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Abstract

A homogenization theorem is proved for energies which follow the geometry of an a-periodic Penrose tiling. The result is
obtained by proving that the corresponding energy densities are W1-almost periodic and hence also Besicovitch almost periodic,
so that existing general homogenization theorems can be applied (Braides, 1986). The method applies to general quasicrystalline
geometries. To cite this article: A. Braides et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Homogénéisation d’un pavage de Penrose. On démontre un théorème d’homogénéisation pour des énergies qui suivent la
géométrie d’un pavage apériodique de Penrose. Nos résultats, applicables à des géométries quasicristallines générales, sont obtenus
en démontrant que les densités d’énergie correspondantes sont W1 – et donc Besicovitch – quasi-périodiques, de sort que l’on peut
appliquer les théorèmes d’homogénéisation de Braides, 1986. Pour citer cet article : A. Braides et al., C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note we deal with the problem of the homogenization of integral energies where the spatial dependence
follows the geometry of a “Penrose tiling”; that is, we consider functionals of the form

Fε(u) =
∫
Ω

f

(
x

ε
,Du(x)

)
dx, u ∈ W 1,p

(
Ω;R

m
)
, (1)

where Ω is an open subset of R
2, and f depends on x also through the shape and the orientation of the cell containing

x in an a-periodic tiling of the space R
2. As an example we may consider mixtures of two (linear) conducting materials

with different dielectric constants depending on the type of the tile, and f (y,Du) = a(y)|Du|2, where a takes two
values α, β depending whether y is in one type of tile or the other, or the mixture of two elastic materials, etc. We also
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include the case when f depends on the orientation of the single tile (so that we have ten different types of tiles), and
may be inhomogeneous inside each tile. We want to show that there exists the Γ -limit of the family {Fε} as ε → 0,
and that it can be represented as

Fhom(u) =
∫
Ω

fhom
(
Du(x)

)
dx, u ∈ W 1,p

(
Ω;R

m
)

(2)

(for the precise statement, see Theorem 2.1). This will be achieved by using a characterization of Penrose tilings which
shows that the corresponding f is Besicovitch almost periodic in y, so that an existing homogenization theorem
under very weak almost periodic assumptions can be applied. This method is general and can be applied to other
“quasicrystalline” geometries, whenever a characterization in terms of projections from higher-dimensional lattices is
available.

2. Statement and proof of the homogenization result

In order to write explicitly the spatial dependence of f and to give the precise statement of the results, we recall
some details of the characterization of Penrose tilings through a certain projection of a slice of a five-dimensional
cubic lattice onto an “irrational” two-dimensional plane given by de Bruijn [7]. We briefly recall the lines of his
construction (see [9] and [10]).

Let Π be the two-dimensional plane in R
5 spanned by the vectors

v1 =
5∑

k=1

sin

(
2(k − 1)π

5

)
ek and v2 =

5∑
k=1

cos

(
2(k − 1)π

5

)
ek, (3)

where ek is the unit vector on the kth axis. We note that, considering the matrix M whose action is the permutation
of all the coordinate axes in order, then Π is the plane of the vectors v such that the action of M on v is a rotation of
2π/5. Then, we consider the set Z of the points z ∈ Z

5 such that z + (0,1)5 ∩ Π �= ∅, and the function φ : Z5 → R
2

defined as φ(z) = ∑5
k=1 zke

ikπ
5 . We set φ(Z) = P .

Remark 1 (characterization of Penrose tilings). The tiling obtained by joining p and p′ in P by an edge if and only
if |p − p′| = 1 is a Penrose tiling.

We note that in the original construction of de Bruijn the tiling is obtained, in an equivalent way, by projecting onto
Π the points z ∈ Z

5 such that z + (0,1)5 ∩ Π �= ∅. Moreover, the construction gives a Penrose tiling for any parallel
plane γ + Π with γ such that

∑5
k=1 γk = 0 (mod 1).

We denote by T the set of the Penrose “cells” of the tiling in R
2; we get two possible shapes of rhombi for the

cells T ∈ T , each one with five possible orientations. Then, we can define a function a : R2 → {1, . . . ,10} in L∞(R2)

associating to each x in the inner part of a Penrose cell an index giving the shape and the orientation of the cell.
Moreover, in order to fix for each cell one of the vertices, we define v : R2 → P as the function which associates to
each x ∈ T (where T is an open cell) one of the two vertices p1 = (x1, y1), p2 = (x2, y2) corresponding to the angle
of π/5 (or 2π/5) so that v(x) = pi if ‖yi‖ < ‖yj‖ or, when ‖yi‖ = ‖yj‖, if ‖xi‖ < ‖xj‖.

Now we can define the functional Fε :W 1,p(Ω;R
m) → [0,+∞) as in (1), where f (y, ξ) = fa(y)(y −v(y), ξ) and,

for any a ∈ {1, . . . ,10}, fa is a positive Borel function, quasiconvex in the second variable, satisfying

c1|ξ |p − 1 � fa(x, ξ) � c2
(
1 + |ξ |p)

for some p > 1 (4)

with c1, c2 > 0. If the behavior of f is homogeneous inside each cell then simply f (y, ξ) = fa(y)(ξ).
We prove the following homogenization theorem for the sequence of functionals Fε (for details on Γ -convergence

we refer to [3,4,6], for the homogenization of multiple integrals by Γ -convergence to [5]):

Theorem 2.1 (homogenization of Penrose tilings). Let f be as above. Then the sequence {Fε} defined in (1) Γ -
converges on W 1,p(Ω) with respect to the Lp convergence to the functional (2) where

fhom(ξ) = lim
S→+∞ inf

{
1

S2

∫
2

f
(
y,Dv(y) + ξ

)
dy: v ∈ W

1,p

0

(
(0, S)2;R

m
)}

. (5)
(0,S)
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The proof is based on the application of a homogenization result for Besicovitch almost periodic functionals ob-
tained in [2] (see also [5, Th. 17.10]). A measurable function ϕ : Rn → R is a (real) Besicovitch almost periodic
function if it is the limit in the mean of a sequence of trigonometric polynomials (i.e., linear combinations of trigono-
metric monomials with possibly incommensurable periods) on R

n.

