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Abstract

For the planar n-body problem, if the Morse index or the nullity of a central configuration as a critical point of Newton potential
function restricted on the “shape sphere” is odd, then the relative equilibrium corresponding to the central configuration is linearly
unstable. To cite this article: X. Hu, S. Sun, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Stabilité d’équilibre relatif et indice de Morse de configuration centrale. Dans le problème plan des n corps, si l’indice de
Morse ou la nullité d’une configuration centrale vue comme un point critique du potentiel newtonien restreint à la « sphère des
formes » est impair, l’équilibre relatif correspondant est linéairement instable. Pour citer cet article : X. Hu, S. Sun, C. R. Acad.
Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Newton’s equation of motion of the planar n-body problem is

Mq̈ = ∇U(q), (1)

where M = diag(m1,m1, . . . ,mn,mn)2n×2n with mi ∈ R+ the mass of the i-th celestial body, q = (q1, . . . , qn)
T with

qi ∈ R2 its position, and U(q) = ∑
1�i<j�n

mimj

‖qi−qj ‖ is the potential function. It is a system of second-order ordinary

differential equations defined on the configuration space X = (R2)n \� with � collision set � = {q ∈ (R2)n | qi = qj ,
for some i �= j}.

It is well known that the corresponding Hamiltonian equation is the following first-order system of ordinary dif-
ferential equations in phase space T ∗X ∼= X × (R2)n: q̇ = ∂H

∂p
= M−1pT , ṗ = − ∂H

∂q
= ∇U(q) with the energy

Hamiltonian H = 1
2pM−1pT − U(q).
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Central configuration is an important and natural concept in the n-body problem. It is defined by the following
algebraic equations with real coefficients:

λMq = −∇U(q), (2)

where λ = U(q)/I (q) is some positive constant with I (q) = qT Mq the moment of inertia. For further properties
on central configurations, please refer to [1] and references therein. Following Smale ([9], see also [5]), we have a
Morse-theoretic interpretation for the central configurations. Let S = {q ∈ X = (R2)n \� | I (q) = ∑n

i=1 mi‖qi‖2 = 1,∑n
i=1 miqi = 0}. It is a noncompact (2n − 3)-dimensional manifold. The potential function U(q) restricted to S

is S1-invariant, and its critical points are central configurations. Its Hessian at central configuration q is Hess(q) =
(D2U(q)+U(q)M)|Tq(S). We denote by M(q) the Morse index of q , i.e., the dimension of negative definite subspace

of Hess(q) and denote its nullity by V (q) + 1 = dim ker(Hess(q)). Let Ŝ = S/S1, which we call the “shape sphere”. It
is a noncompact 2(n − 2)-dimensional manifold. Usually the critical point q of the reduced potential function U(q)|

Ŝ
is still called central configuration with Morse index M(q) and nullity V (q). There is a vast literature on the estimates
of numbers of central configurations and their Morse indices ([3,5,7] and references therein).

Given a central configuration q , we can construct a relative equilibrium, the circular periodic solution of the planar
n-body problem. Let A(t) be the (2n × 2n)-matrix with n diagonal blocks of the form(

cos(kt) − sin(kt)

sin(kt) cos(kt)

)
, k2 = λ = U(q)

I (q)
, (3)

then the solution is of the form A(t)q . We are interested in the linear stability of this kind of rigid motion related to a
central configuration of the planar n-body problem.

As pointed out in [5], there are two four-dimensional invariant symplectic subspaces E1 and E2, and they are
associated to the translation symmetry, dilation and rotation symmetry of the system. In other words [4], there is
a symplectic coordinate system in which the linearized system of the planar n-body problem decouples into three
subsystems on E1, E2 and E3 = (E1 ∪ E2)

⊥, where ⊥ denotes the symplectic orthogonal complement. By linear
stability we mean the monodromy matrix M restricted to E3 is linearly stable, that is M|E3 is semi-simple and its
spectrum is in the unit circle U on the complex plane C. Our main theorem is the following:

Theorem. If the Morse index or the nullity of a central configuration as a critical point of the potential function U |
Ŝ

is odd, then the corresponding relative equilibrium is linearly unstable.

