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COUNTING RATIONAL POINTS ON HYPERSURFACES
OF LOW DIMENSION

By PER SALBERGER

ABSTRACT. — Let N (X, B) be the number of rational points of height at mé&son a varietyX c P"
defined ovelQ. We establish new upper bounds f§ X, B) for hypersurfaces of dimension at most four.
We also studyV (X', B) for the open complements’ of all lines or all planes on such hypersurfaces. One
of the goals is to show thaV (X, B) = O4(B™/*~°%), 6 > 0 for smooth hypersurfaces iB° defined by
a form F'(zo,...,x5) of degreed > 9. This improves upon a classical upper estimate of Hua for the form
mg+x‘f+x37mgf‘zﬁf:p§.
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RESUME. — Soit N (X, B) le nombre de points rationnels de hauteur inférieure ou égélesar une
variété X C P" définie surQ. Nous établissons des nouvelles majorations po(X, B) pour les hyper-
surfaces de dimensioq 4. Nous étudions aus#V (X', B) pour les complémentX’ de toutes les droites
ou tous les plans sur ces hypersurfaces. Un des buts est de démonthetXjuB) = O4(B7/27°%), 6§ >0
pour les hypersurfaces lisses ddP$ definies par une formé (zo,...,xs) de degréd > 9. C'est une
amélioration d"une majoration classique de Hua pour la farfne z¢ + z¢ — 28 — z¢ — z¢.
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0. Introduction

Let Z be a locally closed subset &™ defined overQ. To count rational points o, we
shall use the heightf (z) = max(|zo|,...,|z,|) for a rational pointr on P" represented by
a primitive integral(n + 1)-tuple (o,...,z,). We denote byN (Z, B) the number of rational
points of height at mosB on Z. This is clearly an abuse of notation sind& 7, B) depends
both on the choice of the embeddiggc P™ and the choice of coordinates Bf*.

We want to investigate the asymptotic behaviouNdfZ, B) when B — co. The following
result is due to Pila (see [23] and [24]).

0.1. THEOREM. — Let X C P™ be a geometrically irreducible projective variety of degree
defined oveR. Then,

N(X, B) _ Od’n_rs(BdimXJrl/dJra).

It is remarkable that the implied constant does not dependl apart from its dependence on
the degree and the dimension &t The starting point and the most subtle ingredient of Pila’s
proof is a uniform bound for curves due to Bombieri and Pila [3] (cf. also [24]). It is also possible
to reduce to the case of hypersurfaces by means of finite birational projections.

We shall in this paper give estimates for hypersurfaces of dimension at most four which are
stronger than Theorem 0.1 and other known results. To obtain these, we apply the methods of
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94 P. SALBERGER

Heath-Brown’s fundamental paper on rational points on curves and surfaces [19]. The most
important new tool in [19] is Theorem 14, where determinants are used to construct auxiliary
hypersurfaces containing the rational points of bounded height. We shall use the technique with
auxiliary hypersurfaces when we count points on curves and surfaces. In higher dimensions
we use a number of new arguments from algebraic geometry. We thus make essential use
of the Kodaira dimension in our estimates for smooth hypersurfaces. We obtain in particular
improvements of a well-known bound of Hua from 1938 concerning the number of non-trivial
positive solutions to the diophantine equatich+ z¢ + z¢ — 24 — 2§ — ¢ = 0. This was also

the aim of the paper of Browning and Heath-Brown [8], but our estimates are sharper and valid
for general non-singular forms.

This paper is organised as follows. In Sectignl < i < 4, we give uniform estimates for
hyper-surfaces of dimensianThe approach is inductive and the proofs based on the estimates
in lower dimensions. We shall apart from the determinant method also apply Siegel's lemma
in the inductive process. We use thereby an idea from [19, p. 581] to get non-trivial savings
when summing over the “non-degenerate” hyperplane sections. To avoid unnecessary repetition,
we give in Section 5 a more abstract and general formulation of this argument. In Section 6, we
collect some lemmas from algebraic geometry which we use to prove the estimates for threefolds
and fourfolds.

1. Curves

The following result is due to Heath-Brown [19] in the case whéfds geometrically
irreducible andn = 2 or 3. The general case is due to Broberg [4], who also proves the same
uniform estimate for curves over arbitrary number fields.

1.1. THEOREM. — LetC C P™ be an irreducible projective curve ov€) of degreed. Then,
N(C,B) = Og . (B*9),

Note that all rational points o' are singular ifC is irreducible but not geometrically
irreducible. We have thus at mast;(1) rational points on such curves.

There are also results on the number of rational points in boxes with sides of different lengths
in [19] and [4]. We now deduce some consequences of Theorem 3 in [19] for plane curves.

1.2. Notation — LetC c P? be a plane curve oved and By, By, B, three positive integers.

() N(C, By, B1,B2) denotes the number of-points on C' with a primitive integral
representativézrg, x1, z2) satisfying|a;| < B; fori =0,1, 2.

(b) V=ByB1Bs.

1.3. THEOREM. — LetC be an irreducible plane curve ové€) of degreed. Then,
N(C, By, By, By) = Og . (VH/47m)%e)
for the maximum multiplicityn < max(d — 1, 1) of rational points orC. (If C'(Q) is empty, then
m is defined to be zerp.

If there are no rational points o' of multiplicity > d/2, then

N(Ca B()7 B17 BQ) = Od’s(v2/3d+5).
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COUNTING RATIONAL POINTS ON HYPERSURFACES 95

Proof. —Let F'(zq,x1,22) = Zae,f’g.’ﬂgl’{mg be a form definingC ¢ P2 and letT be the
maximum of aIIBgB{Bg with a. s, # 0. Then Heath-Brown [19, Th. 3] proved that (cf. also
[4, Cor. 2]):

(1.4) N(C, By, B1, Bs) = Og, (Ve 1/ 4%,
It thus suffices to show the following inequalities:
(1.5) (a) T=V¥3 ifm<d/2,

(b) T > Vyd=—md/@d=m) if > d/2.

We may also assume th#t, > B; > B». Suppose first thaby = (1,0,0) ¢ C. ThenT =

B¢ > V4/3. Suppose next thaP, € C' and letm, be the multiplicity of C' at P,. Then
ae,f.q4 7 0 fOor some triple ¢, f, g) with e > d — m¢. HenceT > BgB{Bg > By~ By. Also,

since F' is irreducible, we get that. ;, # 0 for some triple ¢, f, g) with g = 0. Therefore,
T > B$BJ > B¢. We have thus:

T > max{BJ "By, B{} = By max{(Bo/B2)""™,(B1/B2)"}
> BY[(Bo/B2)(By/B2)]
= (BB By,
Also, sinceBy > B; > B> > 1 we conclude that:
Bi—mpd=mpr > yRd=m)/S if L d)2,
B& BB > VI ifm > d /2.
This completes the proof of (1.5) and Theorem 1.8

One can deduce a more precise result from (1.4}, i$ a rational point orC, let mp be its
multiplicity and np be the maximum multiplicity of the rational lines in the tangent coné€’ of
atP.

1.6. THEOREM. — LetC be a geometrically irreducible plane curve ov@rof degreed > 1.
Then,

N(C, By, By, Ba) = Oy (V?/34+e),

if mp + np < d for all rational points onC'. Otherwise, there exists a rational poift on C
with mp + np > d such that

N(C, BO7B17BQ) _ Od’g(V(d+n—m)/d(2d+n—2m)+8)

form=mp,n=np.

The proof is similar to the proof of Theorem 1.3. We leave the details to the reader, as we shall
not use this result in the sequel.

1.7. DEFINITION. — LetIT C P™ be a rational hyperplane given by the equation
y0x0+"'+ynxn:0

for a rational pointy = (yo, - . .,¥,) in the dual projective spacB™". Then the height (1)
of I is defined as the height of the rational pgjnin P™V.
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96 P. SALBERGER

The following corollary of Theorem 1.3 will be important.

1.8. COROLLARY.— LetC c P2 be an irreducible projective curve ov€) of degreed > 1
contained in a planél c P3. Then,

N(C, B) = Oaz ((B®/H ()0 + 1),

Moreover, if there are no rational points of multiplicity d/2 on C, then

2/3d+e

N(C,B) = 0q4,.((B*/H(I)) +1).

Proof. —A proof of the casel = 2 is implicit in the proof of Lemma 10 in [19, p. 582] (cf. also
[4, Lemma 8]) and we shall use a similar approach.

