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MULTILINEAR EIGENFUNCTION ESTIMATES AND
GLOBAL EXISTENCE FOR THE THREE DIMENSIONAL

NONLINEAR SCHRÖDINGER EQUATIONS

BY NICOLAS BURQ, PATRICK GÉRARD AND NIKOLAY TZVETKOV

ABSTRACT. – We study nonlinear Schrödinger equations, posed on a three dimensional Riem
manifoldM . We prove global existence of strongH1 solutions onM = S3 andM = S2 ×S1 as far as the
nonlinearity is defocusing and sub-quintic and thus we extend results of Ginibre, Velo and Bourga
treated the cases of the Euclidean spaceR

3 and the torusT3 = R
3/Z

3 respectively. The main ingredient
our argument is a new set of multilinear estimates for spherical harmonics.

 2005 Elsevier SAS

RÉSUMÉ. – On étudie l’équation de Schrödinger sur une variété de dimension troisM . On démontre
l’existence globale en temps de solutions fortesH1 si M = S3 ou S2 × S1, pour les non linéarités sou
quintiques et défocalisantes. On étend ainsi les résultats de Ginibre et Velo et Bourgain qui on
les cas de l’espace euclidienR3 et du toreT

3 = R
3/Z

3 respectivement. L’ingrédient essentiel de no
démonstration est l’obtention de nouvelles estimées multilinéaires pour les harmoniques sphérique

 2005 Elsevier SAS

1. Introduction

Let (M,g) be a compact smooth boundary-less Riemannian manifold of dimensiond � 2.
Denote by∆ the Laplace operator associated to the metricg. In the cased = 2, we discovered in
[8] a bilinear generalization of the well-known Sogge estimates [22–24] forLp (p � 2) norms of
L2 normalized eigenfunctions of∆. These bilinear estimates play a central role in the ana
of [8] concerning the nonlinear Schrödinger equation (NLS) posed onM . The goal of this pape
is to generalize our bilinear estimate of [8] to all higher dimensions and to deduce new
regarding the global existence of solutions for NLS whend = 3.

We consider thus the Cauchy problem for NLS

iut + ∆u = F (u), u|t=0 = u0.(1.1)

In (1.1),u is a complex valued function onM . The nonlinear interactionF satisfiesF (0) = 0
and is supposed of the formF = ∂V

∂z̄ with V ∈C∞(C;R) satisfying

V (eiθz) = V (z), θ ∈ R, z ∈ C,(1.2)
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256 N. BURQ, P. GÉRARD AND N. TZVETKOV

and, for someα > 1, ∣∣∂k1
z ∂k2

z̄ V (z)
∣∣� Ck1,k2

(
1 + |z|

)1+α−k1−k2
.

The numberα involved in the second condition onV corresponds to the “degree” of the
nonlinearityF (u) in (1.1). Under these assumptions onF , NLS can be seen as a Hamiltonian
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equation in an infinite dimensional phase space. It follows from that Hamiltonian structur
smooth solutions of (1.1) enjoy the conservation laws∥∥u(t, ·)

∥∥
L2 = ‖u0‖L2 , E

(
u(t)

)
= E(u0),(1.3)

where the energy functionalE reads as follows,

E(u) =
∫
M

|∇gu|2 dx +
∫
M

V (u)dx.(1.4)

In view of (1.3) and (1.4), the local well-posedness of (1.1) inH1(M) (with time existence
depending upon theH1 norm) is of particular importance. If for exampleV � 0 and(d− 2)α �
d + 2, (1.3) provides anH1 a priori bound and thus the local well-posedness of (1.1) inH1

implies the global well-posedness inH1. Let us notice, on the other hand, that the local w
posedness of (1.1) inHs, s > d/2 can be obtained by the classical energy method (see [21
M is two dimensional, the well-posedness of (1.1) inH1(M) is established in [5]. In this cas
the issue is to get an improvement ofε derivatives with respect to the energy method. In [5],
ε gain is achieved by a Strichartz type inequality (with derivative loss). Therefore, ford = 2, the
H1 well-posedness theory for (1.1) is complete. Moreover, in the recent paper [8], we es
a sharpHs theory in the caseM = S2, as far as cubic nonlinearities are concerned.

In three dimensions, theH1 theory for (1.1) becomes much harder. In the cased = 3, the
Strichartz type inequalities established in [5] yield the local well-posedness of (1.1) inHs,
s > 1, as far asα � 3. Notice that this is already a significant improvement with respect to
energy approach. Unfortunately, it barely misses the crucialH1 regularity. However, in [5], we
succeeded in using the conservation laws (1.3) in order to getglobalHs, s > 1 strong solutions
By “strongHs solutions”, we mean the existence, the uniqueness, the propagation of reg
and the uniform continuous dependence in bounded subsets of initial data inHs. Moreover, the
methods of [5] also yield uniqueness ofH1 weak solutions.

On the other hand, ifM is the torusT3 andα < 5, the global existence ofH1 strong solutions
of (1.1) was established by Bourgain [1]. The approach in [1] is based on an ingenious
multiple Fourier series and thus relies deeply on the particular structure of the torus.
paper, we will prove the counterpart of this result of Bourgain to the cases of the sphereS3 and
the product manifoldS2

ρ × S1, whereSd
ρ , d � 1 is the embedded sphere of radiusρ in R

d+1.

THEOREM 1. –Let M = S3 or M = S2
ρ × S1 endowed with the standard metrics. Supp

thatα < 5 and

V (z) �−C
(
1 + |z|

)β
, β < 10/3.

Then there exists a spaceX continuously embedded inC(R;H1(M)) such that for every
u0 ∈H1(M) there exists a unique global solutionu ∈X of the Cauchy problem(1.1). Moreover

1. For every T > 0, the mapu0 �→ u ∈ C([−T,T ];H1(M)) is Lipschitz continuous o
bounded sets ofH1(M).

2. If u0 ∈Hσ(M), σ � 1, then for everyt ∈ R, u(t) ∈Hσ(M).
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NONLINEAR SCHRÖDINGER EQUATIONS ON 3-MANIFOLDS 257

Let us make some comments about this result. The condition

V (z) � −C
(
1 + |z|

)β
, β <

10
3

,
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is classically (see e.g. Cazenave [10]) imposed to ensure that the energy controls theH1(M)
norm (defocusing case).

The spaceX will be defined in Section 3 as a local version of Bourgain spaceX1,b. It is used
to ensure the uniqueness of solutions. However, observe that ifσ > 3/2, then the uniquenes
holds in the classC(R;Hσ(M)). In particular, our theorem implies that for any smooth datau0,
there exists a unique global smooth solution.

In the appendix of this paper, we show that Theorem 1 cannot hold forα > 5. The proof is
based on an adaptation of an argument of a recent paper of Christ, Colliander and Tao [11
setting of compact Riemannian manifolds. The critical caseα = 5 is still open.

Let us recall that the result of Theorem 1 was known if we replaceM with the Euclidean spac
R

3 (see Ginibre and Velo [13] and Kato [17]). To get theH1(R3) well-posedness of (1.1), fo
α < 5, it is sufficient to apply the Picard iteration scheme to the Duhamel formulation of (1
the spaceL2

T W 1,6(R3) ∩ L∞
T H1(R3), whereT depends only on‖u0‖H1 . The approach onR3

breaks down in the case of a compact manifold since the corresponding Strichartz type es
have to encounter some unavoidable derivative losses (see [1,5,6]). In order to deal wi
losses, bilinear improvements of the Strichartz inequalities are very useful (see e.g. [1
28,8]). This is the approach that we will adopt in the proof of Theorem 1 whenM = S3. The
proof in the caseM = S2

ρ × S1 is more intricate. The bilinear Strichartz estimates that we
able to prove in the caseM = S2

ρ × S1 are considerably weaker compared to the correspon
estimates forM = S3. However, they are sufficient to treat the caseα � 4. The crucial new
point involved in the analysis onS2

ρ × S1 is that we can prove a trilinear improvement of t
Strichartz estimate which enables one to treat the caseα = 5 for data inHs(S2

ρ × S1), s > 1.
A suitable interpolation (in the framework of a Littlewood–Paley analysis) between the bi
and the trilinear approach finally completes the argument in the caseM = S2

ρ × S1.
The results of Ginibre and Velo [13] onR3, of Bourgain [1] onT

3 (and more recently o
the irrational three dimensional torus [4]), and Theorem 1 were obtained for seemingly di
reasons in each case. For the torus the eigenfunctions enjoy very good algebraic prope
Lp bounds whereas the spectrum is “badly” localized. On the other hand for the sphereS3, the
eigenfunctions present “bad” concentration properties but the spectrum is very well loc
and the manifoldS2 × S1 has an intermediate behavior. The balance between these prop
(concentration of eigenfunctions and repartition of the spectrum) leads to the suggestio
similar result might hold foranythree dimensional manifold. The proof of this conjecture wo
necessitate a general analysis of the Schrödinger group, unifying these different appr
which seems to be out of reach at the present moment.

TheH1 theory for (1.1) in dimensionsd � 4 remains an open problem. The only known res
in this direction is that of Bourgain [2] who getsglobalHs(T4) solutions, ifα � 2, s > 1.

It seems that the obstructions to extending our approach to high dimensions are not
technical nature since in [6] we have shown that for noα ∈ ]1,2] (even very close to1), the
Cauchy problem (1.1), posed onS6 can have strongH1 solutions in the sense explained abo
Interestingly, the result of [6] is in strong contrast with the situation onR6 (see [7]).
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258 N. BURQ, P. GÉRARD AND N. TZVETKOV

We now turn to the crucial step in the proof of Theorem 1. To that purpose, we introduce the
following notation: givenν � 1, we set

Λ(d, ν) :=


ν1/4 if d = 2,

ν1/2 log1/2(ν) if d = 3,
(d−2)/2

f
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very
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of we
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to the
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nctions

[9].
ν if d � 4.

With this notation, we have the following multilinear eigenfunction estimates.

THEOREM 2. –There existsC > 0 such that, ifHp andHq are two spherical harmonics o
respective degreesp andq,

‖HpHq‖L2(Sd) � CΛ
(
d,min(p, q) + 1

)
‖Hp‖L2(Sd)‖Hq‖L2(Sd).(1.5)

Moreover for anyp � q � r � 0, the following trilinear estimates hold

‖HpHqHr‖L2(S2) � C
[
(1 + q)(1 + r)

] 1
4 ‖Hp‖L2(S2)‖Hq‖L2(S2)‖Hr‖L2(S2).(1.6)

Estimates(1.5)and (1.6)are sharp, apart from the logarithmic loss in(1.5) for d = 3.

Remark1.1. – As an easy consequence of (1.5), one can prove the corresponding esti
(1.6), ford � 3,

‖HpHqHr‖L2(Sd) � CΛ(d, q + 1)(1 + r)
d−1
2 ‖Hp‖L2(Sd)‖Hq‖L2(Sd)‖Hr‖L2(Sd).(1.7)

Indeed it suffices to use that theL∞(Sd) norm ofHr is bounded by(1+r)(d−1)/2 (Weyl bound)
and (1.5) for the productHpHq .

In view of further possible developments, we will also prove in Section 2 that for e
η ∈ ]0,1] there existsCη such that

‖HpHqHr‖L2(S3) � Cη(1 + q)
1
2+η(1 + r)1−η‖Hp‖L2(S3)‖Hq‖L2(S3)‖Hr‖L2(S3).(1.8)

In fact, we deduce Theorem 2 as a consequence of a more general statement conce
approximated spectral projectorsχ(

√
−∆ − λ), λ � 1, χ ∈ S(R), where∆ is the Laplace

operator on an arbitrary compact Riemannian manifold(M,g) (see Theorem 3 below).
Notice that whenp = q = r, apart from thelog loss in3d, we recover some particular case

theLp − L2 linear estimates of Sogge [22–24]. In the proof of Theorem 1, we typically a
Theorem 2 forp � q and thus estimates (1.5), (1.6) are used in their full strength.

In the cased = 2, estimate (1.5) has already appeared in our previous paper [8]. In [8
proof is inspired by Hörmander’s work [16] on Carleson–Sjölin type operators. The pro
present here is different even ford = 2 and relies on a “bilinearization” of the arguments
[22–24]. After several preliminaries, we reduce the matters to two micro-locallinear estimates
of quite a different nature. The first one is applied to the higher frequency eigenfunctio
is in the spirit of theL2 boundedness of spectral projectors. The second one is applied
smaller frequency eigenfunctions and relies on a dispersive (curvature) effect. As far
optimality of (1.5), (1.6) is concerned, we notice that it is achieved either by testing the est
against eigenfunctions concentrating on an equator or by testing against zonal eigenfu
concentrating on a point.

Let us mention that estimates (1.5), (1.6) and a sketch of the proof of (1.5) appeared in
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The rest of this paper is organized as follows. In Section 2 we prove Theorem 2. In Section 3
we set up the framework of Bourgain’s spaces and reduce the proof of Theorem 1 to obtaining
nonlinear estimates in this framework. Section 4 consists in two parts. First we prove bilinear
Strichartz estimates for the linear Schrödinger group onS3. Then we show that Theorem 1 holds
for any three dimensional manifold on which these estimates are true. Section 5 also consists in
two parts. First we prove trilinear Strichartz estimates for the linear Schrödinger group on the

ional
imality

pectral

e

r

nal

ressed
Jacobi
zonal

e

product manifoldS2
ρ × S1 and then we show that Theorem 1 holds for any three dimens

manifold on which these estimates are true. An appendix is devoted to the proof of the opt
of the quintic threshold.

2. Multilinear eigenfunction estimates

In this section we prove Theorem 2, and more generally the corresponding result for s
projectors on arbitrary compact manifolds.

2.1. On the optimality of the estimates

We first consider the optimality of (1.5) in the cased = 2,3. Let us seeSd as a hyper-surfac
in R

d+1, i.e.

Sd =
{
(x1, . . . , xd+1) ∈ R

d+1: x2
1 + · · ·+ x2

d+1 = 1
}
.

Let us define the highest weight spherical harmonicsRp = (x1 + ix2)p which concentrate, fo
p� 1, on the closed geodesic (a big circle)x2

1 + x2
2 = 1. An easy computation shows that

‖Rp‖L2(Sd) ≈ p−
d−1
4 , p� 1.

ClearlyRpRq = Rp+q and therefore there exist constantsC, C̃ such that for every(p, q),

‖RpRq‖L2(Sd) � C(p + q)−
d−1
4 � C̃

(
min(p, q)

) d−1
4 ‖Rp‖L2(Sd)‖Rq‖L2(Sd).

Therefore, ford = 2,3, estimate (1.5) turns out to be optimal, modulo the logarithmic loss in3d.
In the same way, sinceRpRqRr = Rp+q+r, estimate (1.6) is optimal by testing it onRp, Rq

andRr.
Let us now consider the cased � 4. In this case the optimality of (1.5) is given by the zo

spherical harmonics. Let us a fix a pole onSd. If we consider functions onSd depending only on
the geodesic distance to the fixed pole, we obtain the zonal functions onSd. The zonal functions
can be expressed in terms of zonal spherical harmonics which in their turn can be exp
in terms of the classical Jacobi polynomials (see e.g. [22]). Using asymptotics for the
polynomials (see [26], [22, Lemma 2.1]) we can obtain the following representation for the
spherical harmonicsZp of degreep, in the coordinateθ,

Zp(θ) = C(sinθ)−
d−1
2

{
cos
[
(p + α)θ + β

]
+

O(1)
p sinθ

}
,

c

p
� θ � π − c

p
,(2.1)

whereα andβ are some fixed constants depending only ond. Moreover, we have a point-wis
concentration ∣∣Zp(θ)

∣∣≈ p
d−1
2 , θ /∈ [c/p,π − c/p],(2.2)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



260 N. BURQ, P. GÉRARD AND N. TZVETKOV

and‖Zp‖L2(Sd) ≈ 1. Let q � p. Then

‖ZpZq‖2
L2(Sd) =

π∫
0

Z2
p(θ)Z2

q (θ)(sin θ)d−1 dθ �
c/p∫

c/q

Z2
p(θ)Z2

q (θ)(sinθ)d−1 dθ.

