗(S1 ∧ Y•) corresponding to contractingX• to ∗, and the Alexander–Whitney mapN∗(S1 ∧
Y•)→N∗(Y•)[−1], a quasi-isomorphism (see (A.6)) asN∗(S1) is isomorphic toZ[−1] via the
projection to the{0,1}-component in degree 1.

We shall check below that those maps give a map of triangles. It is well known (and
Mayer–Vietoris for an open coverU ∪ V for nonreduced mapping cones of the realizat
of simplicial sets easily seen) that the bottom triangle gives rise to a long exact seque
homology. As the top triangle also gives a long exact sequence, we know by inductio
Ψ:�(C•)→N∗(C•) is a quasi isomorphism, asΨ is clearly an isomorphism ifn= 0.

In the diagram, the first square commutes because of the naturality ofΨ. For the second squar
we note that applyingΨC• on the image of�(X•) inside�(C•) is the same as applyingΨX•

and tagging on an index{0, . . . ,0} to the indices already used inN∗(X•). (The extra{0, . . . ,0}
corresponds ton ∈ {1, . . . , n}.) This is exactly the result as going around the second sq
counterclockwise, asX• is the simplicial subscheme ofC•, given by the components ofC• that
acquire a copy of{0, . . . ,0} from the simplicial interval involved in constructing the mapp
cone.

For the third square, the map�(C•)→ �(Y•)[−1] corresponds to mappingYβ to zero if
β ⊆ {1, . . . , n − 1} ⊂ {1, . . . , n}, and toYβ\{n} if β �⊆ {1, . . . , n − 1}. If n /∈ β, Ψ(Yβ) will
always have the last indexαn in Yα1,...,αn equal to{0, . . . ,0}, which already goes to zero
N∗(S1 ∧ Y•). If we have a termYβ with n ∈ β, let k = |β| � 1. Going clockwise, we ge
Ψk−1[−1](Yβ\{n}) =

∑
σ∈Sk−1

(−1)σY(β\{n},σ) in N∗(Y•)[−1]. Going in the other direction
we get

Yβ �→
∑
σ∈Sk

(−1)σY(β,σ)

in N∗(C•). The Alexander–Whitney map (A.6) maps this to

k∑
j=0

∑
σ∈Sk

(−1)σdj+1 ◦ dj+2 ◦ · · · ◦ dkY(β,σ)\{(β,σ)n} ⊗ dj0(β,σ)n.

After the projection to{0,1} in N∗(S1), we only get a nonzero contribution if(β,σ)n =
{0, . . . ,0,1} andj = k − 1. Considering the definition of(β,σ), this means thatσ(1) = k. So
we find ∑

σ∈Sk

σ(1)=k

(−1)σdkY(β,σ) ⊗ {0,1}.
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Considering thatdk removes the last coordinate in all the firstn − 1 tuples, we see from
the definition of(β,σ) that dkY(β,σ) = Y(β\{n},τ), with β \ {n} = {β1, . . . , βk−1}, andτ =
σ(1 . . .k) in Sk−1 ⊂ Sk. Projecting to the{0,1}-component inN∗(S1) = Z[−1] we therefore

plicit
and

c
we

e

f
and

of

is
n

ty
s of
find

(−1)k−1
∑

τ∈Sk−1

(−1)τY(β\{n},τ).

Because of the way we identifyN∗(Y•) shifted by one degree withN∗(Y•)[−1] (with the original
d replaced by−d) this shows the diagram commutes.✷

We now return to our original problem of computing the cohomology groups using ex
complexes. ForC• = C(X,{Y1, . . . , Yn}) as above, if all scheme components are smooth
separated of finite type over the base ringR, we can replaceN∗(C•) by the quasi-isomorphi
complex�(C•) by Proposition A.16 from the very beginning, so instead of (A.7) or (A.9),
can also use the complexC•�(C•,Γ•

?(i)) with

Cq�
(
C•,Γ•

?(i)
)
=

⊕
t+s=q

⊕
|β|=s

Γ
(
Xβ,Γt?(i)

)
(A.18)

andd(s,t) = (−1)q(d�(C•)
s )∗ +dΓ

•
? (i)

t .

