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COUNTING RATIONAL POINTS ON HYPERSURFACES
OF LOW DIMENSION

BY PER SALBERGER

ABSTRACT. – LetN(X,B) be the number of rational points of height at mostB on a varietyX ⊂ Pn

defined overQ. We establish new upper bounds forN(X,B) for hypersurfaces of dimension at most fo
We also studyN(X ′,B) for the open complementsX ′ of all lines or all planes on such hypersurfaces. O
of the goals is to show thatN(X,B) = Od(B7/2−δ), δ > 0 for smooth hypersurfaces inP5 defined by
a formF (x0, . . . , x5) of degreed � 9. This improves upon a classical upper estimate of Hua for the
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RÉSUMÉ. – Soit N(X,B) le nombre de points rationnels de hauteur inférieure ou égale àB sur une
variétéX ⊂ Pn définie surQ. Nous établissons des nouvelles majorations pourN(X,B) pour les hyper-
surfaces de dimension� 4. Nous étudions aussiN(X ′,B) pour les complémentsX ′ de toutes les droite
ou tous les plans sur ces hypersurfaces. Un des buts est de démontrer queN(X,B) = Od(B7/2−δ), δ > 0
pour les hypersurfaces lisses dansP5 definies par une formeF (x0, . . . , x5) de degréd � 9. C´est une
amélioration d´une majoration classique de Hua pour la formexd
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0. Introduction

Let Z be a locally closed subset ofPn defined overQ. To count rational points onZ, we
shall use the heightH(x) = max(|x0|, . . . , |xn|) for a rational pointx on Pn represented b
a primitive integral(n + 1)-tuple (x0, . . . , xn). We denote byN(Z,B) the number of rationa
points of height at mostB on Z. This is clearly an abuse of notation sinceN(Z,B) depends
both on the choice of the embeddingZ ⊂Pn and the choice of coordinates ofPn.

We want to investigate the asymptotic behaviour ofN(Z,B) whenB → ∞. The following
result is due to Pila (see [23] and [24]).

0.1. THEOREM. – Let X ⊂ Pn be a geometrically irreducible projective variety of degred
defined overQ. Then,

N(X,B) = Od,n,ε(BdimX+1/d+ε).

It is remarkable that the implied constant does not depend onX apart from its dependence o
the degree and the dimension ofX . The starting point and the most subtle ingredient of P
proof is a uniform bound for curves due to Bombieri and Pila [3] (cf. also [24]). It is also pos
to reduce to the case of hypersurfaces by means of finite birational projections.

We shall in this paper give estimates for hypersurfaces of dimension at most four whi
stronger than Theorem 0.1 and other known results. To obtain these, we apply the met
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94 P. SALBERGER

Heath-Brown’s fundamental paper on rational points on curves and surfaces [19]. The most
important new tool in [19] is Theorem 14, where determinants are used to construct auxiliary
hypersurfaces containing the rational points of bounded height. We shall use the technique with
auxiliary hypersurfaces when we count points on curves and surfaces. In higher dimensions
we use a number of new arguments from algebraic geometry. We thus make essential use
of the Kodaira dimension in our estimates for smooth hypersurfaces. We obtain in particular
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improvements of a well-known bound of Hua from 1938 concerning the number of non-
positive solutions to the diophantine equationxd

0 + xd
1 + xd

2 − xd
3 − xd

4 − xd
5 = 0. This was also

the aim of the paper of Browning and Heath-Brown [8], but our estimates are sharper an
for general non-singular forms.

This paper is organised as follows. In Sectioni, 1 � i � 4, we give uniform estimates fo
hyper-surfaces of dimensioni. The approach is inductive and the proofs based on the estim
in lower dimensions. We shall apart from the determinant method also apply Siegel’s l
in the inductive process. We use thereby an idea from [19, p. 581] to get non-trivial sa
when summing over the “non-degenerate” hyperplane sections. To avoid unnecessary re
we give in Section 5 a more abstract and general formulation of this argument. In Section
collect some lemmas from algebraic geometry which we use to prove the estimates for thr
and fourfolds.

1. Curves

The following result is due to Heath-Brown [19] in the case whereC is geometrically
irreducible andn = 2 or 3. The general case is due to Broberg [4], who also proves the
uniform estimate for curves over arbitrary number fields.

1.1. THEOREM. – LetC ⊂Pn be an irreducible projective curve overQ of degreed. Then,

N(C,B) = Od,n,ε(B2/d+ε).

Note that all rational points onC are singular ifC is irreducible but not geometricall
irreducible. We have thus at mostOd(1) rational points on such curves.

There are also results on the number of rational points in boxes with sides of different l
in [19] and [4]. We now deduce some consequences of Theorem 3 in [19] for plane curve

1.2. Notation. – LetC ⊂P2 be a plane curve overQ andB0,B1,B2 three positive integers
(a) N(C,B0,B1,B2) denotes the number ofQ-points on C with a primitive integral

representative(x0, x1, x2) satisfying|xi|� Bi for i = 0,1,2.
(b) V = B0B1B2.

1.3. THEOREM. – LetC be an irreducible plane curve overQ of degreed. Then,

N(C,B0,B1,B2) = Od,ε(V 1/(2d−m)+ε)

for the maximum multiplicitym � max(d−1,1) of rational points onC. (If C(Q) is empty, then
m is defined to be zero.)

If there are no rational points onC of multiplicity> d/2, then

N(C,B0,B1,B2) = Od,ε(V 2/3d+ε).

4e SÉRIE– TOME 38 – 2005 –N◦ 1



COUNTING RATIONAL POINTS ON HYPERSURFACES 95

Proof. –Let F (x0, x1, x2) =
∑

ae,f,gx
e
0x

f
1xg

2 be a form definingC ⊂ P2 and letT be the
maximum of allBe

0B
f
1 Bg

2 with ae,f,g �= 0. Then Heath-Brown [19, Th. 3] proved that (cf. also
[4, Cor. 2]):

N(C,B0,B1,B2) = Od,ε(V 1/d+ε/T 1/d2
).(1.4)

It thus suffices to show the following inequalities:

f

e shall
(a) T � V d/3 if m � d/2,(1.5)

(b) T � V (d−m)d/(2d−m) if m > d/2.

We may also assume thatB0 � B1 � B2. Suppose first thatP0 = (1,0,0) /∈ C. Then T =
Bd

0 � V d/3. Suppose next thatP0 ∈ C and let m0 be the multiplicity of C at P0. Then
ae,f,g �= 0 for some triple (e, f, g) with e � d − m0. HenceT � Be

0B
f
1 Bg

2 � Bd−m
0 Bm

2 . Also,
sinceF is irreducible, we get thatae,f,g �= 0 for some triple (e, f, g) with g = 0. Therefore,
T � Be

0B
f
1 � Bd

1 . We have thus:

T � max{Bd−m
0 Bm

2 ,Bd
1}= Bd

2 max
{
(B0/B2)d−m, (B1/B2)d

}

� Bd
2

[
(B0/B2)(B1/B2)

]d(d−m)/(2d−m)

= (Bd−m
0 Bd−m

1 Bm
2 )d/(2d−m).

Also, sinceB0 � B1 � B2 � 1 we conclude that:

Bd−m
0 Bd−m

1 Bm
2 � V (2d−m)/3 if m � d/2,

Bd−m
0 Bd−m

1 Bm
2 � V d−m if m > d/2.

This completes the proof of (1.5) and Theorem 1.3.�
One can deduce a more precise result from (1.4). IfP is a rational point onC, let mP be its

multiplicity andnP be the maximum multiplicity of the rational lines in the tangent cone oC
atP .

1.6. THEOREM. – Let C be a geometrically irreducible plane curve overQ of degreed > 1.
Then,

N(C,B0,B1,B2) = Od,ε(V 2/3d+ε),

if mP + nP � d for all rational points onC. Otherwise, there exists a rational pointP on C
with mP + nP > d such that

N(C,B0,B1,B2) = Od,ε(V (d+n−m)/d(2d+n−2m)+ε)

for m = mP , n = nP .

The proof is similar to the proof of Theorem 1.3. We leave the details to the reader, as w
not use this result in the sequel.

1.7. DEFINITION. – LetΠ ⊂Pn be a rational hyperplane given by the equation

y0x0 + · · ·+ ynxn = 0

for a rational pointy = (y0, . . . , yn) in the dual projective spacePn∨. Then the heightH(Π)
of Π is defined as the height of the rational pointy in Pn∨.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



96 P. SALBERGER

The following corollary of Theorem 1.3 will be important.

1.8. COROLLARY. – Let C ⊂ P3 be an irreducible projective curve overQ of degreed > 1
contained in a planeΠ⊂P3. Then,

N(C,B) = Od,ε

(
(B3/H(Π))1/(d+1)+ε + 1

)
.

o

n

Moreover, if there are no rational points of multiplicity> d/2 onC, then

N(C,B) = Od,ε

((
B3/H(Π)

)2/3d+ε + 1
)
.

Proof. –A proof of the cased = 2 is implicit in the proof of Lemma 10 in [19, p. 582] (cf. als
[4, Lemma 8]) and we shall use a similar approach.

Let (y0, y1, y2, y3) be a primitive integral quadruple such thatΠ is given by the equatio
y0x0 + y1x1 + y2x2 + y3x3 = 0. This equation defines a three-dimensional sublatticeL ⊂ Z4

which has aZ-basis (b0,b1,b2) with the following properties (cf. [19, Lemma 1]).

|b0||b1||b2|� 4H(Π) � |b0||b1||b2|.(1.9)

Let λ0b0 + λ1b1 + λ2b2 be an element ofL which represents a rational point(1.10)

onP3 of height � B.Then, |λi|� cB/|bi| for i = 0,1,2

and for some constantc not depending onΠ.

