C. R. Acad. Sci. Paris, Ser. I 350 (2012) 941-944

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. |

www.sciencedirect.com

Mathematical Analysis/Theory of Signals

Sampling in a weighted Sobolev space

Echantillonage dans un espace de Sobolev avec poids

Nestor G. Acala, Noli N. Reyes

University of the Philippines - Diliman, Institute of Mathematics, Quezon City, 1101, Philippines

ARTICLE INFO ABSTRACT
Article history: We show that functions f in some weighted Sobolev space are completely determined
Received 10 November 2011 by time-frequency samples {f(tn)}nez U {f(A)lkez along appropriate slowly increasing
Accv'epted aftgr revision 29 October 2012 sequences {tp}nez and {inlnez tending to +oo as n — =oo.
Available online 7 November 2012 © 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.
Presented by Yves Meyer L, A

RESUME

Nous démontrons que toute fonction f dans un certain espace de Sobolev avec poids est
complétement determinée par un échantillon {f (t;)}nez U {f (Ak)}kez sur des convenables
suites croissantes {tp}nez €t {Anlnez, tendant vers oo lentement, quand n — =o0.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction and notations

If 0£xeRN and % denote its discrete Fourier transform, then I(x) - I(X) > N, where I(x) denotes the cardinality of
{k: x; # 0} [3]. Another result of the same essence appears in [9]: if a nonzero function is bandlimited to [—$2, £2], then
there exists an interval of length greater than /€2 on which the function does not vanish.

Our objective is to extend this form of the uncertainty principle to a weighted Sobolev space. Given functions ¢ and ¥
such that ¢(t) > t2, ¥ (t) > t2, let Hy,y denote the Hilbert space of functions f € L?(R) such that

112 =/(|f(t)|2(,0(t) +]F o) v ) dt < oo 1)

R

where f” is the Fourier transform of f. First, we show that if f e H, 4 and f and f” are zero respectively, on slowly
increasing sequences {t;}nez and {A;}nez tending to +0o0 as n — +oo, then f = 0. We then introduce an equivalent discrete
norm on #, in terms of pointwise time-frequency samples { f (t;)}nez U {]‘(Ak)}kez. The Riesz Representation Theorem shows
how f € H can be reconstructed from these time-frequency samples. A special case of this is a Poisson summation formula
on slowly increasing sequences. Finally, we show that the weights ¢(t) = t? =y (t) are optimal.

We recall that reconstruction of bandlimited signals f from pointwise samples {f (t;)}ncz has been widely studied [1,2,
4-7].

Notations: Given an increasing sequence 7 = {ty}kez in R such that limp_ £ t, = 00, we define the sampling operator
ST by STg=> ez 8(ti)11, where T = [%(tk,l + ty), %(tk + tk+1)]. Moreover, given a non-negative function ¢ on R, we
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introduce a measure D1, of the density of the sequence 7 by D7 o = supicz ka [t — ty] - @(t)dt. If @(t) = |t|P, we shall
simply write D7, in place of D7 ,. We also define a weighted energy E,(f) of a signal f by E,(f) = fR If () 2@(t) dt.
Finally, we define the Fourier transform of a function f € LI(R) by f(w) = (2r)~1/2 Jp f@®e~ " de.

2. Time-frequency zeros of functions in 7, 4
In this note, 7 = {ty}kez and A = {Ag}rez will always denote increasing sequences of real numbers such that
limy,_, 400 ty = F£00 = limy_, 40 An. Also, ¢ and ¥ will always denote functions defined on R satisfying ¢(t) > t* and

Y (t) > t2, for t € R. Recall the Hilbert space Hep,y defined in (1).
We begin with a basic estimate with the sampling operator S-.

Lemma 2.1. Let f € Hy.y. Then Ey(f — ST ) < D4l f'I12.

Proof. Given t € Ty, |f(t) — f(tp)]? < |t — tl Jr,| f(s)|?ds. Combining this with the identity E,(f — S7(f)) =
Y onez an [f () — f(ta)|?@(t) dt, yields the conclusion. O

The next theorem is the main result of this section.

Theorem 2.2. Let f € H, y such that f(ty) =0= )A‘()Lk)fw eachk € Z.If D7,y - Da,y <1, then f =0.