.8)
Using (2.2), we get

‖ZpZq‖2
L2(Sd) � Cpd−1

c/p∫
c/q

Z2
q (θ)(sinθ)d−1 dθ.

In view of (2.1),

‖ZpZq‖2
L2(Sd) � Cpd−1[I1 − I2],

where

I1 =

c/p∫
c/q

cos2
[
(q + α)θ + β

]
dθ � C

p
and I2 =

1
q2

c/p∫
c/q

1
(sinθ)2

dθ � C

q

 C

p
.

Therefore

‖ZpZq‖2
L2(Sd) � Cpd−2‖Zp‖2

L2(Sd)‖Zq‖2
L2(Sd),(2.3)

if p 
 q. Let finally p ≈ q. Using (2.2), we get

‖ZpZq‖2
L2 � Cp2(d−1)

c/p∫
0

(sinθ)d−1 dθ � C̃p2(d−1)p−d = C̃pd−2.(2.4)

Therefore, collecting (2.3) and (2.4), we obtain

‖ZpZq‖L2(Sd) � C
(
min(p, q)

) d−2
2 ‖Zp‖L2(Sd)‖Zq‖L2(Sd)

which proves the optimality of (1.5), ford � 3, modulo the logarithmic loss in3d. Let us finally
notice that similarly we can prove that forp � q � r

‖ZpZqZr‖L2(Sd) � Cq
d−2
2 r

d−1
2 ‖Zp‖L2(Sd)‖Zq‖L2(Sd)‖Zr‖L2(Sd)

which proves the optimality of (1.7), ford � 3, apart from the logarithmic loss in3d, and the
optimality of (1.8) apart from theη shift.

2.2. A first reduction

Let (M,g) be a compact smooth Riemannian manifold without boundary of dimensiond and
∆ be the Laplace operator on functions onM . It turns out that estimates (1.5), (1.6) and (1
can be deduced from the following more general result.

4e SÉRIE– TOME 38 – 2005 –N◦ 2
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THEOREM 3. –Let χ ∈ S(R). For λ ∈ R, denote byχλ = χ(
√
−∆ − λ) the approximated

spectral projector aroundλ. There existsC such that for anyλ,µ � 1, f, g ∈ L2(M),

‖χλfχµg‖L2(M) � CΛ
(
d,min(λ,µ)

)
‖f‖L2(M)‖g‖L2(M).(2.5)

Moreover, in the cased = 2, for any 1 � λ � µ � ν, f, g, h ∈ L2(M), the following trilinear

unds
from

7] says
e

ivial

efore,
estimate holds

‖χλfχµgχνh‖L2(M) � C(λµ)
1
4 ‖f‖L2(M)‖g‖L2(M)‖h‖L2(M).(2.6)

Finally, in the cased = 3, for any 1 � λ � µ � ν, f, g, h ∈ L2(M), η ∈ ]0,1], the following
trilinear estimate holds

‖χλfχµgχνh‖L2(M) � Cηλ1−ηµ
1
2+η‖f‖L2(M)‖g‖L2(M)‖h‖L2(M).(2.7)

Remark2.1. – If one is only interested in estimates for single eigenfunctions, the bo
provided by Theorem 3 seem to be relevant for “sphere like manifolds” but they are far
the optimal ones in the case of the torus. For example, the classical result of Zygmund [2
that there exists a constantC such that for every couple(f, g) of eigenfunctions of the Laplac
operator on the torusT2, one has

‖fg‖L2(T2) � C‖f‖L2(T2)‖g‖L2(T2).

We refer to Bourgain [3] for further extensions of Zygmund’s result.

A first reduction in the proof of Theorem 3 is that it suffices to prove it for one fixed nontr
functionχ.

LEMMA 2.2. –Suppose that the assertion of Theorem3 holds for a bump functionχ ∈ S(R)
which is not identically zero. Then it holds for any other choice of the bump function.

Proof. –Suppose that (2.5) holds for a nontrivialχ ∈ S(R). Then, there existsx0 ∈ R such that
χ(x0) �= 0 and moreover there existsδ > 0 such thatχ(x) �= 0 for x ∈ R satisfying|x−x0|< 2δ.
Using a partition of unity argument, we can findψ ∈ C∞

0 (R) supported in{x ∈ R: |x| < 3δ/4}
such that ∑

n∈Z

ψ(x− nδ) = 1.(2.8)

Thanks to the support properties ofψ andχ, we can write

ψ(x− nδ − λ) = χ(x + x0 − nδ − λ)
ψ(x− nδ − λ)

χ(x + x0 − nδ − λ)
.(2.9)

Notice that the second factor in the right-hand side of (2.9) is uniformly bounded. Ther
using that (2.5) holds forχ, we obtain the estimate∥∥ψ(

√
−∆− nδ − λ)(f)ψ(

√
−∆−mδ − µ)(g)

∥∥
L2(2.10)

� CΛ
(
d,min

(
|n|+ λ, |m|+ µ

))
‖f‖L2‖g‖L2 .

Let us now take an arbitrary functionχ1 ∈ S(R). Using (2.8), we can write

χ1(
√
−∆− λ)f =

∑
n∈Z

ψ(
√
−∆− nδ − λ)χ1(

√
−∆− λ)f.(2.11)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



262 N. BURQ, P. GÉRARD AND N. TZVETKOV

Let ψ̃ ∈C∞
0 (R) be equal to one on the support ofψ. Then clearly

∣∣χ1(x− λ)ψ̃(x− λ− nδ)
∣∣� CN

(1 + |x− λ|)N (1 + |x− λ− nδ|)N
� C̃N

(1 + |n|)N
.(2.12)

Using the expansion (2.11) together with (2.10) and (2.12) yields

the

ith

r a
∥∥χ1(
√
−∆− λ)(f)χ1(

√
−∆− µ)(g)

∥∥
L2

�
∑

(n,m)∈Z2

CNΛ(d,min(|n|+ λ, |m|+ µ))
(1 + |n|)N (1 + |m|)N

‖f‖L2‖g‖L2

� CΛ
(
d,min(λ,µ)

)
‖f‖L2‖g‖L2 .

Hence (2.5) holds forχ1. The proof of the independence of (2.6) and (2.7) with respect to
bump functionχ is very similar and thus we will omit it. �
2.3. Reduction to oscillatory integral estimates and main properties of the phase function

Following [24, Chapter 4], thanks to Lemma 2.2, it is sufficient to prove Theorem 3 wχ
such that̂χ(τ) is supported in the set

{τ ∈ R: ε � τ � 2ε},

whereε > 0 is asmallnumber to be determined later. We can write

χλf =
1
2π

2ε∫
ε

e−iλτ χ̂(τ)(eiτ
√
−∆f)dτ.

For ε 
 1 and |τ | � 2ε, using a partition of the unity onM , we can representeiτ
√
−∆ as a

Fourier integral operator (see e.g. [15]). Thereforeχλ can also be represented as such. Afte
stationary phase argument (see [24, Chapter 5]) we can representχλf as follows.

LEMMA 2.3. –There existsε0 > 0 such that for everyε ∈ ]0, ε0[, everyN � 1, we have the
splitting

χλf = λ
d−1
2 Tλf + Rλf,(2.13)

with

‖Rλf‖Hk(M) � CN,kλk−N‖f‖L2(M), k = 0, . . . ,N.

Moreover there existδ > 0 and, for everyx0 ∈ M , a system of coordinatesV ⊂ Rd, containing
0 ∈ R

d such forx ∈ V , |x|� δ,

Tλf(x) =
∫
Rd

eiλϕ(x,y)a(x, y,λ)f(y)dy,

wherea(x, y,λ) is a polynomial inλ−1 with smooth coefficients supported in the set{
(x, y) ∈ V × V : |x|� δ 
 ε/C � |y|� Cε

}
and−ϕ(x, y) = dg(x, y) is the geodesic distance betweenx andy.

4e SÉRIE– TOME 38 – 2005 –N◦ 2
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Remark2.4. – Let us notice that one can useχ(−λ−1∆ − λ) as approximated spectral
projector instead ofχ(

√
−∆ − λ). In that case one should use semi-classical calculus for the

approximation ofexp(itλ−1∆), λ � 1, as we did in [5].

In view of Lemma 2.3, to prove (2.5), it is enough to show

d−1

h

most

s

‖TλfTµg‖L2 � CΛ(d,λ)(λµ)− 2 ‖f‖L2‖g‖L2 ,(2.14)

uniformly for 1 � λ � µ. Indeed, using (2.13), one has to evaluate inL2 the products

TλfRµg, RλfTµg, RλfRµg.

The products involvingRµ are straightforward to estimate while forRλfTµg, using theL2

boundedness ofχµ, we write

‖RλfTµg‖L2 � C‖Rλf‖L∞‖Tµg‖L2 � CNλ−Nµ− d−1
2 ‖f‖L2‖g‖L2 .

Furthermore, we notice that once (2.14) is proved (at least ford = 2), to prove (2.6) it is enoug
to show that ford = 2,

‖TλfTµgTνh‖L2 � C(λµ)−
1
4 ν− 1

2 ‖f‖L2‖g‖L2‖h‖L2 ,

uniformly for 1 � λ � µ � ν. In this case there are more remainder terms to estimate. The
difficult one isRλfTµgTνh. This term can be evaluated, by using (2.14) ford = 2, as follows

‖RλfTµgTνh‖L2 � ‖Rλf‖L∞‖TµgTνh‖L2 � CNλ−Nµ− 1
4 ν− 1

2 ‖f‖L2‖g‖L2‖h‖L2 .

Similarly, to prove (2.7), it is enough to show that ford = 3,

‖TλfTµgTνh‖L2 � Cλ−ηµ− 1
2+ην−1‖f‖L2‖g‖L2‖h‖L2 ,

uniformly for 1 � λ � µ � ν. In this case, we estimateRλfTµgTνh, by another use of (2.14), a
follows

‖RλfTµgTνh‖L2 � ‖Rλf‖L∞‖TµgTνh‖L2

� CNλ−N log1/2(µ)µ−1/2ν−1‖f‖L2‖g‖L2‖h‖L2

� CN,ηλ−Nµ− 1
2+ην−1‖f‖L2‖g‖L2‖h‖L2 ,

whereη > 0.
Next, we representy in geodesic (polar) coordinates asy = exp0(rω), r > 0, ω ∈ Sd−1. For

|x|� δ andω ∈ Sd−1, we define the frozen phaseϕr,

ϕr(x,ω) = ϕ
(
x, exp0(rω)

)
.

We now state the main property of the phaseϕr.

LEMMA 2.5. –There existsε > 0 such that for everyr ∈ [ε/C,Cε], every

ω = (ω1, . . . , ωd) ∈ Sd−1 ⊂ R
d,
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we have the identity,

∇xϕr(0, ω) = ω.

Proof. –The proof ford = 2 is given in [8]. The extension to an arbitraryd is straightforward
as we explain below. Forε 
 1, let y = exp0(rω), r = −ϕ(0, y) andu = u(x, y) ∈ TyM be the
unique unit vector in the tangent space toM at y such that
expy

(
−ϕ(x, y)u(x, y)

)
= x.

Differentiating with respect tox this identity, we get forx = 0, and anyh ∈ T0M ,

h =−g0

(
∇xϕ(0, y), h

)
Tru(0,y)(expy) · u(0, y)(2.15)

+ Tru(0,y)(expy)
(
rTxu(0, y) · h

)
,

whereT denotes the tangent map.
On the other hand, we have

Tru(0,y)(expy) · u(0, y) = −ω or u(0, y) =−Trω(exp0)(ω).(2.16)

Consequently, using Gauss’ Lemma (see [12, 3.70]), we get

g0

(
Tru(0,y)(expy)

(
rTxu(0, y) · h

)
, ω
)

= 0.(2.17)

Let us now take the scalar product of (2.15) withω. Collecting (2.15), (2.17) and (2.16) yields

g0(ω,h) = g0

(
∇xϕ(0, y), h

)
, ∀h ∈ T0M

which completes the proof of Lemma 2.5.�
Let us notice that there exists a smooth positive functionκ(r,ω) such thatdy = κ(r,ω)dr dω.

For r ∈ [ε/C,Cε] andλ � 1, we define the operatorT r
λ , acting on functions onSd−1 via the

identity

(T r
λf)(x) =

∫
Sd−1

eiλϕr(x,ω)ar(x,ω,λ)f(ω)dω,

wherear(x,ω,λ) = κ(r,ω)a(x,exp0(rω), λ). Then clearly

(Tλf)(x) =

∞∫
0

(T r
λfr)(x)dr,

wherefr(ω) = f(r,ω). Similarly, with gq(ω) = g(q,ω),

(TλfTµg)(x) =

Cε∫
ε/C

Cε∫
ε/C

(T r
λfr)(x)(T q

µgq)(x)dr dq,

and the Minkowski inequality shows that (2.5) will be a consequence of

‖T r
λfT q

µg‖L2 � CΛ(d,λ)(λµ)−
d−1
2 ‖f‖L2(Sd−1)‖g‖L2(Sd−1),(2.18)
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uniformly for 1 � λ � µ andr, q ∈ [ε/C,Cε].
Similarly, to prove (2.6), it is enough to show

‖T r
λfT q

µgT s
ν h‖L2 � C(λµ)−

1
4 ν− 1

2 ‖f‖L2(S1)‖g‖L2(S1)‖h‖L2(S1),(2.19)

uniformly for 1 � λ � µ � ν andr, q, s ∈ [ε/C,Cε].

5,

e

em of
ice
ar
Finally, to prove (2.7), it is enough to show

‖T r
λfT q

µgT s
ν h‖L2 � Cλ−ηµ− 1

2+ην−1‖f‖L2(S2)‖g‖L2(S2)‖h‖L2(S2),(2.20)

uniformly for 1 � λ � µ � ν andr, q, s ∈ [ε/C,Cε].
Fix a pointω ∈ Sd−1. The set

Sx =
{
∇xϕr(x,ω), ω ∈ Sd−1, ω ∼ ω

}
is a smooth hyper-surface inRd. Indeed assuming for instanceω = (1,0, . . . ,0), then
(w1 = ω2, . . . , ,wd−1 = ωd) is a system of coordinates onSd−1 and according to Lemma 2.
∇w∇xϕr has rankd− 1.

Following Stein [25] and Sogge [24], we now state the crucial curvature property.

LEMMA 2.6. –The hyper-surfaceSx has nonvanishing principal curvatures: for w ∈ R
d−1 a

local coordinate system nearω ∈ Sd−1, if we denote by±n(x,w) the normal unit vectors to th
surfaceSx at the point∇xϕr(x,w), then forx close to0,∣∣∣∣det

i,j

〈
∂2

∂wj∂wi
∇xϕr(x,w), n(x,w)

〉∣∣∣∣� c > 0.(2.21)

Proof. –The relation (2.21) is equivalent to the fact that

w �→ n(x,w) ∈ Sd−1

is a local diffeomorphism. Indeed, dropping thex variable for conciseness and denoting by

M(w) = ∇xϕr(x,w), n(w) = n(x,w),

we have 〈
∂M

∂wi
, n(w)

〉
= 0 ⇒

〈
∂2M

∂wi∂wj
, n

〉
=−

〈
∂M

∂wi
,

∂n

∂wj

〉
.

As a consequence, the determinant in (2.21) is nonvanishing if and only if the syst
vectors ∂n

∂wj
is of maximal rank inTwSx. We deduce that (2.21) is independent of the cho

of coordinatesw and it suffices to prove it for a particular choice of a coordinate system neω.
We can suppose thatω = (1,0, . . . ,0) and we choose as coordinates

w = (w1, . . . ,wd−1) := (ω2, . . . , ωd).

