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Abstract

We construct uniformly discrete, and even sparse, sequences of translates {g(t −λ)} of a single function which have the following
frame-type approximation property: for every q > 2 there exists C(q) such that every function f ∈ L2(R) can be approximated
with arbitrary small L2-error by a linear combination

∑
cλg(t − λ) satisfying the lq -estimate of the coefficients:

∥∥{cλ}∥∥
lq

� C(q)‖f ‖.

This cannot be done for q = 2, according to a result of Christensen, Deng and Heil. To cite this article: S. Nitzan, A. Olevskii,
C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Systèmes de translatées proches des frames. Nous construisons une suite réelle Λ uniformément discrète (de pas > 0) et même
lacunaire, et une fonction g ∈ L2(R), telles que le système des translatées {g(t −λ)}(λ ∈ Λ) soit un “quasi-frame” au sens suivant :
pour tout q > 2 il existe C(q) > 0 tel que toute fonction f ∈ L2(R) est approchable dans L2(R) par des combinaisons linéaires∑

cλg(t − λ) vérifiant (
∑ |cλ|q)1/q � C(q)‖f ‖. Cela est impossible quand q = 2, selon un résultat de Christensen, Deng et Heil.

Pour citer cet article : S. Nitzan, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Let Λ be a uniformly discrete (u.d.) set of real numbers:

γ (Λ) := inf
λ,λ′∈Λ,λ�=λ′ |λ − λ′| > 0. (1)

Given a function g ∈ L2(R), consider the family of translates
{
g(t − λ)

}
λ∈Λ

. (2)
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When Λ = Z, it is well known that this family cannot be complete in L2(R). It was conjectured that the same was
true for every u.d. set Λ (see for example [9], where even a stronger conjecture related to Gabor-type systems was
discussed). However, this is not the case:

Theorem A. (See [6].) Let Λ = {λn}n∈Z be any “almost integer” spectrum:

λn = n + αn, n ∈ Z, 0 < |αn| → 0
(|n| → ∞)

.

Then there is a “generator” g such that family (2) is complete in L2(R).

See also paper [7], which considers sparse complete systems of translates.
One may want to construct a u.d. or even a sparse set Λ for which there is a family (2) satisfying a stronger property

than just completeness. Observe, however, that no family (2) can be a frame in L2(R) (see [1]).

1.2. In [5] we introduced an intermediate property between completeness and frame, which we formulate below
in a slightly different form:

Definition 1. We say that a system of vectors {un} in a Hilbert space H is a (QF)-system if the following two conditions
are fulfilled:

(i) For every q > 2 there is a constant C(q) such that for every f ∈ H and every ε > 0 one can find a finite linear
combination Q = ∑

cnun satisfying ‖f − Q‖ < ε and ‖{cn}‖lq � C(q)‖f ‖.
(ii) (Bessel’s inequality) We have ‖∑

anun‖ � C‖{an}‖l2, for every finite sequence {an}.

Approximation property (i) means “completeness with lq -estimate of coefficients”. If this condition holds for q = 2,
Definition 1 becomes identical with the usual definition of a frame. One may therefore regard (QF)-systems as a sort
of “quasi-frames”.

1.3. The main result of this Note is the following:

Theorem 1. There are a u.d. sequence Λ = {λ1 < λ2 < · · ·} ⊂ R
+ and a function g ∈ L2(R) such that the system (2)

is a (QF)-system for L2(R). Moreover, for every positive sequence ε(n) = o(1), one can choose Λ such that

λn+1 >
(
1 + ε(n)

)
λn. (3)

Clearly, if the εn have a slow decay, then the gaps in the spectrum Λ grow “almost exponentially”. This condition
is sharp.

2. Proof

2.1. Similarly to [6], one can re-formulate the main result in an equivalent form:

Theorem 2. Given a decreasing sequence ε(n) = o(1) there are a weight w and a positive sequence Λ such that:

(i) Λ satisfies (3).
(ii) The system E(Λ) := {eiλx}λ∈Λ is a (QF)-system in L2(w,R).

By a “weight” we understand an a.e. positive integrable function. The connection between weights and generators
is given by w(x) = |ĝ(x)|2. We will sketch the proof of Theorem 2.