By |b| we meanmax(|b0|, |b1|, |b2|, |b3|) for b = (b0, b1, b2, b3) ∈Z4.
From (1.10) we get:

N(C,B) = N
(
C, cB/|b0|, cB/|b1|, cB/|b2|

)
,(1.11)

where on the right hand side we regardC as a curve of degreed in Π = P3 with (λ0, λ1, λ2)
as homogeneous coordinates. IfcB/|bi| < 1 for somei ∈ {0,1,2}, thenλi = 0 for any rational
point onC of height� B by (1.10). HenceN(C,B) � d in that case.

If cB/|bi|� 1 for all i ∈ {0,1,2}, then by (1.11), Theorem 1.3 and (1.9) we get that

N(C,B)�d,ε

(
B3/|b0||b1||b2|

)1/(d+1)+ε �
(
B3/H(Π)

)1/(d+1)+ε
.

Moreover, if there are no rational points of multiplicity> d/2 onC, then

N(C,B)�d,ε

(
B3/|b0||b1||b2|

)2/3d+ε �
(
B3/H(Π)

)2/3d+ε
. �

2. Surfaces

The following result is a consequence of Theorems 5 and 9 in [19].

2.1. THEOREM. – Let X ⊂ Pn be a closed subscheme defined overQ where all irreducible
components are of dimension at most two. Suppose thatX does not contain any plane. Then,

N(X,B) = On,D,ε(B2+ε),

whereD is the sum of the degrees of all irreducible components ofX .

4e SÉRIE– TOME 38 – 2005 –N◦ 1
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Proof. –One reduces immediately to the case whereX is integral. Then the base extension
X over Q is equidimensional and reduced. LetY be the intersection of all the irreducible
components ofX . Then any rational point onX gives rise to aQ-point which lies onY as the
Galois group acts transitively on the irreducible components ofX . There is also by the theory
of Galois descent a closed subschemeY of X with base extensionY overQ which must then
contain all rational points onX . Now apply the Bezout theorem in [14, 8.4.6]. Then the sum of
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the degrees of the irreducible components ofY (endowed with their reduced scheme structu
can be bounded in terms of the degree ofX . This is therefore also true for the sum of t
degrees of the irreducible components ofY . But dimY < dimX if X is not integral. It is thus
by induction enough to treat the case whereX is integral. IfX is a curve, use Theorem 1.1. IfX is
a surface, combine the estimate in [19, Th. 5] with the projection argument in [7, Lemma 1�

2.2. LEMMA. – LetX ⊂P3 be a surface defined by a formF of degree d with coefficients
a fieldk of characteristic0. LetP3∨ be the dual projective space parametrising planesΠ⊂P3.
Then the following holds.

(a) There is a closed subschemeWe ⊂ P3∨ defined overk such that theK-points ofWe,
K ⊃ k corresponds toK-planesΠ whereX ∩Π contains a curve of degreee. The sum o
the degrees of all the irreducible components ofWe ⊂P3∨ can be bounded in terms ofd
ande.

(b) Suppose thatX is geometrically irreducible and thatX is not a cone. ThenWe ⊂ P3∨

does not contain any plane whene < d.

Proof. –(a) Let H1 (resp.H2) be the Hilbert scheme of all closed subschemes ofP3 with
Hilbert polynomials:

P1(x) = (x + 2)(x + 1)/2− (x + 2− e)(x + 1− e)/2 resp.

P2(x) = (x + 3)(x + 2)(x + 1)/6− (x + 3− d)(x + 2− d)(x + 1− d)/6.

ThenH1 andH2 are projective and the projection mapπ: H1 × H2 × P3∨ → H2 × P3∨

a proper morphism. LetI ⊂ H1 × H2 × P3∨ be the closed subscheme representing tri
(C,X,Π) where the curveC of degreee is contained in the surfaceX of degreed and the
planeΠ. Then the scheme-theoretic image ofI underπ is a closed subschemeJ of H2 ×P3∨.
Also, if X ⊂ P3 corresponds to ak-point x on H2, then the fibreWe of J → H2 at x, satisfies
the first statement.

To bound the degree ofWe in terms ofd ande, choose a projective embeddingH2 ⊂Pm and
a finite set{Q1, . . . ,Qr} of bihomogeneous polynomials definingJ as a closed subscheme
Pm × P3∨. Suppose thatQ1, . . . ,Qr are of degreesd1, . . . , dr with respect to the coordinate
for the dual projective spaceP3∨. Then the sum of the degrees of all the irreducible compon
of We ⊂P3∨ is at mostd1d2 . . . dr by [14, 8.4,6].

(b) LetP0 be an arbitrary rational point onP3 andϕ :P3\P0 →P2 be the morphism sendin
a pointP onX to the line betweenP andP0. Thenϕ(X) = P2 sinceX is not a cone. Therefore
X ∩ϕ−1(L) is geometrically irreducible for a generic lineL onP2 by Bertini’s theorem (cf. [15
Th. 2.1] and [21, Cor. 6.11.3]). This means thatX ∩Π is geometrically irreducible for the plan
Π = ϕ−1(L) ∪ P0. Therefore, the hyperplane inP3∨ dual toP0 cannot be contained inWe, as
was to be proved. �

Remark. – One can classify all surfacesX ⊂ P3 with a two-dimensional family of plan
reducible sections (i.e. withdimWe � 2 for somee < d). Kronecker stated and Castelnuo
“proved” (see [9]) that such surfaces are either ruled by lines or isomorphic to the Steiner R
surface.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



98 P. SALBERGER

2.3. Notation. – Let X ⊂ Pn be a hypersurface defined by a form over a fieldk. ThenX ′

(resp.X ′′) is the complement of the union of all irreducible curves onX overk which split into
a union of lines (resp. lines and conics) over an algebraic closure ofk.

It is easy to show thatX ′ andX ′′ are open subsets ofX (cf. the proof of Lemma 6.1) defined
overk.
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The following result is inspired by [19, Th. 10].

2.4. THEOREM. – Let X ⊂ P3 be an irreducible projective surface of degreed defined
overQ. Then,

(a) N(X ′′,B) = Od,ε(B4/3+16/9d+ε).
(b) N(X ′,B) = Od,ε(B4/3+16/9d+ε) if d � 8,

N(X ′,B) = Od,ε(B14/9+ε) if d > 8.

Proof. –If X is not geometrically irreducible, then (cf. the proof of Theorem 2.1) all rati
points onX lie on a subschemeY of lower dimension where the sum of the degrees of
irreducible components ofY is bounded in terms ofd. HenceN(X ′,B) = Od,ε(B1+ε) by
Theorem 1.1 in that case. Also, ifX is cone, thenX ′ is empty.We may thus assume thatX
is geometrically irreducible and not a cone.

Let P be a rational point of height� B on P3. Then, by Siegel’s lemma there is a ration
planeΠ of height� (4B)1/3 containingP . Let us first consider the planes for whichX ∩ Π is
irreducible. Then,N(X ∩ Π,B) = Od,ε(B2/d+ε) by Theorem 1.1. There areO(B4/3) rational
planesΠ of height � (4B)1/3. Hence we get a total contribution ofOd,ε(B4/3+2/d+ε) to
N(X,B) from the irreducible plane sections. But it is possible to save1/9 of the exponent2/d
by means of an argument in [19, p. 581]. This follows from Lemma 5.1 below in which we
take the condition (%) to be thatX∩Π is irreducible. We thus get the boundOd,ε(B4/3+16/9d+ε)
for the number of rational points of height� B on X lying on the union of all irreducible plan
sectionsX ∩Π with Π of height� (4B)1/3.

We now consider the contribution from the reducible plane sections. LetWe ⊂ P3∨ be the
closedQ-subscheme in Lemma 2.2(a). ThenN(We, (4B)1/3) = Od,ε(B2/3+ε) if e < d by
Theorem 2.1 and Lemma 2.2. This means that there are at mostOd,ε(B2/3+ε) reducible plane
sectionsX ∩ Π with Π of height� (4B)1/3. We also have for eachΠ that N(X ′′ ∩ Π,B) =
Od,ε(B2/3+ε) by [19, Th. 5]. There are thereforeOd,ε(B4/3+ε) rational points of height� B
on X ′′ lying on the union of all reducible plane sectionsX ∩ Π with Π of height� (4B)1/3.
This proves (a).

To prove (b), let 1� R � (4B)1/3. Then N(W2,2R) = Od(R2+ε) by Theorem 2.1 and
Lemma 2.2. We have thusOd,ε(R2+ε) rational planesΠ of height � 2R for which X ∩ Π
contains a conic. Also,N(C,B) = Od,ε(B1+ε/R1/3) for H(Π) ∈ [R,2R] by Corollary 1.8.

There are thusOd,ε(B1+εR5/3) rational points of height� B on the union of all conics in
plane sectionsX ∩ Π with H(Π) ∈ [R,2R]. Now sum over all two-powersR with 1 � R �
(4B)1/3. Then we get at mostOd,ε(B14/9+ε) rational points on the union of all conics contain
in plane sectionsX ∩ Π with rational planesΠ of height� (4B)1/3. This combined with the
previous estimates on rational points on plane curves onX of degreee ∈ {3, . . . , d− 1} implies
in its turn that there are at mostOd,ε(B14/9+ε) rational points of height� B onX ′ on the union
of all reducible plane sectionsX ∩ Π with Π of height� (4B)1/3. We have thus proved tha
N(X ′,B) = Od,ε(B4/3+16/9d+ε + B14/9+ε), as was to be shown.�

2.5. Remarks. – (a) From Theorem 2.4 we obtain,

N(X ′,B) = Od,ε(B16/9+ε) whend = 4,

N(X ′,B) = Od,ε(B76/45+ε) whend � 5.