We can also assume that at the point(x = 0), the metric is diagonal,gi,j = δi,j . Using
Lemma 2.5, we get 〈

∂2

∂wj∂wi
∇xϕr(0,w), n(0,0)

〉∣∣∣∣
w=0

= Id(2.22)
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and consequently (2.21) follows by continuity.�
Denote by(T ν

r )∗ the formal adjoint ofT ν
r . The kernel of the operatorT ν

r (T ν
r )∗, K(x,x′), is

given by the relation

K(x,x′) =
∫

eiν(ϕr(x,w)−ϕr(x′,w))ar(x,w, ν)ar(x′,w, ν)dw.

he
The curvature property of the phaseϕr in Lemma 2.6 implies a dispersion inequality for t
kernelK.

LEMMA 2.7. –There existsC > 0 such that for anyν � 1,

∣∣K(x,x′)
∣∣� C

(1 + ν|x− x′|)(d−1)/2
.(2.23)

Proof. –Let us write a Taylor expansion

ϕr(x,w)−ϕr(x′,w) =
〈
x− x′, ψ(x,x′,w)

〉
,

where

ψ(x,x′,w) =

1∫
0

∇xϕr

(
x′ + θ(x− x′),w

)
dθ.

With σ = x−x′

|x−x′| , we can write

ϕr(x,w)−ϕr(x′,w) = |x− x′|Φ(x,x′, σ,w),

where

Φ(x,x′, σ,w) =
〈
σ,ψ(x,x′,w)

〉
.

Now we want to prove, withλ = ν|x− x′|,

∣∣K̃(x,x′, σ)
∣∣� C

(1 + λ)(d−1)/2

where

K̃(x,x′, σ) =
∫

eiλΦ(x,x′,σ,w)ar(x,w, ν)ar(x′,w, ν)dw.(2.24)

From the definition of the normaln(x,w), we have∇wΦ = 0 for x = x′ = 0, w = 0, σ =
±n(0,0). According to the curvature property (2.21), we havedet(∇2

wΦ) �= 0 for x = x′ = 0,
w = 0, σ = ±n(0,0). From the implicit function theorem, there existsκ > 0, such that if∣∣σ − n(0,0)

∣∣� κ or
∣∣σ + n(0,0)

∣∣� κ(2.25)

then the phaseΦ(x,x′, σ,w) has a unique nondegenerate critical pointw(x,x′, σ) and, by
stationary phase, under the assumption (2.25), the kernel (2.24) is bounded byC(1+λ)−(d−1)/2.
Let us next assume that∣∣σ − n(0,0)

∣∣> κ and
∣∣σ + n(0,0)

∣∣> κ.(2.26)
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Then forw close to0 and|x| small enough, we obtain by continuity∣∣σ − n(x,w)
∣∣> κ/2 and

∣∣σ + n(x,w)
∣∣> κ/2.(2.27)

The kernel of∇x∇wϕr(x,w) is one dimensional and spanned byn(x,w). Coming back to the
definition ofΦ, we deduce that (2.27) implies (for|x′| small enough)

6) the
the

he

e

to
∣∣∇wΦ(x,x′, σ,w)
∣∣� c > 0.

Consequently, integrating by parts in (2.24), we obtain that under the assumption (2.2
kernel (2.24) is bounded byCN (1 + λ)−N which is even better than needed. This completes
proof of Lemma 2.7. �

The second property of the phase we need is the following:

LEMMA 2.8. –Letx = (t, z) ∈ R×R
d−1 wheret = x1 andz = (x2, . . . , xd). Then for every

ω = (ω1, . . . , ωd) ∈ Sd−1

with ω1 �= 0 there exist a neighborhoodU ⊂ Sd−1 of ω, ε > 0 and δ > 0 such that, for
ε/C � r � Cε and |x| < δ, the phaseϕr(t, z,w), wherew ∈ R

d−1 is a local coordinate in
U , is uniformly nondegenerate with respect to(z,w). More precisely∣∣∣∣det

i,j

(
∂2ϕr(t, z,w)

∂zj∂wi

)∣∣∣∣� c > 0.(2.28)

Proof. –Since (2.28) is independent of the choice of coordinatesw, it suffices to prove it for a
particular choice of a coordinate system nearω.

Forω = (ω1, ω2, . . . , ωd) ∈ Sd−1 in a small neighborhood ofω, we choosew as

w = (w1, . . . ,wd−1) := (ω2, . . . , ωd)

which is a coordinate system thanks to the assumptionω1 �= 0. We can also assume that at t
point (t = 0, z = 0), the metric is diagonalgi,j = δi,j . Using Lemma 2.5, we get

det
i,j

(
∂2ϕr(t, z,w)

∂zj∂wi

)∣∣∣∣
(t,z,w)=(0,0,w)

= 1.(2.29)

We now obtain (2.28) from (2.29) by continuity.�
We next state a corollary of Lemma 2.8.

LEMMA 2.9. –Let ω(1), . . . , ω(N) be N points onSd−1. Then there exists a splitting of th
variablex = (t, z) ∈ R × R

d−1 and neighborhoodsUj ⊂ Sd−1, j = 1, . . . ,N , of ω(j) such that
ϕr(t, z,w) satisfies(2.28), wherew is a coordinate in

⋃N
j=1 Uj .

Proof. –Obviously, there exists a unit vectore such that

e · ω(j) �= 0, j = 1, . . . ,N.

By performing a rotation, we can assume thate = (1,0, . . . ,0) and consequently it suffices
apply Lemma 2.8. �
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2.4. Linear estimates

The dispersion inequality of Lemma 2.7 leads to the following estimate.

LEMMA 2.10. –Let (t, z) ∈ R×R
d−1 be any local system of coordinate near(0,0). Then the

operator

tor
g ∈ L2
w �−→ (T r

ν )g(t, z) ∈ L2
(
Rt;L∞(Rd−1

z )
)

is continuous with norm bounded byCΛ(d, ν)ν−(d−1)/2.

Proof. –Recall that

(T r
ν f)(t, z) =

∫
eiνϕr(t,z,w)ar(t, z,w, ν)f(w)dw.

Let consider the formal adjoint ofT r
ν defined as

(T r
ν )∗(g)(w) :=

∫
e−iνϕr(t′,z′,w)ar(t′, z′,w, ν)g(t′, z′)dt′ dz′.

According to the classical duality argument which reduces the study ofT r
ν to the study of

T r
ν (T r

ν )∗, it is sufficient to show that the norm of the operator

T r
ν (T r

ν )∗ :L2
t L

1
z �−→ L2

t L
∞
z

is bounded byC[Λ(d, ν)ν−(d−1)/2]2. But according to Lemma 2.7, the kernel of this opera
satisfies (2.23) and as a consequence, there existsC > 0 such that for everyν � 1,

∣∣K(t, z, t′, z′)
∣∣� C

(1 + ν|t− t′|)(d−1)/2
.(2.30)

Using (2.30) and the Young inequality, we get

∥∥T r
ν (T r

ν )∗g
∥∥

L2
t L∞

z
� C

∫
|s|�c

ds

(1 + ν|s|)(d−1)/2
‖g‖L2

t L1
z

But clearly

∫
|s|�c

ds

(1 + ν|s|)(d−1)/2
�


Cν−1/2 if d = 2,

Cν−1 log(ν) if d = 3,

Cν−1 if d � 4.

It remains to observe that the right-hand side of the above inequality is equal to

C
[
Λ(d, ν)ν−(d−1)/2

]2
which completes the proof of Lemma 2.10.�

In two space dimensions, we shall need the following extension of Lemma 2.10.
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LEMMA 2.11. –Let d = 2 and (t, z) ∈ R × R
d−1 be any local system of coordinate near

(0,0). The operator

g ∈ L2
w �−→ (T r

ν )g(t, z) ∈ L4
(
Rt;L∞(Rz)

)
is continuous with norm bounded byCν−1/4.

the

h

te

r

el of

mates
Proof. –Similarly to the proof of Lemma 2.10, it is sufficient to show that the norm of
operator

T r
ν (T r

ν )∗ :L4/3
t L1

z �−→ L4
t L

∞
z

is bounded byCν−1/2. The kernelK(t, z, t′, z′) of T r
ν (T r

ν )∗ satisfies the bound (2.30) wit
d = 2. From the Hardy–Littlewood inequality,∥∥∥∥∥

∞∫
−∞

f(t′)dt′

(1 + ν|t− t′|)1/2

∥∥∥∥∥
L4(Rt)

� Cν−1/2‖f‖L4/3(R).(2.31)

Therefore ∥∥T r
ν (T r

ν )∗g
∥∥

L4
t L∞

z
� Cν−1/2‖g‖

L
4/3
t L1

z

which completes the proof of Lemma 2.11.�
In the proof of (2.20), we need the following extension of Lemma 2.10 ford � 3.

LEMMA 2.12. –Let d � 3, p > 2 and (t, z) ∈ R × R
d−1 be any local system of coordina

near(0,0). The operator

g ∈ L2
w �−→ (T r

ν )g(t, z) ∈ Lp
(
Rt;L∞(Rd−1

z )
)

is continuous with norm bounded byCν−1/p.

Proof. –Let p′ be such that1p + 1
p′ = 1. It is sufficient to show that the norm of the operato

T r
ν (T r

ν )∗ :Lp′

t L1
z �−→ Lp

t L
∞
z

is bounded byCν−2/p. Since forp > 2,∥∥∥∥ 1
(1 + ν|t|)(d−1)/2

∥∥∥∥
L

p
2 (Rt)

� Cν−2/p,

using the Young inequality, we get the bound∥∥∥∥∥
∞∫

−∞

f(t′)dt′

(1 + ν|t− t′|)(d−1)/2

∥∥∥∥∥
Lp(Rt)

� Cν−2/p‖f‖Lp′ (R)

which completes the proof of Lemma 2.12 thanks to the bound (2.30) on the kern
T r

ν (T r
ν )∗. �

Remark2.13. – Notice that forp = 2, the proof above still works in dimensionsd � 4. In the
casep = 2, d = 3, we have the same difficulty as in the case of the end point Strichartz esti
on R2 (see Remark 2.15 below).
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A consequence of Lemma 2.8 is the following statement.

LEMMA 2.14. –Under the assumptions of Lemma2.8, the operator

g ∈ L2
w �−→ (T r

ν g)(t, z) ∈ L∞(
Rt;L2(Rd−1

z )
)

−(d−1)/2

as a
nce of

at

er
is continuous with norm bounded byCν .

Proof. –In view of (2.28), the statement of Lemma 2.14, which can be understood
refinement of theL2 boundedness of the spectral projector, is an immediate conseque
the following generalization of Plancherel’s identity, which we borrow from [16].

LEMMA (Nondegenerate phase lemma). –Let us considerϕ ∈ C∞(Rn
z × Rn

w) and a ∈
C∞

0 (Rn
z ×R

n
w) such that

(z,w) ∈ supp(a) ⇒ det
[

∂2ϕ

∂z∂w
(z,w)

]
�= 0.(2.32)

There existsC > 0 such that for everyλ � 1, the operatorTλ

Tλf(z) =
∫

Rn

eiλϕ(z,w)a(z,w)f(w)dw(2.33)

satisfies,

‖Tλf‖L2(Rn
z ) � Cλ−n/2‖f‖L2(Rn

w). �
2.5. Multilinear estimates

Let us first prove (2.18). We can write

(T r
λfT q

µg)(x) =
∫

Sd−1

∫
Sd−1

eiλϕr(x,ω)+iµϕq(x,ω′)ar(x,ω,λ)aq(x,ω′, µ)f(ω)g(ω′)dω dω′.

We need to evaluate the above expression inL2
x. After a partition of unity, we can suppose th

on the support of

ar(x,ω,λ)aq(x,ω′, µ),

(ω,ω′) is close to a fixed point(ω(1), ω(2)). We can therefore use the splittingx = (t, z) of
Lemma 2.9 withN = 2. Using Hölder’s inequality, Lemmas 2.14 and 2.10, we infer

‖T r
λfT q

µg‖L2
t L2

z
� ‖T r

λf‖L2
t L∞

z
‖T q

µg‖L∞
t L2

z
� CΛ(d,λ)(λµ)−

d−1
2 ‖f‖L2

w
‖g‖L2

w
.

This completes the proof of (2.18).
We next prove (2.19). Let us write

(T r
λfT q

µgT s
ν h)(x) =

∫
S1

∫
S1

∫
S1

eiλϕr(x,ω)+iµϕq(x,ω′)+iνϕs(x,ω′′)

× ar(x,ω,λ)aq(x,ω′, µ)as(x,ω′′, ν)f(ω)g(ω′)h(ω′′)dω dω′ dω′′.

After a partition of unity we can assume that(ω′′, ω′, ω) is close to a fixed point(ω(1), ω(2), ω(3)).
With the splittingx = (t, z) of Lemma 2.9 withN = 3, using Lemmas 2.14, 2.11 and the Höld
inequality, we get
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‖T r
λfT q

µgT s
ν h‖L2

t L2
z
� ‖T r

λf‖L4
t L∞

z
‖T q

µg‖L4
t L∞

z
‖T s

ν h‖L∞
t L2

z

� Cλ− 1
4 µ− 1

4 ν− 1
2 ‖f‖L2‖g‖L2‖h‖L2 .

This completes the proof of (2.19).
We finally prove (2.20). We can again use the splittingx = (t, z) of Lemma 2.9 withN = 3.

Forp � 2 andq > 2 such that1 + 1 = 1 , a use of Lemma 2.12 gives the bound

these
riable
ojector

proved

e
nds
ss of
tes
e

es
p q 2

‖T r
λfT q

µgT s
ν h‖L2

t L2
z
� ‖T r

λf‖Lp
t L∞

z
‖T q

µg‖Lq
t L∞

z
‖T s

ν h‖L∞
t L2

z

� Cλ−ηµ− 1
2+ην−1‖f‖L2‖g‖L2‖h‖L2 ,

whereη = 1
p . This ends the proof (2.20) and completes the proof of Theorem 2.�

Remark2.15. – As pointed to us by Koch and Tataru [20], another approach to
multilinear estimates would be, after a suitable micro-localization, to particularize one va
(t in the exposition above) and see the equation satisfied by the approximated spectral pr

(∆ + λ2)χλ(u) = OL2(λ)

as asemi-classicalevolution equation of the type(
ih∂t + Q(t, z, hDz)

)
χλ(u) = OL2(h), h = λ−1.

Then Lemmas 2.10, 2.11 are simply the (semi-classical) Strichartz estimates which can be
by using the approach in [5].

3. Preliminaries to the proof of Theorem 1

In this section(M,g) is an arbitrary Riemannian manifold of dimensiond. Our first purpose
is to introduce the basic localization operators∆N and∆NL which are naturally related to th
Sobolev spaces and the Bourgain spaces onM respectively. We establish some basic bou
related to∆N and∆NL. The main purpose of this section is to show that the well-posedne
the Cauchy problem (1.1) in the Sobolev spaceHs(M) is a consequence of nonlinear estima
in the Bourgain spaces associated to the Laplace operator∆. This reduction is now classical (se
e.g. [14]).

3.1. Bourgain spaces and basic localization operators

SinceM is compact,∆ has a compact resolvent and thus the spectrum of∆ is discrete. Let
ek ∈ L2(M), k ∈ N, be an orthonormal basis of eigenfunctions of−∆ associated to eigenvalu
λk. Denote byPk the orthogonal projector onek. The Sobolev spaceHs(M) is therefore
equipped with the norm (with〈x〉 = (1 + |x|2)1/2),

‖u‖2
Hs(M) =

∑
k

〈λk〉s‖Pku‖2
L2(M).

The Bourgain space (or conormal Sobolev space)Xs,b(R×M) is equipped with the norm

‖u‖2
Xs,b(R×M) =

∑
k

〈λk〉s
∥∥〈τ + λk〉bP̂ku(τ)

∥∥2

L2(Rτ×M)
=
∥∥e−it∆u(t, ·)

∥∥2

Hb(Rt;Hs(M))
,
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whereP̂ku(τ) denotes the Fourier transform ofPku with respect to the time variable.
Let us first recall that forb > 1/2 the spaceXs,b(R × M) is continuously embedded in

C(R;Hs(M)). Foru ∈C∞
0 (R×M), we write

Pku(t) =
1

∞∫ 〈τ + λk〉b
P̂ku(τ)eitτ dτ.
2π
−∞

〈τ + λk〉b

For b > 1/2, we get by the Cauchy–Schwarz inequality, applied inτ ,

〈λk〉s/2
∣∣Pku(t)

∣∣� C

{ ∞∫
−∞

〈λk〉s〈τ + λk〉2b
∣∣P̂ku(τ)

∣∣2 dτ

}1/2

.(3.1)

Squaring (3.1), integrating overM and summing overk yield,

‖u‖L∞(R;Hs(M)) � C‖u‖Xs,b(R×M), b >
1
2
.(3.2)

Foru ∈C∞(M) andN � 1, we define the projector∆N as

∆N (u) :=
∑

k: N�〈λk〉1/2<2N

Pku.

