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Abstract

We consider the following Brezis—Nirenberg problemSh
—Assu:)»u—i—uS inD, u>0 inD and u=0 ondD,

whereD is a geodesic ball 083 with geodesic radiugy, andAgs is the Laplace—Beltrami operator & We prove that for

anyi < —% and for eveny9; < & with = — 61 sufficiently small (depending ok), there exists bubbling solution to the above
problem. This solves a conjecture raised by Bandle and Benguria [J. Differential Equations 178 (2002) 264—279] and Brezis
and Peletier [C. R. Acad. Sci. Paris, Ser. | 339 (2004) 291-3@4gite this article: W. Chen, J. Wei, C. R. Acad. Sci. Paris,

Ser. | 341 (2005).
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Résumé
Sur I'équation de Brezis-Nirenberg sur S° et une conjecture de Bandle-Benguria. Nous considérons le probléme de
Brezis-Nirenberg suivant s@&®

—Agou=hu+u° dansD, u>0 dansD et u=0 surdD,

ol D est une boule géodésique i de rayon géodésiquey, et —Ags est 'opérateur de Laplace—Beltrami ssit. Nous

montrons que pour tout < —% et toutd, <  avecr — 01 suffisamment petit (dependant &g il existe des solutions pour le

probléme précédent. Ce résultat répond a une conjecture de Bandle et Benguria [J. Differential Equations 178 (2002) 264—279]
et de Brezis et Peletier [C. R. Acad. Sci. Paris, Ser. | 339 (2004) 291-R@4citer cet article: W. Chen, J. Wei, C. R. Acad.

Sci. Paris, Ser. | 341 (2005).
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1. Introduction

We consider the following problem
—Aszuzku+u5, u>0 inD and =0 ondD, Q)

where Ag; is the Laplace—Beltrami operator &% and D is the geodesic ball centered at the North Pole with
geodesic radiug;. Of particular interest is the case@fe (%, 7). The analogous problem R"

—Au=iu+u’, u>0 in2 and u=0 ondg, (2)

wheres? is a smooth bounded domaini , was first studied in a celebrated paper by Brezis and Nirenberg [3]. In
particular, they proved that 2 = B (0), the solutions to (2) exist only if € (0, 11) for N > 4 anda € (’\741, A1)
when N = 3. Since then, there is a vast literature on many extensions of the problem considered by Brezis and
Nirenberg (see, e.g. [7], Chapter 3 and the references therein).
In recent papers by Bandle—Benguria [1] and Bandle—Peletier [2], it was shown that on the Shtreresit-
uation is quite different. In particular, they showed that in the range:ef—%, there is a solution if and only if
(72 — 402)/(402) < 1 < (12 — 02)/(62). For A < —3, it was shown in [1], that there exist no solution®if< %.
Then they conjectured (see a more general conjecture in [4]):

Conjecture. For everyx < —% and every; < w with = — 61 sufficiently small, there exists a solution(i).

In this Note, we solve the conjecture affirmatively. To state our result, we introduce the corresponding equation
onR3. By using stereo-graphic projection at the North Pole, Eq. (1) is equivalent to

1
Au—p(ru+3u®=0, u=u(r)>0, r>e u@=0 u()= O<—> asr — +oo, ()
r
wherep(r) = (_fjif;); ande = lficng)slel.
Let UA(r) = (=52—)Y2 be the unique radial solution @&« + 3u® = 0, u = u(r) > 0. Our main result in this

: A24-r2
Note is the following:

Theorem 1.1. Let A < —% be a fixed number. Then there existssgr= ¢g(A) > 0 such that for eacl) < ¢ < ¢,
problem(3) has a solution:, (r) with the following form
£3/4
ug(r) — UﬁAF(r) = O(—) forr > ¢, whereA, — Ag > 0. 4)
: r

We remark that Eqg. (1) with. - —oo is also studied in [4] and [9]. There it is shown that more and more
peaked solutions arise whén — +oo.

The proof of Theorem 1.1 mainly relies upon a finite-dimensional reduction procedure. Such a method has been
used successfully in many papers, see, e.g. [5,6,8]. In particular, we shall follow that used in [8].

By the scaling- — /sr, problem (3) is reduced to the following ODE which we shall work with

Au—sp(\/gr)u+3u5=0, u=u(r)>0 r>=.e ul/e)=0, u(r):O(E) asr — +oo. (5)
r

2. Approximate solutions, some estimates and reduction process

In this section, we first introduce a family of approximate solutions to (5) and derive some useful estimates.
Then we perform a finite-dimensional reduction procedure which is similar to that of [8].
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Let A > 0 be a fixed positive constant such tlﬂat< A < C for some large constaiit > 0. We defineV; 4 to
be the unique solution satisfyingv — ep(y/er)v +3US =0, r > /&, v(/&) = v(+00) =0.

