

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 347 (2009) 739-742

Mathematical Analysis/Harmonic Analysis

Quasi-frames of translates \ddagger

Shahaf Nitzan, Alexander Olevskii

School of Mathematical Sciences, Tel Aviv University, Ramat-Aviv, Israel 69978 Received 12 March 2009; accepted 31 March 2009 Available online 28 May 2009 Presented by Jean-Pierre Kahane

Abstract

We construct uniformly discrete, and even sparse, sequences of translates $\{g(t-\lambda)\}$ of a single function which have the following frame-type approximation property: for every q > 2 there exists C(q) such that every function $f \in L^2(\mathbb{R})$ can be approximated with arbitrary small L^2 -error by a linear combination $\sum c_{\lambda}g(t-\lambda)$ satisfying the l_q -estimate of the coefficients:

 $\|\{c_{\lambda}\}\|_{l_{q}} \leq C(q)\|f\|.$

This cannot be done for q = 2, according to a result of Christensen, Deng and Heil. To cite this article: S. Nitzan, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Systèmes de translatées proches des *frames*. Nous construisons une suite réelle Λ uniformément discrète (de pas > 0) et même lacunaire, et une fonction $g \in L^2(\mathbb{R})$, telles que le système des translatées $\{g(t-\lambda)\}(\lambda \in \Lambda)$ soit un "quasi-frame" au sens suivant : pour tout q > 2 il existe C(q) > 0 tel que toute fonction $f \in L^2(\mathbb{R})$ est approchable dans $L^2(\mathbb{R})$ par des combinaisons linéaires $\sum c_{\lambda}g(t-\lambda)$ vérifiant $(\sum |c_{\lambda}|^q)^{1/q} \leq C(q) ||f||$. Cela est impossible quand q = 2, selon un résultat de Christensen, Deng et Heil. Pour citer cet article : S. Nitzan, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Let Λ be a uniformly discrete (u.d.) set of real numbers:

$$\gamma(\Lambda) := \inf_{\lambda, \lambda' \in \Lambda, \lambda \neq \lambda'} |\lambda - \lambda'| > 0.$$
⁽¹⁾

Given a function $g \in L^2(\mathbb{R})$, consider the family of translates

$$\left\{g(t-\lambda)\right\}_{\lambda\in\Lambda}.$$

Supported in part by the Israel Science Foundation. E-mail addresses: nitzansi@post.tau.ac.il (S. Nitzan), olevskii@post.tau.ac.il (A. Olevskii).

¹⁶³¹⁻⁰⁷³X/\$ - see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.04.001

When $\Lambda = \mathbb{Z}$, it is well known that this family cannot be complete in $L^2(\mathbb{R})$. It was conjectured that the same was true for every u.d. set Λ (see for example [9], where even a stronger conjecture related to Gabor-type systems was discussed). However, this is not the case:

Theorem A. (See [6].) Let $\Lambda = {\lambda_n}_{n \in \mathbb{Z}}$ be any "almost integer" spectrum:

 $\lambda_n = n + \alpha_n, \quad n \in \mathbb{Z}, \qquad 0 < |\alpha_n| \to 0 \quad (|n| \to \infty).$

Then there is a "generator" g such that family (2) is complete in $L^2(\mathbb{R})$.

See also paper [7], which considers sparse complete systems of translates.

One may want to construct a u.d. or even a sparse set Λ for which there is a family (2) satisfying a stronger property than just completeness. Observe, however, that no family (2) can be a frame in $L^2(\mathbb{R})$ (see [1]).

1.2. In [5] we introduced an intermediate property between completeness and frame, which we formulate below in a slightly different form:

Definition 1. We say that a system of vectors $\{u_n\}$ in a Hilbert space H is a (QF)-system if the following two conditions are fulfilled:

- (i) For every q > 2 there is a constant C(q) such that for every $f \in H$ and every $\epsilon > 0$ one can find a finite linear combination $Q = \sum c_n u_n$ satisfying $||f - Q|| < \epsilon$ and $||\{c_n\}||_{l_q} \leq C(q) ||f||$. (ii) (Bessel's inequality) We have $||\sum a_n u_n|| \leq C ||\{a_n\}||_{l_2}$, for every finite sequence $\{a_n\}$.