Remark 2 (a criterion for almost periodicity). A set A ⊂ R
n is relatively dense if there exists an inclusion length

L > 0 such that A + [0,L)n = R
n. The function ϕ is W 1-almost periodic if it satisfies the following condition (see

[1, p. 77], and [8] for the generalization to the n-dimensional case): for any η > 0, there exists Sη > 0 and a set Aη

relatively dense in R
n such that for any τ ∈ Aη

sup
x∈Rn

{
1

Sn
η

∫
x+[0,Sη]n

∣∣ϕ(y + τ) − ϕ(y)
∣∣dy

}
< η. (6)

In [1, Ch. 2] some closure theorems are shown for the approximation of almost periodic functions with trigono-
metric polynomials, and in particular it is proved that if ϕ is a W 1-almost periodic function, then it belongs to the
closure of the trigonometric polynomials with respect to the mean integral distance (and then, it is a Besicovitch
almost periodic function).

The homogenization theorem of [2] ensures the thesis of Theorem 2.1 if f (·, ξ) is a Besicovitch almost periodic
function for all ξ . By Remark 2 the proof of Theorem 2.1 will then follow if we prove that f (·, ξ) is a W 1 almost-
periodic function for any ξ . To that end, we prove the following proposition:

Proposition 2.1 (W 1-almost periodicity of Penrose tilings). For any η > 0, there exists Sη ∈ R large enough that we
can find a set Aη relatively dense in R

2 such that the function f (·, ξ) satisfies (6) for any τ ∈ Aη.

Proof. Let us consider the function defined on R
2 by x �→ dist(π(x),Z

5), where π stands for the projection of R
2

onto Π , i.e. π(x1, x2) = x1v1 + x2v2, and v1 and v2 are defined in (3). Note that, if p stands for the orthogonal
projection of Z

5 onto Π , then φ = 5
2 π−1 ◦ p. Indeed, since v1 · v2 = 0 and ‖v1‖ = ‖v2‖ = 5

2 , we can write p(z) =
2
5 (z · v1)v1 + 2

5 (z · v2)v2, and π(φ(z)) = (z · v1)v1 + (z · v2)v2.
The function defined by x �→ dist(π(x),Z

5) is a quasi-periodic function (that is, it is a diagonal function of a
periodic function), and it is continuous; hence it is uniformly almost periodic. Then, by the characterization of uni-
formly almost periodic functions [1], the set Ãη = {x ∈ R

2: dist(π(x),Z
5) < η} is relatively dense in R

2, and the set
Aη = Ãη ∩ P is relatively dense too, since the points in this set are the projections of the points in Z

5 with distance
less than η from Π . Now, we have to show that there exists Sη large enough such that for every τ in Aη Eq. (6) holds.

We set Rη = {y ∈ R
5: dist(y,Z

5) < η}, G(y) = χRη(y) and g the function defined in R
2 by g(x) = G(π(x)). Since

the function g is quasi-periodic, then Birkhoff’s ergodic theorem can be applied (see e.g. [5, Th. A.13]). It follows
that

lim
S→+∞

1

S2

∫
x0+[0,S]2

g(x)dx = 1

|K|
∫
K

G(y)dy (7)

where the limit exists uniformly in x0 ∈ R
2 and K = (0,1)5 is the periodicity torus in R

5. Then, we get that the limit
in (7) is proportional to η5, uniformly in x0 ∈ R

2. The same holds for the function G constructed with R2η , and for
the corresponding g, so that we get

lim
S→+∞

1

S2

∫
x0+[0,S]2

g(x)dx = c′η5.

Let Bρ(z) be the open ball with center z and radius ρ. We note that if Bη(z) ∩ Π �= ∅, then B2η(z) ∩ Π �= ∅, and
the measure of the latter intersection is greater than c̃η2 for some positive constant c̃. It follows that for any fixed η

there exists Sη such that if S > Sη then

#

{
z ∈ Z

5:
5∑

zke
ikπ

5 ∈ x0 + [0, S]2, Bη(z) ∩ Π �= ∅
}

� CS2η3. (8)

k=1
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By construction, if y ∈ R
2 belongs to a cell T such that all the vertices in V (T ) correspond to points z ∈ Z

5 such that
dist(z,Π) � η, then, for a given τ ∈ Aη, we get that y + τ belongs to a translate cell T ′ = τ + T of the same kind,
hence f (y + τ, ξ) = f (y, ξ). This implies that for any τ ∈ Aη

1

S2

∫
x+[0,S]2

∣∣f (y + τ, ξ) − f (y, ξ)
∣∣dy = 1

S2

∑
T ∈T η

S

∫
T

∣∣f (y + τ, ξ) − f (y, ξ)
∣∣dy, (9)

where T η
S = {T ∈ T : T ⊂ x0 + [0, S]2, and ∃ v ∈ V (T ) such that v = φ(z) with dist(z,Π) < η}. Now, estimate (8)

and the growth hypothesis on f give, for S > Sη

1

S2

∑
T ∈T η

S

∫
T

∣∣f (y + τ, ξ) − f (y, ξ)
∣∣dy � 1

S2
#T η

S sup
T ∈T η

S

|T |2c2
(
1 + |ξ |p)

� C̃η3

concluding the proof. �
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