We now state a basic bound for∆N .

LEMMA 3.1. –There exists a constantC such that for everyq ∈ [2,∞], everyu ∈ L2(M),∥∥∆N (u)
∥∥

Lq(M)
� CN

d
2− d

q

∥∥∆N (u)
∥∥

L2(M)
.

Proof. –The assertion clearly holds forq = 2. We next prove it forq = ∞. Let us write
∆N =

∑N−1
j=0 ∆N,j , where

∆N,j :=
∑

k: N+j�〈λk〉1/2<N+j+1

Pk.(3.3)

Due to the Weyl estimate (see Lemma 2.3)∥∥∆N,j(u)
∥∥

L∞(M)
� CN

d−1
2
∥∥∆N,j(u)

∥∥
L2(M)

and due to the triangle and Cauchy–Schwarz inequalities∥∥∆N (u)
∥∥

L∞(M)

� CN
d−1
2

(
N−1∑
j=0

∥∥∆N,j(u)
∥∥2

L2(M)

) 1
2
(

N−1∑
j=0

12

) 1
2

= CN
d
2
∥∥∆N (u)

∥∥
L2(M)

.

By Hölder’s inequality, this completes the proof of Lemma 3.1.�
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ForN � 1 a dyadic integer, i.e.N = 2n, n ∈ N, we define the operatorSN as

SN :=
∑

N1�N

∆N1 ,

where the sum is taken over all dyadic integersN1 smaller or equal toN . We also defineS1/2

tors

by S1/2(u) := 0.

Next, for u ∈ C∞
0 (R × M) andN,L positive integers, we define the localization opera

∆NL as

∆NL(u) :=
1
2π

∑
k: N�〈λk〉1/2<2N

∫
L�〈τ+λk〉�2L

P̂ku(τ)eitτ dτ.

It is easy to check that∆NL is a projector. It follows from this definition that for everys, b there
existsC > 0 such that

1
C

∥∥∆NL(u)
∥∥

Xs,b(R×M)
� LbNs

∥∥∆NL(u)
∥∥

L2(R×M)
� C

∥∥∆NL(u)
∥∥

Xs,b(R×M)
,(3.4)

and
1
C

∑
N,L

L2bN2s
∥∥∆NL(u)

∥∥2

L2 � ‖u‖2
Xs,b � C

∑
N,L

L2bN2s
∥∥∆NL(u)

∥∥2

L2 ,(3.5)

where the sums is taken over all dyadic values ofN andL, i.e. N = 2n, L = 2l, n, l ∈ N. We
now state a basic bound for∆NL.

LEMMA 3.2. –There exists a constantC such that for everyp, q ∈ [2,∞], every u ∈
L2(R×M), ∥∥∆NL(u)

∥∥
Lp(R;Lq(M))

� CL
1
2− 1

p N
d
2− d

q ‖∆NL(u)‖L2(R×M).

Proof. –Since∆N∆NL = ∆NL, a use of Lemma 3.1 yields∥∥∆NL(u)
∥∥

Lp(R;Lq(M))
� CN

d
2−

d
q

∥∥∆NL(u)
∥∥

Lp(R;L2(M))
.

Therefore, we only need to consider the caseq = 2. Using thatP̂ku(τ) = Pkû(τ), we can write

∥∥∆NL(u)(t)
∥∥2

L2(M)
� C

∑
k: N�〈λk〉1/2<2N

∫
M

∣∣∣∣ ∫
L�〈τ+λk〉�2L

P̂ku(τ)eitτ dτ

∣∣∣∣2.
Since the integration overτ is on a region of sizeL, using the Cauchy–Schwarz inequality inτ
and the Plancherel identity yields

∥∥∆NL(u)(t)
∥∥2

L2(M)
� CL

∑
k: N�〈λk〉1/2<2N

∫
M

∞∫
−∞

∣∣P̂ku(τ)
∣∣2 dτ � CL‖u‖2

L2(R×M).

Applying the last inequality to∆NL(u) instead ofu and using that∆NL is a projector give∥∥∆NL(u)
∥∥

L∞(R;L2(M))
� CL

1
2
∥∥∆NL(u)

∥∥
L2(R×M)

.
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The assertion of the lemma trivially holds forp = q = 2 and therefore the proof of Lemma 3.2 is
completed by Hölder’s inequality.�
3.2. Reduction to nonlinear estimates in Bourgain spaces

The starting point is to consider the integral equation (Duhamel form)

1).
g and

e

e

u(t) = eit∆u0 − i

t∫
0

ei(t−τ)∆F
(
u(τ)

)
dτ.(3.6)

At least for classical (smooth) solutionsu the integral equation (3.6) is equivalent to (1.
For that reason we solve (3.6) by the Picard iteration in a suitable functional settin
thus we get solutions of (3.6). Notice that this is achieved classically ifs > 3/2 by taking
X = C([−T,T ];Hs(M)). Therefore we shall restrict the study to the cases ∈ [1,3/2]. In this
case of low regularity solutions of (3.6) the information we have foru andF (u) should be strong
enough to conclude that we get solutions of (1.1) too.

For T > 0, we define the restriction spaceXs,b
T := Xs,b([−T,T ] × M), equipped with the

norm

‖u‖Xs,b
T

= inf
{
‖w‖Xs,b , w ∈Xs,b with w|[−T,T ] = u

}
.

For b > 1/2, the spaceXs,b
T is continuously embedded inC([−T,T ];Hs(M)) (see (3.2)) and

Xs,b
T will be the space for the solutions of (3.6) on[−T,T ]. The next proposition contains th

basic reduction to nonlinear estimates inXs,b.

PROPOSITION 3.3. –Assume that there exists(b, b′) ∈ R2 satisfying

0 < b′ <
1
2

< b, b + b′ < 1(3.7)

such that for everys ∈ [1,2) there exists a constantC andp such that for everyu ∈Xs,b,∥∥F (u)
∥∥

Xs,−b′ (R×M)
� C

(
1 + ‖u‖p

X1,b(R×M)

)
‖u‖Xs,b(R×M),(3.8)

and for everyu, v ∈ Xs,b,∥∥F (u)− F (v)
∥∥

Xs,−b′ (R×M)
(3.9)

� C
(
1 + ‖u‖p

Xs,b(R×M)
+ ‖v‖p

Xs,b(R×M)

)
‖u− v‖Xs,b(R×M).

Then
1. For every bounded subsetB of H1(M) there existsT > 0 such that ifu0 ∈ B then

there exists a unique solutionu of (3.6) on [−T,T ] in the classX1,b
T . Moreover the map

u0 �→ u ∈ C([−T,T ];H1(M)) is Lipschitz continuous onB.
2. If in additionu0 ∈Hs(M) thenu ∈C([−T,T ];Hs(M)).
3. The functionu is a solution of(1.1) in the distributional sense.
4. If in addition we suppose thatV (z) � −C(1 + |z|)β , β < 2 + 4/d, then the results abov

hold for any arbitrarily largeT .
5. For u0 ∈ Hs(M), s > 3/2, the solution is unique inC([−T,T ];Hs(M)).

4e SÉRIE– TOME 38 – 2005 –N◦ 2



NONLINEAR SCHRÖDINGER EQUATIONS ON 3-MANIFOLDS 275

Proof. –Let ψ ∈ C∞
0 (R) be equal to1 on [−1,1]. The identity∥∥ψ(t)eit∆u0

∥∥
Xs,b(R×M)

= ‖ψ‖Hb(R)‖u0‖Hs(M)

follows from the definition ofXs,b(R×M) and therefore forT � 1

.11)

e
p
3)
f

‖eit∆u0‖Xs,b
T

� C‖u0‖Hs(M).(3.10)

The bound∥∥∥∥∥ψ(t/T )

t∫
0

ei(t−τ)∆F (τ)dτ

∥∥∥∥∥
Xs,b(Rt×M)

� CT 1−b−b′‖F‖Xs,−b′ (R×M),(3.11)

holds forT � 1 and (b, b′) satisfying (3.7). Indeed (see [8, Proposition 2.11]) estimate (3
follows from theone dimensionalinequality∥∥∥∥∥ψ(t/T )

t∫
0

g(τ)dτ

∥∥∥∥∥
Hb(R)

� CT 1−b−b′‖g‖H−b′ (R).(3.12)

A proof of (3.12) can be found in [14].
Using (3.11) and the assumptions of the proposition we obtain the estimates

∥∥∥∥∥
t∫

0

ei(t−τ)∆F
(
u(τ)

)
dτ

∥∥∥∥∥
Xs,b

T

� CT 1−b−b′
(
1 + ‖u‖p

X1,b
T

)
‖u‖Xs,b

T
(3.13)

and ∥∥∥∥∥
t∫

0

ei(t−τ)∆
(
F
(
u(τ)

)
− F

(
v(τ)

))
dτ

∥∥∥∥∥
Xs,b

T

(3.14)

� CT 1−b−b′
(
1 + ‖u‖p

Xs,b
T

+ ‖v‖p

Xs,b
T

)
‖u− v‖Xs,b

T
,

providedT � 1 and(b, b′) satisfying (3.7). LetB be a bounded subset ofH1(M). It results from
(3.10), (3.13) and (3.14) withs = 1 that there existsT 
 1 such that for everyu0 ∈B the right-
hand side of (3.6) is a contraction in a suitable ball ofX1,b

T with a unique fixed point which is th
solution of (3.6). The uniqueness in the classX1,b

T and the Lipschitz continuity of the flow ma
follow from (3.14). Suppose now thatu0 ∈Hs(M). Then as before it follows from (3.10), (3.1
and (3.14) that we can find̃T � T such that we can identifyu|

[−T̃ ,T̃ ]
as the unique solution o

(3.6) on[−T̃ , T̃ ] in the classXs,b

T̃
⊂ X1,b

T̃
. In particularu(t, ·) ∈ Hs(M) for t ∈ [−T̃ , T̃ ]. Then

by a bootstrap and the tame estimate (3.13) we conclude thatu(t, ·) ∈ Hs(M) for t ∈ [−T,T ].
Thanks to (3.8), we obtain thatF (u(t)) ∈ X1,−b′

T and sinceb′ < 1/2, we infer that

∂t

[ t∫
0

e−iτ∆F
(
u(τ)

)
dτ

]
= e−it∆F

(
u(t)

)
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in the distributional sense which implies thatu is a solution of the original PDE (1.1) in
the distributional sense. Ifu0 ∈ H2(M) then, thanks to the propagation of theHs regularity
assertion, one can take the scalar product of (1.1) withu and ut and it results that the
conservations laws (1.3) hold. Ifu0 ∈ H1(M), we can approximate inH1(M) the function
u0 with a sequence(u0,n) such thatu0,n ∈ H2(M). If we denote byun(t) the corresponding
solutions of (1.1), thanks to the propagation of the regularity we obtain then thatun(t) enjoys

it
that

e the
ding
t if

ment.

ery

y

the conservation laws (1.3) fort on the time of existence ofu(t). Finally we can pass to the lim
n → ∞ and thanks to theH1 continuity of the conservation laws functionals, we deduce
u(t) satisfies the conservation laws (1.3). If we suppose thatV (z) satisfiesV (z) � −C(1+ |z|)β ,
β < 2 + 4/d, using the Gagliardo–Nirenberg inequalities, we obtain that there existsθ ∈ ]0,2[
such that ∫

M

V
(
u(t)

)
� −C

∥∥u(t)
∥∥β−θ

L2

∥∥u(t)
∥∥θ

H1 −C.

Therefore, the conservation laws (1.3) yield a bound independent with respect tot for
‖u(t)‖H1(M) which allows to reiterate the local existence argument and thus to achiev
existence ofu(t) on an arbitrary time interval. Finally, thanks to the Sobolev embed
Hs(M) ⊂ L∞(M), s > 3/2, and the propagation of regularity, we easily obtain tha
u0 ∈ Hs(M), s > 3/2, then the uniqueness holds in the classC([−T,T ];Hs(M)). This
completes the proof of Proposition 3.3.�

With Proposition 3.3 in hand the assertion of Theorem 1 follows from the following state

THEOREM 4. –Let M = S3 or M = S2
ρ × S1 endowed with the standard metrics. For ev

1 < α < 5 ands ∈ [1,2) there exists(b, b′) ∈ R
2 satisfying(3.7)such that(3.8)and (3.9)hold.

The next two sections are devoted to the proof of Theorem 4.

4. Bilinear Strichartz estimates and applications

In this section we prove Theorem 4 forM = S3 with the standard metric.

4.1. Bilinear Strichartz estimates on S3

In the caseM = S3 the eigenvalues of−∆ areλk = k2 − 1, k � 1, and this fact plays a ke
role in the analysis. The starting point is the following bilinear improvement of theL4 Strichartz
inequality onS3 established in [5].

PROPOSITION 4.1. –For every intervalI ⊂ R, everyε > 0 there exists a constantC such that
for everyN1,N2 � 1, everyf1, f2 ∈ L2(M),∥∥∥∥∥

2∏
j=1

eit∆(∆Nj fj)

∥∥∥∥∥
L2(I×M)

� C
(
min(N1,N2)

) 1
2+ε

2∏
j=1

‖∆Nj fj‖L2(M).

Proof. –By a time translation we can suppose thatI = [0, T ]. Moreover, forf ∈ L2(M) the
functioneit∆f is periodic with respect tot and therefore it suffices to give the proof withT = 2π.
Let us write

2∏
j=1

eit∆(∆Nj fj) =
∑

Nj�〈λkj
〉1/2<2Nj

e−it(λk1+λk2 )Pk1(f1)Pk2(f2).
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Using the Parseval identity with respect tot we get∥∥∥∥∥
2∏

j=1

eit∆(∆Nj fj)

∥∥∥∥∥
2

L2([0,2π]×M)

=
∑
τ∈Z

∥∥∥∥ ∑
τ=λk1+λk2

Pk1(f1)Pk2(f2)
∥∥∥∥2

L2(M)

,

ver

roof.
is a

ne.
f

ing
t three
that in

an
where the summation over(k1, k2) is restricted toNj � 〈λkj 〉1/2 < 2Nj , j = 1,2. Applying the
triangle inequality for theL2(M) norm, the Cauchy–Schwarz inequality in the summation o
(k1, k2), and the bilinear estimate of Theorem 2 ford = 3 yields that for everyε > 0,∥∥∥∥∥

2∏
j=1

eit∆(∆Nj fj)

∥∥∥∥∥
2

L2([0,2π]×M)

� Cε

(
min(N1,N2)

)1+ε sup
τ∈Z

αN1,N2(τ)
2∏

j=1

‖∆Nj fj‖2
L2(M),

where

αN1,N2(τ) = #
{
(k1, k2) ∈ N

2: τ + 2 = k2
1 + k2

2, Nj � 〈λkj 〉1/2 < 2Nj , j = 1,2
}
.

We claim thatαN1,N2(τ) � CεN
ε. Indeed this follows from the next lemma.

LEMMA 4.2. –For everyε > 0 there existsC > 0 such that for every positive integersτ
andN ,

#
{
(k1, k2) ∈ N

2: N � k1 < 2N, k2
1 + k2

2 = τ
}

� CNε.(4.1)

Proof. –This lemma already appeared in [8] (see [8, Lemma 3.2]). We recall the p
For τ � 10N4 it follows from the divisor bound in the ring of Gaussian integers which
Euclidean division domain. Forτ � 10N4 there is at most one value of(k1, k2) satisfying the
imposed restriction since in this casek2 should range in an interval of size smaller than o
Hence forτ � 10N4 the left-hand side of (4.1) is bounded by1. This completes the proof o
Lemma 4.2. �

Proposition 4.1 now readily follows from Lemma 4.2.�
4.2. Using bilinear Strichartz estimates

From now on we simply assume thatM is a three dimensional compact manifold satisfy
Proposition 4.1. Proceeding as in [8, Section 3.2] one can show, for instance, tha
dimensional Zoll manifolds have this property. As a consequence it can be remarked
fact Theorem 1 holds for any such manifold.