4e SÉRIE– TOME 38 – 2005 –N◦ 1
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This should be compared with the estimates on p. 558 in [19]

N(X ′,B) = Od,ε(B52/27+ε) whend = 3,

N(X ′,B) = Od,ε(B17/9+ε) whend � 4.

(b) It is possible to extend the estimates in Theorem 2.4 to irreducible surfaces inPn by means
ning,
Th. 3].

[19,
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of a birational projection argument which will appear in a forthcoming paper by Brow
Heath-Brown and the author. One can also use an approach without projections as in [4,

2.6. THEOREM. – Let X ⊂ P3 be an irreducible projective surface of degreed defined
overQ. Then,

(a) N(X ′′,B) = Od,ε(B3/
√

d+2/3+ε).
(b) N(X ′,B) = Od,ε(B5/2

√
d+1+ε).

To prove Theorem 2.6, we shall use the following fundamental result of Heath-Brown
Th. 14] (cf. also [4, Cor. 2]).

2.7. THEOREM. – Let X ⊂ Pr+1 be an irreducible hypersurface of degreed overQ andB
be a positive number. Then there exists another hypersurfaceY defined overQ with the following
properties.

(a) All rational points onX of height at mostB lie onY .
(b) X is not contained inY .
(c) deg(Y ) = Od,ε(Bρ+ε), ρ = (r + 1)/d1/r.
(d) The degrees of the irreducible components ofY are bounded uniformly in terms ofd, r

andε.

Proof of Theorem 2.6. –Let Y ⊂P3 be a surface of degreeOd,ε(B3/
√

d+ε) as in Theorem 2.7
The rational points onX ′′ lie on irreducible components of degree� 3 on X ∩ Y . By
Theorem 1.1 one gets therefore the uniform boundOd,ε(B2/3+ε) for each of these componen

This finishes the proof of (a) as there are at mostOd,ε(B3/
√

d+ε) irreducible components o
X ∩ Y .

To prove (b), it suffices to treat the case whered � 3 andX is not a cone sinceX ′ is empty
otherwise. Then3/

√
d + 2/3 < 5/2

√
d + 1. There are thus�d,ε B5/2

√
d+1+ε rational points

on X of height� B lying on the irreducible components of degree� 3 of X ∩ Y . It thus only
remains to consider the contribution from the geometrically irreducible conics onX ∩ Y .

Let T = B3/2
√

d. By Corollary 1.8 there are�d,ε (B3/T )1/3+ε + 1 = B1−1/2
√

d+ε + 1
rational points of height at mostB on each conic contained in a planeΠ of height> T . There are
thus�d,ε B5/2

√
d+1+ε rational points of height� B on a set ofOd,ε(B3/

√
d+ε) such conics

To count rational points of height� B on conics contained in planesΠ of height� T , we cover
the interval[1, T ] by O(logT ) dyadic intervals[R,2R]. But we have already seen in the pro
of Theorem 2.4(b) that there areOd,ε(R2+ε) rational planesΠ of height� 2R for whichX ∩Π
contains a conicC and thatN(C,B) = Od,ε(B1+ε/R1/3) for H(Π) ∈ [R,2R]. There are thus
Od,ε(B1+εR5/3) rational points of height� B on the union of all irreducible components
degree 2 ofX ∩Y spanning a planeΠ of heightH(Π) ∈ [R,2R]. Now sum over all two-power
R with 1� R � T . Then we obtain�d,ε B1+εT 5/3 = B5/2

√
d+1+ε rational points of heigh

� B on the union of all conics spanning a plane of height� T . This completes the proof.�
We now restrict to smooth surfacesX ⊂P3. Recall that a curve inPn is said to bedegenerate

if it is contained in a hyperplane andnon-degenerateotherwise. We shall need the followin
result of Colliot-Thélène [10] already used in [19] in the case of curves of degree� d− 2.
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100 P. SALBERGER

2.8. THEOREM. – Let X ⊂ P3 be a smooth projective surface of degreed over an
algebraically closed field. Then there are at most finitely many irreducible curves of degree
� d − 2 on X and at most finitely many non-degenerate curves of degree< 2d − 4 on X .
Also, there exists in both cases a uniform upper bound for the number of such curves which
only depends ond.
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Proof. –By Proposition 2 in [10], one has(C.C) < 0 for an integral curveC of degree� d−2
onX . But an examination of the proof reveals that(C.C) < 0 also for a non-degenerate integ
curve of degree less than2d − 4 on X . There are thus in both cases only finitely many s
curves by Proposition 1 in (op. cit.). To get a uniform bound of the number of such curves,
Proposition 3 in (op. cit.). �

2.9. THEOREM. – Let X ⊂P3 be a smooth projective surface overQ of degreed. LetU be
the open complement of all curves onX of degree at mostd− 2. Then,

N(U,B) = Od,ε(B3/
√

d+2/d+ε).

Proof. –Let Y ⊂ P3 be a surface of degreeOd,ε(B3/
√

d+ε) as in Theorem 2.7. There a

thenOd,ε(B3/
√

d+ε) irreducible components ofX ∩ Y and each such component is of deg
Od,ε(1). Hence, by Theorem 1.1, there areOd,ε(B2/d+ε) rational points of height� B on each

irreducible component of degree� d onX∩Y . There are thereforeOd,ε(B3/
√

d+2/d+ε) rational
points of height� B onX lying on the union of the irreducible components ofX ∩Y of degree
� d.

To prove Theorem 2.9, it remains to count the points on the irreducible compone
degreed − 1 on X ∩ Y . We may and shall assume thatd � 4 (cf. e.g. Theorem 2.1). Then
by Theorem 2.8, there are at mostOd(1) non-degenerate irreducible components of degreed− 1
on X ∩ Y . Their total contribution toN(U,B) is thusOd,ε(B2/(d−1)+ε), which is satisfactory
since2/(d− 1) < 3/

√
d + 2/d.

If an irreducible curveC overQ of degreed − 1 lies onX ∩Π for a rational planeΠ ⊂ P3,
then there is a complementary lineΛ overQ on X ∩Π. Now since there are only finitely man
lines onX (see Theorem 2.8), it suffices to count rational points on degenerate compon
degreed− 1 onX ∩ Y with afixedcomplementary lineΛ overQ.

The linear system|(Π ∩ X) − Λ| defines a morphismf :X → P1 which sends a pointP
outsideΛ to the plane spanned byP andΛ and a pointP on Λ to the tangent plane atP . By a
theorem of Bertini, all but finitely many fibres off are smooth. One can even give an upper bo
for the number of singular fibres in terms ofd by means of the well known formula [1, III 11.4
for the Euler numbers of such fibrations. It thus suffices to show that the contribution toN(U,B)
from any set ofOd,ε(B3/

√
d+ε) smoothfibres off :X →P1 is bounded byOd,ε(B3/

√
d+2/d+ε).

We shall establish the sharper boundOd,ε(B3/
√

d+2/(d−1)−1/(d−1)
√

d+ε).
Let T = B3/2

√
d. Then there areOd,ε((B3/T )2/3(d−1)+ε) = Od,ε(B2/(d−1)−1/(d−1)

√
d+ε)

rational points on each smooth fibre off contained in a planeΠ of height > T . A set of
Od,ε(B3/

√
d+ε) such smooth fibres contains thusOd,ε(B3/

√
d+2/(d−1)−1/(d−1)

√
d+2ε) rational

points of height� B. For the smooth fibres spanning planes of height� T , we cover the interva
[1, T ] by O(logT ) dyadic intervals[R,2R]. There areO(R2) fibres in planes of height� 2R
andOd,ε((B3/R)2/3(d−1)+ε)) points in each fibre lying in a plane of height� R. There are thus
Od,ε(B2/(d−1)+εR2−2/3(d−1)) rational points lying on the union of fibres contained in planeΠ
of heightH(Π) ∈ [R,2R]. Hence sinceT 2−2/3(d−1) = B3/

√
d−1/(d−1)

√
d we get the desire

bound by summing over dyadic intervals.�
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This theorem is an improvement of Heath-Brown’s bound [19, Th. 11]

N(U,B) = Od,ε(B3/
√

d+2/(d−1)+ε).

We now prove a result which is slightly stronger than Theorem 2.9.

rate
the

ns
of

of

e

2.10. THEOREM. – LetX ⊂P3 be a smooth projective surface of degreed overQ. LetU be
the open complement of the union of all curves onX of degree at mostd− 2. Then,

(a) N(U,B) = Od,ε(Bf(d)+ε), where

f(d) = 3/
√

d + 2/(d− 1)− 1/(d− 1)
√

d if d � 13,

f(d) = 3/
√

d + 2/d− 1/2d
√

d if d � 14.

(b)

N(X ′,B) = Od,ε(Bf(d)+ε) if d � 12,

N(X ′,B) = Od,ε(B1+ε) if d � 13.

Proof. –(a) The result is already known ford � 5 by Theorem 2.4. Moreover,

2/(d− 1)− 1/(d− 1)
√

d > 2/d− 1/2d
√

d > 2/(2d− 4) if 6 � d � 13,

2/d− 1/2d
√

d > 2/(d− 1)− 1/(d− 1)
√

d > 2/(2d− 4) if d � 14.

It thus suffices to show the following estimate ford � 6.