Let (vo,y1,¥2,y3) be a primitive integral quadruple such tHatis given by the equation
Yoo + Y171 + Y222 + ysx3 = 0. This equation defines a three-dimensional sublattice Z*
which has d@-basis b°, b!, b?) with the following properties (cf. [19, Lemma 1]).

(1.9) [b[[b![[b?] < 4H (IT) < [b°]b!||b?].

(1.10) Let\ob” + \;b! + X\;b? be an element of. which represents a rational point
onP? of height < B.Then |)\;| < ¢B/|bf| fori=0,1,2
and for some constantnot depending ofl.

By [b| we meanmax(|bo|, |1, [b2], [b3]) for b = (bo, b1, b2, b3) € Z*.
From (1.10) we get:

(1.11) N(C.B)=N(C.cB/|b%,cB/|bY]cB/|bY),

where on the right hand side we regatdas a curve of degreé in II = P3 with (Ao, A1, \2)
as homogeneous coordinatescB/|b‘| < 1 for somei € {0, 1,2}, then); = 0 for any rational
point onC of height< B by (1.10). HenceV (C, B) < d in that case.

If cB/|b’| >1forallie{0,1,2}, then by (1.11), Theorem 1.3 and (1.9) we get that

N(C,B) <z (B/|B"b[b2)) " < (B2 /H (1)) T
Moreover, if there are no rational points of multiplicityd/2 on C, then
N(C, B) <<d75 (BS/|bOHb1||b2D2/3d+€ < (BS/H(H))Q/ngrE. 0

2. Surfaces

The following result is a consequence of Theorems 5 and 9 in [19].

2.1. THEOREM. — Let X C P" be a closed subscheme defined dQewhere all irreducible
components are of dimension at most two. SupposeXtddes not contain any plane. Then,

N(X,B) =0, p.(B*F),
whereD is the sum of the degrees of all irreducible components of
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Proof. —One reduces immediately to the case wh&rés integral. Then the base extension
X over Q is equidimensional and reduced. L¥t be the intersection of all the irreducible
components of{. Then any rational point oX gives rise to a&Q-point which lies onY” as the
Galois group acts transitively on the irreducible componentX oThere is also by the theory
of Galois descent a closed subscherhef X with base extensiol” over Q which must then
contain all rational points oX'. Now apply the Bezout theorem in [14, 8.4.6]. Then the sum of
the degrees of the irreducible component§’afendowed with their reduced scheme structures)
can be bounded in terms of the degreeXof This is therefore also true for the sum of the
degrees of the irreducible componentstafBut dim Y < dim X if X is not integral. It is thus
by induction enough to treat the case wh&rés integral. If X is a curve, use Theorem 1.1 Xfis
a surface, combine the estimate in [19, Th. 5] with the projection argument in [7, Lemman1].

2.2. LEMMA. — Let X c P2 be a surface defined by a forfnof degree d with coefficients in
afieldk of characteristic). LetP3" be the dual projective space parametrising plafles P3.
Then the following holds.

(@) There is a closed subscherfié, ¢ PV defined overk such that theK -points of W,
K D k corresponds td{-planeslI where X N1II contains a curve of degree The sum of
the degrees of all the irreducible component$iaf c P3Y can be bounded in terms df
ande.

(b) Suppose thak is geometrically irreducible and thaX is not a cone. Thefl, C P3V
does not contain any plane wherc d.

Proof. —(a) Let H, (resp.H,) be the Hilbert scheme of all closed subscheme®bfwith
Hilbert polynomials:

P(zx)=(x+2)(z+1)/2—(x+2—e)(z+1—€)/2 resp.
Pyx)=(z+3)(z+2)(z+1)/6 — (z+3—-d)(x+2—d)(x+1—d)/6.

Then H; and H, are projective and the projection map H, x Hy x P3V — H, x P3V
a proper morphism. Lef C H; x H, x P3V be the closed subscheme representing triples
(C, X,1I) where the curveC of degreee is contained in the surfac& of degreed and the
planeIl. Then the scheme-theoretic imagelalinderr is a closed subschemkof Hy, x P3V.
Also, if X C P? corresponds to &-pointz on H», then the fibrd¥V, of J — H, atz, satisfies
the first statement.

To bound the degree &7, in terms ofd ande, choose a projective embeddiffy C P and
a finite set{Q1, ..., @, } of bihomogeneous polynomials definingas a closed subscheme of
P™ x P3V. Suppose thaf),,...,Q, are of degreed;,...,d, with respect to the coordinates
for the dual projective spad@®V. Then the sum of the degrees of all the irreducible components
of W, c P3V is at mostdid, . .. d, by [14, 8.4,6].

(b) Let P, be an arbitrary rational point d&* andy : P3\ P, — P? be the morphism sending
apointP on X to the line betwee® andP,. Theny(X) = P2 sinceX is not a cone. Therefore,
X Np~1(L)is geometrically irreducible for a generic lideon P2 by Bertini’s theorem (cf. [15,
Th. 2.1] and [21, Cor. 6.11.3]). This means tiat IT is geometrically irreducible for the plane
I = o~ 1(L) U P,. Therefore, the hyperplane 13V dual to P, cannot be contained i, as
was to be proved. O

Remark— One can classify all surfaces c P3 with a two-dimensional family of plane
reducible sections (i.e. witHim W, > 2 for somee < d). Kronecker stated and Castelnuovo
“proved” (see [9]) that such surfaces are either ruled by lines or isomorphic to the Steiner Roman
surface.
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98 P. SALBERGER

2.3. Notation — Let X c P™ be a hypersurface defined by a form over a fieldrhen X’
(resp.X") is the complement of the union of all irreducible curves’dmverk which split into
a union of lines (resp. lines and conics) over an algebraic closute of

It is easy to show thak’ and X" are open subsets of (cf. the proof of Lemma 6.1) defined
overk.
The following result is inspired by [19, Th. 10].

2.4. THEOREM. — Let X C P? be an irreducible projective surface of degrdedefined
overQ. Then,
(a) N(X”, B) — Od)E(B4/3+16/9d+E)-
(b) N(X’,B) _ Od,s(B4/3+16/9d+8) if d<8,
N(X',B) = Og4.(B*/°t)if d > 8.

Proof. —If X is not geometrically irreducible, then (cf. the proof of Theorem 2.1) all rational
points onX lie on a subschem& of lower dimension where the sum of the degrees of the
irreducible components of is bounded in terms of. Hence N(X', B) = O4.(B'*¢) by
Theorem 1.1 in that case. Also, X is cone, thenX’ is empty.We may thus assume th#t
is geometrically irreducible and not a cone.

Let P be a rational point of height B on P3. Then, by Siegel's lemma there is a rational
planell of height< (4B)'/? containingP. Let us first consider the planes for whighn IT is
irreducible. ThenN(X NTI, B) = O4..(B?/4*¢) by Theorem 1.1. There a@(B*/?) rational
planesII of height < (4B)'/3. Hence we get a total contribution @, .(B*/3+2/4+¢) to
N(X, B) from the irreducible plane sections. But it is possible to sigigeof the exponen2/d
by means of an argument in [19, p. 581]. This follows from Lemma 5.1 below in which we will
take the condition (%) to be thaf N1 is irreducible. We thus get the boud . (B*/3+16/94+<)
for the number of rational points of heighdt B on X lying on the union of all irreducible plane
sectionsX N TT with TT of height< (4B)'/3.

We now consider the contribution from the reducible plane sectionsii.et P3V be the
closed Q-subscheme in Lemma 2.2(a). Thé(W., (4B)'/3) = O4.(B*/3+¢) if e < d by
Theorem 2.1 and Lemma 2.2. This means that there are at@negt32/3+<) reducible plane
sectionsX N IT with TT of height< (4B)'/3. We also have for eacH that N(X” NI, B) =
Og.(B?/3+2) by [19, Th. 5]. There are therefo@, . (B*/3+¢) rational points of heighk B
on X" lying on the union of all reducible plane sectioXsn IT with IT of height< (4B)'/3.
This proves (a).

To prove (b), let KX R < (4B)'/3. Then N(W3,2R) = O4(R?*t¢) by Theorem 2.1 and
Lemma 2.2. We have thu9, .(R?*¢) rational planedI of height < 2R for which X N II
contains a conic. Alsay (C, B) = O,4..(B'*¢/R'/3) for H(II) € [R,2R] by Corollary 1.8.

