Mathematical Analysis/Harmonic Analysis

Quasi-frames of translates **

Shahaf Nitzan, Alexander Olevskii

School of Mathematical Sciences, Tel Aviv University, Ramat-Aviv, Israel 69978
Received 12 March 2009; accepted 31 March 2009
Available online 28 May 2009
Presented by Jean-Pierre Kahane

Abstract

We construct uniformly discrete, and even sparse, sequences of translates $\{g(t-\lambda)\}$ of a single function which have the following frame-type approximation property: for every $q>2$ there exists $C(q)$ such that every function $f \in L^{2}(\mathbb{R})$ can be approximated with arbitrary small L^{2}-error by a linear combination $\sum c_{\lambda} g(t-\lambda)$ satisfying the l_{q}-estimate of the coefficients: $$
\left\|\left\{c_{\lambda}\right\}\right\|_{l_{q}} \leqslant C(q)\|f\| .
$$

This cannot be done for $q=2$, according to a result of Christensen, Deng and Heil. To cite this article: S. Nitzan, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{Résumé}

Systèmes de translatées proches des frames. Nous construisons une suite réelle Λ uniformément discrète (de pas >0) et même lacunaire, et une fonction $g \in L^{2}(\mathbb{R})$, telles que le système des translatées $\{g(t-\lambda)\}(\lambda \in \Lambda)$ soit un "quasi-frame" au sens suivant: pour tout $q>2$ il existe $C(q)>0$ tel que toute fonction $f \in L^{2}(\mathbb{R})$ est approchable dans $L^{2}(\mathbb{R})$ par des combinaisons linéaires $\sum c_{\lambda} g(t-\lambda)$ vérifiant $\left(\sum\left|c_{\lambda}\right|^{q}\right)^{1 / q} \leqslant C(q)\|f\|$. Cela est impossible quand $q=2$, selon un résultat de Christensen, Deng et Heil. Pour citer cet article : S. Nitzan, A. Olevskii, C. R. Acad. Sci. Paris, Ser. 1347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Let Λ be a uniformly discrete (u.d.) set of real numbers:

$$
\begin{equation*}
\gamma(\Lambda):=\inf _{\lambda, \lambda^{\prime} \in \Lambda, \lambda \neq \lambda^{\prime}}\left|\lambda-\lambda^{\prime}\right|>0 . \tag{1}
\end{equation*}
$$

Given a function $g \in L^{2}(\mathbb{R})$, consider the family of translates

$$
\begin{equation*}
\{g(t-\lambda)\}_{\lambda \in \Lambda} . \tag{2}
\end{equation*}
$$

[^0]When $\Lambda=\mathbb{Z}$, it is well known that this family cannot be complete in $L^{2}(\mathbb{R})$. It was conjectured that the same was true for every u.d. set Λ (see for example [9], where even a stronger conjecture related to Gabor-type systems was discussed). However, this is not the case:

Theorem A. (See [6].) Let $\Lambda=\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$ be any "almost integer" spectrum:

$$
\lambda_{n}=n+\alpha_{n}, \quad n \in \mathbb{Z}, \quad 0<\left|\alpha_{n}\right| \rightarrow 0 \quad(|n| \rightarrow \infty) .
$$

Then there is a "generator" g such that family (2) is complete in $L^{2}(\mathbb{R})$.
See also paper [7], which considers sparse complete systems of translates.
One may want to construct a u.d. or even a sparse set Λ for which there is a family (2) satisfying a stronger property than just completeness. Observe, however, that no family (2) can be a frame in $L^{2}(\mathbb{R})$ (see [1]).
1.2. In [5] we introduced an intermediate property between completeness and frame, which we formulate below in a slightly different form:

Definition 1. We say that a system of vectors $\left\{u_{n}\right\}$ in a Hilbert space H is a (QF)-system if the following two conditions are fulfilled:
(i) For every $q>2$ there is a constant $C(q)$ such that for every $f \in H$ and every $\epsilon>0$ one can find a finite linear combination $Q=\sum c_{n} u_{n}$ satisfying $\|f-Q\|<\epsilon$ and $\left\|\left\{c_{n}\right\}\right\|_{l_{q}} \leqslant C(q)\|f\|$.
(ii) (Bessel's inequality) We have $\left\|\sum a_{n} u_{n}\right\| \leqslant C\left\|\left\{a_{n}\right\}\right\|_{L_{2}}$, for every finite sequence $\left\{a_{n}\right\}$.

