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THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT
MOTIVES OF MODULAR FORMS

BY FRED DIAMOND, M ATTHIAS FLACH AND LI GUO

ABSTRACT. – Let f be a newform of weightk � 2, level N with coefficients in a number fieldK,
andA the adjoint motive of the motiveM associated tof . We carefully discuss the construction of t
realisations ofM andA, as well as natural integral structures in these realisations. We then use the m
of Taylor and Wiles to verify theλ-part of the Tamagawa number conjecture of Bloch and Kato forL(A,0)
andL(A,1). Hereλ is any prime ofK not dividingNk!, and so that the modλ representation associate
to f is absolutely irreducible when restricted to the Galois group overQ(

√
(−1)(�−1)/2�) whereλ | �.

The method also establishes modularity of all lifts of the modλ representation which are crystalline
Hodge–Tate type(0, k − 1).

 2004 Elsevier SAS

RÉSUMÉ. – Soientf une forme nouvelle de poidsk, de conducteurN , à coefficients dans un corps
nombresK, et A le motif adjoint du motifM associé àf . Nous présentons en détail les réalisations
motifsM etA avec leurs réseaux entiers naturels. En utilisant les méthodes de Taylor–Wiles nous prouvon
la partieλ-primaire de la conjecture de Bloch–Kato pourL(A,0) et L(A,1). Ici λ est une place deK ne
divisant pasNk! et telle que la représentation moduloλ associée àf , restreinte au groupe de Galois
corpsQ(

√
(−1)(�−1)/2�) avecλ | �, est irréductible. Notre méthode démontre aussi la modularité de t

les représentationsλ-adiques cristallinesde type de Hodge–Tate(0, k − 1) congrues à la représentatio
associée àf moduloλ.

 2004 Elsevier SAS

0. Introduction

This paper concerns the Tamagawa number conjecture of Bloch and Kato [4] for a
motives of modular forms of weightk � 2. The conjecture relates the value at0 of the associate
L-function to arithmetic invariants of the motive. We prove that it holds up to powers of ce
“bad primes”. The strategy for achieving this is essentially due to Wiles [88], as complete
Taylor in [86]. The Taylor–Wiles construction yields a formula relating the size of a ce
module measuring congruences between modular forms to that of a certain Galois coho
group. This was carried out in [88] and [86] in the context of modular forms of weight2, where
it was used to prove results in the direction of the Fontaine–Mazur conjecture [40]. While
no surprise that the method could be generalized to higher weight modular forms and t
resulting formula would be related to the Bloch–Kato conjecture, there remained many tec
details to verify in order to accomplish this. In particular, the very formulation of the conjectu
relies on a comparison isomorphism between the�-adic and de Rham realizations of the mot
provided by theorems of Faltings [31] or Tsuji [87], and verification of the conjecture req
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the careful application of such a theorem. We also need to generalize results on congruences
between modular forms to higher weight, and to compute certain local Tamagawa numbers.

The
of

mula;
ture of
ion
ivative
e
of the
re ideal

on for

set of

ral
a

rally,
Rankin
ra [81],
results
suring

tic
) were
uthors,

ced
ld be
dular
essful

pleted
ewed

dular
ure for
s.
eed the
ecture
make
aylor–
urrent
8,82]);
remark
0.1. Some history

Special values ofL-functions have long played an important role in number theory.
underlying principle is that the values ofL-functions at integers reflect arithmetic properties
the object used to define them. A prime example of this is Dirichlet’s class number for
another is the Birch and Swinnerton–Dyer conjecture. The Tamagawa number conjec
Bloch and Kato [4], refined by Fontaine, Kato andPerrin-Riou [55,41,38], is a vast generalizat
of these. Roughly speaking, they predict the precise value of the first non-vanishing der
of the L-function at zero (hence any integer) for every motive overQ. This was already don
up to a rational multiple by conjectures of Deligne and Beilinson; the additional precision
Bloch–Kato conjecture can be thought of as a generalized class number formula, whe
class groups are replaced by groupsdefined using Galois cohomology.

Dirichlet’s class number formula amounts to the conjecture for the Dedekind zeta functi
a number field ats = 0 or 1. The conjecture is also known for DirichletL-functions (including
the Riemann zeta function) at any integer [62,4,52,8,35]. It is known up to an explicit
bad primes for theL-function of a CM elliptic curve ats = 1 if the order of vanishing is� 1
[11,69,58]. There are also partial results forL-functions of other modular forms at the cent
critical value [45,56,59,64,89] and for values of certain HeckeL-functions [49,48,57]. For
more detailed survey of known results we refer to [35].

Here we consider the adjointL-function of a modular form of weightk � 2 at s = 0 and1.
Special values of theL-function associated to the adjoint of a modular form, and more gene
twists of its symmetric square, have been studied by many mathematicians. A method of
relates the values to Petersson inner products, and this was used by Ogg [65], Shimu
Sturm [84,85], Coates and Schmidt [10,73] to obtain nonvanishing results and rationality
along the lines of Deligne’s conjecture. Hida [51] related the precise value to a number mea
congruences between modular forms. In thecase of forms corresponding to (modular) ellip
curves, results relating the value to certain Galois cohomology groups (Selmer groups
obtained by Coates and Schmidt in the context of Iwasawa theory, and by one of the a
who in [34] obtained results in the direction of the Bloch–Kato conjecture.

A key point of Wiles’ paper [88] is that for many elliptic curves, modularity could be dedu
from a formula relating congruences and Galois cohomology [88]. This formula cou
regarded as a primitive form of the Bloch–Kato conjecture for the adjoint motive of a mo
form. His attempt to prove it using the Euler system method introduced in [34] was not succ
except in the CM case using generalizations of results in [47] and [70]. Wiles, in work com
with Taylor [86], eventually proved his formula using a new construction which could be vi
as a kind of “horizontal Iwasawa theory”.

In this paper, we refine the method of [88] and [86], generalize it to higher weight mo
forms and relate the result to the Bloch–Kato conjecture. Ultimately, we prove the conject
the adjoint of an arbitrary newform of weightk � 2 up to an explicit finite set of bad prime
We should stress the importance of making this set as small and explicit as possible; ind
refinements in [22,13,5] which completed the proof of the Shimura–Taniyama–Weil conj
can be viewed as work in this direction for weight two modular forms. In this paper, we
use of some of the techniques introduced in [22] and [13], as well as the modification of T
Wiles construction in [24] and [42]. One should be able to improve our results using c
technology in the weight two case (using [13,13,72]), and in the ordinary case (using [2
one just has to relate the results in those papers to the Bloch–Kato conjecture. Finally we
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that Wiles’ method has been generalized to the setting of Hilbert modular forms by Fujiwara [42],
Skinner–Wiles [83] (using Shimura curves) and Dimitrov [29] (using Hilbert modular varieties).
Dimitrov’s work allows to relate the Selmer group with the special value of the adjoint L-function
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of the Hilbert modular form but to verify the Bloch–Kato conjecture it remains to relate
appearing period with a motivic period.

0.2. The framework

The Bloch–Kato conjecture is formulated in termsof “motivic structures,” a term referring t
the usual collection of cohomological data associated to a motive. This data consists of:
• vector spacesM?, called realizations, for? = B, dR and� for each rational prime�, each

with extra structure (involution, filtration or Galois action);
• comparison isomorphisms relating the realizations;
• a weight filtration.
Suppose thatf is a newform of weightk � 2 and levelN . Much of the paper is devoted to th

construction of the motivic structureAf for which we prove the conjecture. This construction
not new; it is due for the most part to Eichler, Shimura, Deligne, Jannsen, Scholl and F
[79,15,53,75,31]. We review it however in order to collect the facts we need and set thing
a way suited to the formulation of the Bloch–Kato conjecture. For proofs of results not re
found in the literature, we direct the reader to [25].

Let us briefly recall here how the construction works. We start with the modular curveXN

parametrizing elliptic curves with levelN structure. Then one takes the Betti, de Rham
�-adic cohomology ofXN with coefficients in a sheaf defined as the(k − 2)nd symmetric
power of the relative cohomology of the universal elliptic curve overXN . These come with th
additional structure and comparison isomorphisms needed to define a motivic structureMN,k, the
comparison between�-adic and de Rham cohomology being provided by a theorem of Falting
[31]. The structuresMN,k can also be defined as in [75] using Kuga-Sato varieties; this
the advantage of showing they arise from “motives” and provides the option of applying T
comparison theorem [87]. However the construction using “coefficient sheaves” is better
to defining and comparing lattices in the realizations which play a key role in the proof.

The structuresMN,k also come with an action of the Hecke operators and a perfect pa
The Hecke action is used to “cut out” a pieceMf , which corresponds to the newformf and
has rank two over the field generated by the coefficients off . The pairing comes from Poinca
duality, is related to the Petersson inner product and restricts to a perfect pairing onMf . We
finally take the trace zero endomorphisms ofMf to obtain the motivic structureAf = ad0 Mf .
The construction also yields integral structuresMf andAf , consisting of lattices in the variou
realizations and integral comparison isomorphisms outside a set of bad primes.

Our presentation of the Bloch–Kato conjecture is much influenced by its reformulatio
generalization due to Fontaine and Perrin-Riou[41]. Their version assumes the existence o
category of motives with conjectural properties. Without assuming conjectures howeve
define a categorySPMQ(Q) of premotivic structures whose objects consist of realizations
additional structure and comparison isomorphisms. The category of mixed motives is su
to admit a fully faithful functor to it, and a motivic structure is an object of the essential im
Their version of the Bloch–Kato conjecture is then stated in terms ofExt groups of motivic
structures, but whenever there is an explicit “motivic” construction of (conjecturally) al
relevant extensions, the conjecture can be formulated entirely in terms of premotivic stru
This happens in our case, for all the relevantExt’s conjecturally vanish. There will therefore b
no further mention of motives in this paper. We make several other slight modifications
framework of [41]:
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• We use premotivic structures with coefficients in a number fieldK , as in [38].
• We forget about the�-adic realization and comparison isomorphisms at a finite set of “bad”

primesS.
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• We work withS-integral premotivic structures.
This yields a version of the conjecture which predicts the value ofL(Af ,0) up to anS-unit in K .
The conjecture is independent of the choice of integral structures, but the formalism is con
and certain lattices arise naturally in the proof.

We make our setS explicit: LetSf be the set of finite primesλ in K such that either:
• λ |Nk!, or
• the two-dimensional residual Galois representationMf,λ/λMf,λ is not absolutely irre

ducible when restricted toGF , whereF = Q(
√

(−1)(�−1)/2�) andλ | �.
Note that sinceSf includes the set of primes dividingNk!, we will only be applying
Faltings’ comparison theorem in the “easy” case of crystalline representations whose ass
Dieudonné module has short filtration length.

0.3. The main theorems

Our main result can be stated as follows.

THEOREM 0.1 (= Theorem 2.15). –Let f be a newform of weightk � 2 and levelN with
coefficients inK . If λ is not inSf , then theλ-part of the Bloch–Kato conjecture holds forAf

andAf (1).

The main tool in the proof is the construction of Taylor and Wiles, which we axiom
(Theorem 3.1), and apply to higher weight forms to obtain the following generalization of the
class number formula.

THEOREM 0.2 (= Theorem 3.7). –Let f be a newform of weightk � 2 and levelN with
coefficients inK . SupposeΣ is a finite set of rational primes containing those dividingN .
Suppose thatλ is a prime ofK which is not inSf and does not divide any prime inΣ. Then
theOK,λ-module

H1
Σ(GQ,Af,λ/Af,λ)

has lengthvλ(ηΣ
f ).

HereηΣ
f , defined in Section 1.7.3, is a generalization of the congruence ideal of Hid

Wiles; it can also be viewed as measuring the failure of the pairing onMf to be perfect onMf .
Another consequence of Theorem 0.2, is the following result in the direction of Fontaine

Mazur conjecture [40].

THEOREM 0.3 (= Theorem 3.6). –Supposeρ :GQ → GL2(Kλ) is a continuous geometri
representation whose restriction toG� is ramified and crystallineand its associated Dieudonn
module has filtration length less than� − 1. If its residual representation is modular an
absolutely irreducible restricted toQ(

√
(−1)(�−1)/2�) whereλ | �, thenρ is modular.
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1. The adjoint motive of a modular form

1.1. Generalities and examples of premotivic structures

s
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1.1.1. Premotivic structures
For a fieldF , F̄ will denote an algebraic closure, andGF = Gal(F̄ /F ). We fix an embedding

Q̄ → Q̄p for each primep, and an embeddinḡQ → C. If F is a number field, we letIF denote
the set of embeddingsF → Q̄, which we identify with the set of embeddingsF → C via our
fixed one ofQ̄ in C.

We writeGp for GQp , Ip for the inertia subgroup ofGp, andFrobp for the geometric Frobeniu
element inGp/Ip

∼= GFp . We identifyIp ⊂ Gp with their images inGQ.
If K is a number field, thenSf (K) denotes the set of finite places ofK . Suppose tha

λ ∈ Sf (K) divides� ∈ Sf (Q). Let BdR = BdR,� andBcrys = Bcrys,� be the rings defined b
Fontaine [37, §2], [41, I.2.1]. Suppose thatV is a finite-dimensional vector space overKλ with a
continuous action ofG� (i.e., aλ-adic representation ofG�). ThenDdR(V ) = (BdR⊗Q�

V )G� is
a filtered finite-dimensional vector space overKλ, andDcrys(V ) = (Bcrys⊗Q�

V )G� is a filtered
finite-dimensional vector space overKλ equipped with aKλ-linear endomorphismφ. The
representationV is calledde Rhamif dimKλ

DdR(V ) = dimKλ
V , andV is calledcrystallineif

dimKλ
Dcrys(V ) = dimKλ

V . We recall that ifV is crystalline, thenV is de Rham.
A λ-adic representationV of GQ is pseudo-geometric[41, II.2] if it is unramified outside o

a finite number of places ofQ and its restriction toG� is de Rham. The representationV is said
to havegood reduction atp if its restriction toGp is crystalline (resp. unramified) ifp = � (resp.
p �= �).

We work with categories of premotivic structures based on notions from [41,38,4].
For a number fieldK , we let PMK denote the category of premotivic structures oveQ

with coefficients inK . In the notation of [41, III.2.1], this is the categorySPMQ(Q) ⊗ K of
K-modules inSPMQ(Q). Thus an objectM of PMK consists of the following data:
• a finite-dimensionalK-vector spaceMB with an action ofGR;
• a finite-dimensionalK-vector spaceMdR with a finite decreasing filtrationFili, called the

Hodge filtration;
• for eachλ ∈ Sf (K), a finite-dimensionalKλ vector spaceMλ with a continuous pseudo

geometric action ofGQ;
• a C⊗K-linear isomorphism

I∞ :C⊗MdR → C ⊗MB

respecting the action ofGR (whereGR acts onC ⊗ MB diagonally and acts onC ⊗ MdR

via the first factor);
• for eachλ∈ Sf (K), aKλ-linear isomorphism

Iλ
B :Kλ ⊗K MB →Mλ

respecting the action ofGR (where the action onMλ is via the restrictionGR → GQ

determined by our choice of embeddingQ̄ → C);
• for eachλ∈ Sf (K), aBdR,� ⊗Q�

Kλ-linear isomorphism

Iλ :BdR,� ⊗Q�
Kλ ⊗K MdR →BdR,� ⊗Q�

Mλ

4e SÉRIE– TOME 37 – 2004 –N◦ 5
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respecting filtrations and the action ofGQ�
(where� is the prime whichλ divides,Kλ and

Mλ are given the degree-0 filtration,Kλ andMdR are given the trivialGQ�
-action and the

action onMλ is determined by our choice of embeddingQ̄ → Q̄�);
e
he

the

l

a

ntation

case

g

nd

ry
• increasing weight filtrationsW i on MB, MdR and eachMλ respecting all of the abov
data, and such thatR ⊗ MB with its Galois action and weight filtration, together with t
Hodge filtration onC ⊗ MB defined viaIB, defines a mixed Hodge structure overR (see
[41, III.1]).

If S � Sf (K) is a set of primes ofK , we letPMS
K denote the category defined in exactly

same way, but withSf (K) replaced by the complement ofS. If S ⊆ S′, we use·S′
to denote the

forgetful functor fromPMS
K to PMS′

K .
The categoryPMS

K is equipped with a tensor product, which we denote⊗K , and an interna
hom, which we denoteHomK . There is also a unit object, which we denote simply byK . These
are defined in the obvious way; for example,(M ⊗K N)B is theK[GR]-moduleMB ⊗K NB.
If K ⊆ K ′, we letSK′

denote the set of primes inSf (K ′) lying over those inS, thenK ′ ⊗K ·
defines a functor fromPMS

K to PMSK′

K′ .
If M is an object ofPMS

K , then for each primep and eachλ /∈ S, we can associate
representation of the Deligne–Weil group ofQp (see [16, §8]), which we denote byWDp(Mλ).
For λ not dividingp, the representation is overKλ; for λ dividing p, we have thatMλ|Gp is
potentially semistable [3, Theorem 0.7], so the construction in [41, I.2.2] yields a represe
overQur

p ⊗Qp Kλ. We recall thatMλ|Gp is crystalline if and only ifWDp(Mλ) is unramified
(in the sense that the monodromy operator and the inertia group act trivially), in which
WDp(Mλ) = Qur

p ⊗Qp Dcrys(Mλ) with Frobp acting via1⊗ φ−1. An objectM of PMS
K

• hasgood reductionat p if WDp(Mλ) is unramified for allλ /∈ S;
• is L-admissibleat p if the Frobenius semisimplifications ofWDp(Mλ), for λ /∈ S, form

a compatible system ofK-rational representations of the Deligne–Weil group ofQp (see
[16, §8]);

• is L-admissible everywhereif it is L-admissible atp for all primesp.
If M is L-admissible atp, then the local factor associated toWDp(Mλ) is of the form

P (p−s)−1 for some polynomialP (u) ∈ K[u] independent ofλ not in S. For an embeddin
τ :K → C we putLp(M,τ, s) = τP (p−s) and we regard the collection{Lp(M,τ, s)}τ∈IK as a
meromorphic function onC with values inCIK ∼= K ⊗ C. If S is finite andM is L-admissible
everywhere, then itsL-function

L(M,s) :=
∏
p

Lp(M,s)

is a holomorphicK ⊗ C-valued function in some right half planeRe(s) > r (with components
L(M,τ, s) =

∏
p Lp(M,τ, s)).

1.1.2. Integral premotivic structures
Before introducing integral premotivic structures, we recall some of the theory of Fontaine a

Laffaille [39]. We letMF denote the category whose objects are finitely generatedZ�-modules
equipped with
• a decreasing filtration such thatFila A = A andFilb A = 0 for somea, b ∈ Z, and for each

i ∈ Z, Fili A is a direct summand ofA;
• Z�-linear mapsφi : Fili A →A for i ∈ Z satisfyingφi|Fili+1 A = �φi+1 andA =

∑
Imφi.

It follows from [39, 1.8] thatMF is an abelian category. LetMFa denote the full subcatego
of objectsA satisfyingFila A = A andFila+� A = 0 and having no non-trivial quotientsA′ such
thatFila+�−1 A′ = A′, and letMFa

tor denote the full subcategory ofMFa consisting of objects
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of finite length. SoMF0
tor is the category denotedMF f,�′

tor in [39], and it follows from [39, 6.1]
thatMFa andMFa

tor are abelian categories, stable under taking subobjects, quotients, direct
products and extensions inMF .

r
en
nts

line

nite
Fontaine and Laffaille define a contravariant functorUS fromMF0
tor to the category of finite

continuousZ�[G�]-modules and they prove it is fully faithful [39, 6.1]. We letV denote the
functor defined byV(A) = Hom(US(A),Q�/Z�) and we extend it to a fully faithful functo
on MF0 by settingV(A) = proj limV(A/�nA). Then V defines an equivalence betwe
MF0 and the full subcategory ofZ�[G�]-modules whose objects are isomorphic to quotie
of the form L1/L2, whereL2 ⊂ L1 are finitely generated submodules of short crystal
representations. Here we define a crystalline representationV to beshort if the following hold
• Fil0 D = D andFil� D = 0, whereD = (Bcrys ⊗Q�

V )G� ;
• if V ′ is a nonzero quotient ofV , thenV ′ ⊗Q�

Q�(�− 1) is ramified.
In particular, the essential image ofV is closed under taking subobjects, quotients and fi
direct sums. Furthermore, one sees from [39, 8.4] that the natural transformations

Q� ⊗Z�
A→

(
Bcrys ⊗Z�

V(A)
)G� ,

Bcrys ⊗Z�
A→ Bcrys ⊗Z�

V(A) and

Fil0(Bcrys ⊗Z�
A)φ=1 → Q� ⊗Z�

V(A)

(1)

are isomorphisms.
If K is a number field andλ ∈ Sff(K) is a prime over�, we letOλ =OK,λ and letOλ-MFa

denote the category ofOλ-modules inMFa. We can regardV as a functor fromOλ-MF0 to
the category ofOλ[G�]-modules.

If A andA′ are objects ofOλ-MF0 such thatA⊗Oλ
A′ defines an object ofOλ-MF0, then

there is a canonical isomorphism

V(A⊗Oλ
A′) ∼= V(A)⊗Oλ

V(A′).

Analogous assertions hold forHomOλ
(A,A′).

We now define a categoryPMS
K of S-integral premotivic structuresas follows. We let

OS = OK,S denote the set ofx ∈ K with vλ(x) � 0 for all λ /∈ S. An objectM of PMS
K

consists of the following data:
• a finitely generatedOK -moduleMB with an action ofGR;
• a finitely generatedOS-moduleMdR with a finite decreasing filtrationFili, called the

Hodge filtration;
• for eachλ ∈ Sf (K), a finitely generatedOλ-moduleMλ with continuous action ofGQ

inducing a pseudo-geometric action onMλ ⊗Oλ
Kλ;

• for eachλ /∈ S, an objectMλ-crys of Oλ-MF0;
• anR⊗OK -linear isomorphism

I∞ :C⊗MdR → C ⊗MB

respecting the action ofGR;
• for eachλ in Sf (K), an isomorphism

Iλ
B :MB ⊗OK Oλ

∼= Mλ

respecting the action ofGR;
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• for eachλ /∈ S, anOλ-linear isomorphism

Iλ
dR :MdR ⊗O Oλ

∼= Mλ-crys

l

o

sms.

d

e

e

m
nd

s in
respecting filtrations;
• for eachλ /∈ S, anOλ-linear isomorphism

Iλ :V(Mλ-crys) →Mλ

respecting the action ofGQ�
, where� is the prime whichλ divides;

• increasing weight filtrationsW i on Q ⊗MB, Q ⊗MdR and eachQ⊗Mλ respecting al
of the above data and giving rise to a mixed Hodge structure.

With the evident notion of morphism this becomes anOK -linear abelian category. Note als
that there is a natural functorQ⊗ · fromPMS

K to PMS
K , where we set(Q⊗M)? = Q⊗M?

for ? = B, dR andλ for λ /∈ S, with induced additional structure and comparison isomorphi
(The comparisonIλ for Q⊗M is defined as the composite

BdR,� ⊗Z�
Oλ ⊗O MdR

∼= BdR,� ⊗Z�
Mλ-crys → BdR,� ⊗Z�

V(Mλ-crys)→ BdR,� ⊗Z�
Mλ,

where the maps are respectively,Iλ
dR, the canonical map (1) andIλ, each with scalars extende

to BdR,�.)

If S ⊂ S′, we define a functor·S′
fromPMS

K toPMS′

K in the obvious way. We say thatM is
S′-flat if MS′

dR = MdR ⊗OK,S OK,S′ is flat overOK,S′ . Note that ifM is S′-flat, then so is any
subobject ofM. Let K ′ be a finite extension ofK . We also have a natural functorOK′ ⊗OK ·
fromPMS

K to PMSK′

K′ .
We say thatM hasgood reductionat p, is L-admissibleat p or is L-admissible everywher

according to whether the same is true forQ ⊗M. Note that ifM is L-admissible atp andp is
not invertible inO, thenM necessarily has good reduction atp.

For objectsM andM′ of PMS
K , we can formM⊗OK M′ in PMS

K providedMλ-crys⊗Oλ

M′
λ-crys defines an object ofMF0

λ for all λ /∈ S. In particular this holds if there exist positiv

integersa, a′ such thatFila MdR = 0, Fila
′
M′

dR = 0 and a + a′ < � for all primes � not

invertible in O. If N andN ′ are objects ofPMS
K such thatN ⊗OK N ′ is as well, and if

α :M→N andα′ :M′ →N ′ are morphisms inPMS
K , then there is a well-defined morphis

α⊗α′ :M⊗OK N →M′ ⊗OK N ′ in PMS
K . Analogous assertions hold for the formation a

properties ofHomOK (M,M′).
Note that ifM is an object ofPMS

K , thenEndM is a finitely generatedOK -module. IfI is
anOK-submodule ofEndM, then we define an objectM[I] of PMS

K as the kernel of

(x1, . . . , xr) :M→Mr

wherex1, . . . , xr generateI. This is independent of the choice of generators. This applie
particular whenI is the image inEndM of an ideal in a commutativeOK -algebraR mapping
to EndM, or the augmentation ideal inOK [G] whereG is a group acting onM. In the latter
case, we writeMG instead ofM[I].