Eq. (2) of central configuration in Ŝ can be written F(q) = M−1∇U(q) + U(q)q = 0. This is the gradient vector
field of the restriction U |

Ŝ
with respect to the mass metric 〈q, q〉 = qT Mq .

Moeckel conjectures, unpublished, that only central configurations which are minima could possibly give rise to
linearly stable relative equilibria. It is true for three bodies and planar (1+n)-body problem [6]. This conjecture raises
the question on the relationship between the two dynamics: gradient flow on the shape sphere and Newton’s equations
on phase space. This is our motivation, and the theorem is our first attempt to understand the relationship between
these two dynamics.

For more works on the stability of relative equilibria, please refer to [5,8] and references therein.

2. Proof of the theorem

Let J = ( 0 −In

In 0

)
with In the standard identity matrix on Rn. We denote by Sp(2n) = {M ∈ GL(2n) | MT JM = J }

the symplectic group on (R2n,ω = ∑
dxi ∧ dyi).

We recall some facts about the Krein form [2, pp. 10–13]. Let G = √−1J , then the Krein form is defined to be
〈Gx,y〉, ∀x, y ∈ C2n, with standard Hermitian inner product 〈·,·〉 in C2n. Let Vλ(M) = ker(M − λI)2n, M ∈ Sp(2n).
For λ,μ ∈ σ(M), the spectrum of M , if λμ̄ �= 1, then Vλ and Vμ are G-orthogonal. This shows that for λ ∈ σ(M)∩ U
with U the unit circle on the complex plane, G|Vλ is non-degenerate. In this case, denote the total multiplicities of
positive and negative eigenvalues of G|Vλ by (pλ, qλ) respectively. The pair (pλ, qλ) of integers is called Krein-type
number of λ ∈ σ(M) ∩ U. It has the property that

(pλ̄, qλ̄) = (qλ,pλ), p1 = q1, p−1 = q−1. (4)
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Suppose B is a symmetric matrix on R2n, t ∈ R, then M = exp(JBt) ∈ Sp(2n). From the properties of symplectic
matrix, we know λ ∈ σ(M) implies that λ̄, λ−1 and λ̄−1 are all eigenvalues of M and have the same geometric
and algebraic multiplicities as λ. It is obvious that for t small enough λ ∈ σ(JB) if and only if eλt ∈ σ(M), and
ker(JB − λI2n) = ker(M − eλt I2n), Vλ(JB) = Veλt (M). This shows that, if λ ∈ σ(JB), then λ̄, −λ and −λ̄ are
eigenvalues of JB with the same geometric and algebraic multiplicities.

JB is called linearly stable if it is semi-simple and all its eigenvalues are on the imaginary axis. Obviously,
M = exp(JBt) is linearly stable if and only if JB is linearly stable. Suppose M is linearly stable. Semi-simplicity
means that, for each eigenvalue, its algebraic multiplicity and geometric multiplicity are the same. Moreover, for
λ ∈ σ(JB) on the imaginary axis, G|Vλ is non-degenerate and

∑
λ dimVλ = 2n. By (4), the multiplicity of the possi-

ble eigenvalue 0 must be even, thereby the signature of G|V0 is zero.
It is quite convenient to work in rotating frame since we are only interested in circular orbits in this paper. Here we

follow Moeckel [5, p. 85].
Let k be the rotational velocity of the circular solution as in (3), and introduce new coordinates Q = A(t)q , P T =

A(t)pT . Now the Hamiltonian system becomes:

Q̇ = M−1P T + KnQ, Ṗ T = ∇U(Q) + KnP
T , (5)

where Kn is (2n × 2n)-matrix with n diagonal blocks of the form
( 0 −k

k 0

)
. Note that Kn is anti-symmetric. It is a

Hamiltonian system with Hamiltonian H(Q,P ) = 1
2PM−1P T +PKnQ−U(Q). Now the circular periodic solution

is a rest point, and we still denote it by Q by a little abusing notations. The linearized Hamiltonian system at the rest

point Q is ż = −JB(Q)z, where the symmetric matrix B(Q) is
( −D2U(Q) KT

n

Kn M−1

)
.