Approximation property (i) means "completeness with l_q -estimate of coefficients". If this condition holds for q = 2, Definition 1 becomes identical with the usual definition of a frame. One may therefore regard (QF)-systems as a sort of "quasi-frames".

1.3. The main result of this Note is the following:

Theorem 1. There are a u.d. sequence $\Lambda = \{\lambda_1 < \lambda_2 < \cdots\} \subset \mathbb{R}^+$ and a function $g \in L^2(\mathbb{R})$ such that the system (2) is a (OF)-system for $L^2(\mathbb{R})$. Moreover, for every positive sequence $\epsilon(n) = o(1)$, one can choose Λ such that

$$\lambda_{n+1} > (1 + \epsilon(n))\lambda_n. \tag{3}$$

Clearly, if the ϵ_n have a slow decay, then the gaps in the spectrum Λ grow "almost exponentially". This condition is sharp.

2. Proof

Similarly to [6], one can re-formulate the main result in an equivalent form: 2.1.

Theorem 2. Given a decreasing sequence $\epsilon(n) = o(1)$ there are a weight w and a positive sequence Λ such that:

- (i) Λ satisfies (3).
- (ii) The system $E(\Lambda) := \{e^{i\lambda x}\}_{\lambda \in \Lambda}$ is a (QF)-system in $L^2(w, \mathbb{R})$.

By a "weight" we understand an a.e. positive integrable function. The connection between weights and generators is given by $w(x) = |\hat{g}(x)|^2$. We will sketch the proof of Theorem 2.

2.2. In what follows, we denote by I a finite interval on \mathbb{R} , by $\|\mathbf{c}\|_q$ the l_q -norm of a sequence $\mathbf{c} = \{c_k\}$ and by mE the measure of E.

The first lemma is about "analytic unity", see [2], p. 102 and [3] for the proof.

Lemma 1. For every interval I and numbers q > 2 and $\epsilon > 0$, one can find a trigonometric polynomial $A(x) = \sum_{k=1}^{K} a_k e^{ikx}$ such that $\|\mathbf{a}\|_q < \epsilon$ and

$$m\left\{x\in I\colon \left|A(x)-1\right|>\epsilon\right\}<\epsilon.$$

Lemma 2. For every function $f \in L^2(I)$ and number $\xi > 0$, one can find a trigonometric polynomial $B(x) = \sum_{n=1}^{N} b_n e^{i\beta(n)x}$, such that $|\beta(n) - n| < 1$, n = 1, ..., N, and

$$m\{x \in I: |f(x) - B(x)| > \xi\} < \xi.$$

This lemma can be easily deduced from the result in [4].

Lemma 3. For every q > 2, $\delta > 0$ and $f \in L^2(I)$, there is a number $\mu > 0$ such that for every integer d > 0 there is a trigonometric polynomial $Q(x) = \sum c_m e^{i\lambda_m x}$, $\|\mathbf{c}\|_q < 1$, which satisfies:

(i) $\lambda_1 > d$, $\frac{\lambda_{m+1}}{\lambda_m} > 1 + \mu$, m = 1, 2, ..., M. (ii) $m\{x \in I: ||f(x) - Q(x)| > \delta\} < \delta$.

Choose subsequently $B = B(f,\xi)$ from Lemma 2 and $A = A(q,\epsilon)$ from Lemma 1. Set $\mu = 1/(2K)$. One can prove that if $\xi = \xi(\delta)$ and $\epsilon = \epsilon(B)$ are sufficiently small, then the polynomial

$$Q(x) := \sum b_n e^{i\beta(n)x} A(r_n x)$$

satisfies the requirements of Lemma 3, provided the numbers r_n grow sufficiently fast.