Approximation property (i) means "completeness with l_{q}-estimate of coefficients". If this condition holds for $q=2$, Definition 1 becomes identical with the usual definition of a frame. One may therefore regard (QF)-systems as a sort of "quasi-frames".

1.3. The main result of this Note is the following:

Theorem 1. There are a u.d. sequence $\Lambda=\left\{\lambda_{1}<\lambda_{2}<\cdots\right\} \subset \mathbb{R}^{+}$and a function $g \in L^{2}(\mathbb{R})$ such that the system (2) is a $(Q F)$-system for $L^{2}(\mathbb{R})$. Moreover, for every positive sequence $\epsilon(n)=o(1)$, one can choose Λ such that

$$
\begin{equation*}
\lambda_{n+1}>(1+\epsilon(n)) \lambda_{n} . \tag{3}
\end{equation*}
$$

Clearly, if the ϵ_{n} have a slow decay, then the gaps in the spectrum Λ grow "almost exponentially". This condition is sharp.

2. Proof

2.1. Similarly to [6], one can re-formulate the main result in an equivalent form:

Theorem 2. Given a decreasing sequence $\epsilon(n)=o(1)$ there are a weight w and a positive sequence Λ such that:
(i) Λ satisfies (3).
(ii) The system $E(\Lambda):=\left\{e^{i \lambda x}\right\}_{\lambda \in \Lambda}$ is a $(Q F)$-system in $L^{2}(w, \mathbb{R})$.

By a "weight" we understand an a.e. positive integrable function. The connection between weights and generators is given by $w(x)=|\hat{g}(x)|^{2}$. We will sketch the proof of Theorem 2 .
2.2. In what follows, we denote by I a finite interval on \mathbb{R}, by $\|\mathbf{c}\|_{q}$ the l_{q}-norm of a sequence $\mathbf{c}=\left\{c_{k}\right\}$ and by $m E$ the measure of E.

The first lemma is about "analytic unity", see [2], p. 102 and [3] for the proof.

Lemma 1. For every interval I and numbers $q>2$ and $\epsilon>0$, one can find a trigonometric polynomial $A(x)=$ $\sum_{k=1}^{K} a_{k} e^{i k x}$ such that $\|\mathbf{a}\|_{q}<\epsilon$ and

$$
m\{x \in I:|A(x)-1|>\epsilon\}<\epsilon
$$

Lemma 2. For every function $f \in L^{2}(I)$ and number $\xi>0$, one can find a trigonometric polynomial $B(x)=$ $\sum_{n=1}^{N} b_{n} e^{i \beta(n) x}$, such that $|\beta(n)-n|<1, n=1, \ldots, N$, and

$$
m\{x \in I:|f(x)-B(x)|>\xi\}<\xi
$$

This lemma can be easily deduced from the result in [4].
Lemma 3. For every $q>2, \delta>0$ and $f \in L^{2}(I)$, there is a number $\mu>0$ such that for every integer $d>0$ there is a trigonometric polynomial $Q(x)=\sum c_{m} e^{i \lambda_{m} x},\|\mathbf{c}\|_{q}<1$, which satisfies:
(i) $\lambda_{1}>d, \frac{\lambda_{m+1}}{\lambda_{m}}>1+\mu, m=1,2, \ldots, M$.
(ii) $m\{x \in I:|f(x)-Q(x)|>\delta\}<\delta$.

Choose subsequently $B=B(f, \xi)$ from Lemma 2 and $A=A(q, \epsilon)$ from Lemma 1 . Set $\mu=1 /(2 K)$. One can prove that if $\xi=\xi(\delta)$ and $\epsilon=\epsilon(B)$ are sufficiently small, then the polynomial

$$
Q(x):=\sum b_{n} e^{i \beta(n) x} A\left(r_{n} x\right)
$$

satisfies the requirements of Lemma 3, provided the numbers r_{n} grow sufficiently fast.
In order to prove Theorem 2 we fix a weight $v(x)$ such that \sqrt{v} is supported by $(-1 / 2,1 / 2)$. This implies Bessel's inequality for the elements of $E(\Lambda)$ in $L^{2}(w, \mathbb{R})$ for every weight $w \leqslant v$, provided $\gamma(\Lambda)>1$. Fix also a sequence of functions $f_{k} \in C(\mathbb{R})$, which is dense in $L^{2}(v, \mathbb{R})$ and such that f_{k} vanishes outside of $I_{k}:=(-k, k)$.