1.1.3. Basic examples
The objectQ(−1) in PMQ is the weight two premotivic structure defined byH1(Gm).

To give an explicit description, letε denote the generator ofZ�(1) = lim
←−

µ�n(Q̄) defined by

(e2πi/�n

)n via our fixed embeddinḡQ → C.
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• Let TB = H1
B(Gm(C),Z) ∼= (2πi)−1Z ⊂ C with complex conjugation inGR acting by−1,

and letQ(−1)B = Q⊗TB .
• Let TdR = H1

dR(Gm/Z), which with its Hodge filtration is isomorphic toZ[−1] (where[n]
l

r,

ral

hat a

of
denotes a shift byn in the filtration, soFili V [n] = Fili+n V ). Write ι for the canonica
basis dx

x of TdR
∼= Z[−1] and let Q(−1)dR = Q ⊗ TdR, so Fil1 Q(−1)dR = Qι and

Fil2 Q(−1)dR = 0.
• Let T� = H1

et(Gm,Q̄,Z�) ∼= HomZ�
(Z�(1),Z�) = Z�δ whereδ(ε) = 1, and letQ(−1)� =

Q⊗T�.
• Let T�-crys denote the object ofMF� defined byZ� ⊗TdR = Z� ι with φ1(ι) = ι.
• I∞ :C⊗Z TdR → C⊗Z TB is defined by1⊗ ι �→ 2πi⊗ (2πi)−1.
• I�

B :Z� ⊗TB →T� is defined by1⊗ (2πi)−1 �→ δ.
• I�

dR :TdR ⊗Z Z� →T�-crys is given byι �→ ι .
• I� :BdR,� ⊗Q[−1]→BdR,� ⊗Q�

Q(−1)� is defined by1⊗ ι �→ t⊗ δ wheret = log[ε] (see
e.g., [41, I.2.1.3]).

• For� > 2,T�-crys is an object ofMF0 andI� is induced by an isomorphismV(T�-crys) ∼= T�.

The above data defines objects inPMQ and PM{2}
Q which we denote byQ(−1) and T .

These could be described equivalently byH2(P1), or indeedH2(X) for any smooth, prope
geometrically connected curveX overQ.

The Tate premotivic structureQ(1) is the object ofPMQ defined byHomQ(Q(−1), Q)
andQ(n) is defined byQ(1)⊗n for integern. We haveL(Q(n), s) = ζ(s + n) whereζ is the
Riemannζ-function. More generally, for any objectM in PMK and integern, M(n) is defined
asM ⊗Q Q(1)⊗n. For any integern � 0, T S,⊗n defines an object ofPMS

Q whereS is any set
of primes containing those dividing(n + 1)!; note also thatQ⊗T S,⊗n ∼= Q(−n)S .

For any number fieldF ⊂ Q̄, let MF denote the premotivic structureMF of weight zero
defined byH0(SpecF ), called theDedekind premotivic structureof F . To give an explicit
description, letS denote the set of primes dividingD = Disc(F/Q). We let
• MF,B = ZIF with the natural action ofGR, andMF,B = Q ⊗MF,B = QIF . (Recall that

we identifiedIF with the set of embeddingsF → C via the chosen embeddinḡQ → C, so
for α : IF → Z andσ ∈GR, we defineσα by τ �→ α(σ−1 ◦ τ));

• MF,dR = OF [1/D] with Fil0MF,dR = MF,dR and Fil1MF,dR = 0, and MF,dR =
Q⊗MF,dR = F ;

• MF,� = Z� ⊗MF,B = ZIF

� with the natural action ofGQ, andMF,� = Q ⊗MF,� = QIF

�

(so forα : IF → Z�, σ ∈ GQ andτ :F → Q̄, we have(σα)(τ) = α(σ−1 ◦ τ));
• MF,�-crys = Z� ⊗MF,dR = Z� ⊗OF for � /∈ S, with the same filtration asMF,dR and

with φ0 = φ�.
The comparisonsI�

B andI�
dR are identity maps,I∞ is defined byI∞(1 ⊗ x)(τ) = τ(x) after

identifying C ⊗ MF,B with CIF , andI� is defined similarly. We thus obtain objectsMF of
PMS

Q andMF of PMQ, andL(MF , s) is theζ-function ofF . If F is Galois overQ, then there
is a natural action ofG = Gal(F/Q) onMF , where forα ∈MF,B, g ∈G andτ ∈ IF , we have
gα by τ �→ α(τ ◦ g).

Let ψ : Ẑ× → K× be a character, regarded also as a character ofA× and GQ via the
isomorphismŝZ× ∼= A×/R×

>0Q× ∼= Gab
Q , where the first isomorphism is induced by the natu

inclusion Ẑ× → A× and the second is given by class field theory. (Our convention is t
uniformizer inQ×

p maps toFrobp in the Galois group of any abelian extension ofQ unramified
atp.) If F is a Galois extension ofQ such thatψ is trivial on the image ofGF in GQ, then we can
regardψ as a character ofG = Gal(F/Q) and define theDirichlet premotivic structureMψ as
(V ⊗MF )G whereV = K with G acting byψ. The construction is independent of the choice
F and embedding ofF in Q̄. To describeMψ explicitly, we chooseF = Q(e2πi/N ) ⊂ C where
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ψ has conductorN . We letτ0 :F → Q̄ denote the embedding compatible with our fixedQ̄ → C,
and we regardψ as a Dirichlet character via the canonical isomorphism(Z/NZ)× ∼= G. Let S
denote the set of primes inK lying over those dividingN and define an objectMψ of PMS

K

t
m

ctor

ace of
s

h
er
oper
ed

,
al
by (V ⊗MF )G whereV = OS
K with G acting byψ. We then have:

• Mψ,B is theOK -submodule ofOIF

K spanned by the mapbB defined byτ0 ◦ g �→ ψ−1(g),
whereτ0 is the inclusion ofF in Q̄;

• Mψ,dR is theO = OK [1/N ]-submodule ofOK ⊗OF [1/N ] spanned by

bdR =
∑

a

ψ(a)⊗ e2πia/N ,

wherea runs over(Z/NZ)× with Fil1Mψ,dR = 0 andFil0Mψ,dR = Mψ,dR;
• Mψ,λ = Oλ ⊗OK Mψ,B with GQ acting viaψ;
• for λ � N , Mψ,λ-crys = Oλ ⊗OK Mψ,dR with the same filtration asMψ,dR and φ0 =

ψ−1(�).
The comparison isomorphisms are induced from those ofMF . Similarly, we get the objec
Mψ of PMK by settingMψ,? = Q ⊗ Mψ,? with comparison isomorphisms induced fro
those ofMF . In particular, we haveI∞(1 ⊗ bdR) = Gψ(1 ⊗ bB) whereGψ is the Gauss sum∑

a e2πia/N ⊗ψ(a) in C⊗K .
We have thatQ⊗Mψ

∼= MS
ψ , Mψ has good reduction at all primes not dividing the condu

of ψ and isL-admissible everywhere, andL(Mψ, s) is the DirichletL-functionL(ψ−1, s).

1.2. Premotivic structures for level N modular forms

In this section we review the construction of premotivic structures associated to the sp
modular forms of weightk and levelN . More precisely, ifk � 2 andN � 3, we construct object
of PMS

Q whose de Rham realization contains the space of such forms, whereS = SN is the set
of primes dividingNk!.

1.2.1. Level N modular curves
These premotivic structures are obtained from the cohomology of modular curves. Letk and

N be integers withk � 2 andN � 3. Let T = SpecZ[1/Nk!], and consider the functor whic
associates to aT -schemeT ′ the set of isomorphism classes of generalized elliptic curves ovT ′

with levelN structure [18, IV.6.6]. By [18, IV.6.7], the functor is represented by a smooth, pr
curve overT . We denote this curve bȳX , and we let̄s : Ē → X̄ denote the universal generaliz
elliptic curve with levelN structure. We letX denote the open subscheme ofX̄ over whichĒ is
smooth. ThenX is the complement of a reduced divisor, calledthe cuspidal divisor, which we
denote byX∞. We letE = s̄−1X , s = s̄|E andE∞ = Ē ×X̄ X∞. Using the arguments of [18
VII.2.4], one can check that̄E is smooth overT andE∞ is a reduced divisor with strict norm
crossings (in the sense of [46, 1.8] as well as [1, XIII.2.1]).

Let us also recall the standard description of

s̄an : Ēan → X̄an,

where we usean to denote the associated complex analytic space. We let

XN =
∐

t∈(Z/NZ)×

XN,t,
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where for eacht, XN,t denotes a copy ofΓ(N)\H, the quotient of the complex upper half-plane
H, by the principal congruence subgroupΓ(N) of SL2(Z). Similarly we let

f

].
ic

e

iants

af

g
s the

e use
X̄N =
∐

t∈(Z/NZ)×

X̄N,t,

whereX̄N,t is the compactification ofXN,t obtained by adjoining the cusps. We writēXalg
N for

the corresponding algebraic curve overC.
For eacht ∈ (Z/NZ)×, we define the complex analytic surfaceEN,t to be a copy of the

quotient

Γ(N)\
(
(H×C)/(Z ×Z)

)
,

where(m,n) ∈ Z × Z acts onH×C via (τ, z) �→ (τ, z + mτ + n), andγ =
(

a b
c d

)
∈ Γ(N) acts

by sending the class of(τ, z) to that of(γ(τ), (cτ + d)−1z). We can regardEN =
∐

EN,t as a
complex analytic family of elliptic curves overXN with levelN -structure defined by the pair o
sections(τ, τ/N) and(τ, t/N) onXN,t. We can then extendEN to a familyĒN of generalized
elliptic curves with levelN -structure overX̄N using analytic Tate curves, as in [18, VII.4
One checks that̄EN is algebraic, soĒN → X̄N is the analytification of a generalized ellipt
curveĒalg

N → X̄alg
N . The resulting morphism̄Xalg

N → X̄C induces an isomorphismXN → Xan.
The analytification of the universal generalized elliptic curve with levelN -structure is therefor
isomorphic toĒN → X̄N with the levelN -structure defined above.

1.2.2. Betti realization
To construct the Betti realization, defineFB as the locally constant sheafR1san

∗ Z onXan. Let
Fk

B = Symk−2
Z FB, where our convention for defining symmetric powers is to take coinvar

under the symmetric group. We then defineMB = H1(Xan,Fk
B), andMc,B = H1

c (Xan,Fk
B).

IdentifyingXan with XN as above, we find thatFk
B is identified with the locally constant she

defined by

Γ(N)\(H× Symk−2 Z2)

whereΓ(N) acts onZ2 by left-multiplication. It follows that

Hi(Xan,Fk
B) ∼=

⊕
t∈(Z/NZ)×

Hi
(
Γ(N),Symk−2 Z2

)
.(2)

In particular, it follows easily thatMB has no�-torsion ifk = 2 or � does not divideN(k − 2)!.
The actions of complex conjugation inGR onMB andMc,B are induced by its action onEan

andXan. We letMB = Q⊗MB andMc,B = Q⊗Mc,B.

1.2.3. �-adic realizations
For any finite prime�, we letF� denote the�-adic sheafR1s∗Z� onX . LetFk

� = Symk−2
Z�

F�,
M� = H1(XQ̄,Fk

� ) andMc,� = H1
c (XQ̄,Fk

� ). ThenGQ acts onM� andMc,� by transport
of structure. We letM� = Q ⊗ M� and Mc,� = Q ⊗ Mc,�. A standard construction usin
the comparison between classical and étale cohomology [2, XI.4.4, XVII.5.3] yield
isomorphismsZ� ⊗MB

∼= M� andZ� ⊗Mc,B
∼=Mc,�.

1.2.4. de Rham realization
The construction of the de Rham realization is similar to the one given in [74] except w

the language of log schemes [54]. We letNE (resp.NX ) denote the log structure on̄E (resp.
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X̄) associated toE∞ (resp.X∞) [54, 1.5]. By [54, 3.5, 3.12], we have an exact sequence of
coherent locally freeOĒ-modules

eaves

et

s

0 → s̄∗ω1
X̄/T → ω1

Ē/T → ω1
Ē/X̄ → 0,(3)

whereω1 denotes the sheaf of logarithmic relative differentials defined in [54, 1.7]. The sh
ω1

X̄/T
andω1

Ē/X̄
are invertible, and can be identified, respectively, withΩ1

X̄/T
(X∞) and the

sheaf of regular differentials for̄s (denotedωĒ/X̄ in [18, I.2.1]). DefineFdR as the locally free
sheafR1s̄∗ω

•
Ē/X̄

of OX̄ -modules onX̄ , whereω•
Ē/X̄

is the complexd :OĒ → ω1
Ē/X̄

. This has

a decreasing filtration withFil2FdR = 0, Fil1FdR = s̄∗ω
1
Ē/X̄

, andFil0FdR = FdR. We denote

Fil1FdR simply asω. We defineFk
dR as the filtered sheaf ofOX̄ -modulesSymk−2

OX̄
FdR, and we

let Fk
c,dR =Fk

dR(−X∞).
The (logarithmic) Gauss–Manin connection

∇ :FdR →FdR ⊗OX̄
ω1

X̄/T

induces logarithmic connections onFk
dR andFk

c,dR satisfying Griffiths transversality. We s
MdR = H1(X̄,ω•(Fk

dR)) andMc,dR = H1(X̄,ω•(Fk
c,dR)), where we writeω•(G) for the

complex associated to the moduleG with its connection. The filtrations onMdR andMc,dR

are defined by those onFk
dR andFk

c,dR. We letMdR = Q ⊗MdR andMc,dR = Q ⊗Mc,dR.
Letting ω = s̄∗ω

1
Ē/X̄

, we havegr0FdR
∼= ω−1 by Grothendieck–Serre duality andω2 ∼= ω1

X̄/T

by the Kodaira–Spencer isomorphism [18, VI.4.5.2]. It follows thatω2 ∼= ω1
X̄/T

, and one deduce
that

gri MdR
∼=




H0(X̄,ωk−2 ⊗ ω1
X̄/T

), if i = k − 1;

H1(X̄,ω2−k), if i = 0;
0, otherwise.

Similarly one finds

gri Mc,dR
∼=




H0(X̄,ωk−2 ⊗Ω1
X̄/T

), if i = k − 1;

H1(X̄,ω2−k(−X∞)), if i = 0;
0, otherwise.

Pulling back to
∐

t H and trivializing by(2πi)k−1(dz)⊗(k−2)dτ yields an isomorphism

α :C⊗Filk−1MdR →
⊕

t∈(Z/NZ)×

Mk

(
Γ(N)

)
(4)

whereMk(Γ(N)) is the space of modular forms of weightk with respect toΓ(N). By the
q-expansion principle [18, VII], the map

⊕
t∈(Z/NZ)×

Mk

(
Γ(N)

)
→

⊕
t∈(Z/NZ)×

C[[q1/N ]]

that sendsf(τ) = g(e2πiτ/N ) to g(q1/N ) identifiesFilk−1 MdR as the subset of

⊕
t∈(Z/NZ)×

Mk

(
Γ(N)

)
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whoseq-expansion at∞ has coefficients inZ[1/Nk!, µN ], which we view as a subring of
∏

t C
via the embedding defined by(e2πit/N )t. The same assertions hold withMdR replaced by
Mc,dR andMk(Γ(N)) by Sk(Γ(N)), the subspace of cusp forms.

a

etails.

.

e

ned
in

.
bject

f

,

d

n it is
To construct of the comparison isomorphismsI∞, apply GAGA [76] and the Poincaré Lemm
to conclude that the pull-back ofω•(FdR) to Xan defines a resolution ofC ⊗ FB . Taking
symmetric powers then provides resolutions ofC⊗Fk

B andC⊗ j!Fk
B wherej :Xan → X̄an, and

taking cohomology yields the desired comparisons. We refer the reader to [25] for more d

1.2.5. Crystalline realization
We define the crystalline realization using the language of logarithmic crystals as in [31]

Suppose that̄Y is a smooth, proper scheme overSpecZ� with a relative divisorD with strict
normal crossings, and letY = Ȳ − D. For each integera with 0 � a � � − 2, Faltings [31,
§2i)] defines a categoryMF∇

[0,a](Y ). In the case ofY = Ȳ = SpecZ�, Faltings’ category can b

identified with the full subcategory ofMF0
tor whose objectsA satisfyFila+1 A = 0. Assuming�

does not divide2N , letF�-crys denote the inverse system inMF∇
[0,1](XZ�

) defined by reduction
mod �n of FdR with its filtration, logarithmic Gauss–Manin connection and locally defi
Frobenius maps. Assuming further that� > k − 1, we letFk

�-crys denote the inverse system

MF∇
[0,k−2](XZ�

) defined bySymk−2
OȲ

F�-crys. If � > k, we obtain an object

M�-crys = H1
crys(XZ�

,Fk
�-crys)

of MF0 whose underlying filtered module can be identified withZ� ⊗MdR (see [31, §4c)])
Similarly, taking cohomology with compact support (in the sense of [31]) yields an o
Mc,�-crys whose underlying filtered module isZ� ⊗Mc,dR.

The above identifications provide the comparison isomorphismsI�
dR. The construction o

the comparisonsI� relies on Faltings’ comparison theorem between�-adic and crystalline
cohomology. Faltings [31, Theorem 2.6] defines a functorD from MF∇

[0,a](Y ) to the category
of finite locally constant étale sheaves onYQ�

so thatV = Hom(D(·),Q�/Z�) coincides with
that of [39] forY = SpecZ�. If � � Nk!, then we haveV(F�-crys) ∼= F� by [31, Theorem 6.2]
so V(Fk

�-crys) ∼= Fk
� by [31, IIh], giving V(M�-crys) ∼= M� andV(Mc,�-crys) ∼= Mc,� by [31,

Theorem 5.3].

1.2.6. Weight filtration
There is a natural mapMc,? → M? for each realization respecting all of the data an

comparison isomorphisms. Setting

WiM? =




0, if i < k − 1;
im(Mc,? → M?), if k − 1 � i < 2(k − 1);
M?, if 2(k − 1) � i;

WiMc,? =




0, if i < 0;
ker(Mc,? →M?), if 0 � i < k − 1;
Mc,?, if k − 1 � i

defines weight filtrations. So we can regardM andMc as objects ofPMS
Q, andM = Q⊗M

andMc = Q ⊗Mc as objects ofPMS
Q, whereS contains the set of primes dividingNk!. The

integerk � 2 will always be fixed in the discussion and suppressed from the notation; whe
necessary to specifyN , we denote the objectsM(N) andM(N)c.

We letMtf denote the maximal torsion-free quotient ofM (i.e.,M/M[r] wherer ∈ Z>0 is
chosen to annihilate the torsion inMB andM[r] denotes the kernel of multiplication byr on
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M.) We then letM! denote the premotivic structureim(Mc →Mtf) in PMS
Q, pure of weight

k − 1. We letM! = Q⊗M!.

odular

r

f
p
n

nt
1.3. The action of GL2(Af )

In this section we define the adelic action on premotivic structures associated to m
forms.

1.3.1. Action on modular forms
We first recall the adelic definition of modular curves and forms. Suppose thatU is an open

compact subgroup ofGL2(Af ) whereAf denotes the finite adeles. LetU∞ denote the stabilize
of i in GL2(R), soU∞ = R× SO2(R). The analytic modular curveXU of levelU is defined as
the quotient

GL2(Q)\GL2(A)/UU∞.

The analytic structure is characterized by requiring that ifg is inGL2(Af ), then the mapH→XU

defined byγ(i)→ GL2(Q)gγUU∞, γ ∈ GL+
2 (R), is holomorphic.

If φ :GL2(A) → C is such thatφ(δxuv) = detv (ci + d)−kφ(x) for all δ ∈ GL2(Q),
x∈ GL2(A), u ∈U andv =

(
a b
c d

)
∈U∞, then we defineφg :H→ C

φg(γ(i)) = (detγ)−1(ci + d)kφ(gγ) for γ =
(

a b
c d

)
∈GL+

2 (R).

We say that such a functionφ is a modular form of levelU if for all g ∈ GL2(Af ), φg is a
modular form of weightk with respect togUg−1 ∩GL+

2 (Q). We denote this space byMk(U),
and similarly defineSk(U), the space of cusp forms of levelU .

Suppose now thatU andU ′ are open compact subgroups ofGL2(Af ), andg is an element o
GL2(Af ) such thatg−1U ′g ⊂ U . Note that right multiplication byg induces a holomorphic ma
XU ′ →XU , and inclusionsMk(U) → Mk(U ′) andSk(U) → Sk(U ′). We thus obtain an actio
of GL2(Af ) on

Ak = lim
→
U

Mk(U) and A0
k = lim

→
U

Sk(U).

Suppose now thatU = UN for someN � 3, whereUN ⊂ GL2(Af ) is the kernel of the
reduction mapGL2(Ẑ) → GL2(Z/NZ). For each classt ∈ (Z/NZ)×, we choose an eleme
gt ∈ GL2(Ẑ) whose image inGL2(Z/NZ) is

(
1 0
0 t−1

)
. We identifyXN with XU via the maps

ηt :XN,t → XU defined by

Γ(N) · γ(i) �→GL2(Q) · gtγ ·UU∞

for γ ∈ GL+
2 (R). We identifyMk(U) with

⊕
t Mk(Γ(N)) via the isomorphismβ defined by

β(φ)t = φgt . (Note thatη and β are independent of the choices of thegt.) We thus obtain
isomorphisms

β−1 ◦α : C ⊗Filk−1MdR
∼= Mk(U) and Ak

∼= C⊗ lim
→
N

Filk−1M(N)dR,(5)

whereα was defined in (4).

1.3.2. Action on premotivic structures
Forh ∈GL2(Af ) and integersN,N ′ � 3, we call(h,N,N ′) anadmissible tripleif bothh and

N ′N−1h−1 ∈M2(Ẑ). If (h,N,N ′) is an admissible triple, thenN |N ′ andh−1UN ′h⊂ UN . Let
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Ē/X̄ (resp.Ē′/X̄ ′) denote the universal generalized elliptic curve with levelN (respectively
N ′) structure. Note that right multiplication byN ′h−1 ∈ M2(Ẑ) defines an endomorphism of
Ē′[N ′] = (Z/N ′Z)2 ′ . We defineG to be its image which is a finite flat subgroup ofE′. Right

f

el
m

se

e

e

f

/X

multiplication byN−1N ′h−1 defines an injective map

(Z/NZ)2 → (Z/N ′Z)2/((Z/N ′Z)2(N ′h−1)

which gives rise to a levelN -structure onE′/G extending to(Ē′/G)cont, the contraction o
Ē′/G whose cuspidal fibers areN -gons [18, IV.1]. By the universal property of̄E/X̄ , this defines
a mapX̄ ′ → X̄ such that(Ē′/G)cont → Ē ×X̄ X̄ ′ as generalized elliptic curves with lev
N -structures. Composing with the natural mapĒ′ → (Ē′/G)cont, we get a commutative diagra

Ē′ Ē

X̄ ′ X̄.

(6)

Suppose thatg ∈ M2(Ẑ) ∩ GL2(Af ) with g−1UN ′g ⊆ UN . One can then factorg = rh so
that r ∈ Z and (h,N,N ′) is admissible. Suppose thatS is a set of primes containing tho
dividing N ′k!. For � = ∅, c and!, we writeM� = M(N)S

� andM′
� = M(N ′)S

� for the objects

of PMS
Q defined in Section 1.2.6. For? = B, dR, � and�-crys with � � N ′k!, we use the top

row of (6) to define compatible maps fromF ′
? to the pullback ofF? along the bottom row, tak

symmetric products and then take cohomology, yielding morphisms[h]� :M� →M′
�. We then

obtain morphisms[g]� :M� → M′
� by defining[g]� = rk−2[h]�, and this is independent of th

factorizationg = rh. Furthermore, ifN ′′ � 3 is an integer,g′ ∈ M2(Ẑ) ∩ GL2(Af ) is such that
g′,−1UN ′′g′ ⊆ U ′

N andS contains the set of primes dividingN ′′k!, then[g′]� ◦ [g]� = [g′g]� in

PMS′′

Q for � = ∅, c and!, whereS′′ is the set of primes dividingN ′′k!. In particular, we obtain

an action ofGL2(Ẑ)/UN
∼= GL2(Z/NZ) onM�. We note the following:

LEMMA 1.1. – If g ∈ M2(Ẑ) ∩ GL2(Af ) andUN ′ ⊂ gUNg−1 ⊆ GL2(Ẑ), then the injective
morphism[g]c :Mc → (M′

c)
gUN g−1

has cokernel killed by‖detg‖−1.

Suppose now thatg ∈ GL2(Af ) with g−1UN ′g ⊆ UN . We can then writeg = rh for some
r ∈ Q so that(h,N,N ′) is admissible and obtain morphisms inPMS

Q which we also denote[g]�.
These behave naturally under composition and the resulting action ofGL2(Af ) is compatible
with the isomorphisms in (5).

1.4. The premotivic structure for forms of level N and character ψ

1.4.1. σ-constructions
SupposeU is any open compact subgroup ofGL2(Ẑ). Let K be a number field with ring o

integersOK . Let V be a finite dimensional vector space overK and letσ :U → AutK(V ) be a
continuous representation ofU . Define

Sσ =
{
� ∈ Sf (Q)| �|k! or GL2(Z�) �⊂ kerσ

}
,

and suppose thatS ⊂ Sf (K) with SK
σ ⊂ S.