There are thu®), . (B'*R>/3) rational points of heigh& B on the union of all conics in
plane sectionsX N II with H(II) € [R,2R]. Now sum over all two-power® with 1 < R <
(4B)'/3. Then we get at mosd, . (B'4/?+¢) rational points on the union of all conics contained
in plane sectionsy N IT with rational planedI of height< (4B)'/3. This combined with the
previous estimates on rational points on plane curveX @f degreee € {3,...,d — 1} implies
in its turn that there are at mo&¥; . (B'*/°+¢) rational points of heigh& B on X’ on the union
of all reducible plane section& N IT with IT of height< (4B)'/%. We have thus proved that
N(X',B) = Oy, (B*/3+16/9d+¢ | p14/9+<) a5 was to be shown.O

2.5. Remarks— (a) From Theorem 2.4 we obtain,
N(X',B) = 04.(B'/°¢) whend =4,
N(X',B)=0,4.(B"/**¢) whend > 5.
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This should be compared with the estimates on p. 558 in [19]

N(X',B) = 04.(B**/?™¢) whend =3,
N(X',B)=04.(B'/°*%) whend > 4.

(b) It is possible to extend the estimates in Theorem 2.4 to irreducible surfaB&gip means
of a birational projection argument which will appear in a forthcoming paper by Browning,
Heath-Brown and the author. One can also use an approach without projections as in [4, Th. 3].

2.6. THEOREM. — Let X c P2 be an irreducible projective surface of degrdedefined
overQ. Then,

(a) N(X”,B) — Od75(BB/\/E+2/3+E)-

(b) N(X/,B) _ Od,s(B5/2ﬂ+1+6)-

To prove Theorem 2.6, we shall use the following fundamental result of Heath-Brown [19,
Th. 14] (cf. also [4, Cor. 2]).

2.7. THEOREM. — Let X ¢ P"+! be an irreducible hypersurface of degré@ver Q and B
be a positive number. Then there exists another hypersukfatefined ovef) with the following
properties.

(a) All rational points onX of height at mosB lie onY'.

(b) X is not contained irt".

(0) deg(Y) = 0uc(B7*<), p=(r+1)/d"/".

(d) The degrees of the irreducible component&’ocare bounded uniformly in terms af »

ande.

Proof of Theorem 2.6. LetY c P3 be a surface of degrefed7a(B3/ﬁ+5) asin Theorem 2.7.
The rational points onX” lie on irreducible components of degree3 on X NY. By
Theorem 1.1 one gets therefore the uniform boGpd (B2/3+¢) for each of these components.
This finishes the proof of (a) as there are at n@gjrs(BB’/‘/E*E) irreducible components of
XNnY.

To prove (b), it suffices to treat the case whére 3 and X is not a cone sinc&’ is empty
otherwise. Ther8/v/d + 2/3 < 5/2v/d + 1. There are thus<, . B%/2V4+1+< rational points
on X of height< B lying on the irreducible components of degree of X NY'. It thus only
remains to consider the contribution from the geometrically irreducible conics ory".

Let T = B3/2Vd_ By Corollary 1.8 there are< . (B3/T)!/3+¢ 41 = Bl-1/2Vd+e 4 4
rational points of height at mo#t on each conic contained in a plafieof height> T'. There are
thus < 4. B%/2Va+1+< rational points of height B on a set 0f0, . (B3/V4+<) such conics.
To count rational points of height B on conics contained in plan&kof height< T', we cover
the interval[1,T] by O(logT') dyadic interval§ R, 2R]. But we have already seen in the proof
of Theorem 2.4(b) that there af®; . (R**<) rational planedl of height< 2R for which X NI
contains a coni© and thatN (C, B) = O4.(B**¢/R'/3) for H(IT) € [R,2R]. There are thus
Og4.- (B R>/3) rational points of heigh B on the union of all irreducible components of
degree 2 ofX NY spanning a plan# of heightH (IT) € [R,2R]. Now sum over all two-powers
R with 1< R < T. Then we obtaing . B1+<T5/3 = B5/2Vd+1+< rational points of height
< B on the union of all conics spanning a plane of heighf'. This completes the proof.O

We now restrict to smooth surfacasc P3. Recall that a curve iP" is said to belegenerate
if it is contained in a hyperplane amibn-degeneratetherwise. We shall need the following
result of Colliot-Théléne [10] already used in [19] in the case of curves of degrke 2.
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2.8. THEOREM.— Let X c P? be a smooth projective surface of degrédeover an
algebraically closed field. Then there are at most finitely many irreducible curves of degree
< d—2on X and at most finitely many non-degenerate curves of degréd — 4 on X.

Also, there exists in both cases a uniform upper bound for the number of such curves which
only depends on.

Proof. —By Proposition 2 in [10], one hg€”.C') < 0 for an integral curve' of degree< d — 2
on X. But an examination of the proof reveals tii@tC') < 0 also for a non-degenerate integral
curve of degree less thal — 4 on X. There are thus in both cases only finitely many such
curves by Proposition 1 in (op. cit.). To get a uniform bound of the number of such curves, apply
Proposition 3 in (op. cit.). O

2.9. THEOREM. — Let X C P? be a smooth projective surface ov@rof degreed. LetU be
the open complement of all curves &nof degree at most — 2. Then,

N(U, B) _ Od,E(Bg/\/E+2/d+E>.

Proof. —Let Y ¢ P3 be a surface of degre@d,e(B?’/\/a*E) as in Theorem 2.7. There are

then Od,g(B?’/‘/g“) irreducible components of N'Y and each such component is of degree
O4.(1). Hence, by Theorem 1.1, there a@@ﬁ(BQ/dJFE) rational points of heigh& B on each

irreducible component of degreed on X NY . There are therefor@, . (B3/V+2/d+<) rational
points of height< B on X lying on the union of the irreducible componentsf Y of degree
>d.

To prove Theorem 2.9, it remains to count the points on the irreducible components of
degreed — 1 on X N'Y. We may and shall assume that> 4 (cf. e.g. Theorem 2.1). Then,
by Theorem 2.8, there are at m@f(1) non-degenerate irreducible components of dedreé
on X NY. Their total contribution taV (U, B) is thusO, . (B?/(¢=1+¢), which is satisfactory
since2/(d — 1) < 3/v/d +2/d.

If an irreducible curveC over Q of degreed — 1 lies on X N 11 for a rational plandl C P?3,
then there is a complementary lineover Q on X N1I. Now since there are only finitely many
lines onX (see Theorem 2.8), it suffices to count rational points on degenerate components of
degreal — 1 on X N'Y with afixedcomplementary liné\ overQ.

The linear system(IL N X) — A| defines a morphisnf: X — P! which sends a poinf
outsideA to the plane spanned by and A and a pointP on A to the tangent plane &. By a
theorem of Bertini, all but finitely many fibres gfare smooth. One can even give an upper bound
for the number of singular fibres in terms @by means of the well known formula [1, 111 11.4]
for the Euler numbers of such fibrations. It thus suffices to show that the contributho(TipB)
from any set o), . (B3/V+<) smootHibres of f : X — P is bounded by, . (B3/Vd+2/d+e),

We shall establish the sharper boufigl, (B3/Vd+2/(d=1)=1/(d=1)Vd+e)

Let T = B3/2V4, Then there ar@®, . ((B3/T)%/3(d=1+e) = O, (B2/(d=D=1/(d=)Vi+e)
rational points on each smooth fibre gfcontained in a planél of height > T. A set of
Ou.(B3/Vd+) such smooth fibres contains thQg . (B3/Vd+2/(d=1)=1/(d-1)Vd+2<) rational
points of height B. For the smooth fibres spanning planes of heighit, we cover the interval
[1,T] by O(log T) dyadic interval§ R, 2R]. There areD(R?) fibres in planes of height 2R
andO, . ((B3/R)?/3(4=1+=)) points in each fibre lying in a plane of heightR. There are thus
Oy, (B%/(d=1)+e R2-2/3(d=1)) rational points lying on the union of fibres contained in plafes
of height H(II) € [R,2R)]. Hence since2-2/3(d-1) = p3/Vd-1/(d-1)Vd e get the desired
bound by summing over dyadic intervalso
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This theorem is an improvement of Heath-Brown’s bound [19, Th. 11]
N(U, B) = O, (B¥Ya+2/(d-1te),

We now prove a result which is slightly stronger than Theorem 2.9.

2.10. THEOREM. — Let X C P3 be a smooth projective surface of degteeverQ. LetU be
the open complement of the union of all curves®of degree at most — 2. Then,
(@ N(U,B) =04 (Bfd)+e), where

f(d)=3/Vd+2/(d—1)—1/(d—1)Vd ifd<13,
fd)=3/Vd+2/d—1/2dVd ifd>14.