RemarkA.19. – In order to get products inK-theory taking the relativity into account, w
define maps

C
(
X,{Y1, . . . , Ys+t}

)
→ C

(
X,{Y1, . . . , Ys}

)
∧C

(
X,{Ys+1, . . . , Ys+t}

)
by the diagonal embeddingYα1,...,αr+s → Yα1,...,αs × Yαs+1,...,αs+t and identifying anything o
the form· · · × ∗ or ∗ × · · · with ∗ in the right-hand side. Taking reduced chain complexes,
using the Alexander–Whitney map gives us a map

N∗
(
C
(
X,{Y1, . . . , Ys+t}

))
→N∗

(
C
(
X,{Y1, . . . , Ys}

))
⊗N∗

(
C
(
X,{Ys+1, . . . , Yt}

))
which we want to compare with a similar map using the�(·) complexes. Namely, letYβ be a
component in�(C(X,{Y1, . . . , Ys+t})), and letβ1 = {1, . . . , s}∩β,β2 = {s+1, . . . , s+ t}∩β.
Then we define the map

�
(
C
(
X,{Y1, . . . , Ys+t}

))
→�

(
C
(
X,{Y1, . . . , Ys}

))
⊗�

(
C
(
X,{Ys+1, . . . , Ys+t}

))
via the mapYβ �→ (−1)|β1|·|β2|Yβ1 ⊗ Yβ2 . (Again this has to be interpreted at the level
simplicial Abelian groups that are associated to those sheaves for every spaceU . The maps
are induced from the scheme embeddingsYβ → Yβ1 andYβ → Yβ2 .) We have to check that th
defines a map of complexes, but because the mapΨ defined in Proposition A.16 is an injectio
of freeZ-modules, the same holds forΨ⊗Ψ, and therefore it follows from the commutatitivi
of the following diagram (which we will show below), as all other maps in it are map
complexes.
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SuppressingX andY from the notation for typographical reasons, we have a commutative
diagram

m,
nder–

zero

ill
ay,

g

les
�(C({1, . . . , s+ t}))

Ψ

�(C({1, . . . , s}))⊗�(C({s+1, . . . , s+ t}))

Ψ⊗Ψ

N∗(C({1, . . . , s+ t})) N∗(C({1, . . . , s}))⊗N∗(C({s+ 1, . . . , s+ t})).

Namely, writek = |β|, k1 = |β1| andk2 = |β2|. Starting in the top left corner of the diagra
going to the bottom left corner, and then to the bottom right corner (using also the Alexa
Whitney map), we get onYβ :

Yβ �→
∑
σ∈Sk

(−1)σY(β,σ)

�→
∑
σ∈Sk

(−1)σY(β,σ)1,...,(β,σ)s
× Y(β,σ)s+1,...,(β,σ)s+t

�→
k∑
j=0

∑
σ∈Sk

(−1)σdj+1dj+2 . . .dkY(β,σ)1,...,(β,σ)s
⊗ dj0Y(β,σ)s+1,...,(β,σ)s+t

.

Now observe that the nonzero indices involved in(β,σ) are k in total, of lengthk + 1,
i.e.,

{0,0, . . . ,0,0,0, . . . ,0,1}
...

{0,0, . . . ,0,0,1, . . . ,1,1}

{0,0, . . . ,0,1,1, . . . ,1,1}

{0,0, . . . ,1,1,1, . . . ,1,1}
...

{0,1, . . . ,1︸ ︷︷ ︸
0...j−1

,1,1, . . . ,1,1︸ ︷︷ ︸
j...k

}.