ChooseN � 3 such thatUN ⊂ kerσ and N is divisible only by primes inS, and let
M = M(N)S . SinceUN is normal inU , by Section 1.3.2, we have a group action ofU on
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M. Let V be anOK -lattice in V that is stable under the action ofU . We then have an object
M⊗ V of PMS

K defined by(M ⊗ V)? = M? ⊗ V where all additional structures onV are
trivial. Letting U act diagonally onM⊗V , we obtain an object

e

f

f

n

of

otivic
M(σ) = (M⊗V)U

of PMS
K as in Section 1.1.1. We also define objectsM(σ)� = (M� ⊗ V)U for � = tf or c and

define

M(σ)! = im
(
M(σ)c →M(σ)tf

)
.

We remark thatM(σ)! may lie properly in(M! ⊗V)U and thatM(σ) andM(σ)tf may rely on
the choice ofN as above. However using the fact that ifN ′ is another choice withN |N ′ andM′

c

denotesM(N ′)S
c , then the natural mapMc → (M′

c)UN is an isomorphism (by Lemma 1.1), w
conclude thatM(σ)c andM(σ)! are independent ofN . We also defineM(σ)� = M(σ)� ⊗ Q

in PMS
K for � = ∅, c and!; these are also independent ofN .

Let U andU ′ be two open compact subgroups contained inGL2(Ẑ). Let σ :U → AutK(V )
and σ′ :U ′ → AutK(V ′) be two representations with stableOK -latticesV andV ′. Suppose
we are given ag ∈ GL2(Af ) ∩ M2(Ẑ) and aK-linear homomorphismτ :V → V ′ such that
τ(σ(g−1ug)v) = σ′(u)τ(v) for all v ∈ V and u ∈ U ′

1 = U ′ ∩ gUg−1. Let S be a subset o
Sf (K) containingSK

σ ∪ SK
σ′ ∪ SK

g whereSg is the set of� such thatg� /∈ GL2(Z�). Choosing
suitableN andN ′ and a coset decompositionU ′ =

∐
i giU

′
1, the formula

x⊗ v �→
∑

i

[gig]�x⊗ σ′(gi)τ(v)

defines maps[U ′gU ]� :M(σ)� →M(σ′)�. The map is independent of the choices for� = c and
!, and for� = ∅ after tensoring withQ,

1.4.2. Premotivic structure of level N and character ψ
Suppose thatk � 2 andN � 1. Let ψ be a character̂Z× → K× of conductor dividingN .

Let U = U0(N) denote the set of matrices
(

a b
c d

)
∈ GL2(Ẑ) with c ∈ N Ẑ. Defineσ = σ(N,ψ)

by the characterψ :U0(N) → K× sending
(

a b
c d

)
to ψ−1(aN ), whereaN denotes the image o

a in
∏

p|N Zp. DefineV = V (N,ψ) to be the vector spaceK with an action ofU by σ. Let

V =OK ⊂ V . Note thatSσ = SK
N . We letM(N,ψ)� denote the premotivic structureM(σ)� for

� = c or !, and letM(N,ψ)� = M(σ)� for � = ∅, c or !.
Recall that the isomorphismC ⊗ Filk−1M(M)dR

∼= Mk(UM ) in (5) respects the actio
of GL2(Ẑ). It follows that for any embeddingK → C, the isomorphism identifiesC ⊗K

Filk−1 M(N,ψ)dR with Mk(N,ψ), the space of classical modular forms of weightk, level
N and characterψ. Under this isomorphism,Filk−1M(N,ψ)dR corresponds to the set
forms whoseq-expansion at∞ has coefficients inτ(OS). ReplacingM(N,ψ) by M(N,ψ)c

orM(N,ψ)! gives the same identifications, but for the space of cusp formsSk(N,ψ).

1.5. Duality

We now define duality morphisms arising from pairings on the realizations of the prem
structures associated to modular forms.

1.5.1. Duality at level N
For N � 3, we let H = HN denote the premotivic structureH2

c (XN ) = H2(X̄N ).
More precisely, we letHB = H2(X̄an,Z), H� = H2(X̄Q̄,Z�), HdR = H1(X̄,Ω1

X̄/T )
and
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H�-crys = H2
crys(X̄Z�

,OX̄Z�
,crys) for � /∈ SN . These come equipped with additional structure

and comparison isomorphisms makingH an object ofPMSN

Q , and we letH = Q⊗H.
2 ∼ en

ly

action

ld

s

hisms
Let F = Q(µN ). The Weil pairing on(Z/NZ)X = E[N ] defines an isomorphism betwe
(Z/NZ)X andµN,X , hence a morphismX → SpecOF [1/N ]. The fibers being geometrical
connected, this induces an isomorphism

MF (−1)→H(7)

in PMSN

Q whose realizations are given by Poincaré and Serre dualities. Furthermore, the

of u ∈ GL2(Ẑ) on H corresponds to that ofdetu on MF , where the action onH arises from
the action onX̄ (see Section 1.3.2) and that ofẐ× onMF is via the isomorphism of class fie
theory (see Section 1.1.3).

Recall from Section 1.2.2 thatFB denotes the sheafR1san
∗ Z onXan. The cup product define

a morphismFB ⊗ FB → (2πi)−1Z of locally constant sheaves onXan, inducing a morphism
Fk

B ⊗Fk
B → (2πi)2−kZ defined on sections by

x1 ⊗ · · · ⊗ xk−2 ⊗ y1 ⊗ · · · ⊗ yk−2 �→
∑

σ∈Σk−2

k−2∏
i=1

xi ∪ yσ(i).(8)

Taking cohomology and composing this with the cup product yields a morphism

( , )B :Mc,B ⊗MB →HB(2− k)∼= MF (1− k)B,

which inducesMc,B → HomZ(MB,MF (1 − k)B). Defining pairings( , )dR and( , )�, one
finds that they respect the comparison isomorphisms and weight filtrations yielding morp

δ :Mc → Hom
(
M,MF (1− k)

)
and δ! :M! →Hom

(
M!,MF (1− k)

)
(9)

in PMS
Q if SN ⊂ S.

The pairing( , )dR is compatible with the Petersson inner product

(g, h)Γ(N) = (−2i)−1

∫
Γ(N)\H

g(τ)h(τ)(Im τ)k−2 dτ ∧ dτ̄

for g ∈ Sk

(
Γ(N)

)
, h ∈ Mk

(
Γ(N)

)
as follows. Forg ∈ C⊗ Filk−1 Mc,dR andh ∈ C ⊗Filk−1 MdR, write

α(g) = (gt)t ∈
⊕

t∈(Z/NZ)×

Sk

(
Γ(N)

)
and α(h) = (ht)t ∈

⊕
t∈(Z/NZ)×

Mk

(
Γ(N)

)
.

After extending scalars toC for the pairing( , )dR, we have

πt

(
g, (I∞)−1(F∞ ⊗ 1)I∞h

)
dR

= (k − 2)!(4π)k−1
∑

t∈(Z/NZ)×

(gt, ht)Γ(N) ⊗ ιk−1(10)

whereπt :C⊗MF,dR = C⊗ F → C is defined bye2πit/N ∈ µN (C).
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1.5.2. Duality for σ-constructions
For the rest of the section, we assumeU is an open compact subgroup ofGL2(Ẑ) satisfying

detU = Ẑ×, and letψ : Ẑ× → K× be a continuous character. For a continuous representation

s

in
s

σ :U →AutOK V , let σ̂ denote the representation defined byHomOK (V ,OK). SupposeN � 3
is such thatUN ⊂ kerσ, the conductor ofψ dividesN andSK

N ⊂ S. Restricting the pairing
( , )? to U -invariants, we get a morphism

δN :Mc

(
σ̂ ⊗ (ψ−1 ◦ det)

)
→ HomOK

(
M(σ),Mψ(1− k)

)
(11)

which depends on the choice ofN . Tensoring withQ and normalizing by dividing by[U : UN ],
we get an isomorphism

δ̄ :Mc

(
σ̂ ⊗ (ψ−1 ◦ det)

)
→HomK

(
M(σ),Mψ(1− k)

)

which is independent ofN , and we similarly define

δ̄! :M!

(
σ̂ ⊗ (ψ−1 ◦ det)

)
→HomK

(
M!(σ),Mψ(1− k)

)
.(12)

We say thatU is sufficiently smallif U acts freely onGL2(Q)\GL2(A)/U∞. In particular
U is sufficiently small ifU ⊂ U1(d) for somed � 4, whereU1(d) denotes the preimage
GL2(Ẑ) of the subgroup ofGL2(Z/dZ) consisting of matrices of the form

(
1 ∗
0 ∗

)
. One then ha

a description ofM(σ)!,B in terms of the cohomology of the curveXU with coefficients in a
sheaf depending onσ. Poincaré duality onXU then shows that the isomorphism̄δ arises from an
injective morphism

M
(
σ̂ ⊗ (ψ−1 ◦ det)

)
!
→HomOK

(
M(σ)!,Mψ(1− k)

)

whose cokernelC satisfiesC� = 0 for � � N(k − 2)!. We deduce the following:

LEMMA 1.2. – Suppose thatU has a sufficiently small open compact normal subgroupU ′

such thatdetU ′ = Ẑ× and� � [U : U ′]. If � > k − 2 andkerσ ⊂UN for someN not divisible by
�, thenδ̄λ arises from an isomorphism

M
(
σ̂ ⊗ (ψ−1 ◦ det)

)
!,λ

→ HomOK,λ

(
M(σ)!,λ,Mψ(1− k)λ

)

for everyλ dividing �.

Suppose now thatσ, σ′, g, τ andS are as in Section 1.4, so we have morphisms

[U ′gU ]τ,� :M(σ)� →M(σ′)�

for � = ∅, c and!. We then also have morphisms

[
U

(
‖detg‖g

)−1
U ′]

τ t⊗ψ(det(g)),�
:M

(
σ′ ⊗ (ψ−1 ◦ det)

)
�
→M

(
σ ⊗ (ψ−1 ◦ det)

)
�

which we denote by[U ′gU ]Tτ,�. One finds then that[U ′gU ]Tτ,c (respectively,[U ′gU ]Tτ,!) is the
adjoint of [U ′gU ]τ (respectively,[U ′gU ]τ,!) with respect to the pairinḡδ, (respectively,̄δ!).
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1.5.3. Duality for level N , character ψ
We now define duality morphisms for premotivicstructures defined in Section 1.4.2. Suppose

now thatN � 1, ψ has conductor dividingN andSK
N ⊂ S. Let U = U0(N) andσ = σ(N,ψ)

l

for

ed in
be the representation onV = V (N,ψ) as in Section 1.4.2. LetV ′ be the one dimensiona
representationHomK(V,K) ⊗ Kψ−1◦det of U with natural latticeV ′. We denote byσ′ =
σ̂ ⊗ (ψ−1 ◦ det) the representation onV ′. Defineω :V → V ′ by sendingv0 to v̂0 ⊗ 1, where
v̂0 ∈ Hom(V ,O) is such that̂v0(v0) = 1.

Let w denote
(

0 −1
N 0

)
N

in
∏

p|N GL2(Zp). The operator[UwU ]ω,� defines an isomorphism

M(N,ψ)� →M(σ′)�(13)

in PMS
K for � = ∅, c and !, restricting to an isomorphism on integral structures

� = c and !. One finds that[UwU ]−1
ω = [Uw−1U ]ωt⊗ψ(detw) and [UwU ]ω is adjoint to

Nk−2[Uw−1U ]ωt⊗ψ(detw)),c and coincides withψ(−1∞)Nk−2[Uw−1U ]ω . Composing the
operator[UwU ]ω with the duality morphism̄δ, we obtain a duality isomorphism

δ̂ :M(N,ψ)→HomK

(
M(N,ψ)c,Mψ(1− k)

)
.(14)

Similar assertions hold forM(N,ψ)! yielding an isomorphism̂δ!. SinceM(N,ψ) = 0 unless
ψ(−1∞) = (−1)k−2, we find that the corresponding perfect pairing is alternating.

1.6. Premotivic structure of a newform

We keep the notation of Section 1.4.2. In particular, we assumeN � 1, ψ is a K-valued
Dirichlet character of conductor dividingN , S is a set of primes containingSK

N andM(N,ψ)�

andM(N,ψ)� are premotivic structures associated t modular forms of weightk, level N and
characterψ. We describe the premotivic structures associated to Hecke eigenforms.

1.6.1. Hecke action
We now define the action of Hecke operators on the premotivic structures defin

Section 1.4.2. For each rational primep, we have an action of the classical Hecke operatorTp on
the spacesMk(N,ψ) andSk(N,ψ). Let T̃ denote the polynomial algebra overOK generated
by the variablestp for all primesp. The operatorsTp commute onMk(N,ψ) and Sk(N,ψ)
making themT̃-modules withtp acting asTp. Denote their annihilatorsa′ ⊂ a, let T′ = T̃/a′

andT = T̃/a.

PROPOSITION 1.3. –There is a natural action ofT on M(N,ψ)! and ofT′ on M(N,ψ)c

andM(N,ψ) compatible with the isomorphisms

Filk−1 M(N,ψ)!,dR ⊗K C ∼= Sk(N,ψ), Filk−1 M(N,ψ)dR ⊗K C ∼= Mk(N,ψ),

the natural morphisms

M(N,ψ)c → M(N,ψ)! →M(N,ψ)

and the duality morphismŝδ and δ̂! of (14).

Proof. –ForS′ = S ∪ SK
{p}, the double coset operator

[
U0(N)

(
p 0
0 1

)
p
U0(N)

]
ψ(pp)−1

4e SÉRIE– TOME 37 – 2004 –N◦ 5



THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT MOTIVES 683

defines endomorphisms ofM(N,ψ)S′

c , M(N,ψ)S′

! and M(N,ψ)S′
. It is straightforward to

check the compatibility withTp onSk(N,ψ) andMk(N,ψ) and with the indicated morphisms of

objects ofPMS′
. These double coset operators commute, yielding an action ofT̃ onM(N,ψ)�,?

with

ivic

e

orphism

g

K

for � = c, ! and∅ and? = B, dR andλ, restricting to an action onM(N,ψ)�,? for � = c and!
and? = B andλ.

If T ∈ a, then T annihilatesFilk−1 M(N,ψ)!,dR and is compatible withI∞, so it also
annihilates

Fil
k−1

M(N,ψ)!,dR = (I∞)−1 ◦ (id⊗c) ◦ I∞)
(
Filk−1 M(N,ψ)!,dR

)
.

From the opposition of filtrations in the Hodge structure, we deduce that the action ofT̃ on
M(N,ψ)!,dR andM(N,ψ)!,B factors throughT. From the compatibility withIλ

B , we deduce
the same forM(N,ψ)!,λ. The same argument shows that the action ofT̃ on M(N,ψ)? factors
throughT′ for ? = B, dR andλ. It follows then from the compatibility witĥδ that the action on
M(N,ψ)c,? factors throughT′ for these realizations.

Suppose now thatλ is not in S. There is then a unique action ofT′ on M(N,ψ)c,λ-crys

compatible with its action onM(N,ψ)λ and the comparison isomorphismIλ. Forp not divisible
by λ, the action ofTp is given by the above double coset operator, hence is compatible
Iλ
dR as well. Since suchTp generate theK-algebraT′ ⊗ Q, it follows that the action ofT′ on

M(N,ψ)c,dR preserves the localization ofM(N,ψ)dR atλ and is compatible withIλ
dR. We thus

obtain the desired action ofT′ on the objectM(N,ψ)c of PMS
K . Similarly we conclude thatT′

acts onM(N,ψ) andT acts onM(N,ψ)! as desired. �
1.6.2. Premotivic structure for an eigenform

Now suppose thatf is an eigenform inFilk−1M(N,ψ)!,dR for the action ofT. So for
T ∈ T we haveT (f) = θf (T )f for someOK -linear homomorphismT → OK . We assume
f is normalized so that itsq-expansion

∑
an(f)qn at ∞ has leading termq. We then have

ap(f) = θf (Tp) ∈OK for all primesp. Let If = kerθf andMf = M(N,ψ)![If ] in the notation
of Section 1.1.2; thusMf is an object ofPMS

K andMf = Mf ⊗OK K is in PMS
K . Then

Filk−1Mf,dR = OK,Sf(15)

andMf is a premotivic structure of rank 2 overK . TheGQ-moduleMf,λ is irreducible. We
write M̄f,λ for the residual representationMf,λ/λMf,λ.

For each embeddingτ :K → C, we obtain a (classical) normalized eigenformτ(f) =∑
τ(an(f))qn in Sk(N,ψ). Conversely, iff is a normalized eigenform inSk(N,ψ), its

q-expansion coefficientsan(f) generate a number fieldKf ⊂ C, and takingK ⊃ Kf , we
can regardf as an eigenform inFilk−1 M(N,ψ)!,dR and consider the associated premot
structuresMf andMf .

We say thatf is a newform of levelN if each (equivalently, some)τ(f) is a classical newform
of level N . If g is a normalized eigenform inFilk−1M(N,ψ)!,dR, then there is a uniqu
newformf of some levelNf dividing N such thatap(f) = ap(g) for all p not dividingN/Nf .
In that case, a straightforward construction using double-coset operators defines an isom
Mf

∼= Mg in PMS
K (see Proposition 1.4 below for the cases we need).

If f is a newform of levelN , then the pairinĝδ! onM(N,ψ)! restricts to a perfect alternatin
pairing onMf , i.e., an isomorphism

∧2
KMf

∼= Mψ(1− k).(16)
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With our normalization ofTp, the Eichler–Shimura relation onM(N,ψ)!,λ due to Deligne [15]
takes the form

2 −1 −1 k−1

r

r

s
l

,

Frobp −ψ(p) Tp Frobp +ψ(p) p = 0(17)

for all p not dividingN�, whereψ(p) = ψ(pN ) = ψ(pp)−1. It follows thatFrobp on Mf,λ has
characteristic polynomial

X2 − ψ(p)−1ap(f)X + ψ(p)−1pk−1.(18)

1.6.3. The L-function
Suppose thatf =

∑
anqn ∈ Sk(N,ψ) is a newform of weightk, conductorNf and characte

ψf . Associated tof is theL-function with Euler product factorization:

L(f, s) =
∑
n�1

ann−s =
∏
p�Nf

(
1− app

−s + ψf (p)pk−1−2s
)−1 ∏

p|Nf

(1− app
−s)−1.

There is also an irreducibleGL2(Af )-subrepresentationπ(f) of A0
k with central characte

ψf‖ ‖2−k such thatf spans the image ofπ(f)U1(Nf ) under the isomorphism

(A0
k)U1(Nf ) ∼= Sk

(
Γ1(Nf )

)
,

where we viewψf as a character onA×
f ⊂ A×. (Recall from Section 1.3.1 that

A0
k = lim

→
N

Sk(UN ) ∼= lim
→
N

Filk−1M(N)!,dR ⊗C.)

Moreover, we have the decompositionA0
k =

⊕
f π(f) wheref runs over newforms of weightk

of any conductor and character. For eachf we have a factorizationπ(f)∼= ⊗′
pπp(f) whereπp(f)

is an irreducible admissible representation ofGL2(Qp) and⊗′ is a restricted tensor product.
Suppose now thatf is as above withKf ⊂ K ⊂ C. For every primep of Q andλ /∈ S, the

representationDpst(Mf,λ|Gp)ss of the Weil–Deligne group ofQp is K-rational and correspond
via local Langlands toπp(f) (where we extend scalars toC via τ and normalize the loca
Langlands correspondence as in [9]). Forλ not dividing p and p not dividing N , this is the
Eichler–Shimura relation (18); forλ dividing p and p dividing N , this is due to Deligne
Langlands and Carayol [9]; forλ|p, p /∈ S, this is due to Scholl [75]. It follows thatMf is
L-admissible everywhere1 and that itsL-function is related to that off by the formula

L(Mf ⊗K Mψ−1
f

, s) = L(f, s),(19)

where the Euler factors defining the firstL-function are viewed asC-valued via the inclusion
K ⊂ C. More generally, for a newformf with coefficients in a number fieldK , we have

L(Mg ⊗K Mψ−1
g

, τ, s) = L
(
τ(g), s

)

for each embeddingτ :K → C, so (19) holds as an identity ofK ⊗C-valued functions.

1 In fact, the main theorem of [71] shows thatMf = MS for an objectM of PMK which is L-admissible
everywhere.
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1.7. The adjoint premotivic structure

1.7.1. Realizations of the adjoint premotivic structure

of

l
bly

t
ing
Suppose now thatf is a newform of weightk, characterψ and levelN , with coefficients in
K . We defineAf = ad0 Mf to be the kernel of the trace morphism

HomK(Mf ,Mf)→ K.

It is a premotivic structure inPMS
K for S ⊇ SK

N .
For? = B,dR or λ, Af,? has an integral structure given by

Af,? =
{
a ∈End(Mf,?) | tr(a) = 0

}
.

The extra structures on the realizations ofAf are obtained by restrictions from those
End(Mf ). For example the filtration onAf,dR is given by

Filn Af,dR =
{
a ∈AdR ⊆End(Mf,dR) | a(Fili Mf,dR)⊆ Filn+i Mf,dR,∀j

}

=




Af,dR, n � 1− k,
{a ∈Af,dR | a(Fil0Mf,dR) ⊆ Fil0Mf,dR}, 1− k < n � 0,
{a ∈Af,dR | a(Mf,dR) ⊆ Fil0Mf,dR, a(Fil0Mf,dR) = 0}, 0 < n � k − 1,
0, n > k − 1.

Note that definingAf,λ-crys as above does not yield an object ofMF0 since the non-trivia
graded pieces are in degree1− k, 0 andk− 1 (though one can obtain such an object by suita
twisting if �− 1 > 2(k − 1)).

There is a canonical isomorphismdetK Af
∼= K in PMS

K which restricts to an isomorphism

detOK Af,?
∼= OK,?(20)

for ? ∈ {B,dR, λ}, whereOK,B = OK andOK,dR =OK,S . (To see this, note that

(
0 0
1 0

)
∧

( 1 0
0 −1

)
∧

(
0 1
0 0

)

is independent of the choice of basis used to represent an endomorphism.) We note also thaAf

andHomK(Af ,K) are canonically isomorphic, the isomorphism being defined by the pair

α⊗ β �→ tr(α ◦ β)(21)

on each realization ofAf .
Suppose thatψ′ is a characterA× →K× of conductorD and thatS containsSD

K as well. Let
f ⊗ ψ′ denote the newform (of weightk, level dividingND2 and characterψ(ψ′)2) associated
to the normalized eigenformg =

∑
(n,D)=1 ψ′(nD)anqn. ThenMf⊗ψ′ is an object ofPMS

K

and one checks that the double coset operator

[
U0(ND2)

(
1 1/D
0 1

)
U0(N)

]
1

induces an isomorphismMf ⊗K Mψ′ ∼= Mg. It follows thatMf ⊗K Mψ′ ∼= Mf⊗ψ′ , so

Af⊗ψ′ ∼= Af(22)
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in PMS
K . We may therefore assumef has minimal conductor among its twists when considering

Af . We also note that if we replaceK by K ′ ⊃ K andS by a subsetS′ of the primes over those
in S, thenAf is replaced by(Af ⊗K K ′)S′

.

call

f

gral
1.7.2. Euler factors and functional equation
For each primep, we letcp = vp(N) and letδp denote the dimension ofM Ip

f,λ for anyλ not
dividing p, so

δp =




2, if p � N ,
1, if p|N andap �= 0,
0, if p|N andap = 0.

We setLnv
p (Af , s) = Lp(Af , s) if δp > 0, andLnv

p (Af , s) = 1 if δp = 0. We letΣe = Σe(f)
denote the set of primesp such thatδp = 0 andLp(Af , s) �= 1, and set

Lnv(Af , s) =
∏
p

Lnv
p (Af , s) =

∏
p/∈Σe(f)

Lp(Af , s).

We call the primes inΣe exceptionalfor f .
Recall that ifδp = 2, then writing

Lp(f, s) =
(
1− app

−s + ψ(p)pk−1−2s
)−1 = (1− αpp

−s)−1(1− βpp
−s)−1,

we have

Lp(Af , s) = (1− αpβ
−1
p p−s)−1(1− p−s)−1(1− α−1

p βpp
−s)−1.

If δp = 1, then

Lp(Af , s) =
{

(1− p−1−s)−1 if πp(f) is special;
(1− p−s)−1 if πp(f) is principal series.

(23)

Shimura [80] proved thatL(Af , s) extends to an entire function on the complex plane. Re
that we regardL(M,s) as taking values inK ⊗ C. Each embeddingτ :K → C gives a map
K ⊗ C → C and we writeL(M,τ, s) for the composite withL(M,s). Moreover, the work o
Gelbart and Jacquet [43] and others (see [73]) shows that

Λ(Af , s) = L(Af , s)ΓR(s + 1)ΓC(s + k − 1)

= 22−k−sπ(1−2k−3s)/2L(Af , s)Γ
(

s + 1
2

)
Γ(s + k − 1)

satisfies the functional equation

Λ(Af , s) = ε(Af , s)Λ(Af ,1− s),(24)

whereε(Af , s) is as defined by Deligne [16]. Here we have used thatAf andHomK(Af ,K) are
isomorphic (using (21)).