(b)
N(X',B) = 04.(BfD*e) ifd<12,
N(X',B)=0q.(B') ifd>13.
Proof. —(a) The result is already known fdr< 5 by Theorem 2.4. Moreover,
2/(d—1)=1/(d—1)Vd>2/d—1/2dVd>2/(2d—4) if 6<d<13,
2/d—1/2dVd>2/(d—1) —1/(d—1)Vd>2/(2d —4) if d>14.

It thus suffices to show the following estimate fbe 6.

N(U,B) = Odﬁ(BS/\/E+2/(d—1)—1/(d—1)\/E+s + B3/Vd+2/d—1/2dVd+e _|_BB/\/E+2/(2d—4)+5).

We choose again an auxiliary surfatecC P? of degree<, . B3/Vd+e a5 in the proof of
Theorem 2.9 and consider the irreducible componentX afi Y. The total contribution to

N (U, B) from the non-degenerate components of degreéd — 2, 2d —4) is Oy . (B?/(=1)+¢)

by Theorems 2.8 and 1.1 while the contribution from the union of all componentsol” of
degrees > 2d — 4 is Oy . (B3/V3+2/(2d=4)+<) It thus only remains to consider the degenerate
irreducible components of degreel/> 2. But we have shown in the proof of Theorem 2.9 that the
union of the components of degréde- 1 contribute withO, . (B3/Va+2/(d=1)=1/(d=1)Vd+e) |t

is therefore enough to count the rational points on the componeats\df which are irreducible
plane sectiong N1I.

We now count the rational points on the degenerate components of dedtetl’ = B3/4Vd
and cover[1,T] by O(logT) dyadic interval§ R, 2R]. As long as we consider plane sections
X NII where all rational points have multiplicitg d/2, we proceed exactly as in the proof of
Theorem 2.9. There ar®(R*) planes of height< 2R and Oy . ((B*/R)?/%4*< 4 1) points
in each such section with a plane of heightR (see Corollary 1.8). The total number of
rational points on such plands$ of height H(IT) € [R,2R] is thus Oy . (B?/4+e R4=2/34),
Hence asT4-%/3d — B3/Vd-1/24Vi we get the boundDy . (B?3/Vd+2/d=1/2dVdte) when
summing over dyadic intervals. The contribution from a section with a plane of hgight
is Oy ((B3/T)%/3%< 1 1). We thus get the same total bouéy . (B3/Vd+2/d=1/2dVd+<) for
the union of such plane sections with plafiesenY". (We use here thaleg(Y') < .. B3/‘/E+E.)

It remains to count the rational points of heigitB on U which lie on irreducible plane
sectionsX N II with a rational pointP of multiplicity > d/2 > 2. Let us first consider those
planesII for which we in addition have three non-collinear rational pointsXmn IT of height
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< B. ThenH(II) < 6B2 so that we may covell, 63%] by O(log B) dyadic interval§ R, 2R]
and consider plane sections as above Witfil) € [R,2R]. There are then by Lemma 2.11
below and Theorem 1.0, . (R?/?(@=1)+¢) such planedl and O, ((B*/R)'/(@+1)+¢) points
(cf. Corollary 1.8) in each sectiali N II. The contribution taV (U, B) from the union of these
plane sections¥ NI is thus O, . (B3/(d+1)+e R2/(d=1)(d+1)) |f we sum over all the dyadic
intervals, then we get a total contribution 6%, . (B>/(¢+1+6/(d=1)(d+1)+<) rational points,
which is satisfactory.

Let us finally consider the planés for which all rational points oX N II of height< B lie
on a line. There are at mogtrational points or/ N II for such planes since any line witht- 1
rational points lies oY . As we only consider irreducible componeitof Y, we therefore get
at mostOdyg(B‘B/\/E“) rational points of heigh& B on U on the union of such planes. This
completes the proof of (a). To prove (b), use Theorems 2.10(a), 1.1 andi2.8.

2.11. LEMMA. — Let X C P2 be a smooth projective surface of degigever a fieldk of
characteristicO. Then there is a closeld-subschem&’ c P3V with the following properties.

(a) TheK-points ofW, K D k correspond tak -planesll whereX NII contains ai -point of
multiplicity > d/2. The sum of the degrees of the irreducible componerits ixf bounded
in terms ofd.

(b) Suppose thai > 3. Then there are no irreducible componentsifof dimensior> 1.

(c) LetIl be a plane ovek such thatX N II contains no line. Thefl cannot belong to a
one-dimensional irreducible compondit, of W of degree less that(d — 1).

Proof. —(a) Let H be the Hilbert scheme ovér of all closed subschemes B defined by
a form of degreel and{2 C H be the open subscheme of all smooth surfaces of degreet
I CP3xQxP3 be the closed:-subscheme representing all triplgd X, IT) such thatP is
a point of multiplicity > d/2 on X N II. More precisely, it represents the contravariant functor
F:(schemeg,) — (setg that to anyk-schemel3 associates the set #fmorphisms fromB3 to
P2 x Q x P3V for which the composition with any poiripec K — B gives rise to a triple
(P, X,1I) whereP is a K-point of multiplicity > d/2 on X N1I for smoothK -surfacesX, IT of
degreed resp. 1inP3.

The scheme-theoretic imageof I under the projection morphism frol? x Q x P3V to
Q) x PV is a closed subscheme Qfx P3V. Itis clear from the definition off that the fibrel}’
of the projection/ — (2 at thek-point onQ) corresponding t&X c P2 satisfies the first statement
of (a). The second assertion is proved just as in Lemma 2.2(a).

(b) LetW c P2V be the closed-subscheme in the proof of (a). To prove tHah W < 1, we
may assume thdt is algebraically closed. Lef(xy,...,z3) be a form ovek defining X c P3
andg: X — P3V be the Gauss morphism which sends,(..,z3) to (§F/dxq,...,0F/5x3).

It sendsP € X (k) to the tangent pland&s € P3V(k) of X at P. It is well known [26] that
g is a finite birational morphism whe# > 1. Let XV = g(X) C P3V be the dual surface and
let V C XV be the largest open subset such thanduces an isomorphism between! (V)
andV. ThenV consists of the plands C P? for which X N II has exactly one singular poift
and whereP is a quadratic non-degenerate singularity Xm II (see [22, 3.5]). Therefore,
W c XV\V since each pointl on W must be the tangent plari&- of X at a pointP on
X\g~ (V). In particulardim W < 1.

(c) We may again assume thiats algebraically closed. Let C P? be the closed subscheme
of all points such thaP is a point of multiplicity> d/2 on X NTp. Then the restriction of the
Gauss mag: X — P3V to Z N X' is injective as any two point®, @ of multiplicity > d/2 on
a plane section ok must lie on a line onX and hence not belong f&’.

Now let W, be a one-dimensional irreducible componenti6f Then Wy, is equal tog(Zy)
for some one-dimensional irreducible compongpf Z. If Z, c P3 is aline, theri?y, c P3Y
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must be the dual line siné&- contains any line oiX throughP. In particular, ifIl is represented
by a point oni¥;, thenZ, cannot be a line since otherwise it would lie M 1I. HenceZy N X'’

is non-empty so that,, is mapped birationally ontd’, underg. As g is given by forms of degree
d — 1, we must therefore hawkeg(Wy) = (d — 1) deg(Zp) 2 2(d—1). O

3. Threefolds

The following result is due to Broberg and the author [5].

3.1. THEOREM. — Let X C P* be a geometrically irreducible projective threefold of degiee
overQ. Then,

(@) N(X,B)=0.(B/'%+)ford =3,

(b) N(X,B)=04.(B3*) ford > 4.

3.2. THEOREM. — Let X C P" be a closed subscheme of dimension at most three defined
overQ. Suppose thak does not contain any irreducible three-dimensional component of degree
one. Then,

N(X7 B) — On,D,e(B55/18+E)a
whereD is the sum of the degrees of all irreducible component¥ of

Proof. —One reduces to the cage= 3 by the projection argument in the proof of Lemma 1
in [7] and then to the case whet¥ is geometrically integral by the same argument as in
Theorem 2.1. Ifdim X =1 or 2, then the result follows from Pila’'s Theorem 0.1 or by an
elementary projection argument o3 or P2. If dim X = 3, then we apply Theorem 3.1.0

The proof of the following lemma is almost identical to the proof of Lemma 2.2.

3.3. LEMMA. — Let X c P* be a threefold defined by a forf of degreed > 2 over a fieldk
of characteristic0. Let P4V be the dual projective space parametrising hyperplaies P*.
Then the following holds.