N(U,B) = Od,ε(B3/
√

d+2/(d−1)−1/(d−1)
√

d+ε + B3/
√

d+2/d−1/2d
√

d+ε + B3/
√

d+2/(2d−4)+ε).

We choose again an auxiliary surfaceY ⊂ P3 of degree�d,ε B3/
√

d+ε as in the proof of
Theorem 2.9 and consider the irreducible components ofX ∩ Y . The total contribution to
N(U,B) from the non-degenerate components of degreeδ ∈ (d−2,2d−4) is Od,ε(B2/(d−1)+ε)
by Theorems 2.8 and 1.1 while the contribution from the union of all components ofX ∩ Y of
degreeδ � 2d − 4 is Od,ε(B3/

√
d+2/(2d−4)+ε). It thus only remains to consider the degene

irreducible components of degree >d−2. But we have shown in the proof of Theorem 2.9 that
union of the components of degreed− 1 contribute withOd,ε(B3/

√
d+2/(d−1)−1/(d−1)

√
d+ε). It

is therefore enough to count the rational points on the components ofX∩Y which are irreducible
plane sectionsX ∩Π.

We now count the rational points on the degenerate components of degreed. PutT = B3/4
√

d

and cover[1, T ] by O(logT ) dyadic intervals[R,2R]. As long as we consider plane sectio
X ∩ Π where all rational points have multiplicity� d/2, we proceed exactly as in the proof
Theorem 2.9. There areO(R4) planes of height� 2R and Od,ε((B3/R)2/3d+ε + 1) points
in each such section with a plane of height� R (see Corollary 1.8). The total number
rational points on such planesΠ of height H(Π) ∈ [R,2R] is thus Od,ε(B2/d+εR4−2/3d).
Hence asT 4−2/3d = B3/

√
d−1/2d

√
d we get the boundOd,ε(B3/

√
d+2/d−1/2d

√
d+ε) when

summing over dyadic intervals. The contribution from a section with a plane of height> T

is Od,ε((B3/T )2/3d+ε + 1). We thus get the same total boundOd,ε(B3/
√

d+2/d−1/2d
√

d+ε) for

the union of such plane sections with planesΠ onY . (We use here thatdeg(Y )�d,ε B3/
√

d+ε.)
It remains to count the rational points of height� B on U which lie on irreducible plane

sectionsX ∩ Π with a rational pointP of multiplicity > d/2 � 2. Let us first consider thos
planesΠ for which we in addition have three non-collinear rational points onX ∩ Π of height
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� B. ThenH(Π) � 6B3 so that we may cover[1,6B3] by O(logB) dyadic intervals[R,2R]
and consider plane sections as above withH(Π) ∈ [R,2R]. There are then by Lemma 2.11
below and Theorem 1.1Od,ε(R2/2(d−1)+ε) such planesΠ andOd,ε((B3/R)1/(d+1)+ε) points
(cf. Corollary 1.8) in each sectionU ∩ Π. The contribution toN(U,B) from the union of these
plane sectionsX ∩ Π is thusOd,ε(B3/(d+1)+εR2/(d−1)(d+1)). If we sum over all the dyadic
intervals, then we get a total contribution ofOd,ε(B3/(d+1)+6/(d−1)(d+1)+ε) rational points,

t
is

ctor

nt

d

,

e
e

which is satisfactory.
Let us finally consider the planesΠ for which all rational points onX ∩Π of height� B lie

on a line. There are at mostd rational points onU ∩Π for such planes since any line withd + 1
rational points lies onX . As we only consider irreducible componentsΠ of Y , we therefore ge
at mostOd,ε(B3/

√
d+ε) rational points of height� B on U on the union of such planes. Th

completes the proof of (a). To prove (b), use Theorems 2.10(a), 1.1 and 2.8.�
2.11. LEMMA. – Let X ⊂ P3 be a smooth projective surface of degreed over a fieldk of

characteristic0. Then there is a closedk-subschemeW ⊂P3∨ with the following properties.
(a) TheK-points ofW , K ⊃ k correspond toK-planesΠ whereX∩Π contains aK-point of

multiplicity > d/2. The sum of the degrees of the irreducible components ofW is bounded
in terms ofd.

(b) Suppose thatd > 3. Then there are no irreducible components ofW of dimension> 1.
(c) Let Π be a plane overk such thatX ∩ Π contains no line. ThenΠ cannot belong to a

one-dimensional irreducible componentW0 of W of degree less than2(d− 1).

Proof. –(a) Let H be the Hilbert scheme overk of all closed subschemes ofP3 defined by
a form of degreed andΩ ⊂ H be the open subscheme of all smooth surfaces of degreed. Let
I ⊂ P3 × Ω ×P3∨ be the closedk-subscheme representing all triples(P,X,Π) such thatP is
a point of multiplicity> d/2 on X ∩ Π. More precisely, it represents the contravariant fun
F : (schemes/k) → (sets) that to anyk-schemeB associates the set ofk-morphisms fromB to
P3 × Ω × P3∨ for which the composition with any pointSpecK → B gives rise to a triple
(P,X,Π) whereP is aK-point of multiplicity > d/2 onX ∩Π for smoothK-surfacesX,Π of
degreed resp. 1 inP3.

The scheme-theoretic imageJ of I under the projection morphism fromP3 × Ω × P3∨ to
Ω×P3∨ is a closed subscheme ofΩ×P3∨. It is clear from the definition ofJ that the fibreW
of the projectionJ →Ω at thek-point onΩ corresponding toX ⊂P3 satisfies the first stateme
of (a). The second assertion is proved just as in Lemma 2.2(a).

(b) LetW ⊂P3∨ be the closedk-subscheme in the proof of (a). To prove thatdimW � 1, we
may assume thatk is algebraically closed. LetF (x0, . . . , x3) be a form overk definingX ⊂P3

andg :X → P3∨ be the Gauss morphism which sends (x0, . . . , x3) to (δF/δx0, . . . , δF/δx3).
It sendsP ∈ X(k) to the tangent planeTP ∈ P3∨(k) of X at P . It is well known [26] that
g is a finite birational morphism whend > 1. Let X∨ = g(X) ⊂ P3∨ be the dual surface an
let V ⊂ X∨ be the largest open subset such thatg induces an isomorphism betweeng−1(V )
andV . ThenV consists of the planesΠ⊂P3 for whichX ∩Π has exactly one singular pointP
and whereP is a quadratic non-degenerate singularity onX ∩ Π (see [22, 3.5]). Therefore
W ⊂ X∨\V since each pointΠ on W must be the tangent planeTP of X at a pointP on
X\g−1(V ). In particular,dimW � 1.

(c) We may again assume thatk is algebraically closed. LetZ ⊂P3 be the closed subschem
of all points such thatP is a point of multiplicity> d/2 on X ∩ TP . Then the restriction of th
Gauss mapg :X →P3∨ to Z ∩X ′ is injective as any two pointsP,Q of multiplicity > d/2 on
a plane section ofX must lie on a line onX and hence not belong toX ′.

Now let W0 be a one-dimensional irreducible component ofW . ThenW0 is equal tog(Z0)
for some one-dimensional irreducible componentZ0 of Z. If Z0 ⊂P3 is a line, thenW0 ⊂P3∨
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must be the dual line sinceTP contains any line onX throughP . In particular, ifΠ is represented
by a point onW0, thenZ0 cannot be a line since otherwise it would lie onX ∩Π. HenceZ0∩X ′

is non-empty so thatZ0 is mapped birationally ontoW0 underg. Asg is given by forms of degree
d− 1, we must therefore havedeg(W0) = (d− 1)deg(Z0) � 2(d− 1). �

e
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3. Threefolds

The following result is due to Broberg and the author [5].

3.1. THEOREM. – LetX ⊂P4 be a geometrically irreducible projective threefold of degred
overQ. Then,

(a) N(X,B) = Oε(B55/18+ε) for d = 3,
(b) N(X,B) = Od,ε(B3+ε) for d � 4.

3.2. THEOREM. – Let X ⊂ Pn be a closed subscheme of dimension at most three de
overQ. Suppose thatX does not contain any irreducible three-dimensional component of de
one. Then,

N(X,B) = On,D,ε(B55/18+ε),

whereD is the sum of the degrees of all irreducible components ofX .

Proof. –One reduces to the casen = 3 by the projection argument in the proof of Lemma
in [7] and then to the case whereX is geometrically integral by the same argument as
Theorem 2.1. IfdimX = 1 or 2, then the result follows from Pila’s Theorem 0.1 or by
elementary projection argument ontoP1 or P2. If dimX = 3, then we apply Theorem 3.1.�

The proof of the following lemma is almost identical to the proof of Lemma 2.2.

3.3. LEMMA. – LetX ⊂P4 be a threefold defined by a formF of degreed > 2 over a fieldk
of characteristic0. Let P4∨ be the dual projective space parametrising hyperplanesΠ ⊂ P4.
Then the following holds.

(a)There is a closed subschemeWe ⊂P4∨ such that theK-points ofWe, K ⊃ k corresponds
to K-planesΠ whereX ∩ Π contains a surface of degreee. The sum of the degrees of all t
irreducible components ofWe ⊂P4∨ can be bounded in terms ofd ande.

(b) Suppose thatX is geometrically integral and not a cone. ThenWe ⊂P3∨ does not contain
any hyperplane whene < d.

3.4. THEOREM. – LetX ⊂P4 be an irreducible projective threefold overQ of degreed. Let
X ′ ⊂ X resp.Ξ⊂ X be the complement of the union of all lines resp. planes onX . Then,

N(X ′,B) = Od,ε(B5/2+5/3d+ε + B65/24+ε),

N(Ξ,B) = Od,ε(B5/2+5/3d+ε + B199/72+ε).