1.7.3. Variation of integral structures
We maintain the above notation, but now we fix a primeλ of K not in SK

N and letS =
Sf (K) \ {λ}. For each finite set of primesΣ⊂ S, we shall define integral structures onMf and
∧2

KMf . We then compare these asΣ varies, showing that under certain hypotheses, the inte
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structure onMf is invariant, but the variation on∧2
KMf is controlled by Euler factors of the

adjointL-function.
Let NΣ = N

∏
p∈Σ pδp . Setting a′

n = 0 if n is divisible by a prime inΣ and a′
n = an

on
rphism
for

n

tions
of the

ect
factors
otherwise, we have thatfΣ =
∑

a′
nqn is an eigenform of levelNΣ with associated newform

f . The construction of Section 1.6.2 thus yields a premotivic structureMfΣ in PMS
K contained

in M(NΣ, ψ)!. The pairingδ̂! defined in Section 1.5.3 restricts to an alternating pairing
MfΣ , which Proposition 1.4 below shows is non-degenerate, hence induces an isomo
∧2

KMfΣ → Mψ(1 − k). The image of∧2
OK

MfΣ therefore defines an integral structure
Mψ(1−k), necessarily of the formηΣ

f Mψ(1−k) for some fractional idealηΣ
f ⊂ K . We callηΣ

f

the (naive,Σ-finite) congruenceOK-ideal of f . Note thatηΣ
f is well-behaved under extensio

of scalarsOK′ ⊗OK · if K ⊂ K ′.
For positive integersm dividing NΣ/N =

∏
p∈Σ pδp , we let εm denote the morphism

M(N,ψ)! →M(NΣ, ψ)! defined by the operator

m−1
[
U0(NΣ)

(
m−1 0

0 1

)
U0(N)

]
1
= m1−k

[
U0(NΣ)

(
1 0
0 m

)
U0(N)

]
1
.

We also define the endomorphismφm of M(N,ψ)! by
• φ1 = 1, φp = −Tp, φp2 = ψ(p)pk−1;
• φm1m2 = φm1φm2 if (m1,m2) = 1.

We also define

γ =
∑
m

εmφm :M(N,ψ)! →M(NΣ, ψ)!

and letγt denote its adjoint with respect to the pairings defined in Section 1.5.3.

PROPOSITION 1.4. –
(a) The morphismγ restricts to an isomorphismMf → MfΣ in PMS with γdR(f) = fΣ.
(b) We have

γt ◦ γ = φNΣ/Nf

∏
p∈Σ

Lnv
p (Af ,1)−1

onMf , so δ̂! is non-degenerate onMfΣ .
(c) If M̄f,λ is an irreducible (OK/λ)[GQ]-module, thenγ induces an isomorphism

Mf,λ →MΣ
f,λ in PMS and

ηΣ
f,λ = η∅

f,λ

∏
p∈Σ

Lnv
p (Af ,1)−1.

Proof. –Part (a) and the formula in (b) follow from straightforward double-coset computa
similar to those in Chapter 2 of [88] (see also p. 121 of [14]). The non-degeneracy
pairing follows fromφNΣ/Nf

being non-zero onMf ; in fact it is invertible onMf,λ. If M̄f,λ

is irreducible, then the image ofMf,λ must be of the formλnMfΣ,λ for somen � 0; since
γdR(f) = fΣ, we see thatn = 0. The formula forηΣ

f,λ in part (c) then follows from part (b). �
1.8. Refined integral structures

We now modify some of the constructions of the preceding sections in order to obtain perf
pairings on integral structures and to account for the congruences corresponding to Euler
missing fromLnv(Af , s). We also prove some technical results needed for Section 3.2.
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We maintain the notation of Section 1.7.3. In particularS = Sf (K) \ {λ} for someλ /∈ SK
N .

We assume also thatf has minimal conductor among its twists. We further assume that the
representation ofGQ onM̄f,λ is irreducible; moreover if3 ∈ λ, then we require its restriction to

e we

ion

f

ld

a)
tion
with

gives
GQ(µ3) to be absolutely irreducible.

1.8.1. Σ-level structure
Recall thatΣe denotes the set of exceptional primes defined in Section 1.7.2. Sinc

assumef has minimal conductor among its twists, we havep ∈ Σe if and only if Lp(Af , s) =
(1 + p−s)−1, which is equivalent toMf,λ|Gp being an absolutely irreducible representat
induced from a character ofGF where F is the unramified quadratic extension ofQp. In
particular, its conductor exponentcp = vp(N) is even andδp = 0. We let

Σ1 = {p∈ Σe |p≡−1 mod λ}.

The irreducibility hypotheses allow us to choose an auxiliary primer > 3 not dividing N�
such thatLr(Af ,1)−1 ∈O×

K,S by Lemma 3 of [27]. We then define

NΣ
1 =

∏
p/∈Σ1∪Σ

pcp

∏
p∈Σ∪{r}

pcp+δp .

We then defineUΣ = U0(NΣ
1 ). Note thatUΣ =

∏
p UΣ

p , where the subgroupUΣ
p of GL2(Zp) is

determined by whetherp ∈ Σ. Next we shall define a representation ofUΣ as a tensor product o
certain representations of theUΣ

p for p|N .

If p ∈ Σ or p /∈ Σ1, we letVp = OK with
(

a b
c d

)
∈ UΣ

p acting viaψ(a) (which is trivial if

cp = 0). For p ∈ Σ1, we let Up = U0(pcp) ∩ GL2(Zp) and gp =
( 1 0

0 pcp/2

)
. We then define a

representationV ′
p of GL2(Zp) by the following lemma:

LEMMA 1.5. – There is a finite extensionK ′ of K , a primeλ′ of O′ = OK′ over λ and a
finite flatO′-moduleV ′

p with a continuous action ofGL2(Zp) such that the following hold:
(a) (V ′

p ⊗O′,τ πp(τ(f)))GL2(Zp) is one-dimensional for any embeddingτ :K ′ → C;
(b) V ′

p/λ′V ′
p is an absolutely irreducible(O′/λ′)[GL2(Zp)]-module;

(c) there is a homomorphism ofO′[GL2(Zp)]-modules

ωp : V ′
p
∼= Hom′

O
(
V ′

p,O′(ψ−1 ◦ det)
)

such thatωp,λ′ is an isomorphism;
(d) there is a homomorphism ofO′[Up]-modules

τp : resUp

gp GL2(Zp)g−1
p

gpV ′
p →Vp

such thatτp,λ′ is surjective.

Proof. –Let ε :O×
F → K̄×

λ be the restriction of a character ofF× corresponding via class fie
theory to one from whichMf,λ|Gp is induced. The minimality of the conductor off among
twists implies thatε/(ε ◦ Frobp) has conductorpcp/2OF . We letK ′ be a finite extension ofK
over which theK-rational representation denotedΘ(ε) in Section 3 [13] is defined. Then part (
follows from compatibility with the local Langlands correspondence and its explicit descrip
in Section 3 of [44]. Part (b) is contained in Lemma 3.2.1 of [13]. Part (c), after tensoring
K ′, follows from the first paragraph of Section 3.3 of [13]. Rescaling and applying (b)
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the desired homomorphismωp. Part (d), after tensoring withC via τ , follows from the fact
that (Vp ⊗O′,τ πp(τ(f)))Up is one-dimensional. It therefore holds after tensoring withK ′, and
rescaling again gives the desired homomorphism.�

.

te

zing at
f

ReplacingK by a largerK ′ (andλ by λ′) if necessary to define the representationsV ′
p for

p ∈ Σ1, we letVΣ
p = V ′

p or Vp according to whetherp ∈ Σ1 \ Σ. We then letVΣ =
⊗

p VΣ
p ,

σΣ :UΣ → AutOK (VΣ) and consider theΣ-level premotivic structuresM(σΣ) andM(σΣ)�

for � = c and!. Note that ifΣ1 ∪ {r} ⊂ Σ, thenNΣ
1 = NΣ, σΣ = σ(NΣ, ψ) as in Section 1.7.3

We now define a perfect pairing onM(σΣ)! giving rise to a perfect pairing onM(σΣ)!,λ.

Definew = wΣ
1 =

( 0 −1

NΣ
1 0

)
NΣ

1
∈ GL2(Af ). Let σ = σΣ, V = VΣ and define

ω :V →HomOK

(
V ,OK(ψ−1 ◦ det)

) ∼=⊗HomOK

(
VΣ

p ,OK(ψ−1 ◦ det)
)

as the tensor product of the mapsωp, whereωp is defined in Lemma 1.5 ifp ∈ Σ1 − Σ, and by
sending a generatorv0 to the mapv0 �→ 1 otherwise. We then have that

ω
(
σ(w−1uw)v

)
= σ′(u)ω(v)

for all u ∈UΣ andv ∈ V , so the operator[UwU ]ω is well-defined and induces a morphism

M(σ)! →M
(
σ̂ ⊗ (ψ−1 ◦ det)

)
!
.

Composing with the isomorphism of (12), we obtain an isomorphism

δ̂Σ
! :M(σ)! → HomK

(
M(σ)!,Mψ(1− k)

)
(25)

arising from a perfect alternating pairing onM(σ)!. Moreover Lemma 1.2 withU ′ = UΣ∩U1(r)
yields the following:

COROLLARY 1.6. – The pairingδ̂!,λ of (25) restricts to an isomorphism

M(σ)!,λ →HomOK,λ

(
M(σ)!,λ,Mψ(1− k)λ

)
.

1.8.2. Hecke action and localization
We now define an action of Hecke operators on theΣ-level premotivic structures. For a fini

set of primesΨ, we writeT̃Ψ for theOK -subalgebra of̃T generated by the variablestp for p /∈Ψ.
Let ΨΣ denote the finite set of primesp /∈ Σ such thatδp = 1 or p ∈ Σ1. For primesp /∈ ΨΣ, we
write Tp for the double coset operator

Tp =
[
UΣ

(
p 0
0 1

)
p
UΣ

]
ψ−1(pp)

.

As in Section 1.6.1, we obtain an action ofT̃ΨΣ on M(σΣ), M(σΣ)c andM(σΣ)! factoring
through the quotient of̃TΨΣ by the annihilator ofFilk−1 M(σΣ)dR. Moreover the Hecke
operators are self-adjoint with respect to the pairing of (25).

Recall that we are assuming irreducibility of the representation ofGQ on M̄f,λ. One way
we use this hypothesis is to relate cohomology groups with different supports after locali
maximal ideals of Hecke algebras. For the rest of the section,Σ andΨ denote finite subsets o
S with ΨΣ ⊂ Ψ andm is the maximal ideal of the maximal idealT̃Ψ generated byλ and the
elementstp − ap(fΣ∪{r}) for all primesp /∈ Ψ.
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We shall need to consider a slightly more general setting than that of theM(σΣ)�, but can then
restrict attention to Betti andλ-adic realizations. Suppose thatN ′ = NΣ

1 D for some positive
integerD not divisible by any primes inΣ1 ∪ {�} \Σ, and thatU is an open compact subgroup

t
f

the

r
],
of GL2(Af ) satisfyingU1(N ′)⊂ U ⊂ U0(N ′). Settingσ = σΣ|U , we define an action of̃TΨ on
theM(σ)�,? for ? ∈ {B,λ} andΨ⊃ ΨΣ by lettingtp act as

Tp = pk−2
[
U

( 1 0
0 p−1

)
U

]
1
.

One checks that the action respects the comparison isomorphismIλ
B , thatM(σ)�,? is stable for

� ∈ {c, !}, and that the resulting action coincides with the ones defined above ifU = UΣ.
Let Σ′ = Σ ∪ Σ1, U ′ = UΣ′ ∩ U and σ′ = σΣ′ |U ′. Define g ∈ GL2(Af ) with gp as in

Lemma 1.5 forp ∈ Σ1 \Σ andgp = 1 otherwise. Defineα :VΣ →VΣ′
by⊗pαp with αp = τpgp

as in Lemma 1.5 forp ∈ Σ1\Σ and the identity otherwise. The operator[U ′gU ]α,c,B then defines
a T̃Ψ-linear homomorphismM(σ)c,B →M(σ′)c,?.

LEMMA 1.7. – The map[U ′gU ]α,c,B is injective.

Proof. –Let d =
∏

p∈Σ1\Σ pcp/2, Mc = Mc(N ′d), M′
c = Mc(N ′d2), V = VΣ andV ′ =

VΣ′
. Writing g−1α as a compositeV → IndU

g−1U ′g g−1V → g−1V ′, we can write[U ′gU ]α,c as

(Mc,B ⊗V)U → (Mc,B ⊗ IndU
g−1U ′g g−1V ′)U → (Mc,B ⊗ g−1V ′)g−1U ′g → (M′

c,B ⊗V ′)U ′

where the last map is defined by[g]c,B ⊗ g. The first map is injective sinceV is irreducible, the
second is an isomorphism by Shapiro’s Lemma, and the last is injective by Lemma 1.1.�

Suppose for the moment that we also haveU ⊂ U1(r). LettingΓ = SL2(Z)∩U , we have tha
Γ acts freely onH andXU can be identified withΓ\H. We writeFk

B for the locally constant shea
Symk−2

Z R1s∗Z, wheres is the natural projectionEU → XU with EU = Γ\(H × C)/(Z × Z)
defined as in Section 1.2.1. The representationσ defines an action ofΓ on V , and we let
Fσ denote the locally constant sheaf onXU defined byΓ\(H × V). We can then identify
M(σ)c,B with H1

c (XU ,Fk
B ⊗ Fσ) and M(σ)B with K ⊗OK H1(XU ,Fk

B ⊗ Fσ). If σ is
the trivial representation ofU on OK , then the usual action of the Hecke operatorTp on
H1

c (XU ,Fk
B ⊗OK) andH1(XU ,Fk

B ⊗OK) is compatible with the ones we defined onM(σ)c

andM(σ).

LEMMA 1.8. – If U ⊂ U1(r) andσ is trivial, then the natural map

H1
c (XU ,Fk

B ⊗OK)m →H1(XU ,Fk
B ⊗OK)m

is an isomorphism.

We recall the idea of the proof, which is standard. The kernel of the map is torsion-free, and
cokernel has noλ-torsion sinceN ′(k − 2)! /∈ λ. After tensoring withK , one hasTp = pk−1 + 1
on the kernel and cokernel for allp ≡ 1 mod N ′. Thus if m is in the support of the kernel o
cokernel, thenTp − 2 ∈ m for all p ≡ 1 mod N ′�, p /∈ Ψ. Arguing as in Proposition 2 of [26
one obtains a contradiction to the hypothesis thatM̄f,λ is absolutely irreducible.
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Let us now return to the case of arbitraryU with U1(N ′) ⊂ U ⊂ U0(N ′). We let U ′′ =
U ′ ∩U1(r) and consider the commutative diagram ofT̃Ψ-modules

most

.

at

ect to

his map
. The
M(σ)c,B M(σ′)c,B H1
c (XU ′′ ,Fk

B ⊗OK)

M(σ)!,B M(σ′)!,B H1(XU ′′ ,Fk
B ⊗OK)tf .

The horizontal maps in the top row are injective (the first by Lemma 1.7) and the right
vertical map is an isomorphism after localizing atm by Lemma 1.8. We thus have:

COROLLARY 1.9. – The localization atm of the natural mapM(σ)c,? → M(σ)!,? is an
isomorphism for? ∈ {B,λ}.

Note that the case of? = λ follows from that of? = B. In fact,M(σ)�,λ is isomorphic as a
T̃Ψ-module to the completion ofM(σ)�,B at λ. Note also thatM(σ)�,λ is isomorphic to the
direct sum of its localizations at the maximal ideals overλ in its support as ãTΨ-module.

Finally we shall need the following generalization of a lemma of De Shalit in Section 3.2

LEMMA 1.10. – Suppose thatU has�-power index inU0(N ′) and let∆ = U0(N ′)/U . Then
M(σ)−!,λ,m is a freeOK,λ[∆]-module.

Proof. –Let U ′′ = U ∩ U1(r) and σ′′ = σ|U ′′. Note that(Z/rZ)× has order not divisible
by �, and thatU0(N ′)/U ′′ ∼= ∆ × (Z/rZ)× acts onM(σ′′)c,λ,m. It follows thatM(σ)c,λ,m

∼=
M(σ′′)(Z/rZ)×

c,λ,m is anOK,λ[∆]-module summand ofM(σ′′)c,λ,m andM(σ)−c,λ,m is anOK,λ[∆]-
module summand ofM(σ′′)−c,λ,m. Note also that the ringOK,λ[∆] is local.

Suppose first thatk = 2, ψ is trivial andΣ1 ⊂ Σ. The argument of Proposition 1 of [86] shows
thatH1(XU ′′ ,Fk

B ⊗OK,λ)− is free overOK,λ[∆], hence so is its summand

M(σ′′)−c,λ,m
∼= H1

c (XU ′′ ,Fk
B ⊗OK,λ)−m ∼= H1(XU ′′ ,Fk

B ⊗OK,λ)−m,

where the first isomorphism is gotten fromIλ
B and the second from Lemma 1.8. It follows th

its summandM(σ)−c,λ,m is free, hence so isM(σ)−!,λ,m by Corollary 1.9.
Suppose next thatk > 2, ψ is non-trivial orΣ1 �⊂ Σ. DenotingOK,λ ⊗OK Fσ by Fσ′′,λ, we

have

H1
c (XU ′′ ,Fk

B ⊗Fσ′′,λ) ∼=
{
M(σ′′)c,λ, if i = 1,
0, otherwise

(the casei = 2 following from the vanishing ofH0(XU ′′ ,Fk
B ⊗Fσ′′/λ)). Note that this holds

in the caseU = U0(N ′) as well, and the Serre–Hochschild spectral sequence with resp
the coverXU ′′ → XU0(N ′)∩U1(r) givesHi(∆,M(σ′′)c,λ) = 0 for all i > 0. By [6, VI.8.10], it
follows thatM(σ′′)c,λ is free, hence so is its summandM(σ)−!,λ,m

∼= M(σ)−c,λ,m. �
1.8.3. Ihara’s Lemma

For finite subsetsΣ ⊂Σ′ of S = Sf (K) \ {λ}, we shall define a morphism

γΣ′

Σ :M(σΣ)! →M(σΣ′
)!

generalizing the one in Section 1.7.3. We shall prove a result needed in Section 3.2—that t
is injective with torsion-free cokernel on certain localizations of the integral Betti realization
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result stems from a lemma of Ihara which has been generalized in various ways for applications
to congruences between modular forms (see [68,20] and Chapter 2 of [88]).

For positive integersm dividing NΣ′∪{r}/NΣ∪{r}, we define

.

t

g

,

εΣ
′

Σ,m = m1−k
[
UΣ′( 1 0

0 md

)
UΣ

]
α,!

:M(σΣ)! →M(σΣ′
)!,

whered andα are as in Lemma 1.7. We then define

γΣ′

Σ =
∑
m

εΣ
′

Σ,mφm

where the sum is over positive divisors ofNΣ′∪{r}/NΣ∪{r} andφm is defined in Section 1.7.3
Note thatγΣ′

Σ is T̃Ψ-linear whereΨ is the union ofΨΣ and the set of primes dividingNΣ′

1 /NΣ
1 .

One checks also that ifΣ ⊂ Σ′ ⊂ Σ′′, thenγΣ′′

Σ = γΣ′′

Σ′ ◦ γΣ′

Σ .
We letm denote the maximal ideal of̃TΨΣ defined as in Section 1.8.2, and similarly definem′

usingΣ′. Note thatm′ might not lie overm, but that they lie over the same maximal idealm′′ of
T̃Ψ.

The argument in the first part of the proof of the lemma on p. 491 of [88] shows thaT̃Ψ

and T̃ΨΣ have the same image inEndK M(σΣ)!. Sincem is in the support ofM(σΣ)!,B , it
follows that the localization mapM(σΣ)!,B,m′′ →M(σΣ)!,B,m is an isomorphism. Composin
its inverse with the map

M(σΣ)!,B,m′′ →M(σΣ′
)!,B,m′′ →M(σΣ′

)!,B,m′

induced byγΣ′

Σ , we obtain a morphism

M(σΣ)!,B,m →M(σΣ′
)!,B,m′(26)

which we denoteγm = γΣ′

Σ,m. Similarly, we have a morphism

γ̂m = γ̂Σ′

Σ,m :M(σΣ)!,λ,m →M(σΣ′
)!,λ,m′ .(27)

LEMMA 1.11. – TheOK,S -linear (respectively,OK,λ-linear) mapγm (respectively,̂γm) is
injective with torsion-free cokernel.

Proof. –First note the lemma is equivalent to the injectivity ofγm mod λ, and by the formula
γΣ′′

Σ,m = γΣ′′

Σ′,m ◦ γΣ′

Σ,m, we can assumeΣ′ = Σ ∪ {p} for somep /∈ Σ. Note that the casep = r is

clear, and that ifp dividesNΣ′

1 /NΣ
1 , thenTp ◦ γ = 0 andm′ = (m′′, tp). Thus by Corollary 1.9

it suffices to prove that ifp �= r, then

M(σΣ)c,B,m′′/λ→M(σΣ′
)c,B,m′′/λ(28)

is injective.
First we consider the caseδp = 0. If p /∈ Σ1 thenγ is the identity, so we assumep ∈Σ1. Using

part (b) of Lemma 1.5, the argument in the proof of Lemma 1.7 carries over modλ, giving the
injectivity of

(Mc ⊗V/λ)U → (M′
c ⊗V ′/λ)U ′

,

hence that of (28).
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Having proved the lemma forp ∈ Σ1 ∪ {r}, we may assume for the remaining cases (δp = 1
or 2, p �= r), thatΣ1 ∪ {r} ⊂ Σ. Settingg =

( 1 0
0 p

)
, V0 = V(N,ψ)/λ, N ′ = NΣ, N ′′ = NΣpδp ,

U = U (N ′), U ′ = U (N ′′), A = M(N ′) ⊗ V andA′ = M(N ′′) ⊗ V , it suffices to

then
r

],

of

ed

s that

at
0 0 c,B 0 c,B 0

show that the map

δp⊕
i=0

AU
m′′ → (A′)U ′

m′′(29)

defined by([1]c, [g]c, . . . , [g]δp
c ) is injective.

Suppose now thatδp = 1. Then Lemma 1.1 yields an isomorphism(A′)U ′ → (A′)g−1U ′g in-
duced by[g]c (each module being identified with theU ′-invariants inM(NΣp2)c,B ⊗V0).
Furthermore one finds that[1]c (respectively, [g]c) maps AU isomorphically (A′)g−1Ug

(respectively,(A′)U ). Therefore it suffices to prove these have trivial intersection. Suppose
thatx ⊗ v ∈ A′ with v �= 0 is invariant underU andg−1Ug. Since thep-part of the conducto
of ψ is pcp , we may choosea ∈ 1 + pcp−1Zp so thatψ(a) �= 1. One checks thath =

(
a 0
0 1

)
is in

the subgroup ofGL2(Ẑ) generated byU andg−1Ug. Thereforex⊗ v = h(x⊗ v) = x⊗ ψ(a)v
implies thatx = 0.

Finally consider the caseδp = 2. Let A′′ = M(N ′p)c,B ⊗V0 andU ′′ = U0(N ′p). SinceU is
generated byU ′′ andg−1U ′′g, the argument in the caseδp = 1 applied toU ′′ instead ofU now
yields an exact sequence

AU → (A′′)U ′′ × (A′′)U ′′ → (A′)U ′
(30)

where the maps are given by
(−[g]c

[1]c

)
and([1]c, [g]c). We combine this with Lemma 3.2 of [20

whose proof shows that the map

H1
p (X1(N ′),Fk

B/λ)2 →H1
p (X1(N ′, p),Fk

B/λ)

induced by([1], [g]) is injective, whereX1(N ′, p) is the modular curve associated toU1(N ′) ∩
U0(p). Lemma 1.8 then gives the injectivity of

H1
c

(
X1(N ′),Fk

B/λ
)2

m′′ → H1
c

(
X1(N ′, p),Fk

B/λ
)
m′′ ,

whence the injectivity of([1]c, [g]c) : (AU )2m′′ → (A′′)U ′′

m′′ . Combining this with the exactness
the localization atm′′ of (30) we deduce the injectivity of (29).�
1.8.4. Comparison of integral structures

We now generalize Proposition 1.4 to the setting of the refined integral structures defin
in Section 1.8.1. DefineMΣ

f,1 = M(σΣ)![ĨΣ
f ] where ĨΣ

f is the preimage ofIfΣ∪{r} in T̃ΨΣ .

(Recall that fΣ∪{r} is the eigenform of levelNΣ defined in Section 1.7.3 andIg was
defined in Section 1.6.2.) Using strong multiplicity one and Lemma 1.5(a), one see
dimK Filk−1 MΣ

f,1,dR = 1 and therefore thatMf,1,dR has rank two overK , whereMΣ
f,1 =

K ⊗OK MΣ
f,1. Note that ifΣ1 ∪ {r} ⊂ Σ, thenMΣ

f,1 = MfΣ .

If Σ ⊂ Σ′, then the restriction ofγΣ′

Σ (defined in Section 1.8.3) defines a morphismMΣ
f,1 →

MΣ′

f,1. (This follows fromT̃Ψ-linearity withΨ as in Section 1.8.3 and the fact thatTpγ
Σ′

Σ = 0 for

p|NΣ′

1 /NΣ
1 .) Note that the maximal ideal of̃TΨΣ defined in Section 1.8.2 is simply(ĨΣ

f , λ), so
the natural mapMΣ

f,1,B →M(σΣ)!,B,m is injective. It therefore follows from Lemma 1.11 th
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γΣ′

Σ is injective onMΣ
f,1, hence induces an isomorphismMΣ

f,1
∼→ MΣ′

f,1. Moreover it restricts to

isomorphismsMΣ
f,1,?