(@) There is a closed subschemé c P*V such that thei(-points of W, K O k corresponds
to K-planesIl where X N II contains a surface of degree The sum of the degrees of all the
irreducible components d¥, c PV can be bounded in terms dfande.

(b) Suppose thaX is geometrically integral and not a cone. Thdn C P3Y does not contain
any hyperplane when< d.

3.4. THEOREM. — Let X c P* be an irreducible projective threefold ov€y of degreed. Let
X' C X resp.ZE C X be the complement of the union of all lines resp. planeXoithen,

N(X',B) = Od,s(B5/2+5/3d+E I B65/24+a)7
N(E,B) — Od,E(B5/2+5/3d+€ + 3199/724’6).

Proof. —Suppose first thak is not geometrically irreducible. Then all rational points &n
are singular. We also know from the proof of Theorem 2.1 that the sum of the degrees of
the irreducible components is bounded solely in termd.dt is therefore sufficient to count
rational points of heightt B on O,4(1) irreducible curves (cf. Theorem 2.1) and surfaces. From
Theorems 1.1 and 2.1 we get th¥{=, B) = O, .(B**). We may and shall thus in the rest of
this proof assume that is geometrically integral.

Let P be a rational point of height B on P*. Then, by Siegel's lemma there is a rational
hyperplanel’ of height < (5B)'/* passing throughP. Let us first consider the contribution
from the geometrically reducible hyperplane sectiois) I'. If we combine Theorem 3.2
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and Lemma 3.3, then we conclude that there @ge (B°°/72+¢) such hyperplanes of height
< (5B)Y4. By results of Heath-Brown (see Theorem 2.1 resp. Theorem 2.4), we have
that N (X' N T, B) = 04 (B%/?7%) resp.N(ENT, B) = O4.(B>*¢). The contribution to
N(X',B) resp.N (=, B) from the union of the geometrically reducible hyperplane sections is
thus Oy . (B52/27+55/72+¢) resp. 0,4 (B*+°%/72+2), which are satisfactory since for the first
bound we havé2/27 + 55/72 < 65/24.

It remains to consider the hyperplanes for whishn I' is geometrically irreducible. By
Theorem 2.4 we have that

(3.5) N(X'NT, B) = 0q(BY3+16/%+2)  whend <9,
N(X'NT,B) = 04.(B*9t¢) whend > 9.

There areO(B%/*) rational hyperplane§ of height < (5B)'/4. It is possible to save /16

of both exponents on the right hand side of (3.5) by adapting the argument in [19, p. 581] to
threefolds. This follows from Lemma 5.1 below in which we take the condition (%) to mean that
X NT is geometrically irreducible. The number of rational points of heigh® lying on the

union of the geometrically irreducible hyperplane sectidha I', H(I") < (5B)'/* but not on a
lineonX NI is thus

Oy E(B15(4/3+16/9d)/16+5/4+6) whend < 9’
Od6(315(14/9)/16+5/4+6> whend > 9.

This bound can be expressed@g. (B°/2+5/3d+¢ 4 p65/24+¢) for all d, thereby completing
the proof of the bound foN (X', B).

To estimateN (Z, B) we must also consider the contribution from the union of the lines
on all the geometrically integral intersectiod&N I" where H(T') < (5B)'/4. It is proved in
Section 3.2 of [5] that the contribution &V (X, B) from the lines on the hyperplane sections
is <4, BY/2+3/2d+< 1 p3+< But an inspection of the proof in (op. cit.) reveals that we may
omit the last termB3*¢ if we restrict to rational points o& which do not belong to any of the
geometrically reducible hyperplane sectioxis) T with T of height< (5B8)'/4. This completes
the proof of the bound foN (2, B). O

3.6. THEOREM. — Let X C P* be a smooth projective threefold ov@rof degreei. LetU be
the complement iX of the union of all curves oX with irreducible components of degree at
most three over an extension@f Then,

N(U7B) — Od,e (B15f(d)/16+5/4+8 4 Bl5/32+5/4+8),

where
fd)y=3/Vd+2/(d—1)—1/(d—1)Vd ifd<13,
f(d)=3/Vd+2/d—1/2dVd ifd>14.

Proof. —Let P be a rational point of height B on P%. By Siegel's lemma there is a rational
hyperpland of height< (5B)'/* passing througlP. Also, all hyperplane sectionk NT are
geometrically irreducible by Lemma 6.2. Let us first consider the hyperplanes such thEtis
smooth. Then, we may apply Theorem 2.10%io I after introducing a basis fdr of the same
kind as in the proof of Corollary 1.8. Hence by Theorems 2.10 and 1.1 we obtain that

3.7 N(UNT, B) = Oq (B D+ 1 p2/4+e),
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where the last tern32/4*< corresponds to rational points on the set@f(1) curves (cf.
Theorem 2.8) of degree € [4,d — 2]. There areO(B%/*) rational hyperplane§ of height

< (5B)Y/4. This gives a total contribution oD, . (Bf(D+5/4+e 1 g2/4+5/4+¢) o0 N(U, B)

from the smooth hyperplane sections. But it is possible to $#vé of both exponents on the
right hand side of (3.7) by means of the same technique as in the previous proof. This follows
from Lemma 5.1 and Remark 5.2(b) below in which we take the condition (%) to mean that
X NT is smooth. The outcome is the bouiy . (B5/(4)/16+5/4+e 4 p15/3245/4+¢) for the
number of a rational points of heigkt B on U lying on the union of all smooth hyperplane
sectionsX NT with T of height< (5B)'/4.

It remains to treat the singular (and geometrically irreducible) hyperplane sedfioris. By
Theorem 2.7 there exists another surféce T of degreeOd,E(B?’/‘/E*E) containing all rational
points of height< B on X N T but notX N T itself. This surfac&” can be chosen such that the
degrees of all irreducible componentsiofare uniformly bounded in terms @fands. We have
thus a common uniform bourﬂdﬁ(Bz/‘Hg) for the number of rational points of heigkt B of
the irreducible components dF(NT) NY".

This means that

(3.8) N(UNT, B) = 04 (B¥Va+2/4+<)

forall T.

Next, we prove that there a@, . (B9(D+2)/4%¢) g(d) = 4/(d — 1)d*/? singular hyper-
planesI’ of height< (5B8)'/%. To see this, we first note that the Gauss mag — XV (cf.
the proof of Lemmas 2.11 or 6.3) is a finite morphism of dedree 1) sincedim X = 3 and
g is given by forms of degreéd — 1). Hence the dual hypersurface¥ c P4V is of degree
(d — 1)3d. We may therefore by Theorem 2.7 find an auxiliary hypersurféce P*" of de-
greeO, . (B9(1/4+<) containing all rational points of heigkt (5B8)'/* on XV but not contain-
ing X'V itself. This threefold? may be chosen such that the sum of the degrees of all irreducible
components oV N W is bounded in terms af ande. Also, there are no planes among these
irreducible components by Lemma 6.3. There are therefore (cf. Theorer@351)92/4+5) ra-
tional points of height< (5B)/* on XV N . This together with (3.8) implies that we have
Og..(B3/Vd+2/4+(9(d)+2)/4+¢) rational points of height B on U lying on the union of all
singular hyperplane sectiods N T" with T' of height< (5B)/%.

One can show that:

3/Vd+2/4+ (9(d) +2) /4 < 15f(d)/16 +5/4,

so that this contribution t&V (U, B) is smaller than the contribution from the smooth hyperplane
sections. This completes the proof of Theorem 3.6.

3.9. COROLLARY. — Let X C P* be a smooth projective threefold ovey of degreed > 5.
Then,

N(X,B) = Og. (B (@/16+5/4+c | patey
with f(d) as in Theoren3.6.

Proof. —Let Z be the complement of the open sub&etC X in Theorem 3.6. Thel¥ is a
proper subset ofX of degree bounded in terms dfby Lemma 6.1. Also, sinc& is smooth
andd > 1 there are no planes aki. Therefore,N(Z, B) = O, .(B?*¢) by Theorem 2.1. We
therefore get the desired bound @ X, B) from Theorem 3.6. O
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3.10. Remark— Note thatf(d) < 3/v/d + 2/d. We have thus fod > 5 the bound
N(X,B)=0y E(B45/16\/E-Hts/8d+5/4+e + B2+a)'

This can also be proved more directly by using Theorem 2.9 instead of Theorem 2.10.

4. Fourfolds

We shall in this section prove the following theorems.