(A.20)

dj+1dj+2 . . . dk deletes the lastk − j columns,dj0 deletes the firstj columns of all tuples
involved. For fixedj, if any of the lastj-tuples end up among the lastt-tuples of(β,σ), then one
of the tuples becomes{1, . . . ,1} underdj0 and the corresponding component is mapped to
in N∗. So for a nonzero contribution, the lastj-tuples must end up among(β,σ)1, . . . , (β,σ)s.
If any more tuples end up in(β,σ)1, . . . , (β,σ)s, then among(β,σ)s+1, . . . , (β,σ)s+t the
nonzero ones will be fewer than the firstk − j standard tuples in (A.20). The same w
hold for all tuples in the index indj0Y(β,σ)s+1,...,(β,σ)s+t

as the other ones are zero anyw

so dj0Y(β,σ)s+1,...,(β,σ)s+t
is degenerate fork > 0, and goes to zero inN∗. (For k = 0,

k1 = k2 = 0, and there is only one term, see below.) Ask1 tuples must end up amon
(β,σ)1, . . . , (β,σ)s, this shows that for a nonzero contribution we must havej = k1, the
nonzero tuples among(β,σ)1, . . . , (β,σ)s are the lastk1 rows above, and the nonzero tup
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among(β,σ)s+1, . . . , (β,σ)s+t are the firstk − k1 = k2 rows above. The sum then simplifies
to ∑

map
-

ses we
m these

this
en by

ram
σ∈Sk

(−1)σdk1+1dk1+2 . . . dkY(β,σ)1,...,(β,σ)s
⊗ dk1

0 Y(β,σ)s+1,...,(β,σ)s+t

= (−1)k1k2

( ∑
τ1∈Sk1

(−1)τ1Y(β1,τ1)

)
⊗
( ∑
τ2∈Sk2

(−1)τ2Y(β2,τ2)

)
because the permutationσ must map{1, . . . , k − k1} to {k1 + 1, . . . , k} as well as{k − k1 +
1, . . . , k} to {1, . . . , k1}, so we must have

(1 . . .k)−k1σ = τ2(1k2 +1) . . . (k1 k)τ1(1k2 + 1) . . . (k1 k)

for some (unique)τ1 in Sk1 andτ2 in Sk2 . As this equals(−1)|β1|·|β2|Ψ(Yβ1) ⊗ Ψ(Yβ2) the
diagram commutes as required.

Now suppose thatA andB are homological chain complexes of sheaves, with a bilinear
A×B→ C. There is a mapφ :K(A)∧K(B)→K(A⊗B) (with K the Dold–Puppe construc
tion as before), which gives rise to a map[

Sn ∧X•,K(A)
]
×
[
Sm ∧ Y•,K(B)

]
→

[
Sm+n ∧X• ∧ Y•,K(A⊗B)

]
→

[
Sm+n ∧X• ∧ Y•→K(C)

]
.

It is shown as on [12, p. 215] that under our identifications[Sn ∧ X•,K(A)] with
[N∗(X•)[−n],A]DT etc., this corresponds to the composition

N∗(X• ∧ Y•)[−n−m]→N∗(X•)[−n]⊗N∗(Y•)[−m]→A⊗B→C

with the first map the Alexander–Whitney map and the last map the given product. In the ca
are interested in this becomes a cup product of sections in (pre)sheaves, and it follows fro
formulas that the product on components corresponds to cup productsΓ(Xs,A)× Γ(Yt,B)→
Γ(Xs × Yt,C) up to signs. In particular, for the explicit map at the very beginning of
remark, the diagram tells us that the product in the complex (A.18) is up to a sign giv
the map

Γ(Yβ1 ,A)× Γ(Yβ2 ,B)→ Γ(Yβ1β2 ,C),

which is the composition of

Γ(Yβ1 ,A)× Γ(Yβ2 ,B)→ Γ(Yβ1 × Yβ2 ,C)→ Γ(Yβ1β2 ,C),

the last map being the pullback corresponding to the “diagonal”Yβ1β2 → Yβ2 × Yβ2 . This is
clearly the same, since the products are functorial, as the map

Γ(Yβ1 ,A)×Γ(Yβ2 ,B)→ Γ(Yβ1β2 ,A)×Γ(Yβ1β2 ,B)→ Γ(Yβ1β2 ,C).(A.21)

Let now˜denote the composition ofr! and sheafification, as in Definition A.4. LetF , G and
H be three presheaves of vector spaces onS′ with a bilinear mapF ×G→H . Applying˜we
obtain, sincẽ clearly sends products to products, an induced mapF̃ × G̃→ H̃ which is easily
seen to be bilinear. ForU in S′ there are natural vertical maps making the following diag
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commute:

Γ(U,F )× Γ(U,G) Γ(U,H)

,
rom a
asy to
on the
nt for

sses.
spaces

e done
of the

ure [17,

s
t

nd

of
Γ(U, F̃ )× Γ(U, G̃) Γ(U, H̃).