∼→MΣ′

f,1,? for ? = λ anddR.
Σ Σ′ ˆΣ ˆΣ′

.4).

in (c)

in

ula

m 3.7,
Now let γΣ′ denote the transpose ofγΣ with respect to the pairingsδ! andδ! defined in
Section 1.8.1. Using̃Ψ-linearity again, we see thatγΣ

Σ′ mapsMΣ′

f,1 to MΣ
f,1. Recall that ifΣ1 ∪

{r} ⊂ Σ′, then the pairing onMΣ′

f,1 = MfΣ′ is alternating and non-degenerate (Proposition 1
It follows that the same is true for arbitraryΣ and that for anyΣ ⊂ Σ′, the restriction ofγΣ

Σ′ is
an isomorphism. We thus obtain an isomorphism

∧2
KMΣ

f,1 →Mψ(1− k).

We letηΣ
f,1 be the ideal inOK,λ such that∧2

OK,λ
MΣ

f,1,λ maps isomorphically toηΣ
f,1Mψ(1− k)λ.

Note that ifΣ1 ∪ {r} ⊂ Σ, thenηΣ
f,1 = ηΣ

f,λ.
We now state the generalization of Proposition 1.4.

PROPOSITION 1.12. – Suppose thatΣ⊂ Σ′ are finite subsets ofS = Sf (K) \ {λ}.
(a) The morphismγΣ′

Σ restricts to an isomorphismMΣ
f,1 → MΣ′

f,1 in PMS with MΣ
f,1,?

∼→
MΣ′

f,1,? for ? = λ anddR.
(b) We have

γΣ
Σ′ ◦ γΣ′

Σ = βΣ′

f,Σ

∏
p∈Σ

Lp(Af ,1)−1

onMΣ
f,1 for some non-zeroβΣ′

f,Σ in OK,S . MoreoverβΣ′

f,Σ = ϕNΣ′/NΣ if Σ1 ∩Σ′ \Σ = ∅
(cf. Proposition1.4).

(c) The pairingδ̂Σ
! is non-degenerate andS-integral onMΣ

f,1, and

ηΣ
f,1 ⊂ η∅

f,1

∏
p∈Σ

Lp(Af ,1)−1.

Proof. –Part (a) and the first part of (c) have already been shown, and the formula
follows from the one in (b). Part (b) reduces to the caseΣ′ = Σ ∪ {p} for somep /∈ Σ. If p = r,
the result is clear sinceLr(Af ,1) ∈ O×

K,S . If p /∈ Σ1 ∪ {r}, the computation is the same as

Proposition 1.4. Finally, forp ∈ Σ1, we factorγΣ′

Σ = [UΣ′
gUΣ]α = γ2 ◦ γ1 where

γ1 = [U1UΣ]1,! :M(σΣ)! → M(σ)! and γ2 = [UΣ′
gU ]α,! :M(σ)! → M(σΣ′

)!,

whereU = U0(NΣ
1 p) and σ = σΣ|U . Defining a pairing onM(σ)! exactly as forM(σΣ)!,

using the samew and ω, we find thatγt
1γ1 = p + 1 and γt

2γ2 = β for someOK [U ]-linear
endomorphismβ of VΣ, necessarily a scalar by Lemma 3.2.1 of [13]. The desired form
follows with βΣ′

f,Σ = pβ. �

2. The Bloch–Kato conjecture for Af and Af (1)

In this section we shall deduce the Bloch–Kato conjecture from the main result, Theore
of Section 3 below. More precisely, we prove theλ-part of the Bloch–Kato conjecture [4] forAf

andBf := Af (1), wheref is a newform of weightk � 2, conductorN � 1, with coefficients in
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the number fieldK , andλ is a prime ofK not contained in the set

 λ |Nk!, or the(O /λ)[G ]-moduleM̄ is not absolutely irreducible,


this
zed to
ture

ure
hat
is
mallest

e

re
Sf = 
K F f,λ

whereF = Q(
√

(−1)(�−1)/2�) andλ | �  .(31)

By (22) we can assume thatf has minimal conductor among its twists and we shall do so in
section. Our formulation of the conjecture follows Fontaine and Perrin-Riou [41], generali
motives with coefficients inK . For a more systematic discussion of the Bloch–Kato conjec
for motives with coefficients we refer to [7]. IfAf is the scalar extension of a premotivic struct
with coefficients in a subfieldK ′ ⊆ K then Theorem 4.1 and Lemma 11b) of [7] show t
the conjecture overK implies the one overK ′ (in the context of Deligne’s conjecture th
was already noted in [17, Rem 2.10]). So we need not be concerned with finding the s
coefficient field forAf .

2.1. Galois cohomology

For any fieldF and continuousGF -moduleM we writeHi(F,M) for Hi
cont(GF ,M). Let

V be a continuous finite-dimensional representation ofGQ overQ�, unramified at all but finitely
many primes, and letT ⊆ V be aGQ-stableZ�-lattice. We setW := V/T . For each placep of
Q, Bloch and Kato (see [4] or [41]) define a subspaceH1

f (Qp, V ) ⊆ H1(Qp, V ) by

H1
f (Qp, V ) :=




H1
ur(Qp, V ) p �= �,∞,

ker(H1(Qp, V ) →H1(Qp,Bcrys ⊗ V )) p = �,
0 p = ∞,

where

H1
ur(Qp,M) := H1(Fp,M

Ip) = ker
(
H1(Qp,M)→H1(Ip,M)

)
for anyGp-moduleM . They then define groups

H1
f (Qp,W ) := im

(
H1

f (Qp, V )→ H1(Qp,W )
)

and aSelmer group

H1
f (Q,M) := ker

(
H1(Q,M)→

⊕
p

H1(Qp,M)
H1

f (Qp,M)

)
,

whereM is eitherV or W and the sum is over all placesp of Q. For p /∈ {�,∞}, note that
H1

f (Qp,W ) is the maximal divisible subgroup ofH1
ur(Qp,W ) and that the two groups coincid

if W Ip is divisible, e.g. whenW is unramified. For any finite setΣ of prime numbersnot
containing� we define a larger Selmer group

H1
Σ(Q,W ) := ker

(
H1(Q,W )→

⊕
p/∈Σ∪{�,∞}

H1(Qp,W )
H1

ur(Qp,W )
⊕ H1(Q�,W )

H1
f (Q�,W )

)

without local conditions atp ∈ Σ ∪ {∞} and slightly relaxed local conditions at primesp
whereH1

ur(Qp,W ) is not divisible. The groupH1
f (Q,W ) appears in the Bloch–Kato conjectu

whereasH1
Σ(Q,W ) can be analyzed using the Taylor–Wiles method in our situation.
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LEMMA 2.1. – Put T D = HomZ�
(T,Z�(1)), V D = T D ⊗Z�

Q� and WD = V D/T D, and
denote byM∗ the Pontryagin dual of a locally compact abelian groupM . Set

ll

as
H1
f (Qp, T

D) := ι−1H1
f (Qp, V

D)

whereι :H1(Qp, T
D) → H1(Qp, V

D) is the natural map. IfΣ is nonempty and contains a
primes whereH1

f (Qp,W ) �= H1
ur(Qp,W ), and if moreoverH0(Q, V D) = H1

f (Q, V D) = 0 then
there is an exact sequence

0 →H1
f (Q,W )→ H1

Σ(Q,W )→
⊕

p∈Σ∪{∞}
H1

f (Qp, T
D)∗ → H0(Q,WD)∗ → 0.

Proof. –By [32, Proposition 1.4] there is a long exact sequence

0→H1
f (Q,W )→H1(GS ,W )

ρ→
⊕
p∈S

H1(Qp,W )
H1

f (Qp,W )
ρD,∗

−→ H1
f (Q, T D)∗

→H2(GS ,W )→
⊕
p∈S

H2(Qp,W ) →H0(Q, T D)∗ → 0

whereGS is the Galois group of the maximal extension ofQ unramified outsideS := {�,∞}∪Σ
andH1

f (Q, T D) = ι−1H1
f (Q, V D). By our assumption

H0(Q, V D) = H1
f (Q, V D) = 0,

the natural (boundary) mapH0(Q,WD) → H1
f (Q, T D) is an isomorphism. The mapρD,∗ is

Pontryagin dual to the restriction map

H0(Q,WD) = H1
f (Q, T D)

ρD

→
⊕
p∈S

H1
f (Qp, T

D).

Clearly, ρD is injective asH0(Q,WD) injects intoH0(Qp,W
D) ∼= H1

f (Qp, T
D)tor for any

p ∈ S \ {∞} �= ∅. This argument also shows thatρD,∗ restricted to

L :=
⊕

p∈Σ∪{∞}

H1(Qp,W )
H1

f (Qp,W )
∼=

⊕
p∈Σ∪{∞}

H1
f (Qp, T

D)∗

is still surjective since the dual map is still injective. On the other hand we haveρ−1(L) =
H1

Σ(Q,W ) which yields the lemma. �
Suppose now thatKλ is a finite extension ofQ� with ring of integersOλ and uniformizerλ.

For i = 1,2, let Vi be representations ofGQ overKλ which are pseudo-geometric and short
defined in Sections 1.1.1 and 1.1.2 respectively. Suppose thatLi is aGQ-stableOλ-lattice inVi

and set

V = HomKλ
(V1, V2), T = HomOλ

(L1,L2), W = V/T.

Forn � 1, put

Wn = {x∈ W | λnx = 0} ∼= T/λnT
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and note that we have a natural isomorphism

H1(F,Wn) = Ext1Oλ/λn[GF ](L1/λnL1, λ
−nL2/L2)

er

its
nt
irect

the

e

sinceL1/λnL1 is free overOλ/λn (hereF = Q or F = Qp). SinceVi is short theG�-modules
Li/λnLi are in the essential image of the functor

V :MF0
tor →Oλ[G�]−Mod

of Section 1.1.2. Let

H1
f (Q�,Wn)⊆ H1(Q�,Wn)

be the subset of extensions ofOλ/λn[G�]-modules

0→ λ−nL2/L2 →E → L1/λnL1 → 0(32)

so thatE is in the essential image ofV. Using the stability of this essential image und
direct sums, subobjects and quotients, one checks thatH1

f (Q�,Wn) is a Oλ-submodule, and
that H1

f (Q�,Wn) is the preimage ofH1
f (Q�,Wn+1) under the natural mapH1(Q�,Wn) →

H1(Q�,Wn+1).

PROPOSITION 2.2. – The groupH1
f (Q�,W ) is divisible ofOλ-corank

d = dimKλ
H0(Q�, V ) + dimKλ

V − dimKλ
Fil0 Dcrys(V ).

Moreover, the natural isomorphism

lim
−→n

H1(Qp,Wn)∼= H1(Qp,W )

induces isomorphisms

lim
−→n

H1
ur(Qp,Wn)∼= H1

ur(Qp,W ), lim
−→n

H1
f (Q�,Wn)∼= H1

f (Q�,W ).

Proof. –The divisibility of H1
f (Q�,W ) follows from its definition, as does the fact that

corank coincides withdimKλ
H1

f (Q�, V ) = d (see [4] for this last identity). The stateme
concerningH1

ur follows from the fact that continuous group cohomology commutes with d
limits. ForH1

f we first note that

ι−1
n H1

f (Q�,W )⊆ H1
f (Q�,Wn)

whereιn :H1(Q�,Wn) →H1(Q�,W ) is the natural map. Indeed, on the level of extensions
map ιn is given by pushout viaλ−nL2/L2 → V2/L2, pullback viaL1 → L1/λnL1, and the
isomorphismH1(Q�,W )∼= Ext1Oλ[G�]

(L1, V2/L2). Similarly, the map

π :H1(Q�, V ) →H1(Q�,W )

is given by pushout viaV2 → V2/L2 and pullback viaL1 → V1. So forE ∈ H1
f (Q�, V ) all finite

subquotients of the locally compact continuousOλ[G�]-moduleπ(E) are in the essential imag
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of V. Hence, ifE is as in (32) andιn(E) = π(E) for E ∈ H1
f (Q�, V ) thenE lies in the essential

image ofV.
So we obtain an inclusion of torsion groups

n

shows

e

en
H1
f (Q�,W ) ∼← lim

−→n
ι−1
n H1

f (Q�,W )⊆ lim
−→n

H1
f (Q�,Wn)

which is an isomorphism if and only if the induced inclusion on theλ-torsion submodules is a
isomorphism (asH1

f (Q�,W ) is divisible). There is an exact sequence

0 →H0(Q�,W )/λ→H1
f (Q�,W1) →

(
lim
−→n

H1
f (Q�,Wn)

)
[λ] → 0,(33)

and we need to prove that the right hand term hasκ := Oλ/λ-dimensiond. Pick objectsDi

of MF0 so thatV(Di) ∼= Li. Then D := HomOλ
(D1,D2) is also an object ofMF and

D ⊗Oλ
Kλ

∼= Dcrys(V ) (see Eq. (1) in Section 1.1.2). Put̄Di = Di/λ, D̄ = D/λ so that
V(D̄i)∼= Li/λLi andV(D̄)∼= W1. For all j ∈ Z we have

dimKλ
Filj Dcrys(V ) = dimOλ

Filj D = dimκ Filj D̄.(34)

Denote byκ-MF the category ofκ-modules inMF . Then

dimκ H1
f (Q�,W1) = dimκ Ext1κ-MF (D̄1, D̄2)(35)

and

dimκ H0(Q�,W )/λ = dimκ H0(Q�,W1)− dimKλ
H0(Q�, V )(36)

= dimκ Homκ-MF(D̄1, D̄2)− dimKλ
H0(Q�, V ).

There is an exact sequence

0 →Homκ-MF(D̄1, D̄2)→ Homκ,Fil(D̄1, D̄2) = Fil0 D̄(37)

1−φ0

→ Homκ(D̄1, D̄2) = D̄ → Ext1κ-MF (D̄1, D̄2) → 0

(see diagram (61) below for a similar computation) and the combination of (33)–(38) then
that indeed

dimκ

(
lim
−→n

H1
f (Q�,Wn)

)
[λ] = d. �

COROLLARY 2.3. – Suppose that̄L is a two-dimensionalGQ-representation over the finit
field κ of characteristic� > 2 so that L|G�

∼= V(D̄′) for some objectD̄′ of κ-MF0 with
dimκ Fil1 D̄′ = 1. Letad0

κ L̄ ⊂ adκ L̄ := Homκ(L̄, L̄) be the endomorphisms of trace zero. Th

dimκ H1
f (Q�,ad0

κ L̄) = 1 + dimκ H0(Q�,ad0
κ L̄).

Proof. –From (38) applied tōD1 = D̄2 = D̄′ we have

dimκ H1
f (Q�,adκ L̄) = 2 · 2− 3 + dimκ H0(Q�,adκ L̄)

and (38) applied tōD1 = D̄2 = κ[0] (the unit object ofκ-MF ) shows thatdimκ H1
f (Q�, κ) =

dimκ H0(Q�, κ). Since� > 2 we haveadκ L̄ = κ⊕ ad0
κ L̄ which gives the lemma. �
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Finally we record the following fact in this subsection.

LEMMA 2.4. –The setSf defined in(31) is finite.

s
n
r
at

5]).
d

]),

r not

n

acters
r

t

Proof. –Suppose thatλ does not divideNk! andM̄f,λ is reducible. Its semisimplification i
of the formψ1 ⊕ ψ2 whereψ1 andψ2 are characters ofGal(Q(µN�)/Q). The representatio
is necessarily ordinary at� (see [30]), so one of the characters is unramified at� and the othe
has restrictionχ1−k

� on I� whereχ� :GQ → Aut(µ�) is the cyclotomic character. It follows th
ap ≡ pk−1 + 1 mod λ for all p ≡ 1 mod N . If this holds for infinitely manyλ, then we get
ap = pk−1 + 1 for all suchp, violating the Ramanujan conjecture (a theorem of Deligne [1
Having established irreducibility of̄Mf,λ for all but finitely manyλ, the proof is then finishe
by the following lemma. �

LEMMA 2.5. –Suppose thatλ does not divideN(2k − 1)(2k − 3)k!. If M̄f,λ is irreducible,
then its restriction toGF is absolutely irreducible.

Proof. –Consider the restriction of̄Mf,λ to I�. By results of Deligne and Fontaine (see [30

this restriction has semisimplification of the formχ1−k
� ⊕ 1 or ψ1−k

� ⊕ ψ
�(1−k)
� (after extending

scalars if necessary), whereψ� is a fundamental character of level 2, according to whether o
a� is a unit modλ.

Suppose thatM̄f,λ is irreducible but its restriction toGF is not absolutely irreducible. The
(after extending scalars)̄Mf,λ is induced from a character ofGF , and its restriction toI� is
induced from a character of its subgroup of index 2. It follows that the ratio of the char
into which this restriction decomposes is quadratic. Sinceψ� has order�2 − 1, this forces eithe
(�− 1)|2(k − 1) or (� + 1)|2(k − 1) and we arrive at a contradiction.�
2.2. Order of vanishing

Suppose thatM is anL-admissible object ofPMK and letMD = HomK(M,K(1)). We
recall the conjectured order of vanishing ofL(M,s) at s = 0 [41, III. 4.2.2].

CONJECTURE 2.6. – Let τ :K → C be an embedding andλ any finite prime ofK . Then

ords=0 L(M,τ, s) = dimKλ
H1

f (Q,MD
λ )− dimKλ

H0(Q,MD
λ ).

THEOREM 2.7. – Conjecture2.6holds for bothM = Af andM = Bf if λ is not inSf . More
precisely, we haveords=0 L(Af , τ, s) = ords=0 L(Bf , τ, s) = 0 and

H0(Q,Af,λ) ∼= H1
f (Q,Af,λ)∼= H1

f (Q,Bf,λ) ∼= H0(Q,Bf,λ)∼= 0

if λ /∈ Sf .

Proof. –Lemma 2.12 below shows that

L(Af , τ,1) = Lnv(Af , τ,1)
∏

p∈Σe(f)

Lp(Af , τ,1)

is a nonzero multiple of the Petersson inner product off with itself and hence it follows tha
L(Bf , τ,0) = L(Af , τ,1) �= 0 for eachτ . It follows from the functional equation (24) that

L(Af , τ,0) =
(k − 1)ε(Af )

2π2
L(Af , τ,1) �= 0(38)
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for eachτ as well. The absolute irreducibility ofMf,λ for eachλ implies that

EndKλ[GQ](Mf,λ) = Kλ,

”
cture

otives

cture
ory of

r

so H0(Q,Af,λ) = 0, and since Mf,λ is not isomorphic to Mf,λ(1), we also have
H0(Q,Bf,λ) = 0. It follows then from [41, II.2.2.2] (see also [32, Corollary 1.5]) that

dimKλ
H1

f (Q,Af,λ) = dimKλ
H1

f (Q,Bf,λ)

for all λ and hence that Theorem 2.7 is implied by the vanishing ofH1
f (Q,Af,λ). Theorem 3.7

shows that

H1
f (Q,Af,λ/ ad0

Oλ
Mf,λ) ⊂H1

Σ(Q,Af,λ/ ad0
Oλ

Mf,λ)

is finite forλ in Sf . Since the kernel of

H1
f (Q,Af,λ) →H1

f (Q,Af,λ/ ad0
Oλ

Mf,λ)

is finitely generated overOλ we deduceH1
f (Q,Af,λ) = 0 and Theorem 2.7 follows.�

2.3. Deligne’s period

We now recall the formulation in [41] of Deligne’sconjecture [17] for the “transcendental part
of L(M,0) for M = Af or Bf . The authors there actually discuss the more general conje
of Beilinson concerning the leading coefficientL∗(M,0) for premotivic structures arising from
motives, but their formulation relies on the conjectural existence of a category of mixed m
with certain properties. We restrict our attention to thoseM , such asAf and Bf , for which
L(M,0) �= 0 and which are critical in the sense of Deligne. In that case Beilinson’s conje
reduces (conjecturally) to Deligne’s, which can be stated without reference to the categ
mixed motives.

Under these hypotheses, thefundamental linefor M is theK-line defined by

∆f (M) = HomK(detK M+
B ,detK tM )

where + indicates the subspace fixed byF∞ and tM = MdR/Fil0 MdR. Furthermore the
composite

R ⊗M+
B → (C⊗MB)+

(I∞)−1

−→ R⊗MdR → R⊗ tM

is anR ⊗ K-linear isomorphism. Its determinant overR ⊗ K defines a basis forR ⊗ ∆f (M)
called the Deligne period, denotedc+(M).

CONJECTURE 2.8. – There exists a basisb(M) for ∆f (M) such that

L(M,0)
(
1⊗ b(M)

)
= c+(M).

There are various rationality results forL(Af ,0) and L(Bf ,0) in the literature (see fo
example [73, Theorem 2.3]) although the precise relationship with Conjecture 2.8 forM = Af

or Bf is not always clear. In this section we recall the proof of Conjecture 2.8 forM = Af and
Bf and give convenient natural descriptions forb(Af ) andb(Bf ).
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We begin by observing thatA+
f,B andtAf

are one-dimensional overK . Furthermore, complex
conjugation
F∞ :Mf,B →Mf,B

has trace zero and commutes withF∞, so it is a basis forA+
f,B . Note also that the natural map

Af,dR →HomK(Filk−1 Mf,dR,Mf,dR/Filk−1 Mf,dR)

factors through an isomorphism

tAf
→HomK(Filk−1 Mf,dR,Mf,dR/Filk−1 Mf,dR).(39)

The fundamental line∆f (Af ) can therefore be identified with

HomK(Filk−1 Mf,dR ⊗Q ·F∞,Mf,dR/Filk−1 Mf,dR).

We shall describeb(Af ) by specifying the image of the canonical basisf ⊗ F∞ for
Filk−1 Mf,dR ⊗ K · F∞ where we viewf as an element ofMf,dR by (15). Recall that we
defined in (16) a perfect alternating pairing

〈· , ·〉 :Mf ⊗K Mf → Mψ(1− k),

and this induces an isomorphism

Mf,dR/Filk−1 Mf,dR → HomK

(
Filk−1 Mf,dR,Mψ(1− k)dR

)
.

We shall eventually defineb(Af ) by specifying the element〈f, b(Af )(f⊗F∞)〉 of Mψ(1− k)dR.
We can make a similar analysis of the fundamental line∆f (Bf ). One finds thatB+

f,B andtBf

are two-dimensional overK . Note thatB+
f,B can be identified withA−

f,B ⊗ Q(1)B and that the
natural map

A−
f,B → HomK(M+

f,B,M−
f,B)⊕HomK(M−

f,B,M+
f,B)

defined by restrictions is an isomorphism. We therefore have an isomorphism

detK B+
f,B → K(2)B

which is canonical up to sign. To fix the choice of sign, we useα∧α−1 as a basis fordetK A−
f,B

whereα :M+
f,B →M−

f,B is anyK-linear isomorphism. Next note that the natural map

Bf,dR →HomK

(
Mf,dR,Mf(1)dR

)
→HomK

(
Filk−1 Mf,dR,Mf(1)dR

)

factors through an isomorphism

tBf
→HomK(Filk−1 Mf,dR,Mf(1)dR).

Using the isomorphism

detK Mf,dR → Filk−1 Mf,dR ⊗K (Mf,dR/Filk−1 Mf,dR)
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(with choice of sign again indicated by the ordering), we find thatdetK tBf
is naturally

isomorphic to
k−1 k−1
HomK(Fil Mf,dR,Mf,dR/Fil Mf,dR)⊗Q(2)dR.(40)

We can therefore identify∆f (Bf ) with

HomK

(
Filk−1 Mf,dR ⊗Q(2)B, (Mf,dR/Filk−1 Mf,dR)⊗Q(2)dR

)
,(41)

and we arrive at a canonical isomorphism

∆f (Af )⊗∆f

(
Q(2)

)
⊗A+

f,B
∼→ ∆f (Bf ).

Fixing the basisF∞ of A+
f,B and the basisβ of ∆f (Q(2)) which sends(2πi)2 to ι−2, this defines

an isomorphism ofK-lines

tw :∆f (Af )→ ∆f (Bf )(42)

so thattw(φ)(x ⊗ y) = φ(x⊗ F∞)⊗ β(y).

LEMMA 2.9. – We have

(R ⊗ tw)
(
c+(Af )

)
= − 1

2π2
c+(Bf ).

Proof. –Let I∞M : C ⊗ Mf,dR
∼= C ⊗ Mf,B be the comparison isomorphism forMf . Via the

natural isomorphismC ⊗ EndK(Mf )? ∼= EndC⊗K(C ⊗ Mf,?) where? = B or ? = dR, I∞M
induces the comparison isomorphismI∞ for bothEnd(Mf ) andAf : I∞(φ) = I∞M ◦φ◦(I∞M )−1.
A similar formula holds forc+(Af ).

Suppose now thatx is aR⊗K-basis ofR⊗Filk−1 Mf,dR and writeI∞M (x) = y+ + y− with
y± ∈ C⊗M±

f,B . Then

c+(Af )(x⊗F∞) = (I∞M )−1(1⊗F∞)I∞M (x) = (I∞M )−1(y+ − y−) mod R⊗ Filk−1 Mf,dR.