4.1. THEOREM. — Let X C P® be a smooth projective fourfold ov€) of degreed. Then the
following uniform estimates hold.

N(X,B) =0y E(327/10x/3+9/5(d—1)—9/1o(d—1)\/E+12/5+s) if 6 < d <13,
N(X,B) =0y E(327/10\/E+9/5d79/20d\/3+12/5+5) if 13 < d < 25,
N(X,B)=0,4.(B*¢) ifd>25.

4.2. THEOREM. — Let X C P be a smooth projective fourfold ov€y of degreed. Let= be
the complement of the union of planesXnThen,

N(Z,B) =0y E(327/10\/E+9/5(d71)79/10(d71)\/E+12/5+5) if 6 <d<13,
N(E,B) = Od’e(B27/10\/E+9/5d—9/20d\/3+12/5+8) if 13 < d < 34,
N(E,B) = 04 (B3Y/%%¢) if d > 34.

4.3. Remark— The bounds can also be expressed in the following way.
N(E,B) _ Od_g(Bgf(d)/10+12/5+6 + 3131/45+6), where

fld)y=3/Vd+2/(d—1)—1/(d—1)Vd if6<d<13,
fd)y=3/Vd+2/d—1/2dVd if d>13.

Proof of Theorem 4.2. ket K be an algebraic closure &) and Z C X be the reduced
subscheme such that the underlying closed set is the union of all closed cuoreX where
all irreducible components of' x K are of degree at most three. Théim Z < 3 and the
sum of the degrees of the irreducible components’dé bounded solely in terms af (see
Lemma 6.1). Also, by Lemma 6.2 each three-dimensional irreducible compongnt df is of
degree divisible byi. We have therefore by Theorem 3.4 that

N(Z N E, B) _ Od 6(35/2-‘1-5/3(1-‘1-8 + B199/72+E)
which is smaller than the desired upper boundX¥qE, B). It is thus sufficient to count rational
points on the compleme#t = X\ Z.
Let P be a rational point of height¢ B on P®. Then, by Siegel's lemma there exist four
rational hyperplaneB, IV, T, T"” such thal_ N T NT" NI’ = P and
H(D)H(T")H(I"YH(I") < (6B)*/°.

We may assume thdl (T') < H(I”) < H(I') < H(I"). ltis then sufficient to count rational
points on section& NT N T’ with pairs of rational hyperplands+# I where H(I") < (6 B)'/5
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and H(I')H(I")? < (6B)*°. Note also that all hyperplane sectioAsN T' are geometrically
irreducible by Lemma 6.2.

Let us first consider the hyperplanégor which X N T" is smooth. Then, by Theorem 3.6 we
have that

(44) N(U N F7B) — Od7E(B15f(d)/16+5/4+6 + 315/32+5/4+6).

There areO(B°%/®) rational hyperplane¥ of height< (6B)'/°. Hence by Lemma 5.1, we get
a total contribution Ode,E (324(15f(d)/16+5/4)/25+6/5+s + B24(15/32+5/4)/25+6/5+5) rational
points of height< B on U lying on the union of all smooth hyperplane sections) I' with I" of
height< (6B)'/5. After multiplying out, we get the boun@, . ( B/ (4)/10+12/5+e | B57/20+<)
for the number of these rational points, which is satisfactory.

We now turn to the hyperplanésfor which X N T is singular. For rational point® on such
X NT we shall make use of the second hyperpl&heontainingP” mentioned in the beginning
of the proof. Letl’ < T" andT'T’? < B*/>. We begin by estimating the number of paiF5{”)
of rational hyperplanes of height(I") € [T, 2T resp.H (L) € [T”,2T"] whereX NI'NI" isa
geometrically irreducible surface. Lefd) = 1/(d — 1)d'/* +11/18 +6/5. We claim that there
areOy . (BM®+¢) such pairsT,T").

If X NI is singular, then the rational hyperplaftemay be regarded as a rational point
of height < T on the dual varietyXV c P®V. The dual hypersurfac&V c P% is of degree
(d — 1)*d. We may therefore by Theorem 2.7 find an auxiliary hypersurfacec P>V of
degree0, . (T5/(¢=1d"/"+<) containing all rational points of height 7 on X" but not X
itself. This fourfold W may be chosen such that the degrees of all irreducible components
of XV N W are uniformly bounded in terms of and <. Also, by Lemma 6.3, there are no
three-dimensional irreducible components of degree on& ¥m W. There are therefore by
Theorem 3.20, . (T°%/18+¢) rational points of heigh&k 7' on each irreducible component
of X¥NW and hence()d’g(T55/18+5/(d—1)d1/4+5) rational points of heigh< 7" on XV. In
particular, we find that there ar@, . (755/18+5/(d-1)d"/*+¢) possibilities forT. Also, there
are O4.(T'%) possibilities forI”. It therefore follows from the assumptioris < 7" and
TT'3 < B*/® that there ar®,, . (B"+¢) such pairs¥,T").

To estimateN (U NT' NI, B), we introduce new coordinates forn I’ = P3 (cf. part (iii)
of [19, Lemma 1]) such that the new height does not exceed the old height given by the
embedding NI’ c P5. We may then by Theorem 2.7 find an auxiliary hypersurldcd degree
Od,s(BS/\/E+E) onI' N IY = P? containing all the rational points a8 NT' NIV c P3. Also,
each irreducible component of the intersectionXoh Y NT' NI C P3 not lying in Z = X\U
is of degree> 4. We thus conclude tha¥ (U NT' NI, B) < B3/Vd+2/4+¢ py Theorem 1.1 and
the arguments in the proof of Theorem 2.6(a).

After summing over dyadic interval¥’, 27 resp.[T”,2T"] whereT < T’ andTT’? < B*/,
we obtainO, . (BMd)+3/Vi+2/4+) rational points onlJ of height< B on the union of all
geometrically irreducible intersectiod$ N T" N IV with hyperplanes wheré& N T is singular,
H(T) < H(I')andH(T)H(I")? < (6B)*/°. This is enough, as

h(d) +3/Vd+2/4 < 9f(d)/10+12/5.

We now consider the contribution from rational points on the sectiomsI’ N IV which are
geometrically reducible. Then, by Lemma @4andI” belong to the singular locus ofV C
P>V, By Theorem 3.2 and Lemma 6.3 there are thiug. (7°%/18+¢) resp.O, . (T75%/18+¢)
possibilities for such pairs of rational hyperplaneés(resp.I”) of heights H(T") € [T, 2T
resp.H(I') € [T”,2T"]. After summing over dyadic intervalq’, 2T’ resp.[1”,2T"] we obtain
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Oy, (B%/45%¢) pairs ,T') whereX NT'NT" is geometrically reducible and whefé(T") <
H(T) and H(T)H(I") < (6B)%/°. Also, if Y is an irreducible component of degree4
on X NT' NI, then we have by Remark 28, .(B70/45*+¢) rational points of height B
onY outside the lines. The total contribution 26(U, B) from all such subvarietie¥ is thus
Oy, (B76/45+55/45+2) ‘which is satisfactory.

We still have to consider the contribution from the irreducible compongnt$ degree< 4
on intersectionsX NT" NI as above. But it is shown in Lemma 6.1 that all these surfaces lie
on a proper closed subsgt of X of uniformly bounded degree. We therefore get the same
boundN (Z, NE, B) = Oy . (B/?1+5/3d+e 4 B199/72+¢) a5 we obtained foN (Z NZ, B). This
completes the proof of Theorem 4.20

Proof of Theorem 4.1. ¥ follows from the proof of Lemma 6.1 that all lines ok lie on
a proper closed subs&t of X degree bounded solely in terms @fAlso, by Lemma 6.2 we
have that the degree of each three-dimensional irreducible compon@rtisfdivisible by d.
Therefore,N (W, B) = O4..(B3¢) by Theorem 3.1. To complete the proof, use the bound for
N(X\W, B) given by Theorem 4.2. O

For hypersurfaces defined by diagonal forms one can give a more explicit version of
Theorem 4.2 by means of the following geometric lemma.

45. PROPOSITION — Let X ¢ P® be a smooth fourfold over a fieldl of characteristicO
given by an equation
aoq:g—&-n-—l—ag,ycgzo7

whereay, . ..,as € k andd > 5. Then the unior¥ of all planes onX is equal to the union of the
fifteen closed subsets given by the equations,

aoxg + aia:f = aj:v;l + akmi = ale + amxd 0.