The syntomic complexes come with productsΓ•
?(i) × Γ•

?(j)→ Γ•
?(i + j) (see, for example

[2, Definition 6.5] where products are constructed on cohomology but it clearly comes f
product on complexes). Taking injective resolutions and using Proposition A.8 it is quite e
see now that the product on multi-relative syntomic cohomology is induced from a map
complexes (A.18) given by maps like (A.21). The precise signs turn out to be unimporta
us.

The previous constructions are applied in the body of the paper with the schemes

X =
(
P1
B \ {t= 1}

)n
and Yi = {ti = 0,∞},

with t the standard affine coordinate onP1, andti the ith coordinate in then-fold product, or
localizations of those schemes.

After this rather explicit exercise, we now turn our attention to the theory of Chern cla
The theory of syntomic Chern classes of [2] can be extended from schemes to arbitrary
as follows. In loc. cit. before Theorem 7.5 universal Chern classes

cn ∈H2i
(
BGL,Γ•

?(i)
)

were constructed. Again this was explicitly done in some of the theories but it can easily b
in all the others. Further, this was done with the cohomology defined as the cohomology
complex (A.9), but since the components ofBGLn belong toS′ it follows from Remark A.12
that this is the same as the definition we have been using here. Now a standard proced
6.1] produces, for eachα ∈H−m(X•,K) a Chern class

ci(α) ∈H2i−m(X•,Γ•
?(i)

)
.

More precisely, ifK = Z×Z∞BGL is the sheaf used to define algebraicK-theory of spaces a
Kn(X•) = [Sn ∧ X•,K], then eachci defines a mapK → K(2i, Γ̃•

?(i)). If α is an elemen
in Km(X•), then by composition we get the elementci(α) in [Sm ∧ X•,K(2i, Γ̃•

?(i))] =
H2i−m(X•,Γ•

?(i)).
For aK-coherent spaceX•, both

H∼(X•,Γ•
?) :=H0(X•,Z)×

(
{1}×

(⊕
i>1

H
(
X•,Γ•

?(i)
)))

and
⊕

m�0H
−m(X•,K) haveλ-ring with involution structures described in loc. cit. 6.1 a

there is a total Chern class

c :
⊕
m�0

H−m(X•,K)→H∼(X•,Γ•
?).

PROPOSITION A.22. – WhenX• is K-coherent the total Chern class is a morphism
λ-rings with involutions.
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Proof. –Everything is reduced to the properties of the universal Chern classes (see, for
example, the proof of [17, Theorem 5] for theλ-structure). These properties are deduced
in the following way. There is a map of complexes of presheaves (in the derived category)

eric
ts and

es. Since
iversal

n the

, in:

.

Γ•
?(n)→ Γ•

dR, where the latter complex is the complex of differential forms on the gen
fiber. We get an induced map of cohomology theories which is compatible with cup produc
therefore also withλ-operations. By [2, (7.4)] this map gives an injection⊕

i

H2i
(
BGLN ,Γ•

?(i)
)
↪→

⊕
i

H2i
dR(BGLN/K)(A.23)

on the part of the cohomology ofBGLN containing the Chern classes for anyN . The syntomic
universal Chern classes are defined to map to the corresponding de Rham Chern class
both sides of (A.23) are closed under products, all required properties of syntomic un
Chern classes follow from the corresponding results for the universal de Rham classes.✷

As all the cohomology groups areQ-vector spaces, one gets a Chern character from this i
usual way (cf. [24, §4] or [16, Definition 2.34]), which gives a ring homomorphism

reg :K∗(X•) =H−∗(X•,K)→H∗(X•,Γ•
?(∗)

)
with the property thatreg(K(j)

m (X•,K))⊆H2j−m(X•,Γ•
?(j)), cf. [24, Corollary on p. 28].
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