Proof. –Suppose first thatX is not geometrically irreducible. Then all rational points onX
are singular. We also know from the proof of Theorem 2.1 that the sum of the degr
the irreducible components is bounded solely in terms ofd. It is therefore sufficient to coun
rational points of height� B on Od(1) irreducible curves (cf. Theorem 2.1) and surfaces. F
Theorems 1.1 and 2.1 we get thatN(Ξ,B) = Od,ε(B2+ε). We may and shall thus in the rest
this proof assume thatX is geometrically integral.

Let P be a rational point of height� B on P4. Then, by Siegel’s lemma there is a ration
hyperplaneΓ of height � (5B)1/4 passing throughP . Let us first consider the contributio
from the geometrically reducible hyperplane sectionsX ∩ Γ. If we combine Theorem 3.
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and Lemma 3.3, then we conclude that there areOd,ε(B55/72+ε) such hyperplanes of height
� (5B)1/4. By results of Heath-Brown (see Theorem 2.1 resp. Theorem 2.4), we have
that N(X ′ ∩ Γ,B) = Od,ε(B52/27+ε) resp.N(Ξ ∩ Γ,B) = Od,ε(B2+ε). The contribution to
N(X ′,B) resp.N(Ξ,B) from the union of the geometrically reducible hyperplane sections is
thus Od,ε(B52/27+55/72+ε) resp.Od,ε(B2+55/72+ε), which are satisfactory since for the first
bound we have52/27 + 55/72 < 65/24.
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It remains to consider the hyperplanes for whichX ∩ Γ is geometrically irreducible. By
Theorem 2.4 we have that

N(X ′ ∩ Γ,B) = Od,ε(B4/3+16/9d+ε) whend � 9,(3.5)

N(X ′ ∩ Γ,B) = Od,ε(B14/9+ε) whend > 9.

There areO(B5/4) rational hyperplanesΓ of height � (5B)1/4. It is possible to save1/16
of both exponents on the right hand side of (3.5) by adapting the argument in [19, p. 5
threefolds. This follows from Lemma 5.1 below in which we take the condition (%) to mean
X ∩ Γ is geometrically irreducible. The number of rational points of height� B lying on the
union of the geometrically irreducible hyperplane sectionsX ∩ Γ,H(Γ) � (5B)1/4 but not on a
line onX ∩ Γ is thus

Od,ε(B15(4/3+16/9d)/16+5/4+ε) whend � 9,

Od,ε(B15(14/9)/16+5/4+ε) whend > 9.

This bound can be expressed asOd,ε(B5/2+5/3d+ε + B65/24+ε) for all d, thereby completing
the proof of the bound forN(X ′,B).

To estimateN(Ξ,B) we must also consider the contribution from the union of the l
on all the geometrically integral intersectionsX ∩ Γ whereH(Γ) � (5B)1/4. It is proved in
Section 3.2 of [5] that the contribution toN(X,B) from the lines on the hyperplane sectio
is �d,ε B5/2+3/2d+ε + B3+ε. But an inspection of the proof in (op. cit.) reveals that we m
omit the last termB3+ε if we restrict to rational points onΞ which do not belong to any of th
geometrically reducible hyperplane sectionsX ∩ Γ with Γ of height� (5B)1/4. This completes
the proof of the bound forN(Ξ,B). �

3.6. THEOREM. – LetX ⊂P4 be a smooth projective threefold overQ of degreed. LetU be
the complement inX of the union of all curves onX with irreducible components of degree
most three over an extension ofQ. Then,

N(U,B) = Od,ε(B15f(d)/16+5/4+ε + B15/32+5/4+ε),

where

f(d) = 3/
√

d + 2/(d− 1)− 1/(d− 1)
√

d if d � 13,

f(d) = 3/
√

d + 2/d− 1/2d
√

d if d � 14.

Proof. –Let P be a rational point of height� B onP4. By Siegel’s lemma there is a ration
hyperplaneΓ of height� (5B)1/4 passing throughP . Also, all hyperplane sectionsX ∩ Γ are
geometrically irreducible by Lemma 6.2. Let us first consider the hyperplanes such thatX ∩Γ is
smooth. Then, we may apply Theorem 2.10 toX ∩ Γ after introducing a basis forΓ of the same
kind as in the proof of Corollary 1.8. Hence by Theorems 2.10 and 1.1 we obtain that

N(U ∩ Γ,B) = Od,ε(Bf(d)+ε + B2/4+ε),(3.7)
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where the last termB2/4+ε corresponds to rational points on the set ofOd(1) curves (cf.
Theorem 2.8) of degreee ∈ [4, d − 2]. There areO(B5/4) rational hyperplanesΓ of height
� (5B)1/4. This gives a total contribution ofOd,ε(Bf(d)+5/4+ε + B2/4+5/4+ε) to N(U,B)
from the smooth hyperplane sections. But it is possible to save1/16 of both exponents on the
right hand side of (3.7) by means of the same technique as in the previous proof. This follows
from Lemma 5.1 and Remark 5.2(b) below in which we take the condition (%) to mean that

e
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X ∩ Γ is smooth. The outcome is the boundOd,ε(B15f(d)/16+5/4+ε + B15/32+5/4+ε) for the
number of a rational points of height� B on U lying on the union of all smooth hyperplan
sectionsX ∩ Γ with Γ of height� (5B)1/4.

It remains to treat the singular (and geometrically irreducible) hyperplane sectionsX ∩ Γ. By
Theorem 2.7 there exists another surfaceY ⊂ Γ of degreeOd,ε(B3/

√
d+ε) containing all rationa

points of height� B on X ∩ Γ but notX ∩ Γ itself. This surfaceY can be chosen such that t
degrees of all irreducible components ofY are uniformly bounded in terms ofd andε. We have
thus a common uniform boundOd,ε(B2/4+ε) for the number of rational points of height� B of
the irreducible components of (U ∩ Γ)∩ Y .

This means that

N(U ∩ Γ,B) = Od,ε(B3/
√

d+2/4+ε)(3.8)

for all Γ.
Next, we prove that there areOd,ε(B(g(d)+2)/4+ε), g(d) = 4/(d − 1)d1/3 singular hyper-

planesΓ of height� (5B)1/4. To see this, we first note that the Gauss mapg :X → X∨ (cf.
the proof of Lemmas 2.11 or 6.3) is a finite morphism of degree(d − 1)3 sincedimX = 3 and
g is given by forms of degree(d − 1). Hence the dual hypersurfaceX∨ ⊂ P4∨ is of degree
(d − 1)3d. We may therefore by Theorem 2.7 find an auxiliary hypersurfaceW ⊂ P4∨ of de-
greeOd,ε(Bg(d)/4+ε) containing all rational points of height� (5B)1/4 onX∨ but not contain-
ing X∨ itself. This threefoldW may be chosen such that the sum of the degrees of all irredu
components ofX∨ ∩ W is bounded in terms ofd andε. Also, there are no planes among the
irreducible components by Lemma 6.3. There are therefore (cf. Theorem 2.1)Od,ε(B2/4+ε) ra-
tional points of height� (5B)1/4 on X∨ ∩ W . This together with (3.8) implies that we ha
Od,ε(B3/

√
d+2/4+(g(d)+2)/4+ε) rational points of height� B on U lying on the union of all

singular hyperplane sectionsX ∩ Γ with Γ of height� (5B)1/4.
One can show that:

3/
√

d + 2/4 +
(
g(d) + 2

)
/4 < 15f(d)/16 + 5/4,

so that this contribution toN(U,B) is smaller than the contribution from the smooth hyperpl
sections. This completes the proof of Theorem 3.6.�

3.9. COROLLARY. – Let X ⊂ P4 be a smooth projective threefold overQ of degreed > 5.
Then,

N(X,B) = Od,ε(B15f(d)/16+5/4+ε + B2+ε),

with f(d) as in Theorem3.6.

Proof. –Let Z be the complement of the open subsetU ⊂ X in Theorem 3.6. ThenZ is a
proper subset ofX of degree bounded in terms ofd by Lemma 6.1. Also, sinceX is smooth
andd > 1 there are no planes onX . Therefore,N(Z,B) = Od,ε(B2+ε) by Theorem 2.1. We
therefore get the desired bound forN(X,B) from Theorem 3.6. �
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3.10. Remark. – Note thatf(d) < 3/
√

d + 2/d. We have thus ford > 5 the bound

N(X,B) = Od,ε(B45/16
√

d+15/8d+5/4+ε + B2+ε).

This can also be proved more directly by using Theorem 2.9 instead of Theorem 2.10.

l

ur

l

4. Fourfolds

We shall in this section prove the following theorems.

4.1. THEOREM. – LetX ⊂P5 be a smooth projective fourfold overQ of degreed. Then the
following uniform estimates hold.

N(X,B) = Od,ε(B27/10
√

d+9/5(d−1)−9/10(d−1)
√

d+12/5+ε) if 6 < d � 13,

N(X,B) = Od,ε(B27/10
√

d+9/5d−9/20d
√

d+12/5+ε) if 13 < d � 25,

N(X,B) = Od,ε(B3+ε) if d > 25.

4.2. THEOREM. – Let X ⊂P5 be a smooth projective fourfold overQ of degreed. LetΞ be
the complement of the union of planes onX . Then,

N(Ξ,B) = Od,ε(B27/10
√

d+9/5(d−1)−9/10(d−1)
√

d+12/5+ε) if 6 < d � 13,

N(Ξ,B) = Od,ε(B27/10
√

d+9/5d−9/20d
√

d+12/5+ε) if 13 < d � 34,

N(Ξ,B) = Od,ε(B131/45+ε) if d > 34.