Proof. —Chooseith I’OOtSa;/d in an algebraic closur& of k. We may then write the equation
as
(ag/ “w0)* 4 -+ + (a5 "a5)* = 0
and reduce to the Fermat hypersurfager - - + ¢ = 0 over K treated in [12, p. 54]. O

4.6. COROLLARY.— Letny(B) be the number of solutions in positive integersy; < B,
0 < <2, tothe equation

af+ ol + 2§ =yl + i + 5,

where(xo, x1,22) # (vi, Y4, yx) for all six permutationgs, j, k) of (0, 1,2).
Then,

ng(B) = Od78(327/10\/3-&-9/5((1—1)—9/10(d—1)\/3+12/5+s) if 6 <d<13,
na(B) = Oy E(327/10\/E+9/5d49/20d\/3+12/5+5) if 13 < d < 34,
na(B) = Oy (B¥Y/*5%¢) it d > 34.

Proof. —It is clearly sufficient to establish these estimates for the primitive solutions. Also, by
Proposition 4.5 we find that the rational points represented by positive sixtuples as above all lie
on=. The result is thus a special case of Theorem 412.
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4.7. Remarks— Note that27/10v/d + 9/5d — 9/20dv/d + 12/5 < 3 whend > 25. We then
get an asymptotic formula
Na(B) = 6B+ 04,.(B*°)
for the numbetV,(B) of all solutions in positive integers;, y; < B, 0 < ¢ < 2, to the equation
o+ i + 28 = y§ + ui +v5.
This improves upon [8] where the authors get such a resutt fo32.
Ford > 9 we get:
Nd(B) _ Od,s(B7/271/80+6)-
This should be compared with Hua'’s estimate (cf. [20,11])

Nu(B) = Oq.(B7/%*¢)

from 1938. This was still the best known result until the paper of Heath-Brown [19] appeared. He
gives an improvement on Hua'’s estimate dog 24. There are no improvements of Hua’s bound
for lower d in [8]. But after sending my paper to Browning and Heath-Brown, | immediately
received a second manuscript on equal sums in which they prove that

ng(B) = 0q(B"/*7?), §>0,

for d > 11. The main new ingredient is Lemma 6.1(a) of this paper, which | communicated to
them earlier. Their method uses special properties of the fgrm = + 2§ — 2§ — 2§ — z¢.

5. Hyperplane sections

We shall in this section formulate a lemma about hyperplane sections that we use at several
places. It is an extension of a technique used by Heath-Brown [19, p. 581] for surfd@és in

5.1. LEMMA. — Letn,d > 1 be two integers and suppose that we have a uniform bound
N(Y,B) = Oy 4.(BID7),

for all hypersurfaces” ¢ P"~! of degreed defined oveRQ satisfying a certain propert{s)
independent of the choice of coordinates.

Let X ¢ P™ be an irreducible closed hypersurface of degree d defined @Qvandn(X, B)
be the number of rational points of heigkitB on X which lie on the union of all intersections
X NT with rational hyperplane¥ € P"V(Q) satisfying(%) and H(T') < ((n+1)B)'/™. Then,

n(X, B) _ On.d E(Bg(d)7g(d)/n2+(n+1)/n+s).
Proof. —-Let I' C P™ be a rational hyperplane. Then, by [19, Lemma 1] there exists
homogeneous coordinatég, . . ., ¥, ) for I" such that the following holds.
(i) Eachy; is a linear combinatiow; = m,ozo + - -+ + My, for a primitive (n + 1)-tuple
(mio, ..., msy) Of integers.
(i) Let P;,1 < i < n, be the rational point ofi defined by
Yy1="=Yi-1=Yir1="=yn=0.
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Then,
HIO)< H(P)...H(P,) < H(),

where the implied constants only dependrorfNote thatH (P;) = max |m;;|, 0 < j < n.)

(iii) Let (y1, - - -, y,) be a primitive integrah-tuple representing a rational poifftonI". Then
ly:| < H(P)/H(P;) for 1 <i < n with the implied constant depending only an

Suppose now that the rational points are ordered suctifhgt) < --- < H(FP,). By (iii) and
the assumption we get that

€

N(X AT, B) <nae (B/H(P))" D

wheneverX NT satisfies (%).

We now consider the hyperplan&sspanned by: rational pointsp, ..., P, as above and
whereC; < H(P;) < 2C; for some constants < C; < --- < C,, with C; ... C,, <, BY/". We
may assume that the coordinatedfare ordered such thati;g| > - - - > |m1,|. There are then
unique integers;, r;,i € {2,...,n}, satisfying:

mio = qimio + 71, 0<ry < |myol.

Let@Q; # P1,i€{2,...,n}, be the rational point on the line betwe&n and P; represented
by the(n + 1)-tuple wherez; (Q;) = m;; — ¢;mq; for j € {0,1,2,...,n}. Then,

|(E0(Q74)| = |7’2| < |m10| <2C; and

|$j(Qi)| < Imij| + @il Imaj] < [mij| + @il lmaol = [maj| + [maio — 7| <4C; + 2C1 < 6C;

forje{1,2,...,n}.

The bounds for thez-coordinates giveO(C*') possibilities for P;, and O(C,C?)
possibilities forQ;, i € {2,...,n}. There are, therefore)(C?"(Cs...C,)") hyperplaned’
spanned by point®;, ..., P, as above. For each suEhwe have

N(X NT,B) €p.q. (B/Cy)ID+e

wheneverX NI satisfies (%).

This givesOmd’E(Bg(d)“c*f"’g(d)(02 ...C,)™) rational points of heigh& B on the union
of these hyperplane sections. BM{Y, B) = O(B") for hypersurface§” c P"~! overQ. We
may thus assume thafd) < n so that

C I (Cy L C) < (C1Cy ... C) 9@/ | plnt1)/n—g(d)/n®

There are thus
On.d 5(Bg(d)*g(d)/n2+(n+1)/n+€),
rational points of height< B on the unions of these hyperplane sections. The same esti-

mate remains valid after summing over all dyadic intenjéls 2C;] for 2-powersC; with
C,...C, <, BY™. This completes the proof of Lemma 5.10

5.2. Remarks— (a) We made a very specific hypothe&l$I') < ((n + 1)B)/™ about the
heights of the hyperplanes. This hypothesis is natural for the applications since any rational
point onP" lies on such a hyperplarieby Siegel's lemma.
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(b) There are many variants of Lemma 5.1. It is often useful to consider hyperplane sections
when counting rational points on open subsets of projective varieties like the complé&rent
of all lines onX C P". It is clear from the proof above that if we start with a hypothesis for
N(X'NT,B) instead ofN(X NT, B), then we get the same bound @ X', B). We shall in
this paper count points on other open subsets like the complement of all curves of degree at most
three or the complement of all surfaces of degree at most four contained in a projective linear
three-dimensional subspace (cf. Lemma 6.1). It is obvious that the proof of Lemma 5.1 gives the
same kind of implications as above.

(c) One can formulate versions of Lemma 5.1 for closed sub&ets P™ of higher
codimension. See [4, Lemma 7] for such a result for surfaces.

6. Lemmasfrom algebraic geometry

6.1. LEMMA. — Let X C P™ be a smooth hypersurface of degree n + 1 over a fieldk. Let
K be an algebraic closure df. Then there are proper closed subsgis resp.Z,, of X with the
following properties.

(i) Let Z; be the union of all closed curves on X such that all irreducible components
of X x K are of degree at most three. Th&h is a proper closed subset &f.

(ii) LetZ, be the union of all closed surfac&son X such that all irreducible components of
X x K are of degree at most four and contained in a projective lirfegaubspace oP".
ThenZ, is a proper closed subset &f.

Moreover, the sum of the degrees of the irreducible component ofesp. Z,, can be

bounded in terms af if we endowZ, resp.Z,, with their reduced scheme structures.

Proof. —(i) There are only finitely many Hilbert polynomial3(z) = dx + e occurring among
reducedclosed curves of degréan P"™. We have in fact < §2 by the inequality of Castelnuovo
[2]. Let us fix one such polynomidP(z) = dz + e. Let

hp x :(schemegy ) — (sety

be the contravariant functor that associates to AnrgchemeB the set of subschemes C
X xj, B flat over B where fibers over points @B have Hilbert polynomialP(z). Thenhp x
is representable by a projective scheffig x over K (see [13, pp. 295-296]). Lefip x C
X xy, Hp x be the corresponding universal family of curvesXmvith Hilbert polynomialP(z)
and letZp x be the scheme-theoretic image%f x under the projectioX’ x Hp x — X. Then
Zp,x is a closed subscheme &f by the main theorem of elimination theory.