As in [4, p. 266, Corollary 2.1] and [5, pp. 92–93], (5) can be decomposed into 3 subsystems on E1, E2 and
E3 = (E1 ∪ E2)

⊥ respectively. The basis of E1 is (u,0), (0,Mu), (v,0), (0,Mv), where u = (1,0,1,0, . . .), v =
(0,1,0,1, . . .), and E2 is spanned by (Q,0), (0,MQ), (KnQ,0), (0,KnMQ). For X = (g, z,w) ∈ R2 × R2 × R2n−4

and Y = (G,Z,W) ∈ R2 ×R2 ×R2n−4, we do the linear symplectic transformation of the form Q = CX, P = C−T Y ,
where C is such that C−1KnC = Kn, CT MC = I [4, p. 263]. Now B(Q) in this new coordinate system has the form
B(Q) = B1 ⊕B2 ⊕B3, where Bi = B|Ei

. The essential part B3 of the stability problem is a (4n−8)× (4n−8)-matrix

of the form B3 = ( −D KT
n−2

Kn−2 I2(n−2)

)
, where D = CT D2U(Q)C|w∈R2n−4 . It is easy to see that

(
I2(n−2) Kn−2

0 I2(n−2)

)( −D KT
n−2

Kn−2 I2(n−2)

)(
I2(n−2) 0
−Kn−2 I2(n−2)

)
=

(−(D + U(Q)) 0
0 I2(n−2)

)
. (6)

Note that D + U(Q) = CT D2U(Q)C|w∈R2n−4 + U(Q) = CT (D2U(Q) + U(Q)M)C|w∈R2n−4 , it is exactly the
Hessian of U |

Ŝ
with nullity V (Q) and Morse index M(Q).

We prove the theorem by contradiction. Since λ ∈ σ(JB3) if and only if ker(B3 +λJ ) �= 0. Suppose JB3 is linearly
stable. We consider a path of self-adjoint matrices Ds = B3 + sG, s ∈ [0,+∞).

Since ker(D0) ∼= ker(JB3), the linear stability of JB3 implies that dim ker(D0) is even-dimensional, the Krein
operator G restricted to ker(D0) is non-degenerate and its signature on ker(D0) is zero. The Morse index of Ds for
0 < s � ε, ε some small enough fixed number, is 2n − 4 − (M(Q) + V (Q)/2). On the other hand, for s large enough
Ds is non-degenerate and its signature is the same as that of G, which is equal to zero. Let X be the total number of
multiplicities of eigenvalues of GB3 on the interval [ε,+∞). By the linear stability assumption, we have

X + V (Q)/2 = 2n − 4. (7)

At each crossing λ0 ∈ [ε,+∞), that is ker(Dλ0) �= 0, G restricted to ker(Dλ0) is non-degenerate, and

sign(G|ker(Dλ0 )) = dim ker(Dλ0), mod 2 (8)

with one side the difference of dimensions of the positive definite subspace and negative definite subspace of G on
ker(Dλ0), the other side the sum. Take the sum over all crossings λ0 ∈ [ε,+∞), we have

M(Q) + V (Q)/2 = −
∑
λ0

sign(G|ker(Dλ0 )) =
∑
λ0

dim ker(Dλ0)
(
mod 2, by (8)

)

= X (mod 2) = 2n − 4 − V (Q)/2
(
mod 2, by (7)

) = V (Q)/2 (mod 2).

This shows that M(Q) must be even, hence a contradiction. The proof is complete. �
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