Proof. Lemma 2.1 implies Ey(f) < D7yllf’ I and E]/,()A‘) D4yl f'I3. Combining this with |[f'|3 = [z & f(§)12dé <

E,/,(f) yields E¢(f) < D7,p-Day, ¢||f ||§ In view of ||f ||2_fR|tf(t)|2dt<E¢,(f) we see that Ey(f) < D7,p-Da,y-Ep(f).
If f#0, then 1< D7 - Dy,y, a contradiction. O

Example 2.3. For each n € Z, define t+; = £In(|n| 4+ 1). Let T = {tx}kez. Then for any p > 0, D1, < oo.

Example 24. Let « and p be positive numbers such that a(p + 2) < 2. Let t4, = +[n|* for n € Z. Let T = {ty}kez. Then
D7 p <oo.

Remark 2.5. Let {t;}n,cz be any increasing sequence such that lim,_ 1oty = £o00. Let T = {ty}kez and T¢ = {ety}kez. Then
D7.,=¢*"PDy, for any p > 0.

3. Equivalent discrete norms on H,, y

Our main result, Theorem 3.3, gives equivalent norms on the Hilbert space H . First, we state the following lemma,
omitting its proof:

Lemma 3.1. Given measurable functions f, g: R — C, 1E¢(f —8) < Ep(f) +Eu().

Proposition 3.2. Suppose ¢ is even and t _ = —ty foreachk € Z. Let f € Hy y. With Co =1— 4Dy 4, D 4y, we have

Co-Ey(f) <ADT 4 -Ey(Saf) +2Ex(ST ), )
Co-Ey(f)<4Da.y - Ep(STf)+2Ey(Saf). 3)

Proof. From | f’ ||2 Ew(f) we obtain Ey(f) < 2DT¢E¢,(]A‘) + 2E4,(S7f) in view of Lemmas 2.1 and 3.1. Replacing
(f. o, v, T) by (f v, @, 4) in this mequallty and noting that the Fourier transform of f is the function f(x) = f(—x)
yields Ew(f) <2Dy 1,,E(/,(f) + ZEW(SAf) Since ¢ is even, E(p(f) = Ey(f). Thus, combining the last two inequalities gives
the estimate (2). ~

Now, the assumptions that ¢ is even and t_ = —t; imply Ey(S7f) = Eo (ST f). Thus, applying (2) with (f, @, ¥, T, A)

replaced by (f, v, @, A, T) yields (3). O

We come to our main theorem.

Theorem 3.3. Suppose ¢ isevenand t_y = —ty ifk € Z. Let 4D ,D 5 y < 1 and f € Hyp y. Then

CUlfIZ <IFI> < Call FIIZ (4)
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where || - |2 is defined in (1), |f1I? = Yz (1 f @012 [, 9(® dt + | F )% [, ¥(©)dD), C1 = 2+ 2max{D 4.y, D7.,H 7", and
Co=Q+4max{D4 y, D7 N1 —4DT D4 y)" L

Proof. Adding (2) and (3) gives || f||> < C2|/f||2. By Lemmas 2.1 and 3.1 and the bound, | f'[|3 < Ey (f), we get Eo(STf) <
2D7—,¢,E]/,(f”) + 2E,(f). Since ¢ is even, we likewise obtain E¢(5Af) <2DpyEp(f) + ZE]/,(f”). Adding these last two
inequalities gives C1| f|12 < |Ifl?. O

4. Time-frequency expansions and a Poisson summation formula

An application of Theorem 3.3 gives an expansion of f € H, y in terms of time-frequency samples {f(tn)}nez U
{f G ez

Corollary 4.1. Let 4D ,D 4,y < 1. Suppose ¢ is even and t_y = —ty for each k € Z.

(a) Given x € R, there exists ®x € H, y such that for each f € Hy y,

f) = Z(f(tw@x(tk) / @O dt + f () Px () / 0] dt). (5)
keZ Ty A
(b) Fork € Z, set a, = ®o(ty) ka @(t) dt and by = Do (Ay) fAk Y (t) dt. Then
FO = (@f ) +bief (), i feHpy. (6)
keZ

Proof. Let x € R. Then the mapping f ~ f(x) defines a bounded linear functional on H . Note that the inner product

keZ

(fvg%:Z(f(tk)@ [vwac+ jongin [ wt)dr)
Ty Ar

induces the equivalent norm | - ||, on the Hilbert space Hy y, by Theorem 3.3. Thus, the Riesz Representation Theorem
implies the existence of @y € Hy y such that f(x) = (f, @x). for each f € Hy y. This is the desired conclusion (5). Part (b)
is obtained by taking x=0 in (5). O
5. Optimality of the weight t2

We end this note with Example 5.2, showing optimality of the weights @(t) =t2 = (t).