On the other hand we haveα(y+) = λy− for someλ ∈ (C ⊗ K)× and thereforeα−1(y−) =
λ−1y+. Hence

(I∞)−1(α)(x) ∧ (I∞)−1(α−1)(x) = (I∞M )−1α(y+)∧ (I∞M )−1α−1(y−)

= (I∞M )−1λy− ∧ (I∞M )−1λ−1y+

=
1
2
(I∞M )−1(y+ + y−)∧ (I∞M )−1(y+ − y−)

=
1
2
x∧ (I∞M )−1(y+ − y−)

and in the description (41) ofR⊗∆f (Bf ) the elementc+(Bf ) is given by

c+(Bf )
(
x⊗ (2πi)2

)
⊗ ι2 = (2πi)2

1
2
(I∞M )−1(y+ − y−) modR⊗ Filk−1 Mf,dR

=−2π2c+(Af )(x⊗ F∞).

In view of the definition oftw in (42) this gives the lemma.�
Recall thatΣe(f) is the set of primesp such thatLnv

p (Af , s) = 1 butLp(Af , s) = (1+p−s)−1.
We write bdR for the basis ofMψ,dR defined in Section 1.1.3, and pickη ∈ {0,1} so that
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η ≡ k mod 2. Note that by Proposition 5.5 of [17], we haveε(Mf ⊗ Mψ−1)/ε(Mψ−1) ∈ K×.
The same proposition together with (20) givesε(Af ) ∈ K×.

he

for

n
r

s

THEOREM 2.10. – Let b(Af ) ∈ ∆f (Af ) be defined by the formula

〈
f, b(Af )(f ⊗ F∞)

〉
=

ik−η((k − 2)!)2ε(Mf ⊗Mψ−1)
2ε(Mψ−1)ε(Af )

∏
p∈Σe(f)

(1 + p−1) · (bdR ⊗ ιk−1),

andb(Bf ) ∈ ∆f (Bf ) by the formula

b(Bf ) = (1− k)ε(Af ) tw
(
b(Af )

)
.(43)

ThenL(Af ,0)(1⊗ b(Af )) = c+(Af ) andL(Bf ,0)(1⊗ b(Bf )) = c+(Bf ).

Proof. –If we show

〈
f, c+(Af )(f ⊗ F∞)

〉
=

ik−η(k − 1)!(k − 2)!ε(Mf ⊗Mψ−1)Lnv(Af ,1)
4π2ε(Mψ−1)

· (bdR ⊗ ιk−1)

in C ⊗Mψ(1− k)dR, then the statement concerningb(Af ) is an immediate consequence of t
functional equation (38). The identityL(Bf ,0)(1⊗ b(Bf )) = c+(Bf ) then follows by applying
(R⊗ tw) to the identityL(Af ,0)(1⊗ b(Af )) = c+(Af ) and using (38) and Lemma 2.9.

As in Section 1.4.2 putU = U0(N), let σ :U → K× be the representation
(

a b
c d

)
�→ ψ−1(aN )

and setM(N,ψ) = M(σ) = M(N ′)(σ) for some N ′ � 3 so that UN ′ ⊆ U . Put w =(
0 −1
N 0

)
∈ GL2(Af ) and denote byW = [UwU ]ω :M(N ′)(σ) → M(N ′)(σ̂ ⊗ (ψ−1 ◦ det)) the

isomorphism in (13). Note thatww−1
N ∈ U so that we can work withw instead ofwN . For any

one-dimensionalK-representationσ of U whose kernel containsUN ′ we shall viewM(N ′)(σ)
as a sub-PMK-structure ofK ⊗ M(N ′). With I∞ denoting the comparison isomorphism
bothMf andK ⊗M(N ′) we have

〈
f, c+(Af )(f ⊗ F∞)

〉
=

〈
f, (I∞)−1(1⊗ F∞)I∞f

〉
(44)

= [U : UN ′ ]−1
(
f, (I∞)−1(1⊗ F∞)I∞Wf

)
N ′

where this last pairing is the one defined in (12).
We proceed with the computation ofWf ∈ Filk−1 M(N ′)(σ̂ ⊗ (ψ−1 ◦ det))!,dR. Note that

the fieldKf generated by the Fourier coefficients of the newformf is either totally real or a CM
field and hence has a welldefined automorphismρ induced by complex conjugation. It is know
that the Fourier expansionfρ(z) =

∑∞
n=1 aρ

ne2πizn is a newform of conductorN and characte
ψ−1 [63, 4.6.15(2)], hence represents an element ofFilk−1 M(N ′)(σ̂)!,dR.

Let P1, P2 be the canonicalN ′-torsion sections on the moduli schemeX of level N ′

introduced in Section 1.2.1, denote byζ = 〈P1, P2〉 ∈ Γ(X,OX) their Weil pairing and
consider the resulting morphismX → Spec(OF ) whereF = Q(ζ). This induces isomorphism
MF

∼= H0(X) and

Mψ
∼=

(
H0(X)⊗Kψ−1◦det

)U
(45)

where in the definition ofMψ in Section 1.1.3 we have to replacee2πiN ′
by ζ. Then

Mψ ⊗K M(N ′)(σ̂)! has a natural map intoM(N ′)(σ̂ ⊗ (ψ−1 ◦ det))! via the isomorphism
(45) followed by cup product onX .
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LEMMA 2.11. – We have

Wf = ψ(−1)
ik−ηε(Mf ⊗Mψ−1)

b ∪ fρ(46)

).

es
Nε(Mψ−1) dR

wherebdR is the basis ofMψ,dR defined in Section1.1.3.

Proof. –We fix an embeddingτ :K → C and compute the images of both sides inSk(UN ′)
(we shall suppressτ in the notation and view all elements ofK as complex numbers viaτ ).
Let φ ∈ (Sk(UN ′) ⊗C Cσ)U denote the element corresponding tof under the isomorphism (5
Recall that the isomorphism

β :Sk(UN ′) ∼=
⊕

t∈(Z/N ′Z)×

Sk

(
Γ(N ′)

)

was defined before (5) by

β(F )t

(
γ(i)

)
:= (detγ)−1j(γ, i)kF (gtγ)

for γ ∈ GL2(R)+, j
((

a b
c d

)
, z

)
= cz + d and gt ≡

(
1 0
0 t−1

)
mod N ′. We have φ(xu) =

σ−1(u)φ(x) for all u ∈ U and β(φ)t(z) = f(z) for all t ∈ (Z/N ′Z)× since gt ∈ U and
σ(gt) = 1.

Recall the analytic descriptionXN ′ =
∐

t∈(Z/N ′Z)× XN ′,t of X and of P1, P2 from

Section 1.2.1. One checks that〈(τ, τ
N ′ ), (τ, t

N ′ )〉 = e−2πit/N ′
. Hence

bdR =
∑

a∈(Z/NZ)×

ψ(a)⊗ ζN ′/N ∈ C ⊗F,

when viewed as an element ofH0
dR(XN ′) =

∏
t C is given by

t �→
∑

a∈(Z/NZ)×

ψ(a)e−2πiat/N = ψ(−t)−1
∑

a∈(Z/NZ)×

ψ(a)e2πia/N

= ψ(−t)−1Gψ = ψ(−t)−1iηε(Mψ−1 , τ).

If now φρ ∈ Sk(UN ′) corresponds tofρ thenβ(φρ)t(z) = fρ(z) is again independent oft and
the right hand side of (46) is given by

t �→ ikε(Mf ⊗Mψ−1 , τ)
N

ψ(t)−1fρ.(47)

The perfect pairingMf ⊗K Mf → Mψ(1 − k) and the identity of Hecke eigenvalu
[63, (4.6.17)] induce an isomorphismM∗

f
∼= Mf ⊗K Mψ−1(k − 1) ∼= Mfρ(k − 1) so that the

functional equation forΛ(Mf ⊗Mψ−1 , τ, s) can be written

Λ(Mf ⊗Mψ−1 , τ, s) = ε(Mf ⊗Mψ−1 , τ)N−sΛ(Mfρ ⊗Mψ, τ, k − s).(48)

Recall that the definition(g|kγ)(z) = det(γ)k/2j(γ, z)−kg(γ(z)) for γ ∈ GL2(R)+ defines a
right action ofGL2(R)+ on functionsg :H→ C. PutWN =

(
0 −1
N 0

)
. By [63, Theorem 4.3.6] we

have

Λ(Mf ⊗Mψ−1 , τ, s) = Λ(f, s) = ikN−s+k/2Λ(f |kWN , k − s)
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which together with (48) yields

fρ = ε(Mf ⊗Mψ−1 , τ)−1ikNk/2f |kWN .

e

Hence (47) becomes

t �→ (−1)kNk/2−1ψ(t)−1f |kWN .(49)

Turning to the left hand side of (46) we have

(Wφ)(x) := φ(xw) and φ(wh) = φ(WQW−1
N h) = φ(W−1

N h)

whereh ∈ GL2(R)+ andWQ ∈ GL2(Q) is the matrix with imagew (resp.WN ) in GL2(Af )
(resp.GL2(R)). Forγ ∈ GL2(R)+ we have

det(h)−1j(h, i)kφ(γh) = det(γ)det(γh)−1j
(
γ,h(i)

)−k
j(γh, i)kφ(γh)

= det(γ)j
(
γ,h(i)

)−k
f
(
γh(i)

)
= det(γ)1−k/2(f |kγ)

(
h(i)

)
.

Combining these equations we find thatWφ corresponds to

t �→ det(h)−1j(h, i)k(Wφ)(gth) = det(h)−1j(h, i)kφ(ww−1gtwh)

= det(h)−1j(h, i)kσ−1(w−1gtw)φ(wh)

= det(h)−1j(h, i)kσ−1(w−1gtw)φ(W−1
N h)

= σ−1(w−1gtw)det(W−1
N )1−k/2(f |kW−1

N )
(
h(i)

)
.

Sincef |kW 2
N = (−1)kf this last expression equals

σ−1(w−1gtw)(−1)kNk/2−1(f |kWN )(h(i)).(50)

For gt ≡
(

1 0
0 t−1

)
mod N, we havew−1gtw ≡

(
t−1 ∗
0 1

)
mod N andσ−1(w−1gtw) = ψ(t−1) =

ψ(t)−1. So (49) and (50) agree which finishes the proof of the lemma.�
The definition (11) of the pairing onσ-constructions shows that(x,α ∪ y)N ′ = (x, y) ⊗K α

whereα ∈ Mψ and(x, y) is theK-linear extension of theQ(1− k)-valued pairing onM(N ′)L
in (9). Combining this with Lemma 2.11 the last term in (44) equals

[U : UN ′ ]−1(f, (I∞)−1(1⊗F∞)I∞fρ)⊗K αdR(51)

in C⊗K(1− r)dR ⊗K Mψ,dR where

αdR = ψ(−1)
ik−ηε(Mf ⊗Mψ−1)

Nε(Mψ−1)
(I∞)−1(1⊗F∞)I∞bdR

= ψ(−1)
ik−ηε(Mf ⊗Mψ−1)

Nε(Mψ−1)
ψ(−1)−1bdR

(with I∞ also denoting the comparison isomorphism forMψ). For any premotivic structur
we have(F∞ ⊗ F∞)I∞ = I∞(F∞ ⊗ 1) and we have(F∞ ⊗ 1)(fρ) = fρ sincefρ ∈ K ⊗
M(N ′)dR ⊂ C⊗K ⊗M(N ′)dR. Hence

(I∞)−1(1⊗ F∞)I∞fρ = (I∞)−1(F∞ ⊗ 1)I∞fρ.
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Under the natural isomorphismC⊗K⊗M(N ′)B
∼= (C⊗M(N ′)B)IK the action ofF∞⊗1⊗1

on the left hand side gets transformed into the action sending(xτ ) to τ �→ (F∞,τ ⊗1)(xτ ) where
F∞,τ is complex conjugation acting onC in the factor indexed byτ . Hence theτ -component of

e

ly a
(51) equals

[U : UN ′ ]−1
(
τ(f), (I∞)−1(F∞,τ ⊗ 1)I∞τ (fρ)

)
⊗C τ(αdR)

= [U : UN ′ ]−1(k − 2)!(4π)k−1φ(N ′)
(
τ(f), τ(f)

)
Γ(N ′)

τ(αdR)⊗ ιk−1

whereφ is Euler’s function and we have used (10). Therefore (51) equals

[U : UN ′ ]−1(k − 2)!(4π)k−1φ(N ′)(f, f)Γ(N ′) ·αdR ⊗ ιk−1(52)

=
[Γ̄1(N) : Γ̄(N ′)]

[U : UN ′ ]
φ(N ′)(k − 2)!(4π)k−1(f, f)Γ1(N) ·αdR ⊗ ιk−1

in C ⊗ Mψ(1 − k)dR where [Γ̄1(N) : Γ̄(N ′)] is the degree of the coveringΓ(N ′)\H →
Γ1(N)\H. Since the mapsdet :U → (Z/N ′Z)× andSL2(Z) → SL2(Z/N ′Z) are surjective one
finds

[U : UN ′ ] = φ(N ′)
[
SL2(Z) ∩U : SL2(Z) ∩UN ′

]
= φ(N ′)

[
Γ0(N) : Γ(N ′)

]
= φ(N ′)φ(N)

[
Γ1(N) : Γ(N ′)

]
= φ(N ′)φ(N)δ(N)

[
Γ̄1(N) : Γ̄(N ′)

]
(53)

whereδ(N) = 1 if N > 2 andδ(N) = 2 if N � 2 (note that−1 ∈ Γ1(N) iff N � 2 whereas
−1 /∈ Γ(N ′)). Combining this with Lemma 2.12 below we find that (52) equals

(k − 2)!(4π)k−1

φ(N)δ(N)
· (k − 1)!δ(N)Nφ(N)Lnv(Af ,1)

4kπk+1
· ik−ηε(Mf ⊗Mψ−1)

Nε(Mψ−1)
· bdR ⊗ ιk−1

=
ik−η(k − 2)!(k − 1)!Lnv(Af ,1)ε(Mf ⊗Mψ−1)

4π2ε(Mψ−1)
· bdR ⊗ ιk−1.

This finishes the proof of Theorem 2.10.�
LEMMA 2.12. – If f is a newform of conductorN , weightk and with coefficients in th

number fieldK , we have

(
τ(f), τ(f)

)
Γ1(N)

=
(k − 1)!δ(N)Nφ(N)Lnv(Af , τ,1)

4kπk+1

for any embeddingτ :K → C andδ(N) as in(53).

Proof. –We fix τ and writef for τ(f) to ease notation. By Theorem 5.1 of [51] (essential
reformulation of a theorem of Rankin and Shimura), we have

L(k, f, ψ̄) =
4kπk+1(f, f)Γ1(N)

(k − 1)!δ(N)NNψφ(N/Nψ)

whereL(s, f, ψ̄) =
∏

p Lp(s, f, ψ̄),

Lp(s, f, ψ̄)−1 =
(
1− ψ̄(p)α2

pp
−s

)(
1− ψ̄(p)αpβpp

−s
)(

1− ψ̄(p)β2
pp−s

)
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andαp, βp are defined as in Section 1.7.2 forp � N andαp +βp = ap, αpβp = 0 for p|N . Denote
by Mp the exact power ofp dividing an integerM . To show the lemma it suffices to show that

s
.
t

the

et

l
n
t

e
r

e

hat
r

t
s.
Lp(k, f, ψ̄)
φ(Np/Nψ,p)

Np/Nψ,p
= Lnv

p (Af , τ,1)
φ(Np)

Np
(54)

for all primesp. If p � N , this is immediate from Section 1.7.2. IfNp = p and Nψ,p = 1,
we havea2

p = ψ(p)pk−2 by [63, Theorem 4.6.17(2)] andπp(f) is special so that (54) hold
true by (23). The only other case in whichap �= 0 is whenNp = Nψ,p [63, Theorem 4.6.17]
In this caseψ̄(p) = 0 and henceLp(k, f, ψ̄) = 1 whereasπp(f) is principal series so tha
Lnv

p (Af , τ,1) = (1 − p−1)−1 = Np/φ(Np) by (23). Finally, if Np > 1 and ap = 0, then
Lp(k, f, ψ̄) = Lnv

p (Af , τ,1) = 1, Np/Nψ,p > 1 and both sides in (54) equal(1− p−1). �
Remark. – In the following, we shall not need the full precision of Theorem 2.10 but only

fact thatik−η((k − 2)!)2ε(Mf ⊗Mψ−1)/2ε(Mψ−1)ε(Af ) is a unit inO = OK [(Nk!)−1]. This
in turn is a consequence of Lemma 2.13 below.

LEMMA 2.13. – Let M be an object ofPMK which is L-admissible everywhere and l
τ :K → C be an embedding. Thenε(M,τ) = ε(M,τ,0) is a unit inZ[c(M)−1] whereZ is the
ring of algebraic integers.

Proof. –By definitionε(M,τ) =
∏

p ε(Dpst(Mλ|Gp)⊗Kλ,τ ′ C, ψp, dxp) is a product over al
placesp of Q where the additive charactersψp and the Haar measuresdxp are chosen as i
[17, 5.3] andτ ′ :Kλ → C is any extension ofτ . The assumption thatM is L-admissible a
p implies that the isomorphism class ofDpst(Mλ|Gp) ⊗Kλ,τ ′ C is independent ofτ ′. The
definition ofε in [16, (8.12)] and [16, Theorem 6.5 (a),(b)] show that

ε
(
Dpst(Mλ|Gp)⊗Kλ,τ ′ C, ψp, dxp

)
= τ ′ε

(
Dpst(Mλ|Gp), ψp, dxp

)
∈ τ ′(Kλ(µp∞)

)
.

Replacingτ ′ by γτ ′, γ ∈ Aut(C/K(µp∞)), and using theL-admissibility again, we deduc
from this formula thatε(Dpst(Mλ|Gp) ⊗Kλ,τ ′ C, ψp, dxp) ∈ K(µp∞). The remark afte
[16, (8.12.4)] shows thatε can be directly expressed in terms of theλ-adic representationMλ for
λ � p. Namely

ε
(
Dpst(Mλ|Gp), ψp, dxp

)
= ε0

(
(Mλ|Wp)ss, ψp, dxp

)
det(−Frob |M Ip

λ )−1

where ε0 is introduced in [16, §5] and(Mλ|Wp)ss is the semisimplification ofMλ as a
representation ofWp. Now for any λ � p the Wp-representationMλ is the restriction of a
continuousGp-representation, hence carries aWp-stableOλ-lattice. This implies, on the on

hand, thatdet(−Frob |M Ip

λ ) ∈ O×
λ and on the other hand, via [16, Theorem 6.5(c)], t

ε0((Mλ|Wp)ss, ψp, dxp) ∈Oλ[µp∞ ]×. Noting that with our choice ofψp, dxp the epsilon facto
equals 1 (resp. a power ofi) for p � c(M) (resp.p = ∞) the lemma follows. �
2.4. Bloch–Kato conjecture

We now recall the formulation of theλ-part of the Bloch–Kato conjecture. We assume thaM
is a premotivic structure inPMK such thatM is critical,L(M,0) �= 0 and Conjecture 2.8 hold
We assume thatλ is a prime ofK such that

H0(Q,Mλ) ∼= H1
f (Q,Mλ) ∼= H1

f (Q,MD
λ )∼= H0(Q,MD

λ )∼= 0.(55)
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This is conjectured to hold for allλ under our hypotheses onM and it implies Conjecture 2.6. If
M = Af or Af (1) andλ /∈ Sf then (55) holds by Theorem 2.7.

Fontaine and Perrin-Riou [41, II.4] define anOλ-lattice δf ,λ(M) in Kλ ⊗K ∆f (M). They

y
se

m

s
so

]

assumeK = Q, denote their lattice∆S(T ) (where S is a finite set of primes andT is a
Galois-stable lattice inMλ) and then prove it is independent of the choice ofS andT . One
checks that the definition and independence argument carry over to arbitraryK by taking
determinants relative toOλ andKλ instead ofZ� andQ�. The arguments of [41, II.5] carr
over as well, giving another description ofδf ,λ(M) for which we need more notation. Choo
a Galois stable latticeMλ ⊂ Mλ and a free rank oneOλ-moduleω ⊂ Kλ ⊗K detK tM . We let
θ(Mλ) = detOλ

M+
λ , regarded as a lattice inKλ⊗K detK M+

B via the comparison isomorphis
IB
λ . We letMD

λ = HomOλ
(Mλ,Oλ(1))⊂ MD

λ . The Tate–Shafarevich group ofM

X(Mλ) :=
H1

f (Q,Mλ/Mλ)
H1

f (Q,Mλ)⊗ (Kλ/Oλ)

is always finite and can be identified withH1
f (Q,Mλ/Mλ) under our hypothesi

H1
f (Q,Mλ) = 0. The same holds forMD

λ . Furthermore, by the main result of [33] (al
[41, II.5.4.2]),X(Mλ) andX(MD

λ ) have the same length. In fact, there is anOλ-linear iso-
morphism

X(MD
λ ) ∼= HomZ�

(
X(Mλ),Q�/Z�

)
.(56)

Finally, the Tamagawa ideal ofMλ relative toω is defined as

Tam0
ω(Mλ) = Tam0

�,ω(Mλ) ·Tam0
∞(Mλ) ·

∏
p�=�

Tam0
p(Mλ),

where the factors are defined as in I.4.1 (and II.5.3.3) of [41]. Recall thatTam0
p(Mλ) = 1 if Mλ

is unramified atp �= � and that

Tam0
∞(Mλ) = FittOλ

H1(R,Mλ) = Oλ

if � is odd. The argument of [41, I.4.2.2] shows that ifp �= �, then

Tam0
p(Mλ) = FittOλ

H1(Ip,Mλ)
GQp

tor

from which it is not hard to deduce that

Tam0
p(Mλ) = Tam0

p(MD
λ ).(57)

ViewingHomOλ
(θ(Mλ), ω) as a lattice inKλ⊗K ∆f (M), we have by [41, Theorem II.5.3.6

δf ,λ(M) =
FittOλ

H0(Q,Mλ/Mλ) ·FittOλ
H0(Q,MD

λ /MD
λ )

FittOλ
X(MD

λ ) ·Tam0
ω(Mλ)

HomOλ

(
θ(Mλ), ω

)
.(58)

Theλ-part of the Bloch–Kato conjecturecan then be formulated as follows:

CONJECTURE 2.14. – Let M in PMK be critical, b(M) as in Conjecture2.8, λ a place of
K such that(55)holds andδf ,λ(M) as in(58). Then

δf ,λ(M) =
(
1⊗ b(M)

)
Oλ.
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THEOREM 2.15. – Let f be a newform andSf the set of places defined in(31). Then
Conjecture2.14holds for bothM = Af andM = Af (1) and anyλ /∈ Sf .

for
f

f

Proof. –SupposeM , b(M) andλ are as in Conjecture 2.14 andS is a set of places ofQ
containing�, ∞ and those whereMλ is ramified. AssumeΣ := S \ {�,∞} is nonempty and
Lp(M,0)−1 �= 0 for all p ∈ Σ. PutbΣ(M) =

∏
p∈Σ Lp(M,0)b(M). By [41, Proof of I.4.2.2] we

have forp ∈Σ,

FittOλ
H1

f (Qp,Mλ) = Lp(M,0)−1 Tam0
p(Mλ)

sinceLp(M,0)−1 �= 0. The exact sequence of Lemma 2.1 applied toW = MD
λ /MD

λ then
implies that Conjecture 2.14 is equivalent to

FittOλ
H0(Q,MD

λ /MD
λ )

FittOλ
H1

Σ(Q,MD
λ /MD

λ )Tam0
�,ω(Mλ)

HomOλ

(
θ(Mλ), ω

)
=

(
1⊗ bΣ(M)

)
Oλ(59)

whereH1
Σ(Q,MD

λ /MD
λ ) was defined in Section 2.1. We shall first prove Theorem 2.15

M = Bf = Af (1) in which case the conditionLp(M,0)−1 �= 0 for the reformulation (59) o
Conjecture 2.14 is satisfied.

Recall thatAf,λ = ad0
Oλ

Mf,λ and putBf,λ = Af,λ(1). Using the identification (39) o
tAf

= detK tAf
we let

ωA =Oλ ⊗O HomO(Filk−1 Mf,dR,Mf,dR/Filk−1Mf,dR)
∼= HomOλ

(Filk−1 Mf,dR ⊗O Oλ,Mf,dR ⊗O Oλ/Filk−1 Mf,dR ⊗O Oλ)
∼= HomOλ

(Filk−1 Mf,λ-crys,Mf,λ-crys/Filk−1Mf,λ-crys).

