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We consider the stream-function formulation of the hydrodynamic problem for steady
rotational water waves both with and without surface tension. A natural Lagrangian for-
mulation is presented from which (different) Hamiltonian formulations for the two cases
are derived by duality theory in the spirit of the Legendre–Fenchel transform. The treat-
ment is systematic and clarifies a recent ad hoc approach by Kozlov and Kuznetsov [7].
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r é s u m é

Nous considérons la formulation de la fonction du courant dans le problème hydrodyna-
mique décrivant les ondes de surface rotationnelles stationnaires, avec ou sans tension
superficielle. Dans les deux cas, nous présentons une formulation lagrangienne naturelle,
à partir de laquelle (différentes) formulations hamiltoniennes sont dérivées à l’aide de la
théorie de la dualité, dans l’esprit de la transformée de Legendre–Fenchel. La démarche est
systématique et clarifie une approche ad hoc récente de Kozlov et Kuznetsov [7].

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In Hamiltonian spatial dynamics, a physical problem is formulated as a Hamiltonian evolutionary equation in which an
unbounded spatial direction plays the role of time. Rigorous spatial Hamiltonian formulations of the classical irrotational
steady water-wave problem were given by Groves and Toland [4] (who clarified and unified previous results by Baesens
and MacKay [1] and Mielke [8]) and Groves [3] (see also Benjamin [2, Appendix B]). In the first theory the hydrodynamic
problem is formulated in terms of a velocity potential and the variable fluid domain mapped to a fixed strip by scaling the
vertical coordinate by the free-surface elevation, while in the second it is formulated in terms of a stream function and the
mapping to a fixed reference domain is achieved by means of a semi-hodograph transformation. The latter approach was
extended to rotational water waves by Groves and Wahlén [5,6].

Kozlov and Kuznetsov [7] have recently examined the stream-function formulation of the hydrodynamic problem for
rotational gravity waves using the scaling transformation and give variables whose role as coordinates in a Hamiltonian
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formulation are confirmed a posteriori. In this note we show that, contrary to a remark by Kozlov and Kuznetsov, their
Hamiltonian system can be obtained by duality theory in the spirit of the Legendre–Fenchel transform from the corre-
sponding Lagrangian system (which is readily derived from a variational principle). This systematic treatment, which is a
straightforward modification of Groves and Toland’s [4] theory, leads to (different) Hamiltonian formulations for both gravity
and gravity–capillary waves and explains both the relationship between the two cases and Kozlov and Kuznetsov’s choice of
coordinates; in particular we explain how their manifolds M ′ and M ′′ emerge naturally (they correspond to N (Section 3)
and D(vH) (Theorem 4.3) in this note).

Consider a steady rotational flow with prescribed vorticity function ω ∈ C0,1(R), total head R and volume flux Q .

In terms of dimensionless variables (obtained by scaling lengths by hc = g− 1
3 Q

2
3 and ψ by Q ), the mathematical prob-

lem is to find a positive function η defining the fluid domain Dη = {(x, y): x ∈ (x1, x2), y ∈ (0, η(x))} and a stream function
ψ : Dη → R which satisfies the equations

−�ψ = ω(ψ), (x, y) ∈ Dη,

ψ = 0, y = 0,

ψ = 1, y = η(x),

|∇ψ |2 + 2η − 2β

(
ηx√

1 + η2
x

)
x
= 3r, y = η(x).

The dimensionless parameters β and r are given by β = σ/(ghc), r = R/Rc, where σ is the coefficient of surface tension,
g is the acceleration due to gravity and Rc = 3

2 ghc, so that hc and Rc are the critical depth and corresponding critical value
of R for an irrotational flow with volume flux Q (e.g., see Benjamin [2]). Our starting point is the observation that these
equations follow from the formal variational principle

δ

∫ { η(x)∫
0

(
1

2
|∇ψ |2 − Ω(ψ)

)
dy + η2 + 2β

(√
1 + η2

x − 1
)

− 3rη

}
dx = 0, (1)

where Ω(t) := − ∫ 1
t ω(s)ds and the variations are taken in η and ψ and with compact support in (a,b), a < x1 < x2 < b.

2. Lagrangian formulation

Consider the change of variable z = yh/η(x), Φ(x, z) = ψ(x, y), where h is a positive constant (e.g. select h such
that (η,ψ) = (h,ψh(y)) is a horizontal laminar flow, that is ψ ′′

h = ω(ψh) for y ∈ (0,h) with ψh(0) = 0, ψh(h) = 1 and
ψ ′(h)2 + 2h = r). This transformation converts the hydrodynamic problem into

Φxx − 2zηx

η
Φxz + 2zη2

x

η2
Φz + z2η2

x

η2
Φzz − zηxx

η
Φz + h2

η2
Φzz − ω(Φ) = 0, 0 < z < h, (2)

Φ = 0, z = 0, (3)

