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Abstract

We consider the following Brezis–Nirenberg problem onS3

−�S3u = λu + u5 in D, u > 0 in D and u = 0 on∂D,

whereD is a geodesic ball onS3 with geodesic radiusθ1, and�S3 is the Laplace–Beltrami operator onS3. We prove that for

anyλ < −3
4 and for everyθ1 < π with π − θ1 sufficiently small (depending onλ), there exists bubbling solution to the abo

problem. This solves a conjecture raised by Bandle and Benguria [J. Differential Equations 178 (2002) 264–279] an
and Peletier [C. R. Acad. Sci. Paris, Ser. I 339 (2004) 291–394].To cite this article: W. Chen, J. Wei, C. R. Acad. Sci. Paris,
Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur l’équation de Brezis–Nirenberg sur S3 et une conjecture de Bandle–Benguria. Nous considérons le problème d
Brezis–Nirenberg suivant surS3

−�S3u = λu + u5 dansD, u > 0 dansD et u = 0 sur∂D,

où D est une boule géodésique surS3 de rayon géodésiqueθ1, et −�S3 est l’opérateur de Laplace–Beltrami surS3. Nous

montrons que pour toutλ < −3
4 et toutθ1 < π avecπ − θ1 suffisamment petit (dependant deλ), il existe des solutions pour l

problème précédent. Ce résultat répond à une conjecture de Bandle et Benguria [J. Differential Equations 178 (2002)
et de Brezis et Peletier [C. R. Acad. Sci. Paris, Ser. I 339 (2004) 291–394].Pour citer cet article : W. Chen, J. Wei, C. R. Acad.
Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

We consider the following problem

−�S3u = λu + u5, u > 0 in D and u = 0 on∂D, (1)

where�S3 is the Laplace–Beltrami operator onS3 andD is the geodesic ball centered at the North Pole w
geodesic radiusθ1. Of particular interest is the case ofθ1 ∈ (π

2 ,π). The analogous problem inRN

−�u = λu + u5, u > 0 in Ω and u = 0 on∂Ω, (2)

whereΩ is a smooth bounded domain inR
N , was first studied in a celebrated paper by Brezis and Nirenberg [3

particular, they proved that ifΩ = BR(0), the solutions to (2) exist only ifλ ∈ (0, λ1) for N � 4 andλ ∈ ( λ1
4 , λ1)

whenN = 3. Since then, there is a vast literature on many extensions of the problem considered by Bre
Nirenberg (see, e.g. [7], Chapter 3 and the references therein).

In recent papers by Bandle–Benguria [1] and Bandle–Peletier [2], it was shown that on the sphereS3 the sit-
uation is quite different. In particular, they showed that in the range ofλ > −3

4, there is a solution if and only i
(π2 − 4θ2

1)/(4θ2
1) < λ < (π2 − θ2

1)/(θ2
1). For λ � −3

4, it was shown in [1], that there exist no solutions ifθ1 � π
2 .

Then they conjectured (see a more general conjecture in [4]):

Conjecture. For everyλ < −3
4 and everyθ1 < π with π − θ1 sufficiently small, there exists a solution to(1).

In this Note, we solve the conjecture affirmatively. To state our result, we introduce the corresponding e
on R

3. By using stereo-graphic projection at the North Pole, Eq. (1) is equivalent to

�u − p(r)u + 3u5 = 0, u = u(r) > 0, r � ε, u(ε) = 0, u(r) = O

(
1

r

)
asr → +∞, (3)

wherep(r) = −3/4−λ

(1+r2)2 andε = sinθ1
1−cosθ1

.

Let UΛ(r) = ( Λ

Λ2+r2 )1/2 be the unique radial solution of�u + 3u5 = 0, u = u(r) > 0. Our main result in this
Note is the following:

Theorem 1.1. Let λ < −3
4 be a fixed number. Then there exists anε0 = ε0(λ) > 0 such that for each0 < ε < ε0,

problem(3) has a solutionuε(r) with the following form

uε(r) − U√
εΛε

(r) = O

(
ε3/4

r

)
, for r � ε, whereΛε → Λ0 > 0. (4)

We remark that Eq. (1) withλ → −∞ is also studied in [4] and [9]. There it is shown that more and m
peaked solutions arise when|λ| → +∞.

The proof of Theorem 1.1 mainly relies upon a finite-dimensional reduction procedure. Such a method h
used successfully in many papers, see, e.g. [5,6,8]. In particular, we shall follow that used in [8].

By the scalingr → √
εr , problem (3) is reduced to the following ODE which we shall work with

�u − εp(
√

εr)u + 3u5 = 0, u = u(r) > 0, r �
√

ε, u(
√

ε ) = 0, u(r) = O

(
1

r

)
asr → +∞. (5)

2. Approximate solutions, some estimates and reduction process

In this section, we first introduce a family of approximate solutions to (5) and derive some useful est
Then we perform a finite-dimensional reduction procedure which is similar to that of [8].
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Proposi-
Let Λ > 0 be a fixed positive constant such that1
C

< Λ < C for some large constantC > 0. We defineVε,Λ to
be the unique solution satisfying�v − εp(

√
εr)v + 3U5

Λ = 0, r � √
ε, v(

√
ε ) = v(+∞) = 0.