4.3. Remark. – The bounds can also be expressed in the following way.

N(Ξ,B) = Od,ε(B9f(d)/10+12/5+ε + B131/45+ε), where

f(d) = 3/
√

d + 2/(d− 1)− 1/(d− 1)
√

d if 6 < d � 13,

f(d) = 3/
√

d + 2/d− 1/2d
√

d if d > 13.

Proof of Theorem 4.2. –Let K be an algebraic closure ofQ and Z ⊂ X be the reduced
subscheme such that the underlying closed set is the union of all closed curvesC on X where
all irreducible components ofC × K are of degree at most three. ThendimZ � 3 and the
sum of the degrees of the irreducible components ofZ is bounded solely in terms ofd (see
Lemma 6.1). Also, by Lemma 6.2 each three-dimensional irreducible component ofZ ×K is of
degree divisible byd. We have therefore by Theorem 3.4 that

N(Z ∩Ξ,B) = Od,ε(B5/2+5/3d+ε + B199/72+ε)

which is smaller than the desired upper bound forN(Ξ,B). It is thus sufficient to count rationa
points on the complementU = X\Z.

Let P be a rational point of height� B on P5. Then, by Siegel’s lemma there exist fo
rational hyperplanesΓ,Γ′,Γ′′,Γ′′′ such thatΓ∩ Γ′ ∩ Γ′′ ∩ Γ′′′ = P and

H(Γ)H(Γ′)H(Γ′′)H(Γ′′′) � (6B)4/5.

We may assume thatH(Γ) � H(Γ′) � H(Γ′′) � H(Γ′′′). It is then sufficient to count rationa
points on sectionsU ∩ Γ∩ Γ′ with pairs of rational hyperplanesΓ �= Γ′ whereH(Γ) � (6B)1/5
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andH(Γ)H(Γ′)3 � (6B)4/5. Note also that all hyperplane sectionsX ∩ Γ are geometrically
irreducible by Lemma 6.2.

Let us first consider the hyperplanesΓ for whichX ∩ Γ is smooth. Then, by Theorem 3.6 we
have that

N(U ∩ Γ,B) = Od,ε(B15f(d)/16+5/4+ε + B15/32+5/4+ε).(4.4)

et

g

int

nents
o
y
nt

y the
There areO(B6/5) rational hyperplanesΓ of height� (6B)1/5. Hence by Lemma 5.1, we g
a total contribution ofOd,ε(B24(15f(d)/16+5/4)/25+6/5+ε + B24(15/32+5/4)/25+6/5+ε) rational
points of height� B onU lying on the union of all smooth hyperplane sectionsX ∩Γ with Γ of
height� (6B)1/5. After multiplying out, we get the boundOd,ε(B9f(d)/10+12/5+ε +B57/20+ε)
for the number of these rational points, which is satisfactory.

We now turn to the hyperplanesΓ for which X ∩ Γ is singular. For rational pointsP on such
X ∩ Γ we shall make use of the second hyperplaneΓ′ containingP mentioned in the beginnin
of the proof. LetT � T ′ andTT ′3 � B4/5. We begin by estimating the number of pairs (Γ,Γ′)
of rational hyperplanes of heightsH(Γ) ∈ [T,2T ] resp.H(Γ′) ∈ [T ′,2T ′] whereX ∩Γ∩Γ′ is a
geometrically irreducible surface. Leth(d) = 1/(d− 1)d1/4 +11/18+6/5. We claim that there
areOd,ε(Bh(d)+ε) such pairs (Γ,Γ′).

If X ∩ Γ is singular, then the rational hyperplaneΓ may be regarded as a rational po
of height� T on the dual varietyX∨ ⊂ P5∨. The dual hypersurfaceX∨ ⊂ P5 is of degree
(d − 1)4d. We may therefore by Theorem 2.7 find an auxiliary hypersurfaceW ⊂ P5∨ of
degreeOd,ε(T 5/(d−1)d1/4+ε) containing all rational points of height� T on X∨ but notX∨

itself. This fourfold W may be chosen such that the degrees of all irreducible compo
of X∨ ∩ W are uniformly bounded in terms ofd and ε. Also, by Lemma 6.3, there are n
three-dimensional irreducible components of degree one onX∨ ∩ W . There are therefore b
Theorem 3.2Od,ε(T 55/18+ε) rational points of height� T on each irreducible compone

of X∨ ∩ W and henceOd,ε(T 55/18+5/(d−1)d1/4+ε) rational points of height� T on X∨. In

particular, we find that there areOd,ε(T 55/18+5/(d−1)d1/4+ε) possibilities forΓ. Also, there
are Od,ε(T ′6) possibilities for Γ′. It therefore follows from the assumptionsT � T ′ and
TT ′3 � B4/5 that there areOd,ε(Bh(d)+ε) such pairs (Γ,Γ′).

To estimateN(U ∩ Γ ∩ Γ′,B), we introduce new coordinates forΓ ∩ Γ′ = P3 (cf. part (iii)
of [19, Lemma 1]) such that the new height does not exceed the old height given b
embeddingΓ∩Γ′ ⊂P5. We may then by Theorem 2.7 find an auxiliary hypersurfaceY of degree
Od,ε(B3/

√
d+ε) on Γ ∩ Γ′ = P3 containing all the rational points onX ∩ Γ ∩ Γ′ ⊂ P3. Also,

each irreducible component of the intersection ofX ∩ Y ∩ Γ ∩ Γ′ ⊂ P3 not lying in Z = X\U
is of degree� 4. We thus conclude thatN(U ∩ Γ∩ Γ′,B) � B3/

√
d+2/4+ε by Theorem 1.1 and

the arguments in the proof of Theorem 2.6(a).
After summing over dyadic intervals[T,2T ] resp.[T ′,2T ′] whereT � T ′ andTT ′3 � B4/5,

we obtainOd,ε(Bh(d)+3/
√

d+2/4+ε) rational points onU of height � B on the union of all
geometrically irreducible intersectionsX ∩ Γ ∩ Γ′ with hyperplanes whereX ∩ Γ is singular,
H(Γ) � H(Γ′) andH(Γ)H(Γ′)3 � (6B)4/5. This is enough, as

h(d) + 3/
√

d + 2/4 < 9f(d)/10 + 12/5.

We now consider the contribution from rational points on the sectionsX ∩ Γ ∩ Γ′ which are
geometrically reducible. Then, by Lemma 6.4Γ andΓ′ belong to the singular locus ofX∨ ⊂
P5∨. By Theorem 3.2 and Lemma 6.3 there are thusOd,ε(T 55/18+ε) resp.Od,ε(T ′55/18+ε)
possibilities for such pairs of rational hyperplanesΓ (resp. Γ′) of heightsH(Γ) ∈ [T,2T ]
resp.H(Γ′) ∈ [T ′,2T ′]. After summing over dyadic intervals[T,2T ] resp.[T ′,2T ′] we obtain
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Od,ε(B55/45+ε) pairs (Γ,Γ′) whereX ∩ Γ ∩ Γ′ is geometrically reducible and whereH(Γ) �
H(Γ′) and H(Γ)H(Γ′) � (6B)2/5. Also, if Y is an irreducible component of degree> 4
on X ∩ Γ ∩ Γ′, then we have by Remark 2.5Od,ε(B76/45+ε) rational points of height� B
on Y outside the lines. The total contribution toN(U,B) from all such subvarietiesY is thus
Od,ε(B76/45+55/45+ε), which is satisfactory.

We still have to consider the contribution from the irreducible componentsY of degree� 4
s lie

ame

for

ion of

e

n

o, by
e all lie
on intersectionsX ∩ Γ ∩ Γ′ as above. But it is shown in Lemma 6.1 that all these surface
on a proper closed subsetZ2 of X of uniformly bounded degree. We therefore get the s
boundN(Z2 ∩Ξ,B) = Od,ε(B5/2+5/3d+ε + B199/72+ε) as we obtained forN(Z ∩Ξ,B). This
completes the proof of Theorem 4.2.�

Proof of Theorem 4.1. –It follows from the proof of Lemma 6.1 that all lines onX lie on
a proper closed subsetW of X degree bounded solely in terms ofd. Also, by Lemma 6.2 we
have that the degree of each three-dimensional irreducible component ofW is divisible byd.
Therefore,N(W,B) = Od,ε(B3+ε) by Theorem 3.1. To complete the proof, use the bound
N(X\W,B) given by Theorem 4.2. �

For hypersurfaces defined by diagonal forms one can give a more explicit vers
Theorem 4.2 by means of the following geometric lemma.

4.5. PROPOSITION. – Let X ⊂ P5 be a smooth fourfold over a fieldk of characteristic0
given by an equation

a0x
d
0 + · · ·+ a5x

d
5 = 0,

wherea0, . . . , a5 ∈ k andd � 5. Then the unionZ of all planes onX is equal to the union of th
fifteen closed subsets given by the equations,

a0x
d
0 + aix

d
i = ajx

d
j + akxd

k = alx
d
l + amxd

m = 0.