We now prove that/p x # X if P(x) =dx + e andd = 1,2, 3. It suffices to do this in the
case wherdy is algebraically closed and there is an integral cutven X C P™ with P(z) as
Hilbert polynomial. If Zp x = X, then there exists a famil§ C X x; B as above wheré is
irreducible,dim S = dim X, and wheres projects ontaX . Then, by [25, pp. 550-551], we have
the following relations between the Kodaira-dimensierns S, X, B andV'.

k(C) +dim B > k(S) 2 k(X) =dim X.

It is well known that the resolution of an integral curve of degree at most three is of genus at
most one. Hence(C) < 0 anddim X — 1 = dim B > dim X. We have thus shown that the
assumptior”p = X leads to a contradiction.

To get (i), letZ; be the finite union of the&’p x above with its reduced scheme structure. To
prove the last assertion, it suffices to give a uniform bound for the degree ofgaghLet H,
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be the Hilbert scheme of all hypersurfacEsc P" of degreed and(); be the open subscheme
of all smooth hypersurfaces of degréeFurther, letl p be the Hilbert scheme of all closed
subschemeg’ C P with Hilbert polynomial P(z). Then, there is a closed subschefg of
Hy x Hp representing pair&”, X ) whereC is a closed subscheme &f. Let Sp C P" x I p be
the corresponding universal family of curvesiBf andZp C P™ x H, be the scheme-theoretic
image of Sp under the projection fronP™ x Hy x Hp to P™ x Hy. ThenZp is a closed
subscheme dP™ x H, sinceH p is projective. Now choose a projective embeddiigc P™.
ThenZp C P™ x P™ is defined by finitely many bihomogeneous polynomials. Therefore, we get
a uniform bound for the degree &fy x for all X € Q4(K) sinceZp x is the fibre atX € Q4(K)
of the projection fromZp C P™ x P™ to P™. This completes the proof of the uniform bound
for the sum of the degrees of the irreducible componentegfZ, ) in (i).

The proof of (i) is almost identical to the proof of (i). All surfaces of deg¥ée P™ contained
in a projective lineas-subspace oP™ have the same Hilbert polynomi&(z) with §22/2 as
leading term. This time we shall not consider the same contravariant fuhgter as in (i).
Instead we consider the closed (contravariant) subfunctor

gp x : (schemesy) — (sety

of hp x defined as follows. To any<-schemeB, let gp x(B) be the set of subschemes
S C X xi, B flat over B where fibers over points & have Hilbert polynomialP(z) and are
contained in a three-dimensional projective subspace. Fhep is representable by a closed
subschemé& p x of the projective scheme representing x (cf. [13]). LetSp x C X X Gp x
be the corresponding universal family of surfacesowith Hilbert polynomialP(z) andZp x
be the scheme-theoretic image 9 x under the projectionX x Gpx — X. ThenZp x is
a closed subscheme of. We can now proceed exactly as before and prove that # X
provided that we know that(Y’) < 1 for any integral surfac& c P? of degree at most four
over an algebraically closed field.

If the singular locus ofY” is of dimension one, choose a generic pencil of plane sections.
The generic member is then an integral singular cdrvef degrees < 4. The resolution of”
is therefore of genust 1 and x(Y") < 1. Suppose next that the singular locusofis zero-
dimensional or empty. Then is normal and Gorenstein. The cages 1,2 are trivial and the
case) = 3 is a consequence of the classification of cubic surfaces with isolated singularities [6].
So it suffices to treat quartic surfaces®¥. Then the trivial sheaf is a dualizing sheaf. Also,
sinceY is normal, it follows that there are no regular functions on the smooth igafsY” apart
from the constant ones. Therefore, any plurigenus of a smooth compactificafibis @t most
one. Hence:(Y) < 0 in this case and(Y) < 1 for any integral surfac&” C P? of degree at
most four. This implies in its turn by arguments almost identical to those in (iY4hat Zp x is
a proper closed subschemeXfwhich satisfies (ii). The proof of the uniform bound ftwg(75)
is the same as the proof for the uniform bounddeg(Z,). O

6.2. LEMMA.— Let X C P™ be a hypersurface of dimension=n — 1 > 3 over an
algebraically closed field of characteristic Suppose thak is smooth or of degree at lea3t
with an ordinary double point as its only singularity. Then the class grouX = Z and is
generated by the class of a hyperplane section.

Proof. —This is a well known theorem (Noether-LefschetzXifis smooth (see [18, p. 180]
for an algebraic proof). It therefore suffices to consider the case where there is an ordinary
double pointz on X. Let = — X, resp.Il — P, be the blow-ups ofX, resp.P = P", atx
and letE, resp.w, be the exceptional loci. Theg is a smooth closed subvariety of and
E a non-singular quadric im = P"~1. We may clearly assume that= (1,0,...,0) after a
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coordinate change. Thdhis the closed subvariety @& x P"~! with biprojective coordinates
(0, -y TniY1s-- -, Yn) given by the equations;y, = zxy; for 1 <j <k < n.

SupposeX C P" is defined by the forn¥'(z,...,x,). Choose a representation &f as
a finite sumX,G,Q, whereG, is a monomial of degred — 2 in (xq,...,z,) and @, a
quadratic form in(zq,...,z,) for eachA. ThenZ C II is the closed subvariety defined by the
bihomogeneous polynomidl G (zo, - .., 2.)Qx(y1,-- ., yn) Of bidegree(d — 2,2). HenceZ=
is the hyperplane section & in P™ under the embeddin®™ x P*~! ¢ P™ given by alll
bihomogeneous monomials of bidegrge— 2,2). Therefore, the restriction map froficII
to Pic= is an isomorphism by [18, p. 180]. But it is well known tHaicIl = Z & Z and is
generated by the classesmofand the image iicII of the hyperplane class iRic P. Hence,
the contravariant functorial map frofic P = Z to Pic(Z\ F) is an isomorphism. To conclude,
use the canonical isomorphisf@$(X ) = C1(X\z) = Pic(X\z) =Pic(E\E). O

We now study the dual varietyf ¥ c P™V of hyperplane§’ c P for which X NI is singular.

6.3. LEMMA. — Let X C P™ be a smooth hypersurface of dimension 1 > 3 over a fieldK
of characteristic0. Then X" c P™V does not contain anyn — 2)-dimensional irreducible
components of degree

Proof. —Let F'(xg,...,z,) be a form of degred over K definingX C P™. Letyp: X — XV
be the Gauss map which serds, ..., z,) to (6F/dxy,...,0F/éx,). Any (n— 2)-dimensional
component ofXV of degree 1 is then the image of a closed subebf X defined by two
formsG andH of degreel — 1 which are linear combinations 6¥'/dz, . ..,0F/éx,. We may
after a coordinate change assume that the coefficie®8' afz, (resp.dF/dz1) in G (resp.H)
are different from zero.

The homogeneous coordinate rifig= K|[zo,...,2z,]/(F) is a unique factorization domain
(UFD) since C1(X) = Z and X is projectively normal [17, p. 147]. In particular, any
homogeneous prime ideélof height1 of R is principal and generated by the imagernof
some formF™ € K|z, ..., 2.

We now show thal? is of codimension at least two iX. Suppose not. Then there is an
irreducible component of W of codimension one oX . Let I C R be the homogeneous prime
ideal of heightl consisting of all elements which vanish éh Then, asR is anUFD we may
find a form F* € K|xy,...,z,] such that the image of* in R generated C R. But G and
H vanish onZ c P°. By the homogeneous Nullstellensatzand H must therefore belong to
the prime ideal ofK [z, ..., x,] generated by and F*. This implies in its turn tha#™* is a
common factor of7 and H, sinceG and H are of lower degree thah. But then any common
zero of the formd™, 6 F/éxa, . ..,0F/dx,, would be a singular point o, which is impossible
by hypothesis. Hencd” must be of codimension at least twoih The imagep(W) is therefore
of dimension less than — 2. This completes the proof.o

6.4. LEMMA. - Let X C P" be a smooth hypersurface of dimension- 1 > 3 over an
algebraically closed field of characteristic Let L ¢ P™V be a line corresponding to a projective
linear subspacé” C P™ of codimension two such th&f N V' is reducible. Therl. belongs to
the singular locus oY c P™V.

Proof. —Let Q be a point orlP™" andI' C P™ be the hyperplane corresponding@o It is
well known [22] thatQ lies outside the singular locus dfV if and only if the intersection
X NT is smooth or has an ordinary double point as its only singularity. Also, by Lemma 6.2
X NV isirreducible for any projective linear subspdce— P" of codimension two contained
in a hyperpland whereX N I" is smooth or has an ordinary double point as its only singularity.
Hence any point) on a lineL ¢ P®V as in Lemma 6.4 must belong to the singular locus
of XV. O
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