Now we define inductively the elements of Λ, polynomials Q_{k} and sets $E_{k} \in \mathbb{R}$: On the k th step of induction, suppose that the numbers $\lambda_{j}, j \leqslant j(k)$, satisfying (3) are already defined. Set $q=2+1 / k, \delta=2^{-k}$. According to Lemma 3, we find the number $\mu\left(q, \delta, f_{k}\right)$. Take $J>j(k)$ so that $\epsilon(J)<\mu$ and continue the sequence $\left\{\lambda_{j}\right\}$ up to $j=J$ keeping the condition (3). Fix $d>(1+\mu) \lambda_{J}$ and use Lemma 3 to get a polynomial Q_{k} and a set $E_{k} \subset I_{k}$, $m E_{k}>m I_{k}-2^{-k}$, such that $\left|f_{k}(x)-Q_{k}(x)\right| \leqslant 2^{-k}$ on E_{k}. Add the spectrum of Q to Λ. Finally, we obtain an infinite sequence satisfying (3). We may also suppose that it is u.d. and that $\gamma(\Lambda)>1$.

Define the weight:

$$
w(x):=v(x) \inf _{k}\left\{\mathbf{1}_{E_{k}}(x)+\theta(k) \mathbf{1}_{c E_{k}}(x)\right\},
$$

where the $\theta(k)>0$ decrease so fast that $c E_{k}$ contribute $o(1)$ to $\left\|f_{k}-Q_{k}\right\|_{L^{2}(w, \mathbb{R})}$. One can check that $w(x)>0$ a.e. and all conditions of Theorem 2 are satisfied.
2.3. A few words about "time-frequency" localization of generators.

Proposition 1. As in [6], one can construct function g in Theorem 1 to be infinitely smooth and even the restriction of an entire function.

On the other hand, the weight w constructed above is "irregular", so that g cannot decrease fast. This is inevitable, due to the following

Proposition 2. Let Λ be a u.d. set. If a set (2) forms a $(Q F)$-system in $L^{2}(\mathbb{R})$ then $\int_{\mathbb{R}}|g|=\infty$.
Indeed, if $g \in L(\mathbb{R})$, then the corresponding weight $w(x)=|\hat{g}(x)|^{2}$ is continuous. Hence, one can find a set S of arbitrary large measure which is a finite union of intervals, so that $\inf _{S} w>0$. Since $E(\Lambda)$ is a (QF)-system for $L^{2}(w, \mathbb{R})$, it is so for $L^{2}(S)$. Then (1) contradicts Theorem 1 in [5].

As a contrast, notice that there exist a u.d. Λ and a function g in the Schwartz class such that (2) is a complete system in $L^{2}(\mathbb{R})$, see [8].

References

[1] O. Christensen, B. Deng, C. Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999) 292-304.
[2] Y. Katznelson, An Introduction to Harmonic Analysis, 2nd ed., Dover Publications, Inc., New York, 1976.
[3] G. Kozma, A. Olevskii, Menshov representation spectra, J. Anal. Math. 84 (2001) 361-393.
[4] H.J. Landau, A sparse sequence of exponentials closed on large sets, Bull. Am. Math. Soc. 70 (1964) 566-569.
[5] S. Nitzan-Hahamov, A. Olevskii, Sparse exponential systems: completeness with estimates, Israel J. Math. 158 (2007) 205-215.
[6] A. Olevskii, Completeness in $L^{2}(\mathbb{R})$ of almost integer translates, C. R. Acad. Sci. Paris, Ser. I 324 (1997) 987-991.
[7] A. Olevskii, Approximation by translates in $L^{2}(\mathbb{R})$, Real Anal. Exchange 24 (1) (1998/1999) 43-44.
[8] A. Olevskii, A. Ulanovskii, Almost integer translates, Do nice generators exist? J. Fourier Anal. Appl. 10 (1) (2004) 93-104.
[9] J. Ramanathan, T. Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995) 148-153.

[^0]: 动 Supported in part by the Israel Science Foundation.
 E-mail addresses: nitzansi@post.tau.ac.il (S. Nitzan), olevskii@post.tau.ac.il (A. Olevskii).