Proof. –Choosedth rootsa1/d
i in an algebraic closureK of k. We may then write the equatio

as

(a1/d
0 x0)d + · · ·+ (a1/d

5 x5)d = 0

and reduce to the Fermat hypersurfacexd
0 + · · ·+ xd

5 = 0 overK treated in [12, p. 54]. �
4.6. COROLLARY. – Let nd(B) be the number of solutions in positive integersxi, yi � B,

0 � i � 2, to the equation

xd
0 + xd

1 + xd
2 = yd

0 + yd
1 + yd

2 ,

where(x0, x1, x2) �= (yi, yj , yk) for all six permutations(i, j, k) of (0,1,2).
Then,

nd(B) = Od,ε(B27/10
√

d+9/5(d−1)−9/10(d−1)
√

d+12/5+ε) if 6 < d � 13,

nd(B) = Od,ε(B27/10
√

d+9/5d−9/20d
√

d+12/5+ε) if 13 < d � 34,

nd(B) = Od,ε(B131/45+ε) if d > 34.

Proof. –It is clearly sufficient to establish these estimates for the primitive solutions. Als
Proposition 4.5 we find that the rational points represented by positive sixtuples as abov
onΞ. The result is thus a special case of Theorem 4.2.�
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4.7. Remarks. – Note that27/10
√

d + 9/5d− 9/20d
√

d + 12/5 < 3 whend > 25. We then
get an asymptotic formula

Nd(B) = 6B3 + Od,ε(B3−δ)

for the numberNd(B) of all solutions in positive integersxi, yi � B, 0 � i � 2, to the equation

d. He
nd
tely

ed to

several

s

xists
xd
0 + xd

1 + xd
2 = yd

0 + yd
1 + yd

2 .

This improves upon [8] where the authors get such a result ford > 32.
Ford � 9 we get:

Nd(B) = Od,ε(B7/2−1/80+ε).

This should be compared with Hua’s estimate (cf. [20,11])

Nd(B) = Od,ε(B7/2+ε)

from 1938. This was still the best known result until the paper of Heath-Brown [19] appeare
gives an improvement on Hua’s estimate ford � 24. There are no improvements of Hua’s bou
for lower d in [8]. But after sending my paper to Browning and Heath-Brown, I immedia
received a second manuscript on equal sums in which they prove that

nd(B) = Od(B7/2−δ), δ > 0,

for d � 11. The main new ingredient is Lemma 6.1(a) of this paper, which I communicat
them earlier. Their method uses special properties of the formxd

0 + xd
1 + xd

2 − xd
3 − xd

4 − xd
5.

5. Hyperplane sections

We shall in this section formulate a lemma about hyperplane sections that we use at
places. It is an extension of a technique used by Heath-Brown [19, p. 581] for surfaces inP3.

5.1. LEMMA. – Letn,d > 1 be two integers and suppose that we have a uniform bound:

N(Y,B) = On,d,ε(Bg(d)+ε),

for all hypersurfacesY ⊂ Pn−1 of degreed defined overQ satisfying a certain property(%)
independent of the choice of coordinates.

Let X ⊂ Pn be an irreducible closed hypersurface of degree d defined overQ andn(X,B)
be the number of rational points of height� B on X which lie on the union of all intersection
X ∩Γ with rational hyperplanesΓ ∈Pn∨(Q) satisfying(%) andH(Γ) � ((n+1)B)1/n. Then,

n(X,B) = On,d,ε(Bg(d)−g(d)/n2+(n+1)/n+ε).

Proof. –Let Γ ⊂ Pn be a rational hyperplane. Then, by [19, Lemma 1] there e
homogeneous coordinates(y1, . . . , yn) for Γ such that the following holds.

(i) Eachyi is a linear combinationyi = mi0x0 + · · · + minxn for a primitive (n + 1)-tuple
(mi0, . . . ,min) of integers.

(ii) Let Pi,1 � i � n, be the rational point onΓ defined by

y1 = · · ·= yi−1 = yi+1 = · · ·= yn = 0.
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Then,

H(Γ) � H(P1) . . .H(Pn) � H(Γ),

where the implied constants only depend onn. (Note thatH(Pi) = max |mij |, 0 � j � n.)
(iii) Let (y1, . . . , yn) be a primitive integraln-tuple representing a rational pointP onΓ. Then

|yi| � H(P )/H(Pi) for 1 � i � n with the implied constant depending only onn.

esti-

ational
Suppose now that the rational points are ordered such thatH(P1) � · · ·� H(Pn). By (iii) and
the assumption we get that

N(X ∩ Γ,B)�n,d,ε

(
B/H(P1)

)g(d)+ε

wheneverX ∩ Γ satisfies (%).
We now consider the hyperplanesΓ spanned byn rational pointsP1, . . . , Pn as above and

whereCi � H(Pi) � 2Ci for some constants1 � C1 � · · · � Cn with C1 . . .Cn �n B1/n. We
may assume that the coordinates ofP1 are ordered such that|m10|� · · ·� |m1n|. There are then
unique integersqi, ri, i ∈ {2, . . . , n}, satisfying:

mi0 = qim10 + ri, 0 � ri < |m10|.

Let Qi �= P1, i ∈ {2, . . . , n}, be the rational point on the line betweenP1 andPi represented
by the(n + 1)-tuple wherexj(Qi) = mij − qim1j for j ∈ {0,1,2, . . . , n}. Then,

∣
∣x0(Qi)

∣
∣ = |ri|< |m10|� 2C1 and

∣
∣xj(Qi)

∣
∣ � |mij |+ |qi||m1j |� |mij |+ |qi||m10|= |mij |+ |mi0 − ri|� 4Ci + 2C1 � 6Ci

for j ∈ {1,2, . . . , n}.
The bounds for thex-coordinates giveO(Cn+1

1 ) possibilities for P1, and O(C1C
n
i )

possibilities forQi, i ∈ {2, . . . , n}. There are, therefore,O(C2n
1 (C2 . . .Cn)n) hyperplanesΓ

spanned by pointsP1, . . . , Pn as above. For each suchΓ, we have

N(X ∩ Γ,B)�n,d,ε (B/C1)g(d)+ε

wheneverX ∩ Γ satisfies (%).
This givesOn,d,ε(Bg(d)+εC

2n−g(d)
1 (C2 . . .Cn)n) rational points of height� B on the union

of these hyperplane sections. ButN(Y,B) = O(Bn) for hypersurfacesY ⊂ Pn−1 overQ. We
may thus assume thatg(d) � n so that

C
2n−g(d)
1 (C2 . . .Cn)n � (C1C2 . . .Cn)n+1−g(d)/n �n B(n+1)/n−g(d)/n2

.

There are thus

On,d,ε(Bg(d)−g(d)/n2+(n+1)/n+ε),

rational points of height� B on the unions of these hyperplane sections. The same
mate remains valid after summing over all dyadic intervals[Ci,2Ci] for 2-powersCi with
C1 . . .Cn �n B1/n. This completes the proof of Lemma 5.1.�

5.2. Remarks. – (a) We made a very specific hypothesisH(Γ) � ((n + 1)B)1/n about the
heights of the hyperplanes. This hypothesis is natural for the applications since any r
point onPn lies on such a hyperplaneΓ by Siegel’s lemma.
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(b) There are many variants of Lemma 5.1. It is often useful to consider hyperplane sections
when counting rational points on open subsets of projective varieties like the complementX ′

of all lines onX ⊂ Pn. It is clear from the proof above that if we start with a hypothesis for
N(X ′ ∩ Γ,B) instead ofN(X ∩ Γ,B), then we get the same bound forN(X ′,B). We shall in
this paper count points on other open subsets like the complement of all curves of degree at most
three or the complement of all surfaces of degree at most four contained in a projective linear

es the

ts

of
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nus at
e

To
three-dimensional subspace (cf. Lemma 6.1). It is obvious that the proof of Lemma 5.1 giv
same kind of implications as above.

(c) One can formulate versions of Lemma 5.1 for closed subsetsX ⊂ Pn of higher
codimension. See [4, Lemma 7] for such a result for surfaces.

6. Lemmas from algebraic geometry

6.1. LEMMA. – LetX ⊂Pn be a smooth hypersurface of degreed > n+1 over a fieldk. Let
K be an algebraic closure ofk. Then there are proper closed subsetsZ1, resp.Z2, of X with the
following properties.

(i) Let Z1 be the union of all closed curvesC on X such that all irreducible componen
of X ×K are of degree at most three. ThenZ1 is a proper closed subset ofX .

(ii) LetZ2 be the union of all closed surfacesY onX such that all irreducible components
X ×K are of degree at most four and contained in a projective linear3-subspace ofPn.
ThenZ2 is a proper closed subset ofX .

Moreover, the sum of the degrees of the irreducible components ofZ1, resp. Z2, can be
bounded in terms ofd if we endowZ1, resp.Z2, with their reduced scheme structures.

Proof. –(i) There are only finitely many Hilbert polynomialsP (x) = δx+ e occurring among
reducedclosed curves of degreeδ in Pn. We have in facte� δ2 by the inequality of Castelnuov
[2]. Let us fix one such polynomialP (x) = δx + e. Let

hP,X : (schemes/K)→ (sets)

be the contravariant functor that associates to anyK-schemeB the set of subschemesS ⊂
X ×k B flat overB where fibers over points ofB have Hilbert polynomialP (x). ThenhP,X

is representable by a projective schemeHP,X over K (see [13, pp. 295–296]). LetSP,X ⊂
X ×k HP,X be the corresponding universal family of curves onX with Hilbert polynomialP (x)
and letZP,X be the scheme-theoretic image ofSP,X under the projectionX×HP,X →X . Then
ZP,X is a closed subscheme ofX by the main theorem of elimination theory.

We now prove thatZP,X �= X if P (x) = δx + e andδ = 1,2,3. It suffices to do this in the
case whereK is algebraically closed and there is an integral curveC on X ⊂Pn with P (x) as
Hilbert polynomial. IfZP,X = X , then there exists a familyS ⊂ X ×k B as above whereB is
irreducible,dimS = dimX , and whereS projects ontoX . Then, by [25, pp. 550–551], we ha
the following relations between the Kodaira-dimensionsκ of S,X,B andV .