Similarly, identifyingdetK tBf
with detK tAf

⊗Q(2)dR we defineωB asωA ⊗ ι−2.
Fix a primeλ /∈ Sf and letΣ be the set of primes dividingN if N > 1 or put Σ = {p} for

some primeλ � p if N = 1. The isomorphismγ :Mf →MΣ
f of Proposition 1.4 satisfies

γt = γ−1φ
∏
p∈Σ

Lnv
p (Bf ,0)−1

by Proposition 1.4 whereφ =
∏

δp=1(−ap)
∏

δp=2 ψ(p)pk−1 ∈ O×
λ (it is well known that

a2
p = ψ(p)pk−1 or a2

p = ψ(p)pk−2 if δp = 1 [63, 4.6.17]). Moreover,γ induces an isomorphism

Bf = HomK

(
Mf ,Mf(1)

)
→BΣ

f := HomK

(
MΣ

f ,MΣ
f (1)

)

and an isomorphismγ :∆f (Bf ) →∆f (BΣ
f ) so that

γ(b)
(
x⊗ (2πi)2

)
⊗ ι2 = γdRb

(
γ−1
dR(x)⊗ (2πi)2

)
⊗ ι2

for b ∈ ∆f (Bf ) andx∈ MΣ
f,dR. For suchb andx we have

〈
x, γ(b)

(
x⊗ (2πi)2

)
⊗ ι2

〉Σ =
〈
γ−1
dR(x), γt

dRγ(b)
(
x⊗ (2πi)2

)
⊗ ι2

〉
=

〈
γ−1
dR(x), γ−1

dRγ(b)
(
x⊗ (2πi)2

)
⊗ ι2

〉
φ

∏
p∈Σ

Lnv
p (Bf ,0)−1

=
〈
γ−1
dR(x), b

(
γ−1
dR(x)⊗ (2πi)2

)
⊗ ι2

〉
φ

∏
p∈Σ

Lnv
p (Bf ,0)−1.(60)
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Recall thatFilk−1MΣ
f,dR = O · fΣ = O · γ(f) by Propositions 1.4 whereO =

⋂
λ∈Sf

K ∩Oλ.
Note that ifb′ is anOλ-basis for

( )

nd the

p

f

lar
ss
HomOλ
θ(BΣ

f,λ), ωB

∼= HomOλ

(
Filk−1MΣ

f,dR ⊗O θ(Bf,λ), (MΣ
f,dR/Filk−1 MΣ

f,dR)⊗O Oλ ⊗ ι−2
)
,

then

Oλ · b′
(
fΣ ⊗ (2πi)2

)
⊗ ι2 = (MΣ

f,dR/Filk−1MΣ
f,dR)⊗O Oλ

and hence

Oλ ·
〈
fΣ, b′

(
fΣ ⊗ (2πi)2

)
⊗ ι2

〉Σ =OληΣ
f Mψ(1− k)dR

whereηΣ
f was defined before Proposition 1.4. On the other hand by (60), Theorem 2.10 a

remark after the proof of Theorem 2.10, we have forλ /∈ Sf ,

Oλ ·
〈
fΣ, γbΣ(Bf )

(
fΣ ⊗ (2πi)2

)
⊗ ι2

〉Σ

= Oλ ·
〈
f, bΣ(Bf )

(
f ⊗ (2πi)2

)
⊗ ι2

〉 ∏
p∈Σ

Lnv
p (Bf ,0)−1

= Oλ ·
〈
f, b(Bf)

(
f ⊗ (2πi)2

)
⊗ ι2

〉 ∏
p∈Σe(f)

Lp(Bf ,0)

= Oλ(bdR ⊗ ιk−1) = OλMψ(1− k)dR.

Eq. (59) forM = Bf therefore reduces to

FittOλ
H0(Q,BD

f,λ/BD
f,λ)

FittOλ
H1

Σ(Q,BD
f,λ/BD

f,λ)Tam0
�,ωB

(Bf,λ)
ηΣ

f = Oλ.

Using Proposition 2.16 below, the fact thatAf = BD
f and the vanishing of the grou

H0(Q,Af,λ/Af,λ) for λ∈ Sf , this identity reduces to

FittOλ
H1

Σ(Q,Af,λ/Af,λ) = OληΣ
f

which is Theorem 3.7.
By (56), (57) and Proposition 2.16, the factor in front ofHom(θ(Mλ), ω) in (58) is the same

for M = Af andM = Bf . The isomorphismtw defined in (42) mapsHomOλ
(θ(Af,λ), ωA) to

HomOλ
(θ(Bf,λ), ωB), henceδf ,λ(Af ) to δf ,λ(Bf ). Theorem 2.15 forM = Af therefore follows

from Theorem 2.15 forM = Bf , together with Theorem 2.10 and the fact that(1 − k)ε(Af ) is
a unit inOλ. �

PROPOSITION 2.16. – We haveTam0
�,ωA

(Af,λ) = Tam0
�,ωB

(Bf,λ) = Oλ for λ /∈ Sf .

Proof. –With the notation in Section 1.1.1, we further denote byMF the additive category o
filteredφ-modules as defined in [36, 1.2.1], byKλ-MF the category ofKλ-modules inMF and
by Kλ-MFa the full subcategory ofKλ-MF with filtration restrictions as in Section 1.1.1. Sca
extension−⊗Z�

Q� induces an exact functorOλ-MF → Kλ-MF where the notion of exactne
in MF is defined in [36, 1.2.3].

Now assume thatD1,D2 are torsion free objects ofOλ-MFa for somea and putDi =
Di ⊗Z�

Q�. SetD = HomOλ
(D1,D2) andD = HomKλ

(D1,D2) which are objects ofMF and
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MF respectively. We also haveD ∼= D ⊗Z�
Q�. An elementary computation shows that the first

two rows in the following commutative diagram are exact

s

from

red

l

e

f

0 HomOλ-MF (D1,D2)

ε0

Fil0 D
1−φ0

D
π

Ext1Oλ-MF (D1,D2)

ε1

0

0 HomKλ-MF(D1,D2)

θ0

Fil0 D

ι

1−φ

D

ι

π
Ext1

Kλ-MF(D1,D2)

θ1

0

0 H0(Q�, V ) Fil0 D(V )
1−φ

D(V )

(id,0)

e
H1

f (Q�, V ) 0

0 H0(Q�, V ) D(V ) D(V ) ⊕ tV H1
f (Q�, V ) 0

(61)

whereπ is defined as follows. Forη ∈D, define an extensionEη of D1 by D2 in Oλ-MF with
underlyingOλ-moduleD2 ⊕D1, filtration

Fili Eη := Fili D2 ⊕ Fili D1

and Frobenius mapsφi : Fili Eη →Eη

φi(x, y) =
(
φi(x) + ηφi(y), φi(y)

)
.(62)

The same definitions forη ∈ D lead to an extension inKλ-MF. Thenπ(η) is the class of the
Yoneda extensionEη in Ext1 (we shall identifyExt1 with the group of Yoneda extension
throughout).

To explain the remaining part of diagram (61), we first recall the notion of admissibility
[36, 3.6.4]. A filteredφ-moduleD′ in MF is called admissible if the natural mapBcrys⊗Q�

D′ ∼=
Bcrys ⊗Q�

V (D′) is an isomorphism whereV (D′) is theG�-representation

V (D′) = Fil0(D′ ⊗Bcrys)φ⊗φ=1.

The functorD′ → V (D′) is fully faithful and exact on the category of admissible filte
φ-modules, and induces an equivalence of this category with the categoryRepcris(G�) of
crystallineKλ[G�]-representations (see [36, 3.6.5]). IfD′ = D′ ⊗Zl

Ql for some objectD′

of MF0, then D′ is admissible by [39, Theorem 8.4], and for suchD′ we have a natura
isomorphismV (D′) ∼= V(D′) ⊗Z�

Q� by (1). If D′ = D′ ⊗Zl
Ql for some objectD′ of MFa

then we can extend the definition ofV by V(D′) = V(D′[−a])(a) (Tate twist) and we deduc
again thatD′ is admissible. In particular,D1 andD2 are admissible, and thenD is admissible
by [36, Proposition 3.4.3]. PuttingV := V (D) andVi := V (Di) we have an isomorphism o
G�-representationsV = HomKλ

(V1, V2) by [36, 3.6].
Coming back to diagram (61), the mapι is just the natural map induced by

D
1⊗−−→ Bcrys ⊗Q�

D ∼= Bcrys ⊗Q�
V ← H0(Q�,Bcrys ⊗Q�

V ) =: D(V )
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and e is the boundary map in Galois cohomology induced from the short exact sequence of
GQ�

-modules

de

nd all
entity

ith

m

0 → V (D) → Fil0(Bcrys ⊗Q�
D)

1−φ⊗φ−→ Bcrys ⊗Q�
D → 0(63)

as in the proof of [4, Lemma4.5(b)]. It is clear thatKλ-MFa is closed under extensions insi
Kλ-MF, hence we obtain a chain of isomorphisms

θi :Exti
Kλ-MF(D1,D2) ← Exti

Kλ-MFa(D1,D2)

vi

→ ExtiRepcris(G�)(V1, V2)
∆i

→ Exti
Repcris(G�)

(
Kλ,HomKλ

(V1, V2)
)
→Hi

f (Q�, V )

for i = 0,1. Here∆1 sends a Yoneda extension

0 → V2 → V3 → V1 → 0

to the pull back toKλ · 1V1 ⊆ HomKλ
(V1, V1) of the induced extension

0→ HomKλ
(V1, V2) →HomKλ

(V1, V3) →HomKλ
(V1, V1) → 0.

The mapsvi (defined by applyingV to a Yoneda extension) are isomorphisms becauseV is fully
faithful and exact.

The three lower rows in (61) with the indicated maps form a commutative diagram, a
these rows are exact (see [4, Lemma 4.5(b)] for the two lower rows). We shall verify the id
θ1π = eι, all the others being straightforward. Consider the commutative diagram

0 V2 Fil0(Bcrys ⊗Q�
D2)

1−φ⊗φ
Bcrys ⊗Q�

D2 0

0 V2 Fil0(Bcrys ⊗Q�
(D2 ⊕D1))φ=1 Fil0(Bcrys ⊗Q�

D1)φ=1

1⊗ψ

0

(64)

where all unnamed arrows are natural projection or inclusion maps, the top row is (63) wD
replaced byD2, and the action ofφ onD2⊕D1 is given by (62). Forψ ∈ D, the extensioneι(ψ)
is the pullback of (63) underKλ(1 ⊗ ψ) ⊂ Bcrys ⊗Q�

D. To compute(∆1)−1eι(ψ) apply the
exact functorHomKλ

(V1,−) to diagram (64). Via the isomorphisms

HomKλ
(V1,Bcrys ⊗Q�

D2)∼= HomBcrys⊗Kλ
(Bcrys ⊗Q�

V1,Bcrys ⊗Q�
D2)

∼= HomBcrys⊗Kλ
(Bcrys ⊗Q�

D1,Bcrys ⊗Q�
D2)

∼= Bcrys ⊗Q�
HomKλ

(D1,D2),

HomKλ

(
V1,Fil0(Bcrys ⊗Q�

D2)
)∼= Fil0

(
Bcrys ⊗Q�

HomKλ
(D1,D2)

)
,

the first row becomes isomorphic to (63) and the image of

1V1 ∈ HomKλ
(V1, V1) = HomKλ

(
V1,Fil0(Bcrys ⊗Q�

D1)φ=1
)

in Bcrys ⊗Q�
D is 1⊗ψ. Hence(∆1)−1eι(ψ) is represented by the lower row in (64). But fro

the definition ofπ it is immediate that the lower row in (64) is the image ofπ(ψ) under the
functorV . This gives the identityθ1π = eι.
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PutTi = V(Di) for i = 1,2 andT = HomOλ
(T1, T2) with its naturalG�-action. Then, since

T1 is torsion free,H1(Q�, T ) naturally identifies with the set of equivalence classes of extensions
of Oλ[G�]-modules

in

lies

ille
nce
e

l

t the

ent
0 → T2 → T3 → T1 → 0.(65)

Since the functorV is exact onOλ-MFa, and sinceOλ-MFa is closed under extensions
Oλ-MF , we obtain maps

Θi : ExtiOλ-MF(D1,D2)
∼← ExtiOλ-MFa(D1,D2)→ ExtiOλ[G�]

(T1, T2)∼= Hi(Q�, T )

analogous to the mapsθi. The faithfulness ofV implies thatΘ0 is injective and fullness ofV
implies thatΘ0 is surjective and thatΘ1 is injective. The image ofΘ1 lies in the subgroup

H1
f (Q�, T ) :=

{
[T3] ∈ H1(Q�, T )|[V3] := [T3 ⊗Z�

Q�] ∈ H1
f (Q�, V )

}

sinceV(D3) ⊗Z�
Q�

∼= V (D3 ⊗Z�
Q�) is a crystalline representation. Conversely, if (65)

in H1
f (Q�, T ), the G�-moduleT3 is a submodule of a crystalline representationV3 so that

D(V3) lies in Kλ-MFa and henceT3 lies in the essential image of the Fontaine–Laffa
functor V, T3 = V(D3), say. SinceV is full the extension (65) is the image of a seque
0 → D2 → D3 → D1 → 0 in Oλ-MFa and sinceV is fully faithful and exact, this sequenc
is exact, hence represents an element ofExt1Oλ-MF (D1,D2). We conclude that

Θ1 : Ext1Oλ-MF(D1,D2)∼= H1
f (Q�, T )(66)

is an isomorphism. It is clear thatθiεi = ε̃iΘi whereε̃i :Hi(Q�, T )→ Hi(Q�, V ) are the natura
maps. The last row in (61) induces an isomorphism

detKλ
H0(Q�, V )⊗Kλ

det−1
Kλ

H1
f (Q�, V )∼= detKλ

D ⊗Kλ
det−1

Kλ
D ⊗Kλ

det−1
Kλ

tV

∼= det−1
Kλ

tV

and the Tamagawa ideal is defined in [41, I.4.1.1] so that

detOλ
H0(Q�, T )⊗Oλ

det−1
Oλ

H1
f (Q�, T )∼= Tam0

�,ω(T )ω−1.(67)

Using the fact thatΘ0 is an isomorphism together with (66) and (61) one computes tha
left hand side in (67) equalsdet−1

Oλ
D/Fil0D so thatTam0

�,ω(T ) = Oλ if ω is a basis of
detOλ

D/Fil0D.
These arguments apply toD1 = D2 = Mf,λ-crys which is an object ofOλ-MF0 if λ /∈ Sf ,

more specifically if� � N and� > k. We haveT1 = T2 = Mf,λ andT =Af,λ ⊕Oλ. Our choice
of ωA then ensures thatTam0

�,ωA
(Af,λ) = Oλ. ForBf = Af (1) we can use the same argum

as long as bothD1 = Mf,λ-crys andD2 = Mf,λ-crys[1] are objects ofOλ-MF1. This is the
case if� > k + 1 or if � = k + 1 andMf,λ-crys has no nonzero quotientA in Oλ-MF with
Filk−1 A = A.

LEMMA 2.17. –If a� ≡ 0 mod λ, thenMf,λ-crys has no nonzero quotientA in Oλ-MF with
Filk−1 A = A.

Proof. –By [75] we know that the characteristic polynomial ofφ on

M :=Mf,λ-crys isX2 − ψ−1(�)a�X + ψ−1(�)�k−1,
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henceφ̄ has characteristic polynomialX2 onM̄ := M⊗O (Oλ/λ). Since

M̄ = φ̄(M̄) + φ̄k−1(Filk−1 M̄)(68)

t

a
r

t

n

that
and dimOλ/λ Filk−1 M̄ = 1, the mapφ̄ is nonzero, hence conjugate to
(

0 1
0 0

)
. Since φ̄ =

�k−1φ̄k−1 = 0 on Filk−1 M̄ and because of (68), we haveFilk−1 M̄ = ker(φ̄) = φ̄(M̄). It is
now easy to see that̄M is a simple object inOλ-MF : Any proper subobjectN ⊂ M̄ is φ̄-
stable, hence contained inker(φ̄) = Filk−1 M̄ and we haveFilk−1 N = N . But again by (68) we
find φ̄k−1(Filk−1 M̄) �⊆ ker(φ̄) = φ̄(M̄) so thatN = Filk−1 N = 0. If A is a nonzero quotien
of M then Ā is a nonzero quotient ofM̄ hence equal toM̄ and we findFilk−1 Ā �= Ā and
Filk−1 A �= A. �

It remains to prove Proposition 2.16 forBf,λ in the ordinary casea� �≡ 0 mod λ (and
� = k + 1). We use the fact thatBf

∼= A∗
f (1) and appeal to the following conjecture,

slight generalization (fromZ� to Oλ) of conjectureCEP (V ) of [67] (we also use a simila
generalization of [67, Proposition C.2.6]).

Let V be a crystalline representation ofG� overKλ andT ⊆ V aG�-stableOλ-lattice. Letω
(resp.ω∗) be a lattice of

detKλ
D(V )/Fil0 D(V )

(
resp.detKλ

D
(
V ∗(1)

)
/Fil0 D

(
V ∗(1)

))

so than we obtain a latticeω ⊗ω∗,−1 of detKλ
D(V ) via the exact sequence

0 →
(
D

(
V ∗(1)

)
/Fil0 D

(
V ∗(1)

))∗ → D(V ) →D(V )/Fil0 D(V )→ 0.(69)

Let η(T,ω,ω∗) ∈ Bcrys ⊗Q�
Kλ be such thatdetOλ

T = η(T,ω,ω∗)ω ⊗ ω∗,−1 under the
comparison isomorphismBcrys ⊗Q�

detKλ
V ∼= Bcrys ⊗Q�

detKλ
D(V ). One shows tha

η(T,ω,ω∗) ∈ Qur
� ⊗Q�

Kλ [67, Lemme C.2.8] and that in factη(T,ω,ω∗) ∈ 1 ⊗ Kλ up to an
element in(Zur

� ⊗Z�
Oλ)×.

CONJECTURE 2.18. – For j ∈ Z, put hj(V ) = dimKλ
Filj D(V )/Filj+1 D(V ), and put

Γ∗(j) = (j − 1)! if j > 0 andΓ∗(j) = (−1)j((−j)!)−1 if j � 0. Then

Oλ

Tam0
�,ω(T )

Tam0
�,ω∗(T ∗(1))

= Oλ

∏
j

Γ∗(−j)−hj(V )η(T,ω,ω∗).

Remark. – One can show that upon taking the norm fromKλ to Q� all quantities in this
formula transform into the corresponding quantities obtained by viewingV as a representatio
overQ� rather thanKλ. Since the norm mapK×

λ /O×
λ → Q×

� /Z×
� is injective it suffices to prove

the conjecture forKλ = Q�.

We make Conjecture 2.18 more explicit forV = Af,λ. In this case we havehj(V ) = 1 for
i = −1,0,1 andhj(V ) = 0 otherwise so that

∏
j Γ∗(−j)−hj(V ) = −1. For λ /∈ Sf , equation

(20) shows that the isomorphismBcrys ⊗Q�
detKλ

V ∼= Bcrys ⊗Q�
detKλ

D(V ) is induced by
the functorV for the unit object inPMS

K , hence sendsdetOλ
Af,λ to detOλ

Af,dR ⊗O Oλ.
The computation oftBf

in (40) works withMf,dR replaced byMf,dR ⊗O Oλ and the pairing
(21) onAf gives a perfect pairing(Af,dR ⊗O Oλ) ⊗ (Af,dR ⊗O Oλ) → Oλ. Hence we find
thatωA ⊗ ω−1

B is a basis ofdetOλ
Af,dR ⊗O Oλ via the exact sequence (69). We conclude

η(Af,λ, ωA, ωB) = 1 and that Conjecture 2.18 reduces to the assertion

Oλ Tam0
�,ωA

(Af,λ) = Oλ Tam0
�,ωB

(
Af,λ(1)

)
.
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Moreover, we know from the first part of the proof that the left hand side equalsOλ if λ /∈ Sf .
Now Conjecture 2.18 is shown in [66] forKλ = Q� and V an ordinary representation of
GQ�

(combine Proposition 4.2.5, Theorem 3.5.4 of loc. cit.) under the assumption of another

f

is
6],

a [42]
group
in the

d,

on

s

f

conjecture Rec(V) which has meanwhile been proved in [12]. Ordinarity ofAf,λ is implied
by ordinarity of Mf,λ which in turn is implied bya� �≡ 0 mod λ. This finishes the proof o
Proposition 2.16. �

3. The Taylor–Wiles construction

Our method for computing the Selmer group ofAf,λ is based on that of Wiles [88] and h
work with Taylor [86]. We first give an axiomatic formulation of the method of [88] and [8
made possible by the simplifications due to Faltings ([86], appendix), Lenstra [60], Fujiwar
and one of the authors [24]. This formulation makes no reference to deformation rings and
rings that appear in other axiomatizations of the method. We then verify these axioms
context of modular forms of higher weight.

3.1. An axiomatic formulation

In this section, we fix a primeλ of a number fieldK and letκ = OK/λ. We let � denote
the rational prime inλ andF the quadratic subfield ofQ(µ�). We also fix a continuous, od
irreducible representation

ρ0 :GQ →Autκ(V0)

whereV0 is two-dimensional overκ. We define the Serre weightk of ρ0 as in [78], but using
geometric normalizations. (Thusk is the integer associated in [78] to the representation
Homκ(V0, κ).) We impose the following three conditions on the representationsρ0 we consider:
• ρ0 has minimal conductor among its twists.
• The restriction ofρ0 to GF is absolutely irreducible.
• The Serre weightk of ρ0 satisfies2 � k � �− 1.

The last condition is equivalent toρ0|I� being equivalent over̄κ to a representation of the form

• ψ1−k
� ⊕ ψ

�(1−k)
� whereψ� is a fundamental character of level two,

• or
( 1 ∗

0 χ1−k
�

)
, peu ramifié ifk = 2.

We letψ :GQ →O×
λ denote the Teichmüller lift ofχ1−k

� (detρ−1
0 ); thusψ is unramified at� and

has order prime to�, andψ−1χ1−k
� is a lift of detρ0. We letδ denoteψ−1χ1−k

� .
We consider continuous geometric�-adic representations

ρ :GQ →AutKρ(Vρ)

where Vρ is two-dimensional over a finite extensionKρ of Kλ contained inK̄λ, ρ has
determinantδ and reduction isomorphic toρ0 over κ̄. We letOρ denote the ring of integer
of Kρ. We say such a representationρ is anallowable lift of ρ0 if its restriction toG� is short
and crystalline. For a primep �= �, we sayρ is minimally ramifiedatp if the following hold:
• If #ρ0(Ip) �= �, thenρ(Ip)∼= ρ0(Ip).
• If #ρ0(Ip) = �, thendimKρ V

Ip
ρ = 1.

Suppose we are given a setN of allowable lifts. We assume thēKλ-isomorphism classes o
the elements ofN are distinct. For eachρ, we letΣρ denote the set of primes at whichρ is not
minimally ramified. For each set of primes

Σ⊆ Σ0 := {p |p �= �}
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we letNΣ denote the set ofρ in N such thatΣρ ⊂ Σ and writeV Σ for the direct sum overNΣ

of V̄ρ = K̄λ ⊗Kρ Vρ. We assume thatNΣ is finite if Σ is finite.
A trellis for N is anOλGQ-submoduleL of V Σ0 such that for each finite setΣ⊂ Σ0, theOλ-

.

r

s

t

moduleLΣ := L∩ V Σ is finitely generated and the map̄Kλ ⊗Oλ
LΣ → V Σ is an isomorphism

One checks that ifρ in N is such thatKρ = Kλ, thenLρ := L∩ V̄ρ satisfiesK̄λ ⊗Oλ
Lρ

∼→ Vρ.
(To see this, for eachσ �= ρ ∈ NΣ, choosegσ such thattrρ(gσ) �= trσ(gσ). Then the map
V Σ →

∏
σ �=ρ V Σ defined by(g2

σ − trρ(gσ)gσ − detρ(gσ))σ has kernelV̄ρ. It follows that its

restriction to a mapLΣ →
∏

σ �=ρ LΣ has kernelLρ, and therefore that̄Kλ ⊗Oλ
Lρ

∼→ Vρ.) For
suchρ, we let

Aρ = (ad0
Kλ

Vρ)/(ad0
Oλ

Lρ).

One checks that ifρ is minimally ramified atp, thenA
Ip
ρ is divisible.

A system of perfect pairingsϕ for L is anOλ[GQ]-isomorphism

ϕΣ :LΣ → HomOλ

(
LΣ,Oλ(ψ−1χ1−k

� )
)

for each finiteΣ⊂ Σ0. Since theV̄ρ are irreducible, non-isomorphic and have determinantδ, we
see that for eachρ in NΣ, ϕΣ induces aK̄λGQ-isomorphism

∧2
K̄λ

V̄ρ → K̄λ(δ)

which we denote byϕΣ
ρ . Moreover ifKρ = Kλ, thenϕΣ

ρ arises from an injection

∧2
Oλ

Lρ →Oλ(δ).

We say that a primeq is horizontalif the following hold
• q ≡ 1 mod �;
• ρ0 is unramified atq;
• ρ0(Frobq) has distinct eigenvalues.

If Q is a finite set of horizontal primes, we let∆Q denote the maximal quotient of
∏

q∈Q(Z/qZ)×

of �-power order. For eachq ∈ Q, we choose an eigenvalueαq ∈ κ̄ of ρ0(Frobq) and letµq,0

denote the unramified characterGq → κ̄× sendingFrobq to αq. Suppose thatξ is a characte
∆Q → K̄×

λ . We say thatρ ∈NQ is aξ-lift of ρ0 if for eachq ∈ Q, we have

V̄ρ
∼= K̄λ(µq,ρ)⊕ K̄λ(δ/µq,ρ)

asK̄λGq-modules for some liftµq,ρ :Gq → K̄×
λ of µq,0 with µq|Iq corresponding via local clas

field theory toξ|∆{q}.