First we deduce from Proposition 4.1 the following bilinear estimate in theXs,b context.

PROPOSITION 4.3. –For everyε > 0 there existβ < 1/2 and C > 0 such that for every
N1,N2,L1,L2 � 1, everyu1, u2 ∈ L2(R×M),∥∥∥∥∥

2∏
j=1

∆NjLj (uj)

∥∥∥∥∥
L2(R×M)

� C(L1L2)β
(
min(N1,N2)

) 1
2+ε

2∏
j=1

∥∥∆NjLj (uj)
∥∥

L2(R×M)
.

Proof. –Let us suppose thatN1 � N2. Using Lemma 3.2 and the Hölder inequality we c
write
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2∏

j=1

∆NjLj (uj)

∥∥∥∥∥
L2(R×M)

�
∥∥∆N1L1(u1)

∥∥
L4(R;L∞(M))

∥∥∆N2L2(u2)
∥∥

L4(R;L2(M))
(4.2)

� CN
3
2
1 (L1L2)

1
4

2∏
j=1

∥∥∆NjLj (uj)
∥∥

L2(R×M)
.

ble
Estimate (4.2) is better than the needed one with respect to theLj localization but is far from the
needed one with respect to theNj localization.

We now estimate‖
∏2

j=1 ∆NjLj (uj)‖L2 by means of Proposition 4.1. It is indeed possi
thanks to the following lemma.

LEMMA 4.4. –For every b ∈ ]1/2,1], every δ > 0, there existsCb,δ such that for every
u1, u2 ∈X0,b(R×M), every1 � N1 � N2,∥∥∥∥∥

2∏
j=1

∆Nj (uj)

∥∥∥∥∥
L2(R×M)

� Cb,δN
1
2+δ
1

2∏
j=1

∥∥∆Nj (uj)
∥∥

X0,b(R×M)
.

Proof. –Let us setvj(t) := eit∆∆Nj (uj)(t), j = 1,2. Then we can write

∆Nj (uj)(t) =
1
2π

∞∫
−∞

eitτe−it∆v̂j(τ)dτ.

Therefore

2∏
j=1

∆Nj (uj)(t) =
1

4π2

∞∫
−∞

∞∫
−∞

eit(τ1+τ2)

(
2∏

j=1

e−it∆v̂j(τj)

)
dτ1 dτ2.

Using the triangle inequality and Proposition 4.1 gives that for every unit intervalI ⊂ R, every
δ > 0 there existsCδ such that∥∥∥∥∥

2∏
j=1

∆Nj (uj)

∥∥∥∥∥
L2(I×M)

� CδN
1
2+δ
1

∞∫
−∞

∞∫
−∞

2∏
j=1

∥∥v̂j(τj)
∥∥

L2(M)
dτ1 dτ2.

Hence using the Cauchy–Schwarz inequality in(τ1, τ2) gives forb > 1/2,∥∥∥∥∥
2∏

j=1

∆Nj (uj)

∥∥∥∥∥
L2(I×M)

� Cb,δN
1
2+δ
1

2∏
j=1

∥∥〈τ〉bv̂j(τ)
∥∥

L2(Rτ×M)
(4.3)

= Cb,δN
1
2+δ
1

2∏
j=1

∥∥∆Nj (uj)
∥∥

X0,b(R×M)
.

Using a partition of unity, we can find aψ ∈C∞
0 (R), supported in[0,1] such that

∆Nj (uj)(t) =
∑
n∈Z

ψ

(
t− n

2

)
∆Nj

(
uj(t)

)
=
∑
n∈Z

∆Nj

(
ψ

(
t− n

2

)
uj(t)

)
.(4.4)
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Notice that if foru ∈X0,b(R×M), b ∈ [0,1], we setun(t) = ψ(t− n
2 )u(t) then∑

n∈Z

‖un‖2
X0,b(R×M) � C‖u‖2

X0,b(R×M).(4.5)

Indeed (4.5) is straightforward forb = 0 and b = 1 and it follows by complex interpolation

by a

at

ove
for b ∈ ]0,1[ . Using the almost disjointness of the supports ofψ(t − n
2 ), n ∈ Z, the triangle

inequality, estimates (4.3), (4.4) and (4.5) complete the proof of Lemma 4.4.�
Next we apply Lemma 4.4 with∆NjLj (uj), j = 1,2, in the place ofuj and it follows from

the definition ofXs,b that, for anyb > 1/2 and anyδ > 0,∥∥∥∥∥
2∏

j=1

∆NjLj (uj)

∥∥∥∥∥
L2(R×M)

� Cb,δN
1
2+δ
1 (L1L2)b

2∏
j=1

∥∥∆NjLj (uj)
∥∥

L2(R×M)
.(4.6)

It is now clear that the proof of Proposition 4.3 can be completed from (4.2) and (4.6)
suitable Hölder inequality �

Let us now turn to the proof of (3.8). Set∂ = ∂
∂z and∂ = ∂

∂z . Thanks to (1.2) and using th
F (0) = 0, we obtain that the function

F (u)− (∂F )(0)u− (∂F )(0)u

is vanishing at least of order3 at the origin. Therefore, in order to prove (3.8), it suffices to pr∥∥F (u)
∥∥

Xs,−b′ (R×M)
� C

(
‖u‖2

X1,b(R×M) + ‖u‖p
X1,b(R×M)

)
‖u‖Xs,b(R×M)(4.7)

assuming thatF (u) is vanishing to order3 in zero. We can write

F (u) =
∑
N1

[
F
(
SN1(u)

)
− F

(
SN1/2(u)

)]
,

where the sum is taken over all dyadic values ofN1 (recall thatS1/2(u) = 0). We have for
z,w ∈ C,

F (z)− F (w) = (z −w)

1∫
0

∂F
(
tz + (1− t)w

)
dt + (z −w)

1∫
0

∂F
(
tz + (1− t)w

)
dt.

Therefore

F
(
SN1(u)

)
− F

(
SN1/2(u)

)
= ∆N1(u)G1

(
∆N1(u), SN1/2(u)

)
+ ∆N1(u)G2

(
∆N1(u), SN1/2(u)

)
,

with

G1(z1, z2) =

1∫
0

∂F (tz1 + z2)dt, G2(z1, z2) =

1∫
0

∂F (tz1 + z2)dt.
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We have thus the splittingF (u) = F1(u) + F2(u), where

F1(u) =
∑
N1

∆N1(u)G1

(
∆N1(u), SN1/2(u)

)
.

Thanks to the growth assumption onV (z), we have the bound

nts
∣∣Gj(z1, z2)
∣∣� C

(
1 + |z1|+ |z2|

)α−1
, j = 1,2.

We will provide a bound only forF1(u). The analysis forF2(u) is exactly the same.
We have for dyadic integersN1, N2

∆N1∆N2 =
{

∆N1 if N1 = N2,

0 otherwise

and hence we can write that for dyadic integersN1, N2,

G1

(
∆N1SN2(u), SN1/2SN2(u)

)
−G1

(
∆N1SN2/2(u), SN1/2SN2/2(u)

)
is equal to

G1(0, SN2(u))−G1(0, SN2/2(u)) if 2N2 � N1,

G1(∆N1(u), SN1/2(u))−G1(0, SN1/2(u)) if N2 = N1,

G1(∆N1(u), SN1/2(u))−G1(∆N1(u), SN1/2(u)) = 0 if N2 � 2N1.

Using the vanishing property ofF at the origin allows us to write

G1

(
∆N1(u), SN1/2(u)

)
=

∑
N2: N2�N1

∆N2(u)HN2
1

(
∆N2(u), SN2/2(u)

)
+

∑
N2: N2�N1

∆N2(u)HN2
2

(
∆N2(u), SN2/2(u)

)
,

with

HN2
1 (a, b) =

{∫ 1

0
∂2G1(0, ta + b)dt if 2N2 � N1,∫ 1

0
∂1G1(ta, b)dt if N2 = N1,

where (∂1, ∂2) are the derivatives ofG1 with respect to the first and the second argume
respectively. Moreover

HN2
2 (a, b) =

{∫ 1

0
∂2G1(0, ta + b)dt if 2N2 � N1,∫ 1

0
∂1G1(ta, b)dt if N2 = N1.

Notice that ∣∣HN2
j (a, b)

∣∣� C
(
1 + |a|+ |b|

)max(α−2,0)
, j = 1,2.

We can write

F1(u) =
∑

N2�N1

∆N1(u)∆N2(u)HN2
1

(
∆N2(u), SN2/2(u)

)
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+
∑

N2�N1

∆N1(u)∆N2(u)HN2
2

(
∆N2(u), SN2/2(u)

)
:= F11(u) + F12(u).

We will provide a bound only forF11(u). The analysis forF12(u) is exactly the same.
Similarly to the analysis forG1(∆N1(u), SN1/2(u)), using once again the vanishing property

of F at the origin, allows us to expandHN2
1 as follows∑

d

e

HN2
1

(
∆N2(u), SN2/2(u)

)
=

N3: N3�N2

∆N3(u)HN2,N3
11

(
∆N3(u), SN3/2(u)

)
+

∑
N3: N3�N2

∆N3(u)HN2,N3
12

(
∆N3(u), SN3/2(u)

)
,

where, due to the growth assumptions onV , HN2,N3
1j (a, b) satisfies∣∣∂γ

a,bH
N2,N3
1j (a, b)

∣∣� C
(
1 + |a|+ |b|

)max(α−3−|γ|,0)
, j = 1,2.(4.8)

Of course we can write explicit formulas forHN2,N3
1j (a, b) as we did forHN2

1 (a, b) but it will

not be needed in the sequel. The only information forHN2,N3
1j (a, b) that we will use is the boun

(4.8). Now, we can write

F11(u) =
∑

N3�N2�N1

∆N1(u)∆N2(u)∆N3(u)HN2,N3
11

(
∆N3(u), SN3/2(u)

)
+

∑
N3�N2�N1

∆N1(u)∆N2(u)∆N3(u)HN2,N3
12

(
∆N3(u), SN3/2(u)

)
:= F111(u) + F112(u).

We will provide a bound only forF111(u). The analysis forF112(u) is exactly the same. Notic
that

∆N =
∑
L

∆NL,(4.9)

where the sum is taken over all dyadic values ofL. Forw ∈X−s,b′(R×M), we set

I :=
∑

L0,L1,L2,L3,N0
N3�N2�N1

∫
R×M

∆N0L0(w)
3∏

j=1

∆NjLj (u)HN2,N3
11

(
∆N3(u), SN3/2(u)

)
,

where the sum is taken over dyadic values ofNj ,Lj , j = 0,1,2,3. By duality, to prove (4.7) it
suffices to establish the bound

|I|� C‖w‖X−s,b′ (R×M)

(
‖u‖2

X1,b(R×M) + ‖u‖p
X1,b(R×M)

)
‖u‖Xs,b(R×M).

Set

IN0,N1,N2,N3
L0,L1,L2,L3

:=
∣∣∣∣ ∫
R×M

∆N0L0(w)
3∏

j=1

∆NjLj (u)HN2,N3
11

(
∆N3(u), SN3/2(u)

)∣∣∣∣.
We splitI as|I| � I1 + I2, where we defineI1 andI2 to be the sums of the termsIN0,N1,N2,N3

L0,L1,L2,L3

associated to indexes such thatN0 � ΛN1 andN0 > ΛN1 respectively, andΛ > 1 is a large
constant to be determined later.
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We first evaluateI1. Using Proposition 4.3, and the Hölder inequality, we get, that for every
ε > 0 there existsβ < 1/2 such that,

IN0,N1,N2,N3
L0,L1,L2,L3

� Cε(N2N3)
1
2+ε(L0L1L2L3)β

∥∥HN2,N3
11

(
∆N3(u), SN3/2(u)

)∥∥
L∞(R×M)

×
∥∥∆ (w)

∥∥ 3∏∥∥∆ (u)
∥∥ .
N0L0 L2(R×M)

j=1

NjLj L2(R×M)

Thanks to (4.8) we can write∥∥HN2,N3
11

(
∆N3(u), SN3/2(u)

)∥∥
L∞ � C

(
1 +

∥∥∆N3(u)
∥∥

L∞ +
∥∥SN3/2(u)

∥∥
L∞

)max(α−3,0)
.

Using Lemma 3.2, (3.5) and the Cauchy–Schwarz inequality yields, forb > 1/2,∥∥∆N3(u)
∥∥

L∞(R×M)
�
∑
L

∥∥∆N3L(u)
∥∥

L∞(R×M)

�
∑
L

CN
3
2
3 L

1
2
∥∥∆N3L(u)

∥∥
L2(R×M)

� CN
1
2
3

∑
L

L
1
2−bLbN3

∥∥∆N3L(u)
∥∥

L2(R×M)

� CN
1
2
3

(∑
L

L1−2b

) 1
2
(∑

L

L2bN2
3

∥∥∆N3L(u)
∥∥2

L2(R×M)

) 1
2

� CN
1
2
3 ‖u‖X1,b .

We next estimate‖SN3/2(u)‖L∞ .∥∥SN3/2(u)
∥∥

L∞(R×M)

�
∑

N4: N4�N3/2

∥∥∆N4(u)
∥∥

L∞(R×M)
� C

∑
N4: N4�N3/2

∑
L

N
3
2
4 L

1
2
∥∥∆N4L(u)

∥∥
L2(R×M)

� C

( ∑
N4: N4�N3/2

∑
L

(N
1
2
4 )2L1−2b

) 1
2
( ∑

N4: N4�N3/2

∑
L

L2bN2
4

∥∥∆N4L(u)
∥∥2

L2

) 1
2

� CN
1
2
3 ‖u‖X1,b ,

providedb > 1/2. Using the last two estimates, we obtain the bound

∥∥HN2,N3
11

(
∆N3(u), SN3/2(u)

)∥∥
L∞(R×M)

� 1 + C
(
N

1
2
3 ‖u‖X1,b

)max(α−3,0)
.(4.10)

With (4.10) in hand, we estimateI1. Let us recall a discrete Schur lemma.

LEMMA 4.5. –For everyΛ > 0, everys > 0 there existsC > 0 such that if(cN0) and(dN1)
are two sequences of nonnegative numbers indexed by the dyadic integers, then,

∑
N0�ΛN1

Ns
0

Ns
1

cN0dN1 � C

(∑
N0

c2
N0

) 1
2
(∑

N1

d2
N1

) 1
2

.
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Proof. –Let us set

K(N0,N1) := 1N0�ΛN1

Ns
0

Ns
1

.

Summing geometric series implies that there existsC > 0 such that∑ ∑
l

ing
sup
N0 N1

K(N0,N1) + sup
N1 N0

K(N0,N1) � C.

Therefore the Schur lemma implies the boundedness onl2N0
× l2N1

of the bilinear form with kerne
K(N0,N1). This completes the proof of Lemma 4.5.�

In estimatingI1, we first sum with respect toL0,L1,N0,N1. Writing

1 =
Ns

0

Ns
1

N−s
0 Ns

1 , (L0L1)β = Lb′

0 Lb
1L

β−b′

0 Lβ−b
1 ,

using Lemma 4.5 and (4.10), after summing geometric series inL0, L1, we can write forb > 1/2
and1/2 > b′ > β,

I1 � Cε‖u‖Xs,b(R×M)‖w‖X−s,b′ (R×M)

(
1 + ‖u‖max(α−3,0)

X1,b(R×M)

)
×
∑

L2,L3

∑
N3�N2

(N2N3)
1
2+ε(L2L3)βN

max(α−3,0)
2

3

3∏
j=2

∥∥∆NjLj (u)
∥∥

L2(R×M)
.