κ(C) + dimB � κ(S) � κ(X) = dimX.

It is well known that the resolution of an integral curve of degree at most three is of ge
most one. Henceκ(C) � 0 anddimX − 1 = dimB � dimX . We have thus shown that th
assumptionZP = X leads to a contradiction.

To get (i), letZ1 be the finite union of theZP,X above with its reduced scheme structure.
prove the last assertion, it suffices to give a uniform bound for the degree of eachZP,X . Let Hd
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be the Hilbert scheme of all hypersurfacesX ⊂ Pn of degreed andΩd be the open subscheme
of all smooth hypersurfaces of degreed. Further, letHP be the Hilbert scheme of all closed
subschemesC ⊂ Pn with Hilbert polynomialP (x). Then, there is a closed subschemeId,P of
Hd×HP representing pairs(C,X) whereC is a closed subscheme ofX . LetSP ⊂Pn×Id,P be
the corresponding universal family of curves onPn andZP ⊂Pn ×Hd be the scheme-theoretic
image ofSP under the projection fromPn × Hd × HP to Pn × Hd. ThenZP is a closed

e get
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es [6].
o,

t
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subscheme ofPn ×Hd sinceHP is projective. Now choose a projective embeddingHd ⊂Pm.
ThenZP ⊂Pn×Pm is defined by finitely many bihomogeneous polynomials. Therefore, w
a uniform bound for the degree ofZP,X for all X ∈Ωd(K) sinceZP,X is the fibre atX ∈Ωd(K)
of the projection fromZP ⊂ Pn ×Pm to Pm. This completes the proof of the uniform bou
for the sum of the degrees of the irreducible components ofdeg(Z1) in (i).

The proof of (ii) is almost identical to the proof of (i). All surfaces of degreeδ in Pn contained
in a projective linear3-subspace ofPn have the same Hilbert polynomialP (x) with δx2/2 as
leading term. This time we shall not consider the same contravariant functorhP,X as in (i).
Instead we consider the closed (contravariant) subfunctor

gP,X : (schemes/K) → (sets)

of hP,X defined as follows. To anyK-schemeB, let gP,X(B) be the set of subschem
S ⊂ X ×k B flat over B where fibers over points ofB have Hilbert polynomialP (x) and are
contained in a three-dimensional projective subspace. ThengP,X is representable by a close
subschemeGP,X of the projective scheme representinghP,X (cf. [13]). LetSP,X ⊂ X ×k GP,X

be the corresponding universal family of surfaces onX with Hilbert polynomialP (x) andZP,X

be the scheme-theoretic image ofSP,X under the projectionX × GP,X → X . ThenZP,X is
a closed subscheme ofX . We can now proceed exactly as before and prove thatZP,X �= X
provided that we know thatκ(Y ) � 1 for any integral surfaceY ⊂ P3 of degree at most fou
over an algebraically closed fieldK.

If the singular locus ofY is of dimension one, choose a generic pencil of plane sect
The generic member is then an integral singular curveC of degreeδ � 4. The resolution ofC
is therefore of genus� 1 and κ(Y ) � 1. Suppose next that the singular locus ofY is zero-
dimensional or empty. ThenY is normal and Gorenstein. The casesδ = 1,2 are trivial and the
caseδ = 3 is a consequence of the classification of cubic surfaces with isolated singulariti
So it suffices to treat quartic surfaces inP3. Then the trivial sheaf is a dualizing sheaf. Als
sinceY is normal, it follows that there are no regular functions on the smooth locusU of Y apart
from the constant ones. Therefore, any plurigenus of a smooth compactification ofU is at most
one. Henceκ(Y ) � 0 in this case andκ(Y ) � 1 for any integral surfaceY ⊂ P3 of degree a
most four. This implies in its turn by arguments almost identical to those in (i) thatZ2 = ZP,X is
a proper closed subscheme ofX which satisfies (ii). The proof of the uniform bound fordeg(Z2)
is the same as the proof for the uniform bound fordeg(Z1). �

6.2. LEMMA. – Let X ⊂ Pn be a hypersurface of dimensionr = n − 1 � 3 over an
algebraically closed field of characteristic0. Suppose thatX is smooth or of degree at least3
with an ordinary double point as its only singularity. Then the class groupClX = Z and is
generated by the class of a hyperplane section.

Proof. –This is a well known theorem (Noether–Lefschetz) ifX is smooth (see [18, p. 180
for an algebraic proof). It therefore suffices to consider the case where there is an o
double pointx on X . Let Ξ → X , resp.Π → P , be the blow-ups ofX , resp.P = Pn, at x
and letE, resp.π, be the exceptional loci. ThenΞ is a smooth closed subvariety ofΠ and
E a non-singular quadric inπ = Pn−1. We may clearly assume thatx = (1,0, . . . ,0) after a
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coordinate change. ThenΠ is the closed subvariety ofPn ×Pn−1 with biprojective coordinates
(x0, . . . , xn;y1, . . . , yn) given by the equationsxjyk = xkyj for 1 � j � k � n.

SupposeX ⊂ Pn is defined by the formF (x0, . . . , xn). Choose a representation ofF as
a finite sumΣλGλQλ whereGλ is a monomial of degreed − 2 in (x0, . . . , xn) and Qλ a
quadratic form in(x1, . . . , xn) for eachλ. ThenΞ ⊂ Π is the closed subvariety defined by the
bihomogeneous polynomialΣλGλ(x0, . . . , xn)Qλ(y1, . . . , yn) of bidegree(d − 2,2). HenceΞ

e,

in
y

an
e

o

e

a 6.2
d
rity.
cus
is the hyperplane section ofΠ in Pm under the embeddingPn × Pn−1 ⊂ Pm given by all
bihomogeneous monomials of bidegree(d − 2,2). Therefore, the restriction map fromPicΠ
to PicΞ is an isomorphism by [18, p. 180]. But it is well known thatPicΠ = Z ⊕ Z and is
generated by the classes ofπ and the image inPicΠ of the hyperplane class inPicP . Hence,
the contravariant functorial map fromPicP = Z to Pic(Ξ\E) is an isomorphism. To conclud
use the canonical isomorphismsCl(X) = Cl(X\x) = Pic(X\x) = Pic(Ξ\E). �

We now study the dual varietyX∨ ⊂Pn∨ of hyperplanesΓ⊂Pn for whichX ∩Γ is singular.

6.3. LEMMA. – LetX ⊂Pn be a smooth hypersurface of dimensionn−1 � 3 over a fieldK
of characteristic0. ThenX∨ ⊂ Pn∨ does not contain any(n − 2)-dimensional irreducible
components of degree1.

Proof. –Let F (x0, . . . , xn) be a form of degreed overK definingX ⊂Pn. Let ϕ :X → X∨

be the Gauss map which sends(x0, . . . , xn) to (δF/δx0, . . . , δF/δxn). Any (n−2)-dimensional
component ofX∨ of degree 1 is then the image of a closed subsetW of X defined by two
formsG andH of degreed− 1 which are linear combinations ofδF/δx0, . . . , δF/δxn. We may
after a coordinate change assume that the coefficients ofδF/δx0 (resp.δF/δx1) in G (resp.H)
are different from zero.

The homogeneous coordinate ringR = K[x0, . . . , xn]/(F ) is a unique factorization doma
(UFD) since Cl(X) = Z and X is projectively normal [17, p. 147]. In particular, an
homogeneous prime idealI of height1 of R is principal and generated by the image inR of
some formF ∗ ∈K[x0, . . . , xn].

We now show thatW is of codimension at least two inX . Suppose not. Then there is
irreducible componentZ of W of codimension one onX . Let I ⊂ R be the homogeneous prim
ideal of height1 consisting of all elements which vanish onZ. Then, asR is anUFD we may
find a formF ∗ ∈ K[x0, . . . , xn] such that the image ofF ∗ in R generatesI ⊂ R. But G and
H vanish onZ ⊂ P5. By the homogeneous NullstellensatzG andH must therefore belong t
the prime ideal ofK[x0, . . . , xn] generated byF andF ∗. This implies in its turn thatF ∗ is a
common factor ofG andH , sinceG andH are of lower degree thanF . But then any common
zero of the formsF ∗, δF/δx2, . . . , δF/δxn would be a singular point onX , which is impossible
by hypothesis. HenceW must be of codimension at least two inX . The imageϕ(W ) is therefore
of dimension less thann− 2. This completes the proof.�

6.4. LEMMA. – Let X ⊂ Pn be a smooth hypersurface of dimensionn − 1 � 3 over an
algebraically closed field of characteristic0. LetL⊂Pn∨ be a line corresponding to a projectiv
linear subspaceV ⊂ Pn of codimension two such thatX ∩ V is reducible. ThenL belongs to
the singular locus ofX∨ ⊂Pn∨.

Proof. –Let Q be a point onPn∨ andΓ ⊂ Pn be the hyperplane corresponding toQ. It is
well known [22] thatQ lies outside the singular locus ofX∨ if and only if the intersection
X ∩ Γ is smooth or has an ordinary double point as its only singularity. Also, by Lemm
X ∩ V is irreducible for any projective linear subspaceV ⊂ Pn of codimension two containe
in a hyperplaneΓ whereX ∩Γ is smooth or has an ordinary double point as its only singula
Hence any pointQ on a lineL ⊂ Pn∨ as in Lemma 6.4 must belong to the singular lo
of X∨. �
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