In order to prove Theorem 2 we fix a weight v(x) such that \sqrt{v} is supported by (-1/2, 1/2). This implies Bessel's inequality for the elements of $E(\Lambda)$ in $L^2(w, \mathbb{R})$ for every weight $w \leq v$, provided $\gamma(\Lambda) > 1$. Fix also a sequence of functions $f_k \in C(\mathbb{R})$, which is dense in $L^2(v, \mathbb{R})$ and such that f_k vanishes outside of $I_k := (-k, k)$.

Now we define inductively the elements of Λ , polynomials Q_k and sets $E_k \in \mathbb{R}$: On the *k*th step of induction, suppose that the numbers λ_j , $j \leq j(k)$, satisfying (3) are already defined. Set q = 2 + 1/k, $\delta = 2^{-k}$. According to Lemma 3, we find the number $\mu(q, \delta, f_k)$. Take J > j(k) so that $\epsilon(J) < \mu$ and continue the sequence $\{\lambda_j\}$ up to j = J keeping the condition (3). Fix $d > (1 + \mu)\lambda_J$ and use Lemma 3 to get a polynomial Q_k and a set $E_k \subset I_k$, $mE_k > mI_k - 2^{-k}$, such that $|f_k(x) - Q_k(x)| \leq 2^{-k}$ on E_k . Add the spectrum of Q to Λ . Finally, we obtain an infinite sequence satisfying (3). We may also suppose that it is u.d. and that $\gamma(\Lambda) > 1$.

Define the weight:

$$w(x) := v(x) \inf_{k} \{ \mathbf{1}_{E_k}(x) + \theta(k) \mathbf{1}_{cE_k}(x) \},\$$

where the $\theta(k) > 0$ decrease so fast that cE_k contribute o(1) to $||f_k - Q_k||_{L^2(w,\mathbb{R})}$. One can check that w(x) > 0 a.e. and all conditions of Theorem 2 are satisfied.

2.3. A few words about "time-frequency" localization of generators.

Proposition 1. *As in* [6], *one can construct function g in Theorem* 1 *to be infinitely smooth and even the restriction of an entire function.*

On the other hand, the weight w constructed above is "irregular", so that g cannot decrease fast. This is inevitable, due to the following

Proposition 2. Let Λ be a u.d. set. If a set (2) forms a (QF)-system in $L^2(\mathbb{R})$ then $\int_{\mathbb{R}} |g| = \infty$.

Indeed, if $g \in L(\mathbb{R})$, then the corresponding weight $w(x) = |\hat{g}(x)|^2$ is continuous. Hence, one can find a set S of arbitrary large measure which is a finite union of intervals, so that $\inf_S w > 0$. Since $E(\Lambda)$ is a (QF)-system for $L^2(w, \mathbb{R})$, it is so for $L^2(S)$. Then (1) contradicts Theorem 1 in [5].

As a contrast, notice that there exist a u.d. Λ and a function g in the Schwartz class such that (2) is a complete system in $L^2(\mathbb{R})$, see [8].

References

- [1] O. Christensen, B. Deng, C. Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999) 292-304.
- [2] Y. Katznelson, An Introduction to Harmonic Analysis, 2nd ed., Dover Publications, Inc., New York, 1976.
- [3] G. Kozma, A. Olevskii, Menshov representation spectra, J. Anal. Math. 84 (2001) 361-393.
- [4] H.J. Landau, A sparse sequence of exponentials closed on large sets, Bull. Am. Math. Soc. 70 (1964) 566–569.
- [5] S. Nitzan-Hahamov, A. Olevskii, Sparse exponential systems: completeness with estimates, Israel J. Math. 158 (2007) 205-215.
- [6] A. Olevskii, Completeness in $L^2(\mathbb{R})$ of almost integer translates, C. R. Acad. Sci. Paris, Ser. I 324 (1997) 987–991.
- [7] A. Olevskii, Approximation by translates in $L^2(\mathbb{R})$, Real Anal. Exchange 24 (1) (1998/1999) 43–44.
- [8] A. Olevskii, A. Ulanovskii, Almost integer translates, Do nice generators exist? J. Fourier Anal. Appl. 10 (1) (2004) 93-104.
- [9] J. Ramanathan, T. Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995) 148–153.