Sinceα < 5 andN3 � N2,we have, choosingε > 0 small enough,

(N2N3)
1
2+εN

max(α−3,0)
2

3 � N2N3(N2N3)−ε.

Therefore, by summing geometric series inN2,N3,L2,L3, we get the bound

I1 � C‖w‖X−s,b′ (R×M)

(
‖u‖2

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M).

It remains to estimateI2. This is performed by using the following proposition and summ
geometric series.

PROPOSITION 4.6. –Let s ∈ [1,2). Then there existsΛ > 0 , b, b′ satisfying(3.7), γ > 0 and
p,C such that for everyw ∈X−s,b′(R×M), u ∈ X1,b(R×M), if N0, N1, N2, N3 satisfy

N0 � ΛN1, N3 � N2 � N1,

then

IN0,N1,N2,N3
L0,L1,L2,L3

� C(N0L0L1L2L3)−γ‖w‖X−s,b′
(
‖u‖2

X1,b + ‖u‖p
X1,b

)
‖u‖Xs,b .(4.11)

Proof. –To prove Proposition 4.6, we consider three regimes:

4.2.1. Case 1: N1−δ
0 � N3, δ > 0, small enough

We use Proposition 4.3, the Hölder inequality and (4.10). For everyε > 0, there existsβ < 1/2
such that,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



284 N. BURQ, P. GÉRARD AND N. TZVETKOV

IN0,N1,N2,N3
L0,L1,L2,L3

� Cε(N2N3)
1
2+ε(L0L1L2L3)βN

max(α−3,0)
2

3

∥∥∆N0L0(w)
∥∥

L2(R×M)

×
3∏

j=1

∥∥∆NjLj (u)
∥∥

L2(R×M)

(
1 + ‖u‖max(α−3,0)

X1,b(R×M)

)
.

Therefore

se

ev

. The
we
IN0,N1,N2,N3
L0,L1,L2,L3

� Cε
(L0L1L2L3)β

Lb′
0 (L1L2L3)b

Ns
0

Ns
1 (N2N3)

(N2N3)
1
2+εN

max(α−3,0)
2

3 ‖w‖X−s,b′ (R×M)

×
(
‖u‖2

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M).

Sinceα < 5, we observe that there existε > 0, δ > 0 andγ > 0 such that

Ns
0

Ns
1 (N2N3)

(N2N3)
1
2+εN

max(α−3,0)
2

3 � N−γ
0 .

The parameterε > 0 being fixed, we chooseβ as imposed by Proposition 4.3. Finally we cho
(b, b′) ∈ R

2 satisfying (3.7) such thatb′ > β.

4.2.2. Case 2: N3 � N
1/2
0

We start with a rough bound forHN2,N3
11 . By a repetitive use of Leibniz rule, the Sobol

embeddings and (4.8), we obtain the following statement.

LEMMA 4.7. –There existsA > 0 such that for every coordinate patch

κ :U ⊂ R
3 �−→M,

everyγ ∈ N
3, there existsCγ > 0 such that for everyu ∈ H1(M),

∥∥∂γ
xHN2,N3

11

(
∆N3

(
u
(
κ(x)

))
, SN3/2

(
u
(
κ(x)

)))∥∥
L∞(U)

� CγN
3|γ|
2 +A

3

(
1 + ‖u‖|γ|+A

H1(M)

)
.

We next state a bound for products of eigenfunctions.

LEMMA 4.8. –Let2/3 > δ > 0. There existsΛ > 0 such that if

N0 � ΛN1, N3 � N2 � N1, N3 � N
2
3−δ
0 ,(4.12)

then for everyγ > 0 there existsC andp such that for everyu,w ∈ L2(M),

∣∣∣∣ ∫
M

HN2,N3
11

(
∆N3(u), SN3/2(u)

)
Pk0w

3∏
j=1

Pkj u

∣∣∣∣� C

Nγ
0

‖u‖3
L2‖w‖L2

(
1 + ‖u‖p

H1(M)

)
,

provided〈λkj 〉1/2 ∈ [Nj ,2Nj ], j = 0,1,2,3.

Proof. –A similar argument already appeared in Lemma 2.6 of our previous paper [8]
new point here is the presence ofHN2,N3

11 . Working in local coordinates, due to Lemma 2.3,
can substitutePk0w with the oscillatory integral∫

eiλ
1/2
k0

ϕ(x,y0)a0(x, y0, λ
1/2
k0

)w(y0)dy0.(4.13)
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Indeed the remainder term can be estimated thanks to the Sobolev embeddings and Lemma 4.7.
We consider three cases.

– Case 1. Suppose first thatN1 � N1−δ
0 . Using Lemma 2.5, we integrate by parts in the

variablex by means of the oscillating factor

iλ
1/2
k0

ϕ(x,y0)

the
the

to

as in

s in
e ,

and afterq integrations, we gain a factorN−q
0 . On the other hand, due to Lemma 4.7,

assumptionN1 � N1−δ
0 and the Sobolev inequality, we obtain that the derivation of

amplitude is causing at most a factor

max(Nq+A
1 ,N

3q/2+A
3 ) � N

q(1−δ)+A
0 .

By takingq � 1, this completes the proof in the caseN1 � N1−δ
0 .

– Case 2. Suppose next thatN1 � N1−δ
0 butN2 � N1−δ

0 . In this case we can substitutePk0w
with (4.13) andPk1u with∫

eiλ
1/2
k1

ϕ(x,y1)a1(x, y1, λ
1/2
k1

)u(y1)dy1.

Indeed in the considered case the remainders in the approximation forPk0w andPk1u given
by Lemma 2.3 are bothO(N−∞

0 ) as operators fromL2 to the Sobolev spaces. Thanks
Lemma 2.5, if we takeΛ � 1, we can again integrate by parts inx with the slightly modified
oscillatory factor

eiλ
1/2
k0

Φ(x,y0,y1),

where

Φ(x, y0, y1) = ϕ(x, y0) + λ
−1/2
k0

λ
1/2
k1

ϕ(x, y1).

– Case 3. Suppose finally thatN1 � N1−δ
0 andN2 � N1−δ

0 . Then we can substitutePk0w,
Pk1u andPk2u with the corresponding oscillatory integrals and we can then argue
case 2.

This completes the proof of Lemma 4.8.�
Lemma 4.8 (withδ = 1/6) is now used to prove Proposition 4.6 for space time function

this regime.
DefineΠk,L as follows

Πk,L(u) :=
1
2π

∫
L�〈τ+λk〉�2L

P̂ku(τ)eitτ dτ.

Further we set

Λ(N0,N1,N2,N3) :=
{
(k0, k1, k2, k3): Nj � 〈λkj 〉1/2 � 2Nj , j = 0,1,2,3

}
.

Since

∆NL =
∑

k: N�〈λk〉1/2<2N

Πk,L
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we get the bound

IN0,N1,N2,N3
L0,L1,L2,L3

�
∑

Λ(N0,N1,N2,N3)

∣∣∣∣∣
∫

R×M

HN2,N3
11

(
∆N3(u), SN3/2(u)

)
Πk0,L0(w)

3∏
j=1

Πkj ,Lj (u)

∣∣∣∣∣.

SincePkΠk,L = Πk,L, under the assumption (4.12) a use of Lemma 4.8 yields,

IN0,N1,N2,N3
L0,L1,L2,L3

� CγN−γ
0 sup

t∈R

(
1 +

∥∥u(t)
∥∥p

H1(M)

)
×

∑
Λ(N0,N1,N2,N3)

∞∫
−∞

∥∥Πk0,L0w(t)
∥∥

L2(M)

3∏
j=1

∥∥Πkj ,Lj u(t)
∥∥

L2(M)
dt.

For b > 1/2, a use of (3.2) and the Hölder inequality implies that

IN0,N1,N2,N3
L0,L1,L2,L3

� CγN−γ
0

(
1 + ‖u‖p

X1,b(R×M)

)
×

∑
Λ(N0,N1,N2,N3)

‖Πk0,L0w‖L2(R×M)‖Πk1,L1u‖L2(R×M)

×
3∏

j=2

‖Πkj ,Lj u‖L∞(R;L2(M)).

Since∆NjLj Πkj ,Lj = Πkj ,Lj , for kj such thatNj � 〈λkj 〉1/2 < 2Nj , using (3.4), we get

‖Πk0,L0w‖L2(R×M) � CNs
0L−b′

0 ‖w‖X−s,b′ (R×M),(4.14)

‖Πk1,L1u‖L2(R×M) � CN−s
1 L−b

1 ‖u‖Xs,b(R×M) � CL−b
1 ‖u‖Xs,b(R×M),(4.15)

and using Lemma 3.2, forj = 2,3,

‖Πkj ,Lj u‖L∞(R;L2(M)) � L
1/2
j ‖Πkj ,Lj u‖L2(R×M)(4.16)

� CL
1
2−b
j ‖u‖X0,b(R×M) � CL

1
2−b
j ‖u‖X1,b(R×M).

Using a crude form of Weyl asymptotics, we get a bound

∣∣Λ(N0,N1,N2,N3)
∣∣� C

(
3∏

j=0

Nj

)c

.(4.17)

Estimate (4.11) in this regime follows in view of (4.14), (4.15), (4.16) and (4.17).

4.2.3. Case 3: N
1/2
0 � N3 � N1−δ

0 where δ is the small number fixed in case 1
We shall denote byO(1) any quantity bounded by

(L0L1L2L3)−γ‖w‖X−s,b′
(
‖u‖2

X1,b + ‖u‖p
X1,b

)
‖u‖Xs,b

for someγ > 0, p ∈ N. Let

v = ∆N0L0(w)∆N1L1(u)∆N2L2(u)∆N3L3(u).
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LEMMA 4.9. –There existsϕ ∈C∞
0 (R \ {0}) such that∥∥(1−ϕ(N−2
0 ∆)

)
v
∥∥

L1(R×M)
� O(1)N−k

0

for anyk.

xists

s the

e have

three

y, not

sely for

arately
Proof. –Indeed, working in local coordinates, according to [5, Proposition 2.1], there e
χ ∈ C∞

0 (R3 \ {0}) such that for anyk∥∥∥∥∥v −
3∏

j=0

χ(N−1
j D)(uj)

∥∥∥∥∥
L1(R×M)

� O(1)N−k
0 .

Therefore, modulo negligible terms, the Fourier spectrum ofv lies in a ring of sizeN0 and
consequently, applying again [5, Proposition 2.1] in the other way round, this prove
lemma. �

Next we take advantage of this spectral localization to perform integrations by parts: w
(for some functionψ ∈C∞

0 (R \ {0}))

ϕ(N−2
0 ∆) = N−2

0 ∆ ◦ ψ(N−2
0 ∆)

and modulo negligible terms

IN0,N1,N2,N3
L0,L1,L2,L3

= N−2
0

∣∣∣∣ ∫
R×M

vψ(N−2
0 ∆)

[
∆
(
HN2,N3

11

(
∆N3(u), SN3/2(u)

))]
dtdx

∣∣∣∣.
Applying Proposition 4.3 we obtain

IN0,N1,N2,N3
L0,L1,L2,L3

� O(1)Ns−2
0 N1

−sN
− 1

2+ε
2 N

− 1
2+ε

3

∥∥∆(HN2,N3
11

(
∆N3(u), SN3/2(u)

))∥∥
L∞ .

But, by Sobolev embedding, we have∥∥∆(HN2,N3
11

(
∆N3(u), SN3/2(u)

))∥∥
L∞ � CN3

3

(
1 + ‖u‖2

X1,b

)
and thus, sinceN3 � N2 � N1 andN3 � N1−δ

0 ,

IN0,N1,N2,N3
L0,L1,L2,L3

�O(1)Ns−2
0 N1

−sN
− 1

2+ε
2 N

5
2+ε
3(4.18)

�O(1)N (s−2)
0 N2−s+2ε

3 � O(1)N (s−2)δ+2ε
0

and we can chooseε > 0 small enough such that(s− 2)δ + 2ε < 0.
This completes the proof of Proposition 4.6 (and thus of (3.8)) in the case of a

dimensional compact manifold satisfying Proposition 4.1.�
Remark4.10. – Let us notice that the estimate (3.8) holds for any sub-quintic nonlinearit

necessarily satisfying the gauge condition (1.2). We used (1.2) in the reduction toF vanishing
of order three at zero performed above because it simplifies a bit the analysis. More preci
an arbitraryF in the expansions ofG1(∆N1(u), SN1/2(u)) andHN2

1 (∆N2(u), SN2/2(u)) above
one should add a constant. This would force one to analyze quadratic nonlinearities sep
which can be done with our methods.
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Thanks to the multilinear nature of our arguments, the proof of (3.9) is essentially the same as
for (3.8). Indeed for suitableF1, F2 one writes

F (u)− F (v) = (u− v)F1(u, v) + (u− v)F2(u, v).

Then we expand

educed

ilinear
u− v =
∑
N1

∆N1(u− v)

and forj = 1,2,

Fj(u, v) =
∑
N2

[
Fj

(
SN2(u), SN2(v)

)
− Fj

(
SN2/2(u), SN2/2(v)

)]
.

One then further expands the difference and after a duality argument the proof of (3.9) is r
to a bound for a4-linear expression multiplied with a factor similar to

HN2,N3
11

(
∆N3(u), SN3/2(u)

)
which appeared in the proof of (3.8). We omit the details.

5. Trilinear Strichartz estimates and applications

In this section we prove Theorem 4 forM = S2
ρ × S1 with the standard metric.

5.1. Trilinear Strichartz estimates on M = S2
ρ × S1

We do not know whether Proposition 4.1 holds in this case. Instead, we shall prove a tr
Strichartz-type estimate. Let us first introduce some notation. As usual we identifyS1 with
R/(2πZ). The eigenfunctions of∆ in the considered case are

λm,n = m2 + κ(n2 + n), m � 0, n � 0, κ =
1
ρ2

.

Let us denote byΠn the spectral projector on spherical harmonics of degreen � 0 on S2
ρ . For

f(ω, θ) ∈ L2(S2
ρ × S1), we set

Θmf(ω) :=
1
2π

2π∫
0

f(ω, θ)e−imθ dθ.

The crucial estimate is the following.

PROPOSITION 5.1. –For every intervalI ⊂ R, everyε > 0 there exists a constantC such that
for everyN1 � N2 � N3 � 1, everyf1, f2, f3 ∈ L2(M),∥∥∥∥∥

3∏
j=1

eit∆(∆Nj fj)

∥∥∥∥∥
L2(I×M)

� CN
5
4
3 N

3
4+ε
2

3∏
j=1

‖∆Nj fj‖L2(M).
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Proof. –By a time translation we can suppose thatI = [0, T ]. Sinceκ is not necessarily
integer, we cannot employ the argument of Proposition 4.1 which reduces the analysis to the
caseI = [0,2π]. We shall instead use the following lemma, already used in a similar context in
[4].

LEMMA 5.2. –Let Λ be a countable set of real numbers. Then for everyT > 0 there exists

CT such that for every sequence(aλ) indexed byΛ one has∥∥∥∥∑

λ∈Λ

aλeiλt

∥∥∥∥
L2(0,T )

� CT

(∑
l∈Z

( ∑
λ: |λ−l|�1/2

|aλ|
)2) 1

2

.

Proof. –Let ψT ∈C∞
0 (R) be such thatψT = 1 on the interval[0, T ]. Set

f(t) :=
∑
λ∈Λ

ψT (t)aλeiλt.

Then

f̂(τ) =
∑
λ∈Λ

ψ̂T (τ − λ)aλ

and the problem is to show that

‖f̂‖L2(R) � CT

(∑
l∈Z

( ∑
λ: |λ−l|�1/2

|aλ|
)2) 1

2

.

Next, we write ∣∣f̂(τ)
∣∣�∑

l∈Z

∑
λ: |λ−l|�1/2

∣∣ψ̂T (τ − λ)
∣∣|aλ|�

∑
l∈Z

K(l, τ)h(l),

where

h(l) =
∑

λ: |λ−l|�1/2

|aλ|, K(l, τ) = sup
λ: |λ−l|�1/2

∣∣ψ̂T (τ − λ)
∣∣.