Lemma 5.1. Let H(x) = e~ X, T(x) = cos(axx?), and set f = H » T. Then

a as a zero on the interva sqn ——,SgnkK
@ fh he i I[sqnky/ K7 sgn

(b) ]‘ is zero at sgnk./am (4|k| — 1) foreach k € Z \ {0}.

lk+1] ; _
S for each k € Z, with sgn0 =1,

Proof. Set x; =sgnl,/ ‘% for | € Z. Fix k € Z. We claim that (—1)X f (x¢) > 0.
We shall only prove the case when k > 0, which we now assume. Let | > k such that [ — k is even. Integration by parts
gives

X142
/ cos(ax?) exp{—(x — x) } dx = Rjexp{—(xi12 — x)} + S with (7)
X
(4D
4./aR; = / [x73/2 — (x+7)73/?} sinxdx, (8)
I
(I+Dm
408 = / (G(y) — Gy +m))sinydy, (9)
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(+2)m

G(y)zy‘”zg(y)Jr%y‘”2 / gt dt and g(t)=t‘”2eXPi—<\/§—xk>}.
y

In view of (8), (—1)¥R; = (=1)'R; > 0. On the other hand, since g is a non-negative decreasing function on [k, oo[, the
same is true of G. Thus, (9) shows that (—1)¥S; = (=1)!S; > 0.
Summing (7), we conclude that (—1)¥ fxio cos(ax?) exp(—|x — xi|) dx > 0. Likewise, we have

X
(=¥ | cos(ax?) exp(—|x — x|) dx > 0.

—00

Adding these yields (—1)¥ f (x) > O.
To prove (b), recall that 2v/2a [ cos(ax?) cos(tx) dx = ﬁ[cos(%) +sin(%)]. (See [8].) Thus, v2a T (w) = sin(Z"—; + ).
Part (b) follows from this since f =H-T. O

Recall that if ¢(t) = |t|P, we write D1 in place of D7 .

Example 5.2. Given p € [1, 2[, there exist increasing sequences 7 = {ty}rez and A = {Ag}rez such that limy_ ity =
+o00 = limp—+00An and Dy pDa2 <1, but f(tx) =0 = f(Ay), Yk € Z, for some nonzero f e L2(R) with f]R(If(x)l2 +
1T 0)12)x2 dx < o0.

Proof. Let p € [1,2[ and choose « > 0 such that 2572(27)!*2a1~% < 1. As in Lemma 5.1, we define f = H « T. Recall that
VTHW) = v2(1 + w?)~! and v2aT(w) = sin(ﬁ’—; + Z). Thus, fw) = ey~ 172(1 + w?)~! sin(ﬁ’—; + 7). It follows that
S lFW)PIwPRdw < 0o and [ | @)% dx =[5 |f' (W) dw < co.

For k € Z, f has a zero t} in the interval [san\/@, sgnk “‘*%], by Lemma 5.1. If k > 1 or k < —2, ka [t —ty|-|t]P dt <
1 (%’)H%. While for k € (0, =1}, [y, |t —til - []P d < (%”)Hg. Taking the larger of these yields D7, < (%’)”% with
T = {tkbkez-

On the other hand, define Ay = Vamr (4dk —1) if k > 1 and Ay = —/amw 4|k — 1| — 1) if k < 0. By Lemma 5.1, f‘(k,<) =0
for each k € Z. Set A = [4(kk—1 + Ak), 3 Gk + Ais1)]. We have fAk |A — Akl - A2dAr < 16(a)? for k> 2 or k < —1. On the

other hand, if k € {0, 1}, [ A — Al -2 dx < 25(ar)?. Taking the larger of these yields D 4 2 < 25(cer)? where A = {Ag}kez.
Finally, we conclude that D7 D4 2 < 25722m) a5 <1, O
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