THEOREM 3.1. – Let N be a set of allowable lifts ofρ0 (with distinct K̄λ-isomorphism
classes and finiteNΣ for each finiteΣ ⊂ Σ0), L a trellis for N and ϕ a system of perfec
pairings forL. Suppose that
• N ∅ �= ∅;
• if Σ⊂ Σ0 is a finite set of primes andρ ∈N ∅, then

ϕΣ
ρ = ϕ∅

ρβ
Σ
ρ

∏
p∈Σ

Lp(ad0
Kρ

Vρ,1)−1

for someβΣ
ρ in Oρ;
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• if Q is a finite set of horizontal primes, then
(i) βQ

ρ ∈Oλ is independent ofρ ∈N ∅,
(ii) #NQ � #N ∅ ·#∆Q, and

at

ee
te

s

t

f

a

e

(iii) there is aξ-lift of ρ0 in NQ for eachξ :∆Q → K̄×
λ .

Then every allowable lift ofρ0 is isomorphic over̄Kλ to someρ in N . Furthermore ifKρ = Kλ,
then the lengths of

H1
Σ(Q,Aρ) and Oλ(δ)/ϕΣ

ρ (∧2
Oλ

Lρ)

coincide for any finite subsetΣ of Σ0 containingΣρ.

Proof. –One checks that to prove the theorem, we can replaceKλ by any finite extension
and so assume thatκ contains the eigenvalues of the elements of the image ofρ0. Note also
that the hypotheses ensure the existence of an elementρmin of N ∅. We may assume also th
Kλ = Kρmin , and we write simplyVmin, Lmin andAmin for Vρmin , Lρmin andAρmin .

We first recall the results we need from the deformation theory of Galois representations. S
[19,61] and Appendix A of [13] for more details. We letC denote the category of comple
local NoetherianOλ-algebras. Recall that ifA is an object ofC with maximal idealm, then an
A-deformationof V0 is an isomorphism class of freeA-modulesM endowed with continuou
AGQ-actionρM :GQ → AutA M such thatM/mM is (A/m)GQ-isomorphic to(A/m)⊗κ V0.
For a primep �= �, we say that anA-deformation ofV0 is minimally ramifiedatp if the following
hold:
• If #ρ0(Ip) �= �, thenρM (Ip) ∼= ρ0(Ip).
• If #ρ0(Ip) = �, thenM/M Ip is free of rank one overA.
Suppose thatΣ is a finite subset ofΣ0. We say thatM is of typeΣ if the following hold:
• theAGQ-moduleM is minimally ramified outsideΣ;
• theAGQ-module∧2

AM is isomorphic toA⊗Oλ
Oλ(δ);

• there exists an objectA0 of C with maximal idealm0 and finite residue field so tha
M ∼= A ⊗A0 M0 and for everyn > 0, the Z�G�-moduleM0/mn

0M0 is an object of the
categoryMF0

tor.
Consider the functor onC which associates toA the set ofA-deformations ofρ0 of typeΣ.

By the results of Mazur and Ramakrishna, this functor is representable by an object ofC. 2 We
denote this objectRΣ and letMΣ denote the universal deformation. We recall also thatRΣ is
topologically generated overOλ by the elementstΣg for g in GQ, wheretΣg denotes the trace o
the endomorphismg of the freeRΣ-moduleMΣ. In particular,RΣ has residue fieldκ.

If Σ1 ⊂ Σ2, thenMΣ1 is an RΣ1 -deformation ofV0 of type Σ2 and hence gives rise to
natural surjectionRΣ2 →RΣ1 .

Suppose now thatρ is in N andΣρ ⊂ Σ. ThenOρ is an object ofC and there is anOρ-
deformationM of ρ0 of typeΣ so thatVρ is KρGQ-isomorphic toKρ ⊗Oρ M . We thus obtain a
continuousOλ-algebra homomorphism

θΣ
ρ :RΣ →Kρ

so thatKρ ⊗RΣ MΣ is isomorphic toVρ. The mapsθΣ
ρ for varyingΣ⊃ Σρ are compatible with

the natural surjectionsRΣ2 → RΣ1 defined above. Note also that ifKρ = Kλ, thenA = Oλ and
θΣ

ρ defines a surjectionRΣ →Oλ. In that case we have a natural isomorphism

HomOλ

(
pΣ

ρ /(pΣ
ρ )2,Kλ/Oλ

) ∼= H1
Σ(Q,Aρ)(70)

2 Following [19] and of [13], we note that it is not necessary to assumeA has residue fieldκ or to use strict equivalenc
classes of deformations.
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of Oλ-modules wherepΣ
ρ is the kernel ofθΣ

ρ . (We omit the proof, which is now standard; see for
example Proposition 1.2 of [88] or Section 2 of [14], and use Proposition 2.2 above to identify
the local condition on�.) In particular this is the case forρ = ρmin and any finiteΣ ⊂ Σ0.

n

e

We regardV Σ as a module forRΣ via

RΣ →
∏

ρ∈NΣ

Kρ(71)

defined by the mapsθΣ
ρ . Note that ifg is in GQ, thentΣg acts onV Σ via the endomorphism

tr
(
ρ(g)

)
= g + δ(g)g−1

which is given by an element ofOλGQ. It follows thatLΣ is stable under the action ofRΣ and
thatφΣ is RΣ-linear. IfΣ1 ⊂ Σ2, then regardingLΣ1 as anRΣ2 -module via the natural surjectio
to RΣ, we see that the inclusionLΣ1 → LΣ2 is RΣ2 -linear, as is its adjoint with respect toϕΣ1

andϕΣ2 .
We define the finite flatOλ-algebraT Σ to be the image ofRΣ in EndOλ

LΣ. The mapsθΣ
ρ

induce an isomorphism of finitēKλ-algebras

K̄λ ⊗Oλ
T Σ →

∏
ρ∈NΣ

K̄λ

such thattΣg �→ (trρ(g))ρ∈NΣ for g in GQ. (The injectivity follows from that of

K̄λ ⊗Oλ
T Σ → K̄λ ⊗Oλ

EndOλ
LΣ,

and the surjectivity from the distinctness of theθΣ
ρ .) In particularT Σ is reduced and

rankOλ
LΣ = 2 ·#NΣ = 2 · rankOλ

T Σ.(72)

Suppose thatρ is an element ofNΣ such thatKρ = Kλ. WritePΣ
ρ for the image ofpΣ

ρ in T Σ

andIΣ
ρ for the annihilator ofPΣ

ρ in T Σ. Note thatPΣ
ρ (resp.,IΣ

ρ ) is the set of elements inT Σ

whose image in
∏

K̄λ has trivial component atρ (resp., at eachρ′ �= ρ).
Now consider theOλ-module

ΩΣ
ρ = LΣ/

(
LΣ[PΣ

ρ ] + LΣ[IΣ
ρ ]

)
.

We defineηΣ
ρ as the annihilator of the finite torsionOλ-module

Oλ(δ)/ϕΣ
ρ (∧2

Oλ
Lρ).

We shall writepΣ
min, ΩΣ

min andηΣ
min for pΣ

ρmin
, ΩΣ

ρmin
andηΣ

ρmin
.

LEMMA 3.2. – TheOλ-moduleΩΣ
ρ is isomorphic to(Oλ/ηΣ

ρ )2.

Proof. –Note that the kernel of the projectionLΣ → Vρ coincides with that of the surjectiv
composite

LΣ ∼→HomOλ

(
LΣ,Oλ(δ)

)
→HomOλ

(
Lρ,Oλ(δ)

)
,
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where the first map isϕΣ and the second is the natural surjection. Denoting this kernel by
L⊥

ρ , we haveLρ ⊂ LΣ[PΣ
ρ ] andL⊥

ρ ⊂ LΣ[IΣ
ρ ]. Furthermore both inclusions are equalities since

they become so after tensoring with̄Kλ andLΣ/Lρ andLΣ/L⊥
ρ are torsion-free. Therefore the

n

jection.

p

rs

e

Oλ-moduleΩΣ
ρ is isomorphic to the cokernel of the map

Lρ → LΣ/L⊥
ρ

∼→HomOλ

(
Lρ,Oλ(δ)

)

induced byϕΣ, which in turn is isomorphic to

HomOλ

(
Lρ,Oλ(δ)

)
⊗Oλ

Oλ/ηΣ
ρ

(in fact, canonically so as anOλGQ-module). �
Suppose now thatQ is a finite set of horizontal primes. For eachq ∈ Q, we have chosen a

eigenvalueαq of ρ0(Frobq). As in Lemma 2.44 of [14],

MQ ∼= RQ(µQ
q )⊕RQ(δ/µQ

q )

as anRQGq-module for some liftµQ
q :Gq → (RQ)× of µq,0. (Recall that the characterµq,0

was defined before the statement of the theorem and isκ×-valued since we enlargedKλ.) The
restriction ofµQ

q to the inertia groupIq factors through

Iq → Z×
q → ∆{q}

where the first map is gotten from local class field theory and the second is the natural pro
We thus obtain a homomorphism∆{q} → (RQ)× for eachq ∈ Q. We can thus regardRQ as an
Oλ[∆Q]-algebra, and so regardLQ as anOλ[∆Q]-module. Note that everyρ ∈ NQ is a ξ-lift
for a uniqueξ = ξρ :∆Q → K̄×

λ , and then∆Q acts onVρ via ξρ.
Now let PQ denote the augmentation ideal ofOλ[∆Q], i.e., the kernel of the ma

Oλ[∆Q]→Oλ defined byg �→ 1 for g in ∆Q. Let IQ denote the annihilator ofPQ in Oλ[∆Q],
i.e., the principal ideal generated byt∆Q =

∑
g∈∆Q

g. Now consider theOλ-module

ΩQ = LQ/
(
LQ[PQ] + LQ[IQ]

)
.

LEMMA 3.3. – LQ is free overOλ[∆Q], andLQ/PQLQ is isomorphic overRQ to L∅.

Proof. –Note thatK̄λ[∆Q] ∼=
∏

ξ K̄λ via g �→ (ξ(g))ξ , the product being over all characte

ξ :∆Q → K̄×
λ . Hypothesis (c) of the theorem ensures that this algebra acts faithfully onV Q,

and hence thatOλ[∆Q] acts faithfully onLQ. Furthermore, ifρ is in NQ, then ρ is in
N ∅ if and only if ∆Q acts trivially onVρ, so we haveLQ[PQ] = L∅. It follows also that
#∆QL∅ ⊂ t∆QLQ ⊂ L∅. ThusLQ[IQ] = (L∅)⊥, soΩQ is isomorphic to the cokernel of th
endomorphismνQ of L∅ obtained by composing the inclusionL∅ → LQ with its adjoint with
respect toϕQ andϕ∅. Our hypotheses on the pairings (including (a)) ensure that

νQ = #∆QβQ
∏
q∈Q

q−3
(
qt2Frobq

δ−1(Frobq)− (q + 1)2
)
∈ #∆QRQ.

ThereforeΩQ has length at least that ofL∅/#∆QL∅. SincePQ/(PQ)2 ∼=Oλ ⊗∆Q, we get

lengthOλ
ΩQ � d lengthOλ

PQ/(PQ)2
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whered is theOλ-rank ofL∅. On the other hand, hypothesis (b) gives

rankOλ
LQ = 2 ·#NQ � 2 ·#∆Q ·#N ∅ = d rankOλ

Oλ[∆Q].

l

t that
.

of

er
Theorem 2.4 of [24] therefore implies thatLQ is free overO[∆Q] of rank d. It follows that
LQ/PQLQ is free of rankd overOλ. Since the adjoint ofL∅ → LQ is surjective with kerne
containingPQLQ, it follows thatLQ/PQLQ ∼= L∅. �

The following is proved exactly as in Chapter 3 of [88] (see Theorem 2.49 of [14]), excep
we use Corollary 2.3 above instead of Proposition 1.9 of [88] (or Proposition 2.27 of [14])

LEMMA 3.4. – There exists an integerr � 0 and sets of horizontal primesQn for eachn � 1
such that the following hold:
• #Qn = r;
• q ≡ 1 mod �n for eachq ∈Qn;
• RQn is generated byr elements as anO-algebra.

We are now ready to prove thatR∅ is a complete intersection over whichL∅ is free of
rank two. We letr andQ = Qn for n � 1 be as in Lemma 3.4. SettingA = κ[[S1, . . . , Sr]],
B = κ[[X1, . . . ,Xr]], R = κ ⊗O R∅ andH = κ ⊗O L∅, we shall defineB-modulesHn and
mapsφn :A → B, ψn :B → R andπn :Hn → H satisfying the hypotheses of Theorem 1.3
[24]. We first choose surjectiveκ-algebra homomorphismsA → κ[∆Qn ] andB → Rn where
Rn = κ⊗O RQn . Note that the kernel ofA → κ[∆Qn ] is contained inm�n

A ⊂ mn
A. Defineψn as

the compositeB →Rn →R and defineφn :A→B so the diagram

A B

κ[∆Qn ] Rn

commutes. We considerLn = κ ⊗O LQn as aB-module viaB → Rn, and defineHn as
Ln/mn

ALn andπn as the map induced byLQn → L∅. ThenHn is free overA/mn
A, andπn

inducesHn/mAHn
∼→ H . We can therefore apply Theorem 1.3 of [24] to conclude thatR is

a complete intersection over whichH is a free module. SinceT ∅ is finite and flat overOλ, it
follows thatR∅ → T ∅ is an isomorphism since it is so after tensoring withκ. Moreover these
rings are complete intersections over whichL∅ is a free module of rank2.

We now apply the implication (c)⇒ (b) of Theorem 2.4 of [24] to theR∅-moduleL∅ and
prime idealp∅min. We thus obtain the formula

2 · lengthOλ
H1

∅ (Q,Amin) = 2 · lengthOλ
p∅min/(p∅min)

2 = lengthOλ
Ω∅

min = 2 · vλ(η∅
min)

where the first equality follows from (70) and the last from Lemma 3.2.
Suppose now thatΣ is a finite subset ofΣ0. Applying (70) and Lemma 3.2 again, togeth

with the inequality

lengthOλ
H1

Σ(Q,Amin) � lengthOλ
H1

∅ (Q,Amin)−
∑
p∈Σ

vλ

(
Lp(ad0

K Vmin,1)
)

obtained from the exact sequence of Lemma 2.1, we find that

2 · lengthOλ
pΣ
min/(pΣ

min)
2 = 2 · lengthOλ

H1
Σ(Q,Amin) � 2 · v(ηΣ

min) = lengthOλ
ΩΣ

min.
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We can then apply the implication (a)⇒ (c) of Theorem 2.4 of [24] to concludeRΣ is a complete
intersection over whichLΣ is a free module of rank2.

The second assertion of Theorem 3.1 follows from another application of Theorem 2.4 of [24],

t

the

all
3.1.

e

ns

t
,
f

(70) and Lemma 3.2. To deduce the first assertion of Theorem 3.1, note that the map

K̄λ ⊗Oλ
RΣ →

∏
ρ∈NΣ

K̄λ

induced by (71) is an isomorphism. Every allowable lift ofρ0 arises, up toK̄λ-isomorphism,
from aK̄λ-linear mapK̄λ ⊗Oλ

RΣ for someΣ. It therefore arises fromθΣ
ρ for someρ in N . �

3.2. Consequences

Let us now return to the setting of Theorem 2.15, namely thatf is a newform of weigh
k � 2, characterψ and conductorN with coefficients in a number fieldK , andλ is a prime of
K not in the setSf defined in (31). We let� denote the rational prime inλ; let κ = OK/λ
andM̄f,λ = κ ⊗OK,λ

Mf,λ whereMf,λ is defined in Section 1.6.2. We then consider
representation

ρ0 :GQ → Autκ M̄f,λ.

Enlarging K and replacingf by a twist if necessary, we can assume thatκ contains the
eigenvalues of all elements ofρ0(GQ) andρ0 has minimal conductor among its twists. We sh
now construct a set of lifts ofρ0 from modular forms satisfying the hypotheses of Theorem

Suppose thatg is a newform of the same weightk and characterψ, but any conductorNg not
divisible by�. We suppose thatg has coefficients in a subfieldKg of K̄λ generated overK by the
coefficients ofg. The inclusion ofKg in K̄λ determines a primeλg of Kg over� and identifies
Kg,λg with a finite extension ofKλ in K̄λ. The representation

ρg :GQ →AutKg,λg
Mg,λg

is an allowable lift ofρ0 if and only if

ap(g) ≡ ap(f) mod λg(73)

for all but finitely manyp. We letN denote the set ofρg such that (73) holds. Note that th
ρg ∈N are inequivalent for distinctg.

From the work of Ribet and others, one knows thatN∅ is non-empty. (See the discussio
following Theorem 1 of [27] and Corollary 1.2 of [21].) Choosefmin ∈ N ∅ and enlargeK if
necessary so that Lemma 1.5 holds forf = fmin and all primesp ∈ Σ1. For each finite subse
Σ of Σ0 = Sf (Q) \ {�}, we consider theOλ[GQ]-moduleM(σΣ)!,λ defined in Section 1.8.1
and endowed with an action of̃TΨΣ in Section 1.8.2. LetmΣ denote the maximal ideal o
T̃ΨΣ defined there, i.e., the kernel of the mapT̃ΨΣ → κ defined bytp �→ ap(f

Σ∪{r}
min ) mod λ

for p /∈ ΨΣ. We letLΣ = M(σΣ)!,λ,mΣ .

If Q is a finite set of horizontal primes forρ0, then we letDQ =
∏

q∈Q q and defineUQ
1 as the

kernel of the homomorphism

U0(N∅
1 DQ)→

∏
q∈Q

(Z/qZ)× →∆Q
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where the first map sends
(

a b
c d

)
to (aq)q and the second is the natural projection. We let

σQ
1 denote the restriction ofσ∅ to UQ

1 . Then theOλ[GQ]-moduleM(σQ
1 )!,λ is endowed

˜Ψ∅ Q ˜Ψ∅

of
er

ter

me

l

t

with an action ofT and we letm1 denote the kernel of the mapT → κ defined by

tp �→ ap(f
{r}
min) mod λ for p /∈Ψ∅∪Q andtq �→ αq for q ∈Q, whereαq is a chosen eigenvalue

ρ0(Frobq). We letLQ
1 = M(σQ

1 )!,λ,mQ
1

. Recall that for eachρ ∈NQ, there is a unique charact

ξρ :∆Q → K̄×
λ such thatρ is aξρ-lift of ρ0. We also useξρ to denote the corresponding charac

of GQ factoring throughGal(Q(µDQ)/Q)∼= (Z/DQZ)× →∆Q.

LEMMA 3.5. – There is aK̄λ[GQ]-linear isomorphism

ιΣ : K̄λ ⊗Oλ
LΣ ∼→ V Σ

for each finite subsetΣ of Σ0, and

ιQ1 : K̄λ ⊗Oλ
LQ

1
∼→

⊕
ρ∈NQ

V̄ρ(ξ−1
ρ )

for each finite setQ of horizontal primes forρ0.

Proof. –Let TΣ denote the image ofOλ ⊗OK T̃ΨΣ in EndOλ
M(σΣ)!,λ. IdentifyingKλ ⊗Oλ

TΣ
mΣ with the product ofTΣ

p over minimal primesp contained inmΣTΣ, we see thatKλ⊗Oλ
LΣ

is isomorphic to the direct sum ofM(σΣ)!,λ,p for suchp.
Suppose thatg is a newform with coefficients inKg andρg ∈ NΣ (whereK ⊂ Kg ⊂ K̄λ as

in the definition ofN ). TheΣ-level structuresσΣ defined in Section 1.8.1 are then the sa
for fmin andg (in fact, if p /∈ Σ then cp(fmin) = cp(g) and δp(fmin) = δp(g), if p ∈ Σ then
cp(fmin) + δp(fmin) = cp(g) + δp(g), and if p ∈ Σ1 \ Σ then the representationV ′

p defined in
Lemma 1.5 forfmin works forg as well). We thus have

MΣ
g,1,λg

⊂ Kg,λg ⊗Kλ
M(σΣ)!,λ

giving rise a homomorphismTΣ → Kg,λg defined byTp �→ ap(gΣ∪{r}) for p /∈ ΨΣ. LettingpΣ
g

denote its kernel, we havepΣ
g ⊂ mΣTΣ. MoreoverpΣ

g = pΣ
g′ if and only if g andg′ are conjugate

underGKλ
.

Next we check that every such minimalp ⊂ mΣTΣ arises this way. Indeed every minima
prime p of TΣ is the kernel of a homomorphism̃TΨΣ → Kh arising from an eigenformh of
level NΣ∪{r}. Moreover the newformg associated toh satisfies(V ′

p ⊗OK,τ πp(g))GL2(Zp) �= 0
for all p ∈ Σ1 \ Σ, τ :K → C (whereNΣ∪{r} andV ′

p are defined usingfmin). If p ⊂ mΣTΣ,
then (73) holds, soρg is an allowable lift ofρ0. In particular, we have thatρg is unramified at
r, so cr(g) = 0. Combining the inequalitycp(g) � cp(fmin) for p /∈ Σ with the condition on
πp(g) for p ∈Σ1 \Σ, we conclude thatρg is minimally ramified outsideΣ. Finally, the condition
thatTp ∈ mΣ for p ∈ Σ ∪ {r} implies thatap(h) ∈ λh for suchp, from which we deduce tha
ap(h) = 0 and therefore thath = gΣ∪{r}.

We have now shown that the set of minimalp ⊂ mΣTΣ is precisely the set ofpΣ
g whereg runs

overGKλ
-orbits of newformsg such thatρg ∈ NΣ. For suchp, we have thatTΣ

p is reduced, so
thatKλ ⊗Oλ

M(σΣ)!,λ[p]∼= M(σΣ)!,λ,p. Extending scalars tōKλ gives

K̄λ ⊗Kλ
M(σΣ)!,λ,p

∼=
⊕

{g|pΣ
g =p}

K̄λ ⊗Kg,λg
MΣ

g,1,λg
,
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and summing overp gives the desired isomorphism.
The construction ofιQ1 is similar, so we omit the details and note the only significant difference

in the proof. Starting with a newformg such thatρg is a ξ-lift of ρ0 in NQ, we consider

s an

s

by

the
.10

on

ply
e

t

the newform associated tog ⊗ ξ. This in turn gives an eigenformgQ
1 of level NΣDQr2 with

ar(g
Q
1 ) = 0 and aq(g

Q
1 ) reducing toαq for all q ∈ Q. Working with a Hecke algebraTQ

1

defined analogously toTΣ above, one checks that the minimal primes ofTQ
1 contained inmQ

1 TQ
1

correspond to theGKλ
-orbits of the eigenformsgQ

1 . �
Recall that in Section 1.8.3 we defined anOλ[GQ]-linear homomorphism̂γΣ′

Σ :LΣ → LΣ′

for Σ ⊂ Σ′ and proved in Lemma 1.11 that it is injective with torsion-free cokernel a
Oλ-module. Recall also that̂γΣ′′

Σ = γ̂Σ′′

Σ′ ◦ γ̂Σ′

Σ if Σ ⊂ Σ′ ⊂ Σ′′, so we can considerL := lim
−→

LΣ

over all finiteΣ⊂ Σ0 with respect to the inclusionŝγΣ′

Σ for Σ ⊂Σ′. Note that the isomorphism
ιΣ in Lemma 3.5 can be chosen so that theγ̂Σ′

Σ are compatible with the inclusionsV Σ ⊂ V Σ′
.

Taking their direct limit, we get an isomorphism

ι : K̄λ ⊗Oλ
L0

∼=
⊕
ρ∈N

Vρ

so thatι(L) is a trellis withι(L)Σ = ιΣ(LΣ) and with a system of perfect pairings provided
Corollary 1.6.

We now verify the remaining hypotheses of Theorem 3.1. The second bullet and part (a) of
third follow from Proposition 1.12(b). To establish parts (b) and (c), we appeal to Lemma 1
with Ψ = Σ1 ∪ Q. Combined with Lemma 3.5, this implies that

⊕
ρ∈NQ Vρ(ξ−1

ρ )− is a free
K̄λ[∆Q]-module with∆Q acting on eachVρ(ξ−1

ρ ) via ξ2
ρ . We conclude that the number ofξ-

lifts of ρ0 in NQ is independent ofξ, giving (b) and (c).

THEOREM 3.6. – Supposeρ :GQ → AutKλ
V is a continuous geometric representati

whose restriction toG� is ramified, crystalline and short. Ifρ0 is modular and its restriction
to GF is absolutely irreducible, whereF is the quadratic subfield ofQ(µ�), thenρ is modular.

Proof. –Note that we may enlargeKλ in order to prove the theorem. We can then ap
Theorem 3.1 to the setN just constructed for the twistρ0 ⊗κ ψ′ of minimal conductor, wher
ψ′ is unramified at�. Writing˜ for Teichmüller liftings, we conclude thatρ⊗Kλ

ψ̃′ψ is modular,
whereψ is a character of�-power order such thatχ1−k

� ψ2 detρ has order not divisible by�. �
THEOREM 3.7. – Let f be a newform of weightk � 2 and levelN with coefficients in the

number fieldK . Suppose thatλ is a prime ofK not in the setSf defined in(31), and letOλ

be the ring of integers inKλ. Suppose thatΣ is a finite set of primes not containing� such that
Mf,λ is minimally ramified outsideΣ. Then theOλ-module

H1
Σ(Q,Af,λ/Af,λ)

has lengthvλ(ηΣ
f ) whereηΣ

f was defined before Proposition1.4.

Proof. –EnlargingK and applying Theorem 3.1 to the setN just constructed for the twis
ρ0 ⊗κ ψ′ of minimal conductor, we conclude that the theorem holds for a twist off , hence forf
itself. �
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