It is clear that|λ− l|� 1/2 implies

1
1 + |τ − λ| � C

1 + |τ − l|

and therefore, using thatψT ∈ C∞
0 (R), we deduce that for everyN ∈ N there existsCT,N such

that ∣∣K(l, τ)
∣∣� CT,N

(1 + |τ − l|)N
.

A use of the Schur lemma completes the proof of Lemma 5.2.�
We expand(

3∏
j=1

eit∆(∆Nj fj)

)
(ω, θ)
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=
∑

e−i(λm1,n1+λm2,n2+λm3,n3 )tei(m1+m2+m3)θ
3∏

j=1

(Πnj Θmj fj)(ω),

where the sum is taken over(mj , nj), j = 1,2,3, such thatNj � 〈λmj ,nj 〉1/2 < 2Nj . Using the
Parseval identity with respect toθ and Lemma 5.2, we obtain∥ ∥2

e

∥∥∥∥
3∏

j=1

eit∆(∆Nj fj)
∥∥∥∥

L2([0,T ]×M)

� CT

∑
(l,ξ)∈Z2

∥∥∥∥∥ ∑
|l−λm1,n1−λm2,n2−λm3,n3 |�1/2

ξ=m1+m2+m3

3∏
j=1

|Πnj Θmj fj |
∥∥∥∥∥

2

L2(S2
ρ)

,

where the summation over(m1,m2,m3, n1, n2, n3) is restricted to (mj , nj) such that
Nj � 〈λmj ,nj 〉1/2 < 2Nj , j = 1,2,3. Applying the triangle inequality for theL2(S2

ρ) norm, the
Cauchy–Schwarz inequality in the summation over(m1,m2,m3, n1, n2, n3), and the trilinear
estimate (1.6) of Theorem 2 yields∥∥∥∥∥

3∏
j=1

eit∆(∆Nj fj)

∥∥∥∥∥
2

L2([0,T ]×M)

�
∑

(l,ξ)∈Z2

∑
|l−λm1,n1−λm2,n2−λm3,n3 |�1/2

ξ=m1+m2+m3

∣∣Λ(l, ξ)
∣∣(N2N3)

1
2

3∏
j=1

‖Πnj Θmj fj‖2
L2(S2

ρ)

� (N2N3)
1
2 sup

(l,ξ)∈Z2

∣∣Λ(l, ξ)
∣∣ 3∏

j=1

‖fj‖2
L2(M),

where

Λ(l, ξ) :=

{
(m1,m2,m3, n1, n2, n3) ∈ N

6:

∣∣∣∣∣l −
3∑

j=1

(
m2

j + κ(n2
j + nj)

)∣∣∣∣∣� 1
2
,

ξ = m1 + m2 + m3, Nj � 〈λmj ,nj 〉1/2 < 2Nj , j = 1,2,3

}
.

It remains to bound the size ofΛ(l, ξ). The number of possible(m3, n3) is bounded byCN2
3 .

The number of possiblem2 is bounded byCN2. Thus the number of possible(m2,m3, n3) is
bounded byCN2N

2
3 . Let us nowfix a possible triple(m2,m3, n3). Our goal is evaluate th

number of possible(m1, n1, n2) such that(m1,m2,m3, n1, n2, n3) ∈ Λ(l, ξ). In view of the
imposed restrictions, we can eliminatem1 by concluding that(n1, n2) should satisfy∣∣l − (ξ −m2 −m3)2 −m2

2 −m2
3 − κ[n2

1 + n2
2 + n2

3 + n1 + n2 + n3]
∣∣� 1

2

or equivalently ∣∣(2n1 + 1)2 + (2n2 + 1)2 −R
∣∣� 2

κ
,(5.1)

where

R = −4(n2
3 + n3) + 2 +

4
κ

[
l − (ξ −m2 −m3)2 −m2

2 −m2
3

]
.
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Using Lemma 4.2, uniformly with respect toR, the number of integer solutions(n1, n2) ∈
[0,CN1]× [0,CN2] of the inequality (5.1) is bounded byCεN

ε
2 which implies the estimate∣∣Λ(l, ξ)

∣∣� CεN
2
3 N1+ε

2 .

The proof of Proposition 5.1 is now completed.�

ing
roduct

n fact

n 4.1

of of
ölder
5.2. Using trilinear Strichartz estimates

From now on we simply assume thatM is a three dimensional compact manifold satisfy
Proposition 5.1. Proceeding as in [8, Section 3.2] one can show, for instance, that the p
of any Zoll surface withS1 has this property. As a consequence it can be remarked that i
Theorem 1 holds for any such manifold.

For our purpose in this section, we will first use the following weaker form of Propositio
which is a consequence of Proposition 5.1.

PROPOSITION 5.3. –For every intervalI ⊂ R, everyε > 0 there exists a constantC such that
for everyN1,N2 � 1, everyf1, f2 ∈ L2(M),∥∥∥∥∥

2∏
j=1

eit∆(∆Nj fj)

∥∥∥∥∥
L2(I×M)

� C
(
min(N1,N2)

) 3
4+ε

2∏
j=1

‖∆Nj fj‖L2(M).

Proof. –It suffices to apply Proposition 5.1 withf3 = 1. �
Propositions 5.1 and 5.3 now imply the following statement.

PROPOSITION 5.4. –For everyε > 0 there existβ < 1/2 and C > 0 such that for every
N1 � N2 � N3 � 1, L1,L2,L3 � 1, everyu1, u2, u3 ∈ L2(R×M),∥∥∥∥∥

2∏
j=1

∆NjLj (uj)

∥∥∥∥∥
L2

� C(L1L2)βN
3
4+ε
2

2∏
j=1

∥∥∆NjLj (uj)
∥∥

L2(5.2)

and ∥∥∥∥∥
3∏

j=1

∆NjLj (uj)

∥∥∥∥∥
L2

� C(L1L2L3)βN
5
4+ε
3 N

3
4+ε
2

3∏
j=1

∥∥∆NjLj (uj)
∥∥

L2 .(5.3)

Proof. –One can show that Proposition 5.3 implies (5.2) exactly as we did in the pro
Proposition 4.3. The proof of (5.3) follows similar lines. First, using Lemma 3.2 and the H
inequality we get∥∥∥∥∥

3∏
j=1

∆NjLj (uj)

∥∥∥∥∥
L2

�
∥∥∆N1L1(u1)

∥∥
L6(R;L2(M))

3∏
j=2

∥∥∆NjLj (uj)
∥∥

L6(R;L∞(M))
(5.4)

� C(N2N3)
3
2 (L1L2L3)

1
3

3∏
j=1

∥∥∆NjLj (uj)
∥∥

L2 .

Next, exactly as in the proof of Proposition 4.3, we obtain that for every unit intervalI ⊂ R,
every b > 1/2, every δ > 0 there existsCb,δ such that for everyN1 � N2 � N3 � 1, every
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u1, u2, u3 ∈X0,b(R×M),∥∥∥∥∥
3∏

j=1

∆Nj (uj)

∥∥∥∥∥
L2(I×M)

� Cb,δN
3
4+δ
2 N

5
4
3

3∏
j=1

∥∥∆Nj (uj)
∥∥

X0,b .(5.5)

posi-

y
t
f the

to
to
Using the partition of unity (4.4), we get the bound∥∥∥∥∥
3∏

j=1

∆NjLj (uj)

∥∥∥∥∥
L2(R×M)

(5.6)

� Cb,δN
3
4+δ
2 N

5
4
3 (L1L2L3)b

3∏
j=1

∥∥∆NjLj (uj)
∥∥

L2(R×M)
.

Finally, a suitable interpolation between (5.4) and (5.6) completes the proof of Pro
tion 5.4. �

Let us now turn to the proof of Theorem 4 in the caseM = S2
ρ × S1 (or more generally an

manifold satisfying Proposition 5.1). We can again suppose thatF (u) is vanishing at least a
order three at zero. We expandF (u) as we did in Section 4 and are led to estimating terms o
form

IN0,N1,N2,N3
L0,L1,L2,L3

:=

∣∣∣∣∣
∫

R×M

∆N0L0(w)
3∏

j=1

∆NjLj (u)HN2,N3
11

(
∆N3(u), SN3/2(u)

)∣∣∣∣∣.
As in Section 4, we consider two cases and denote byI1 the contribution corresponding
N0 � ΛN1, whereΛ � 1 is a large constant and byI2 the contribution corresponding
N0 > ΛN1. To studyI1, we even make one more expansion of the termsHN2,N3

1j and it results
that estimate (3.8) is a consequence of the bounds

J � C‖w‖X−s,b′ (R×M)‖u‖X1,b(R×M)‖u‖2
Xs,b(R×M)(5.7)

and

I1 � C‖w‖X−s,b′ (R×M)

(
‖u‖3

X1,b(R×M) + ‖u‖α−1
X1,b(R×M)

)
‖u‖Xs,b(R×M),(5.8)

I2 � C‖w‖X−s,b′ (R×M)

(
‖u‖2

X1,b(R×M) + ‖u‖p
X1,b(R×M)

)
‖u‖Xs,b(R×M),(5.9)

where

J =
∑

L0,L1,L2,L3

∑
N0

∑
N3�N2�N1

∣∣∣∣∣
∫

R×M

∆N0L0(w)
3∏

j=1

∆NjLj (u)

∣∣∣∣∣
and

I1 =
∑

L0,L1,L2,L3,L4

∑
N0�ΛN1

∑
N4�N3�N2�N1∣∣∣∣∣

∫
R×M

∆N0L0(w)

(
4∏

j=1

∆NjLj (u)

)
HN2,N3,N4

(
∆N4(u), SN4/2(u)

)∣∣∣∣∣,
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I2 =
∑

L0,L1,L2,L3

∑
N0>ΛN1

∑
N3�N2�N1∣∣∣∣∣

∫
R×M

∆N0L0(w)

(
3∏

j=1

∆NjLj (u)

)
HN2,N3

(
∆N3(u), SN3/2(u)

)∣∣∣∣∣,

.2) and

n 4.
with sums taken over the dyadic values ofNj andLj , j = 0,1,2,3,4. MoreoverHN2,N3,N4(a, b)
enjoys the bound ∣∣HN2,N3,N4(a, b)

∣∣� C
(
1 + |a|+ |b|

)max(α−4,0)
.

In addition for4 < α < 5, we can further expandHN2,N3,N4 and we can get the bound∣∣HN2,N3,N4
(
∆N4(u), SN4/2(u)

)∣∣ 1
α−4 � C

∑
N5: N5�N4

∣∣∆N5(u)
∣∣.(5.10)

The proof of (5.7) is a consequence of the bilinear estimate (5.2). More precisely, using (5
the Hölder inequality, we obtain that for everyε > 0 there existsβ < 1/2 such that∣∣∣∣∣

∫
∆N0L0(w)

3∏
j=1

∆NjLj (u)

∣∣∣∣∣� C(N2N3)
3
4+εLβ

0

∥∥∆N0L0(w)
∥∥

L2

3∏
j=1

Lβ
j

∥∥∆NjLj (u)
∥∥

L2 .

Since forε < 1/4 we have3/4+ε < 1, we can complete the proof of (5.7) as we did in Sectio
A similar argument (using both (5.2) and (5.3)) is valid for (5.8), ifα � 4.

To prove (5.8) if4 < α < 5, we use Proposition 5.4 in its full strength. Set

IN0N1N2N3N4
L0L1L2L3L4

:=

∣∣∣∣∣
∫

R×M

∆N0L0(w)

(
4∏

j=1

∆NjLj (u)

)
HN2,N3,N4

(
∆N4(u), SN4/2(u)

)∣∣∣∣∣.
In order to estimateIN0N1N2N3N4

L0L1L2L3L4
, we use the following form of Hölder’s inequality:

∀γ ∈ ]0,1],
∣∣∣∣ ∫
R×M

fg

∣∣∣∣�( ∫
R×M

|f |
)1−γ( ∫

R×M

|f ||g| 1
γ

)γ

.(5.11)

Since4 < α < 5, γ = α− 4 ∈ ]0,1[. Using (5.11), we can write,

IN0N1N2N3N4
L0L1L2L3L4

�
[
JN0N1N2N3N4

L0L1L2L3L4

]1−γ[
KN0N1N2N3N4

L0L1L2L3L4

]γ
,(5.12)

where

JN0N1N2N3N4
L0L1L2L3L4

=
∫

R×M

∣∣∣∣∣∆N0L0(w)

(
4∏

j=1

∆NjLj (u)

)∣∣∣∣∣.
Thanks to (5.10), the second factorKN0N1N2N3N4

L0L1L2L3L4
in (5.12) enjoys the bound

KN0N1N2N3N4
L0L1L2L3L4

� C
∑

N5: N5�N4

∫
R×M

∣∣∣∣∣∆N0L0(w)

(
4∏

j=1

∆NjLj (u)

)∣∣∣∣∣∣∣∆N5(u)
∣∣.
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Let us now boundJN0N1N2N3N4
L0L1L2L3L4

. Using Hölder’s inequality and Proposition 5.4 (both (5.2) and
(5.3)), we obtain that for everyε > 0 there existsβ < 1/2 such that

JN0N1N2N3N4
L0L1L2L3L4

� C(N2N3)
3
4+εN

5
4+ε
4 Lβ

0

∥∥∆N0L0(w)
∥∥

L2

4∏
j=1

Lβ
j

∥∥∆NjLj (u)
∥∥

L2 .
Next we estimateKN0N1N2N3N4
L0L1L2L3L4

. By writing ∆N5 =
∑

L5
∆N5L5 , using Hölder’s inequality

and Proposition 5.4 (twice (5.3)), we obtain that for everyε > 0 there existsβ < 1/2 such that
KN0N1N2N3N4

L0L1L2L3L4
is bounded by

C
∑

N5: N5�N4

∑
L5

(N2N3)
3
4+ε(N4N5)

5
4+εLβ

0

∥∥∆N0L0(w)
∥∥

L2

5∏
j=1

Lβ
j

∥∥∆NjLj (u)
∥∥

L2 .

Writing N
5
4+ε
5 = N5N

1
4+ε
5 , using the Cauchy–Schwarz inequality, we get forb > β,∑

N5: N5�N4

∑
L5

N
5
4+ε
5 Lβ

5

∥∥∆N5L5(u)
∥∥

L2

�
( ∑

N5: N5�N4

∑
L5

[
Lβ−b

5 N
1
4+ε
5

]2) 1
2

‖u‖X1,b � CN
1
4+ε
4 ‖u‖X1,b .

Therefore, we have the estimate,

KN0N1N2N3N4
L0L1L2L3L4

� C(N2N3)
3
4+εN

5
4+ε
4 Lβ

0

∥∥∆N0L0(w)
∥∥

L2

×
(

4∏
j=1

Lβ
j

∥∥∆NjLj (u)
∥∥

L2

)
N

1
4+ε
4 ‖u‖X1,b .

Coming back to (5.12), we obtain the following estimate

IN0N1N2N3N4
L0L1L2L3L4

� C
Ns

0

Ns
1

(N2N3)
3
4+εN

5
4+ε
4 N

γ( 1
4+ε)

4

N2N3N4
Lβ−b′

0 (L1L2L3L4)β−b(5.13)

×
(
N−s

0 Lb′

0

∥∥∆N0L0(w)
∥∥

L2

)(
Ns

1Lb
1

∥∥∆N1L1(u)
∥∥

L2

)
×
(

4∏
j=2

NjL
b
j

∥∥∆NjLj (u)
∥∥

L2

)
‖u‖γ

X1,b .

Let us takeε > 0 such that(3
2 + 2ε) + (5

4 + ε) + γ(1
4 + ε) < 3 or equivalently,

0 < ε <
1− γ

4(3 + γ)
=

5− α

4(α− 1)
.