To analyzeVε,Λ, we introduce two functions: letψε,Λ be the unique solution of�ψε,Λ − p(r)ψε,Λ +
p(r)U√

εΛ = 0, ψ ′
ε,Λ(0) = ψε,Λ(+∞) = 0, and G(r) be the Green’s function satisfying�G − p(r)G +

4πδ0 = 0,G(+∞) = 0. (Note thatG(r) = 1
r

+ O(1) for r � 1 andψε,Λ = ε1/4Λ1/2ψ0(r) + o(ε1/4(1 + r)−1),
whereψ0 satisfies�ψ0 − p(r)ψ0 + p(r)1

r
= 0,ψ ′

0(0) = ψ0(+∞) = 0.) It is then easy to see that

Vε,Λ(r) = UΛ(r) − ε1/4
[
ψε,Λ(

√
εr) + βε,ΛG(

√
εr)

]
, where

βε,Λ = U√
εΛ(ε) − ψε,Λ(ε)

G(ε)
= ε3/4Λ−1/2

(
1+ o(1)

)
.

(6)

Let Iε = [√ε,+∞) andSε[u] = �u−εp(
√

εr)u+3u5+ whereu+ = max(u,0). To estimateSε[Vε,Λ], we define
two norms‖φ‖∗ = supr∈Iε

(1 + r2)1/2|φ(r)| and‖f ‖∗∗ = supr∈Iε
(r(1 + r2)5/4|f (r)|). The reason for defining

these two norms lies behind the following lemma whose proof is simple and thus omitted:

Lemma 2.1. The following holds: ‖φ‖∗ � C‖�φ − εp(
√

εr)φ‖∗∗ whereφ(
√

ε ) = φ(+∞) = 0.

SinceSε[Vε,Λ] = 3V 5
ε,Λ − 3U5

Λ, by (6), it is not difficult to see that∥∥Sε[Vε,Λ]∥∥∗∗ � Cε1/2. (7)

Finally we discuss the reduction process. The following lemma can be proved along the same ideas of
tion 3.2 of [8], using the estimate (7). Interested readers may consult [8]. We omit the details.

Lemma 2.2. For ε sufficiently small, there exists a unique pair(φε,Λ, cε(Λ)) satisfying

Sε[Vε,Λ + φε,Λ] = cε(Λ)ZΛ,

∫
Iε

φε,ΛZΛr2 dr = 0 (8)

whereZΛ = U4
Λ(∂UΛ

∂Λ
). Moreover, we also have that‖φε,Λ‖∗ � Cε1/2 and that the mapΛ → cε(Λ) is continuous.

3. Proof of Theorem 1.1

From (8), we see that, to prove Theorem 1.1, it is enough to find a zero of functioncε(Λ). To this end, let us
expandcε(Λ).

Let Lε,Λ := � − εp(
√

εr) + 15V 4
ε,Λ andzε,Λ be the unique solution of�v − εp(

√
εr)v + 15U4

Λ(∂UΛ

∂Λ
) = 0,

r � √
ε, v(

√
ε ) = v(+∞) = 0. It is easy to see thatzε,Λ = ∂UΛ

∂Λ
+ O(ε1/4 1

r
).

Multiplying Eq. (8) byr2zε,Λ(r), we obtain, using Lemma 2.2,

cε

∫
Iε

zε,ΛZΛr2 dr =
∫
Iε

Sε[Vε,Λ]zε,Λr2 dr +
∫
Iε

Lε,Λ[φε,Λ]zε,Λr2 dr + o(ε1/2). (9)

By integrating by parts, the second term on the right-hand side of (9) can be estimated as follows:∫
Iε

Lε,Λ[φε,Λ]zε,Λr2 dr =
∫
Iε

Lε,Λ[zε,Λ]φε,Λr2 dr =
∫
Iε

15[V 4
ε,Λ − U4

Λ]zε,Λφε,Λr2 dr + o(ε1/2) = o(ε1/2).

It remains to compute the first term in the right-hand side of (9):
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-Verlag,
∫
Iε

Sε[Vε,Λ]zεr
2 dr =

∫
Iε

3[V 5
ε,Λ − U5

Λ]zε,Λr2 dr

= −15ε1/2Λ1/2ψ0(0)

+∞∫
0

(
U4

Λ

∂UΛ

∂Λ

)
r2 dr − 15ε−1/4βε,Λ

+∞∫
0

(
U4

Λ

∂UΛ

∂Λ

)
r dr + o(

√
ε ). (10)

By direct computations, we have

+∞∫
0

(
U4

Λ

∂UΛ

∂Λ

)
r2 dr = 1

10

( ∞∫
0

U5
1 r2 dr

)
Λ−1/2,

+∞∫
0

(
U4

Λ

∂UΛ

∂Λ

)
r dr = − 1

10

( ∞∫
0

U5
1 r dr

)
Λ−3/2. (11)

Substituting (6) and (11) into (10), we arrive at∫
Iε

Sε[Vε,Λ]zε,Λr2 dr = ε1/2(−γ0 + γ1Λ
−2) + o(ε1/2) (12)

whereγ0, γ1 are two generic positive constants. We obtain from (9) and (12) that

cε(Λ) = c0ε
1/2(γ0 − γ1Λ

−2) + o(ε1/2) for somec0 	= 0. (13)

Theorem 1.1 now follows from (13): in fact, (13) impliescε(Λ0 − δ)cε(Λ0 + δ) < 0 whereΛ0 = √
γ1/γ0 and

δ small. By the continuity ofcε(Λ), a zero ofcε(Λ), denoted byΛε ∈ (Λ0 − δ,Λ0 + δ), is guaranteed. The
uε = Vε,Λε + φε,Λε is a solution to (5). This proves Theorem 1.1.�
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