To analyzeV, 4, we introduce two functions: let, » be the unique solution oAy, 4 — p(r)Ve a4 +
pU 4 =0, %,A(O) = Y, a(+00) = 0, and G(r) be the Green’s function satisfyingaG — p(r)G +
478p = 0, G(+00) = 0. (Note thatG(r) = 2 + O(1) for r < 1 andyr, 4 = e¥4AY2yg(r) + 0(e¥4(1 + r)7Y),
whereyg satisfiesAyo — p(r)yo + p(r)% =0, ¥4(0) = Yo(+0o0) =0.) Itis then easy to see that

Vea(r) =Ua(r) — eY4ye a(VEr) + Be, aG(Jer)],  where

U zn(&) — e a(e) B (6)
= YA ce = e¥4A-12(1 4 o(2)).

LetI, = [\/e, +00) andS;[u] = Au—ep(/er)u +3ui whereu = max(u, 0). To estimateS, [V, 4], we define
two norms||¢|lx = supe;, (1 + r2)Y2p(r)] and || £l = SUR.¢;, (r(L+ r3¥4 £ (r)]). The reason for defining
these two norms lies behind the following lemma whose proof is simple and thus omitted:

Lemma 2.1. The following holds||¢||« < C||A¢ — ep(/er)d ||« Wherep (/) = ¢ (+0o0) = 0.

SinceS,[Ve,a]1=3V? , — 3U3, by (6), itis not difficult to see that

|| Sg[Vg*A]”** < Cgl/z‘ (7)

Finally we discuss the reduction process. The following lemma can be proved along the same ideas of Proposi-
tion 3.2 of [8], using the estimate (7). Interested readers may consult [8]. We omit the details.

Lemma 2.2. For ¢ sufficiently small, there exists a unique péd 4, c:(A)) satisfying

SelVea 4 deal = ce(A)Z 4, / Ge.aZar?dr=0 (8)
I

whereZ 4 = U4 (2%1). Moreover, we also have thi. 4 . < Ce¥/? and that the mapt — ¢, (4) is continuous.

3. Proof of Theorem 1.1

From (8), we see that, to prove Theorem 1.1, it is enough to find a zero of fungtidn. To this end, let us
expandc, (A).
Let L, 4 := A — ep(y/er) + 15V, andz, 4 be the unique solution okv — ep(/er)v + 1504 (3%4) = 0,

r > e, v(y/e) =v(+o0) = 0. Itis easy to see that, 4 = 324 + O(e¥/41).
Multiplying Eq. (8) byr?z. 4 (r), we obtain, using Lemma 2.2,

Ca/ZS,AZAVZdV:/Sg[Vs,A]Ze,AVZdV+/LS,A[¢5,A]Z£,A72dV+0(81/2)- 9
I I, I

By integrating by parts, the second term on the right-hand side of (9) can be estimated as follows:

/ Lo, Ale, a1ze, ar® dr = / Le alze, alpe, ar? dr = / 15V, — Uilze, adpe, ar® dr + 0(eV/?) = o(s/?).
I I I

It remains to compute the first term in the right-hand side of (9):



156 W. Chen, J. Wei/ C. R. Acad. Sci. Paris, Ser. | 341 (2005) 153-156

/Sa[VS,A]Zarzdrz‘/s[VSA — U/51]Z87Ar2dr
I A

00 +00

+
= —15 2 AY2y(0) / <Uﬁ%>r2dr—158—l/4ﬁs,A / (UﬁaUA>rdr+o(¢§). (10)
0 0

A

By direct computations, we have

+00 SU 1 00 +o0o oU 1 o
4 A 2 5.2 -1/2 4 A 5 -3/2
/(UAW)' dr=E</Ulr dr)A /2, /(UAW>rdr=_E</Ulrdr>A /2. (1)
0 0

0 0
Substituting (6) and (11) into (10), we arrive at

/ SelVe,alze, ar?dr = e¥%(—yo + y1472) + 0(e/?) (12)
I,

whereyy, y1 are two generic positive constants. We obtain from (9) and (12) that
ce(A) = coe¥?(yo — y1.472) + 0(e¥?)  for somecg # 0. (13)

Theorem 1.1 now follows from (13): in fact, (13) implies(Ag — 8)c.(Ag + ) < 0 whereAg = +/y1/v0 and
8 small. By the continuity of.(A), a zero ofc.(A), denoted byA, € (Ag — §, Ag + 8), is guaranteed. Then
ug = Ve A, + @¢, 4, IS asolution to (5). This proves Theorem 1.1
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