Note that a proper choice ofε is possible thanks to the subcritical assumptionα < 5. Therefore
there existsθ > 0 such that forN4 � N3 � N2,

(N2N3)
3
4+εN

5
4+ε
4 N

γ( 1
4+ε)

4

N2N3N4
� C

(N2N3N4)θ
.(5.14)

Thanks to (5.14) and (5.13), we obtain
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IN0N1N2N3N4
L0L1L2L3L4

� C
Ns

0

Ns
1

1
(N2N3N4)θ

Lβ−b′

0 (L1L2L3L4)β−b(5.15)

×
(
N−s

0 Lb′

0

∥∥∆N0L0(w)
∥∥

L2

)(
Ns

1Lb
1

∥∥∆N1L1(u)
∥∥

L2

)
×
(

4∏
NjL

b
j

∥∥∆NjLj (u)
∥∥

L2

)
‖u‖γ

X1,b .

regime,
j=2

Estimate (5.8) follows by summing geometric series inL0, L1, L2, L3, L4, N2, N3, N4 while
the sum over(N0,N1) is performed by invoking Lemma 4.5.

We now turn to the proof of (5.9). As in Section 4, we shall denote byO(1) any quantity
bounded (for someγ > 0, p ∈ N) by

(L0L1L2L3)−γ‖w‖X−s,b′
(
‖u‖2

X1,b + ‖u‖p
X1,b

)
‖u‖Xs,b .

We have three regimes:
1. N1−δ

0 � N3, δ > 0 small enough,

2. N3 � N
1/2
0 ,

3. N
1/2
0 � N3 � N1−δ

0 .
In the first regime, we expand once more the nonlinear term, writing

IN0N1N2N3
L0L1L2L3

�
∑

L4,N4

IN0N1N2N3N4
L0L1L2L3L4

and apply the same strategy as whenN0 � ΛN1. Indeed, in this regime,N0/N1 � N δ
0 and we

obtain withη > 0

IN0N1N2N3N4
L0L1L2L3L4

� O(1)
Ns

0

Ns
1

1
(N2N3N4)θ

� O(1)N2δ
0 N−θ

3 � O(1)N2δ−θ(1−δ)
0 �O(1)N−η

0

which gives the summability inN4 � N3 � N2 � N1 � Λ−1N0.
The second regime can be dealt with in the same way as in the previous section (in this

we gain arbitrary powers ofN−1
0 ). Finally we concentrate on the last regime. Let

v = ∆N0L0(w)∆N2L2(u)∆N3L3(u).

By the same argument as in Lemma 4.9, there existsϕ ∈C∞
0 (R \ {0}) such that∥∥(1−ϕ(N−2

0 ∆)
)
v
∥∥

L1(R×M)
� O(1)N−k

0

for anyk.
Using that for some functionΨ ∈ C∞

0 we have

ϕ(N−2
0 ∆) = N−2

0 ∆ ◦Ψ(N−2
0 ∆)

we can integrate by parts in the integral definingIN0,N1,N2,N3
L0,L1,L2,L3

:

IN0,N1,N2,N3
L0,L1,L2,L3

= N−2
0

∣∣∣∣∣
∫
M

Ψ(N−2
0 ∆)(v)∆

(
∆N1L1(u)HN2,N3

11

(
∆N3(u), SN3(u)

))∣∣∣∣∣(5.16)
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= N−2
0

∣∣∣∣∣
∫
M

Ψ(N−2
0 ∆)(v)×

[
∆
(
∆N1L1(u)

)
HN2,N3

11

(
∆N3(u), SN3(u)

)
+∇

(
∆N1L1(u)

)
· ∇
(
HN2,N3

11

(
∆N3(u), SN3(u)

))
( N2,N3

( ))]∣∣∣
lready

rator
ne

e-
. This

ke

by
+ ∆N1L1(u)∆ H11 ∆N3(u), SN3(u) ∣∣.
Now to estimate the first term in the right-hand side of (5.16) we simply apply the strategy a
used in the caseN0 � ΛN1, the only difference being the additional factor(N1/N0)2 (the factor
N2

1 coming from the action of the Laplace operator on∆N1L1(u)), which allows, sinces < 2, to
exchange the roles ofN0 andN1 and gain summability. Remark here that the additional ope
Ψ(N−2

0 ∆) applied to∆N0L0(w)∆N2L2(u)∆N3L3(u) plays no role since it disappears when o
takesL2 norms.

Next we estimate the two other terms. We expand the derivatives and observe that∣∣∇(HN2,N3
11

(
∆N3(u), SN3(u)

))∣∣(x) � CwN3,1(x)

with

wN3,1(x) =
(∣∣∇∆N3(u)

∣∣+ ∣∣∇SN3(u)
∣∣)(1 +

∣∣∆N3(u)
∣∣+ ∣∣SN3(u)

∣∣)(x)

= wN3,1,q +
(∣∣∇∆N3(u)

∣∣+ ∣∣∇SN3(u)
∣∣),∣∣∆(HN2,N3

11

(
∆N3(u), SN3(u)

))∣∣(x) � wN3,2(x)

with

wN3,2(x) =
(∣∣∆∆N3(u)

∣∣+ ∣∣∆SN3(u)
∣∣)(1 +

∣∣∆N3(u)
∣∣+ ∣∣SN3(u)

∣∣)(x)

+
(∣∣∇∆N3(u)

∣∣+ ∣∣∇SN3(u)
∣∣)2(x)

= wN3,2,q(x) +
(∣∣∆∆N3(u)

∣∣+ ∣∣∆SN3(u)
∣∣).

Next we use that forφ ∈ C∞
0 (R), φ(N−2∆) is an N−1-semi-classical operator and cons

quently the gradient of a spectrally localized function is essentially spectrally localized
allows to apply the trilinear estimate (5.3) tov on one hand and to∣∣∇(∆N1L1(u)

)∣∣×wN3,1,q or ∆N1L1(u)×wN3,2,q(5.17)

on the other hand (remark that the moduli in (5.17) do not spoil the estimate since we taL2

norms). Similarly, we apply the bilinear estimate (5.2) tov on one hand and to∣∣∇(∆N1L1(u)
)∣∣× (∣∣∇∆N3(u)

∣∣+ ∣∣∇SN3(u)
∣∣)

or ∆N1L1(u)×
(∣∣∆∆N3(u)

∣∣+ ∣∣∆SN3(u)
∣∣)(5.18)

on the other hand.
We obtain that the contribution of these terms is bounded (for anyε > 0) by

CεO(1)N−2
0

(
N0

N1

)s

N
−1/4+ε
2 N

1/4+ε
3 (N1N3 + N2

3 )N−1/4+ε
3 N

1/4+ε
3(5.19)

� CεO(1)Ns−2
0 N1−s

1 N4ε+1
3 � CεO(1)Ns−2

0 N2−s+4ε
3 .

Using thatδ > 0 and N3 � N1−δ
0 , for ε > 0 small enough, this term can be bounded

N−η
0 , η > 0 giving the required summability inΛ−1N0 � N1 � N2 � N3.
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Remark5.5. – A careful examination of the proof above shows that Theorem 4 still holds for
a three dimensional manifoldM satisfying the more general trilinear Strichartz estimate,

∃a > 0: ∀T > 0,∀ε > 0,∃C > 0: ∀N3 � N2 � N1,∀f1, f2, f3 ∈ L2(M),∥∥∥∥ 3∏
eit∆(∆Nj fj)

∥∥∥∥ � CN1+a
3 N1−a+ε

2

3∏
‖∆Nj fj‖L2(M).

ataru

n
i
tion

c-

us

a

lts for
∥
j=1

∥
L2([0,T ]×M) j=1
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Appendix A

This appendix is devoted to the optimality of the assumptionα < 5 in Theorem 1. Let us agai
consider a 3d-manifoldM endowed with a Riemannian metricg and∆ the Laplace–Beltram
operator acting on functions ofM . We consider the following nonlinear Schrödinger equa
onM

(i∂t + ∆)u = F (u), u|t=0 = u0 ∈H1(M),(A.1)

whereF (z) = (1 + |z|2)(α−1)/2z andα > 5.
Let us fixs > 3/2. Eq. (A.1) is well-posed for data inHs(M) by the energy method. In parti

ular, for every bounded setB ⊂ Hs(M) there exists Ts such that for every
u0 ∈ Hs(M) the Cauchy problem (A.1) has a unique solution on the interval[−Ts, Ts] in the
classC([−Ts, Ts];Hs(M)). Moreover the flow map

Φ:u0 −→ u

is continuous (and even Lipschitz continuous) fromB, endowed with theHs(M) metric, to
C([−Ts, Ts];Hs(M)). The next statement shows thatΦ cannot be extended as a continuo
map on bounded sets ofH1(M).

THEOREM 5. –Let B be a bounded set ofH1(M). There is noT > 0 such that the mapΦ
can be extended as a continuous map fromB to C([−T,T ];H1(M)).

The result of Theorem 5 readily follows from the following statement.

THEOREM 6. –There exist a sequence(tn)n∈N of positive numbers tending to zero and
sequence(un(t))n�1 of C∞(M) functions defined fort ∈ [0, tn], such that

(i∂t + ∆)un =
(
1 + |un|2

)α−1
2 un

with

lim
n→∞

∥∥un(0)
∥∥

H1(M)
= 0, and lim

n→∞

∥∥un(tn)
∥∥

H1(M)
= ∞.

RemarkA.1. – The result of Theorem 6, in the particular caseM = R
3, endowed with the

standard metric, can be found in [11]. We also refer to [11] for more ill-posedness resu
NLS onR

d, d � 1, with power-like nonlinearities and data inHs, s > 0.
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RemarkA.2. – The proof of Theorem 6 is strongly inspired by [11]. The only observation
we make here is that the dilation arguments involved in the proof in [11] are not essential. It is
clear from the proof we present that the discussed phenomenon is completely local, i.e. the whole
analysis is close to a point ofM for very small times.

Proof. –We work in a local coordinate patch around0 and consider as initial data the sequence
1/2 rted

)

ontrol on
s,
un(0) = κnn ϕ(nx), n � 1, whereϕ is a fixed nonnegative smooth compactly suppo
κn = log−δ(n) with δ > 0 to be fixed later. Remark that∥∥un(0)

∥∥
H1(M)

∼ κn.

Let us setf(z) := (1 + |z|2)α−1
2 . Then

vn(t) = κnn1/2ϕ(nx)e−itf(κnn1/2ϕ(nx))

is the solution of the equation

i∂tvn = F (vn), vn|t=0 = un(0).(A.2)

Let us give a basic bound forvn(t).

LEMMA A.3. –There existc > 0 andC > 0 such that for anyt � 0,∥∥∇xvn(t)
∥∥

L2 � κn

(
ctκα−1

n n(α−1)/2 −C
)
.

Proof. –The change of variabley = nx gives∥∥∇xvn(t)
∥∥

L2 = κn

∥∥∇y

[
ϕ(y)e−itf(κnn1/2ϕ(y))

]∥∥
L2

� κn

(
2tκnn1/2

∥∥ϕ(y)∂zf
(
κnn1/2ϕ(y)

)
· ∇yϕ(y)

∥∥
L2 − ‖∇yϕ‖L2

)
� ctκα

nn(α−1)/2 −Cκn

(A.3)

which implies the lemma. �
For functionsu onM , we define the quantity,

En(u) :=
[
n2‖u‖2

L2 + n−2‖∆u‖2
L2

] 1
2 .

The key point in the proof of Theorem 6 is the next statement.

LEMMA A.4. –The solutionun of (A.1) with initial data u0 = κnn1/2ϕ(nx) ∈ C∞(M)
exists for0 � t � tn, with tn = log1/8(n)n−(α−1)/2. Moreover, there existsε > 0 such that
for t ∈ [0, tn],

En

(
un(t)− vn(t)

)
� Cn−ε.

Proof. –Since the initial data are inHs, s > 3/2, we know thatun(t) exists on a (nonempty
maximal time interval[0, t̃n[. Consequently, to prove Lemma A.4, we simply prove thea priori
estimates which ensure, by a classical bootstrap argument, both the existence and the c
En(un(t)− vn(t)) for t ∈ [0, tn]∩ [0, t̃n[. Let us setwn := un − vn. For the sake of concisenes
in the rest of the proof of Lemma A.4, we drop the subscriptn of un, vn andwn. The a priori
estimates involved in the proof are simply energy inequalities in the equations
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(i∂t + ∆)w = F (u)− F (v)−∆v =O
(
1 + |v|α−1 + |w|α−1

)
w −∆v,

(i∂t + ∆)∆w = ∆
(
F (u)− F (v)

)
−∆2v = −∆2v + Λ,

where

Λ :=O
(
1 + |w|α−1 + |v|α−1

)
∆w(( )( ))

ically
ed
+O 1 + |w|α−2 + |v|α−2 1 + |w|+ |v|+ |∇w|+ |∇v| ∇w

+O
((

1 + |w|α−3 + |v|α−3
)(

1 + |∇v|2 +
(
|v|+ |w|

)
|∇2v|

))
w.

From the explicit formula forv, we have for0 � t � tn, k = 0,1,2, . . . ,

‖∇kv‖L∞ � Cn1/2+k logk/8(n).

According to the Gagliardo–Nirenberg inequalities,

‖f‖L∞ � C‖f‖3/4
H2 ‖f‖1/4

L2 � Cn1/2En(f)(A.4)

we deduce

n
∥∥O(1 + |v|α−1 + |w|α−1

)
w
∥∥

L2 � C
(
1 + ‖v‖α−1

L∞ + ‖w‖α−1
L∞

)
n‖w‖L2(A.5)

� Cn(α−1)/2
(
En(w) + Eα

n (w)
)
.

To estimateΛ, we proceed similarly. More precisely, thanks to (A.4), we estimate systemat
the terms involvingv or w below theO sign inL∞. The only term which cannot be estimat
by invoking (A.4) is

O
((

1 + |w|α−2 + |v|α−2
)(
|∇w|

))
∇w.(A.6)

In order to evaluate (A.6), we use the bound

‖∇w‖L4 � C‖∇w‖H3/4 � Cn3/4En(w)

and we obtain ∥∥(A.6)
∥∥

L2 � Cn(α+1)/2
(
En(w) + Eα

n (w)
)
.(A.7)

We are therefore conducted to the following estimate forΛ

n−1‖Λ‖L2 � Cn(α−1)/2 log1/4(n)
(
En(w) + Eα

n (w)
)
.(A.8)

Next, thanks to the formula forv, for 0 � t � tn, we estimate the source terms,

n‖∆v‖L2 + n−1‖∆2v‖L2 � Cn2 log1/2(n).(A.9)

According to (A.5), (A.7) and (A.9), we obtain

d

dt
E2

n(w) � Cn(α−1)/2 log1/4(n)
(
E2

n(w) + Eα+1
n (w)

)
+ Cn2 log1/2(n)En(w).

Suppose first thatEn(w) � 1 which is clearly the case at least fort
 1 sincew|t=0 = 0. Notice
that

2n2 log1/2(n)En(w) � n(α−1)/2 log1/4(n)E2
n(w) +

n4 log(n)

n(α−1)/2 log1/4(n)
.
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Therefore

d

dt

[
e−Ctn(α−1)/2 log1/4(n)E2

n(w)
]
� Cn4−α−1

2 log3/4(n)e−Ctn(α−1)/2 log1/4(n).

Integrating the last inequality between0 andt gives the estimate

tion to

004.
tion

ion

tion

ear

on

ol.

ions,
En(w) � Cn2−α−1
2 log1/4(n)eCtn(α−1)/2 log1/4(n).

For everyγ > 0 there existsCγ such that fort ∈ [0, tn],

Ctn(α−1)/2 log1/4(n) � C log3/8(n) � γ logn + Cγ .

Sinceα > 5, by takingγ > 0 small enough, we obtain that there existsε > 0 such that for
t ∈ [0, tn], we have

En(w) � Cn−ε.(A.10)

Finally the usual bootstrap argument allows to drop the assumptionEn(w) � 1. This completes
the proof of Lemma A.4. �

It is clear that by interpolation, the quantityEn(u) controls uniformly with respect ton the
H1 norm ofu. Consequently, it follows from Lemmas A.3 and A.4 that forδ < 1

8α andn � 1,

∥∥un(tn)
∥∥

H1 � C log
1
8−αδ(n).

This completes the proof of Theorem 6.�
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