2.2. In what follows, we denote by I a finite interval on R, by ‖c‖q the lq -norm of a sequence c = {ck} and by
mE the measure of E.

The first lemma is about “analytic unity”, see [2], p. 102 and [3] for the proof.
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Lemma 1. For every interval I and numbers q > 2 and ε > 0, one can find a trigonometric polynomial A(x) =∑K
k=1 ake

ikx such that ‖a‖q < ε and

m
{
x ∈ I :

∣∣A(x) − 1
∣∣ > ε

}
< ε.

Lemma 2. For every function f ∈ L2(I ) and number ξ > 0, one can find a trigonometric polynomial B(x) =∑N
n=1 bne

iβ(n)x , such that |β(n) − n| < 1, n = 1, . . . ,N, and

m
{
x ∈ I :

∣∣f (x) − B(x)
∣∣ > ξ

}
< ξ.

This lemma can be easily deduced from the result in [4].

Lemma 3. For every q > 2, δ > 0 and f ∈ L2(I ), there is a number μ > 0 such that for every integer d > 0 there is
a trigonometric polynomial Q(x) = ∑

cmeiλmx , ‖c‖q < 1, which satisfies:

(i) λ1 > d , λm+1
λm

> 1 + μ, m = 1,2, . . . ,M .
(ii) m{x ∈ I : |f (x) − Q(x)| > δ} < δ.

Choose subsequently B = B(f, ξ) from Lemma 2 and A = A(q, ε) from Lemma 1. Set μ = 1/(2K). One can
prove that if ξ = ξ(δ) and ε = ε(B) are sufficiently small, then the polynomial

Q(x) :=
∑

bne
iβ(n)xA(rnx)

satisfies the requirements of Lemma 3, provided the numbers rn grow sufficiently fast.

In order to prove Theorem 2 we fix a weight v(x) such that
√̂

v is supported by (−1/2,1/2). This implies Bessel’s
inequality for the elements of E(Λ) in L2(w,R) for every weight w � v, provided γ (Λ) > 1. Fix also a sequence of
functions fk ∈ C(R), which is dense in L2(v,R) and such that fk vanishes outside of Ik := (−k, k).

Now we define inductively the elements of Λ, polynomials Qk and sets Ek ∈ R: On the kth step of induction,
suppose that the numbers λj , j � j (k), satisfying (3) are already defined. Set q = 2 + 1/k, δ = 2−k . According to
Lemma 3, we find the number μ(q, δ, fk). Take J > j (k) so that ε(J ) < μ and continue the sequence {λj } up to
j = J keeping the condition (3). Fix d > (1 + μ)λJ and use Lemma 3 to get a polynomial Qk and a set Ek ⊂ Ik ,
mEk > mIk − 2−k , such that |fk(x) − Qk(x)| � 2−k on Ek . Add the spectrum of Q to Λ. Finally, we obtain an
infinite sequence satisfying (3). We may also suppose that it is u.d. and that γ (Λ) > 1.

Define the weight:

w(x) := v(x) inf
k

{
1Ek

(x) + θ(k)1cEk
(x)

}
,

where the θ(k) > 0 decrease so fast that cEk contribute o(1) to ‖fk − Qk‖L2(w,R). One can check that w(x) > 0 a.e.
and all conditions of Theorem 2 are satisfied.

2.3. A few words about “time-frequency” localization of generators.

Proposition 1. As in [6], one can construct function g in Theorem 1 to be infinitely smooth and even the restriction of
an entire function.

On the other hand, the weight w constructed above is “irregular”, so that g cannot decrease fast. This is inevitable,
due to the following

Proposition 2. Let Λ be a u.d. set. If a set (2) forms a (QF)-system in L2(R) then
∫

R
|g| = ∞.

Indeed, if g ∈ L(R), then the corresponding weight w(x) = |ĝ(x)|2 is continuous. Hence, one can find a set S

of arbitrary large measure which is a finite union of intervals, so that infS w > 0. Since E(Λ) is a (QF)-system for
L2(w,R), it is so for L2(S). Then (1) contradicts Theorem 1 in [5].

As a contrast, notice that there exist a u.d. Λ and a function g in the Schwartz class such that (2) is a complete
system in L2(R), see [8].
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