Φ = 1, z = h, (4)(
Φx − ηx

η
Φz

)2

+ h2Φ2
z

η2
+ 2η − 2β

[
ηx√

1 + η2
x

]
x

− 3r = 0, z = h, (5)

where x ∈ (x1, x2), and the variational principle (1) into

δ

∫
L(η,Φ;ηx,Φx)dx = 0,

where

L(η,Φ;μ,Ψ ) := 1

hη

h∫
0

{
1

2
(ηΨ − μzΦz)

2 + 1

2
h2Φ2

z − η2Ω(Φ)

}
dz + η2 + 2β

(√
1 + μ2 − 1

)
− 3rη. (6)

Observe that

Q := {
(η,Φ) ∈ (0,∞) × H1(0,h): Φ(0) = 0, Φ(h) = 1

}
(7)

is a Hilbert manifold modelled on the single coordinate chart (0,∞) × H1
0(0,h); one can take (η,ψ) �→ (η,ψ + ψh) as a

coordinate map (0,∞) × H1(0,h) → Q with a concrete physical interpretation (Φ is written as a perturbation of a laminar
0
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flow). Eq. (6) defines a Lagrangian L ∈ C1(T Q ,R), where T Q = ⋃
p∈Q {p} × T Q |p ∼= Q ×R× H1

0(0,h) is the tangent bundle
of Q .

The following result is proved by the arguments given by Groves and Toland [4, pp. 220–221].

Lemma 2.1. Define X = {γ ∈ C1([a,b], Q ): γ (a) = q1, γ (b) = q2} for fixed q1 , q2 ∈ Q and L ∈ C1(X,R) by

L(γ ) =
b∫

a

L
(
γ (x); γ̇ (x)

)
dx.

Suppose that the twice continuously differentiable path γ = (η,Φ) : [a,b] → Q satisfies Lagrange’s equation

dL|γ (γ1) =
b∫

a

{
d1L

[
γ (x); γ̇ (x)

](
γ1(x)

) + d2L
[
γ (x); γ̇ (x)

](
γ̇1(x)

)}
dx = 0

for all γ1 ∈ T X |γ ∼= C1
0([a,b],R× H1

0(0,h)). There exists a measurable function Φ̃(x, z), (x, z) ∈ (a,b) × (0,h), with the properties

that for all x ∈ (a,b) the equation Φ̃(x, z) = Φ(x)(z) holds for almost all z ∈ [0,h]. Furthermore, Φ̃ ∈ H2[(x1, x2) × (0,h)] and is a
strong solution of (2)–(5) for a < x1 < x2 < b.

3. Legendre–Fenchel transform

The following construction is motivated by classical duality theory but avoids any assumptions on the behaviour of L.
Consider a manifold domain Q of a manifold P and a Lagrangian L ∈ C1(T̃ Q ,R), where T̃ Q = ⋃

q∈Q {q} × T P |q (a manifold

domain of the tangent bundle T P of P ). Define the Hamiltonian H : D(H) ⊆ T̃ ∗ Q → R, where T̃ ∗ Q = ⋃
q∈Q {q} × T ∗ P |q

(a manifold domain of the cotangent bundle T ∗ P of P ) by the formula:

H
(
q, p∗) := sup

{
p∗(p) − L(q, p): p ∈ T P |q

}
,

where the domain D(H) of H is the interior of the set for which the supremum is finite, and equip this set (which is an
immersed submanifold of T ∗ P ) with the restriction of the canonical 2-form Ωc on T ∗ P .

To apply this construction to steady water waves, let us define Q by Eq. (7), so that it is a manifold domain of
P = (0,∞) × L2(0,h) (which is a Hilbert manifold defined on the single coordinate chart R× L2(0,h)), and L by Eq. (6), so
that L ∈ C1(T̃ Q ,R), where T̃ Q ∼= Q ×R× L2(0,h). The Hamiltonian H :D(H) ⊆ T̃ ∗ Q → R is given by the formula

H(η,Φ, w,Ψ ) := sup

{
wμ +

h∫
0

Ψ θ dz − L(η,Φ;μ,θ): (μ, θ) ∈R× L2(0,h)

}

= sup
μ∈R

{
wμ − 2β

√
1 + μ2 + sup

θ∈L2(0,h)

h∫
0

(
Ψ θ − 1

2hη
(ηθ − μzΦz)

2
)

dz

}

+
h∫

0

(
η

h
Ω(Φ) − h

2η
Φ2

z

)
dz − η2 + 2β + 3rη; (8)

here, and in the following calculations, we use the coordinates T̃ ∗ Q ∼= Q ×R× L2(0,h). For each fixed μ ∈R, the supremum

sup
θ∈L2(0,h)

h∫
0

(
Ψ θ − 1

2hη
(ηθ − μzΦz)

2
)

dz

is finite and attained when the integrand is maximized for each z ∈ (0,h), that is, when θ = θmax := 1
η (hΨ + μzΦz) ∈

L2(0,h). Evaluating the supremum at θ = θmax, we find from (8) that

H(η,Φ, w,Ψ ) =
h∫

0

(
h

2η

(
Ψ 2 − Φ2

z

) + η

h
Ω(Φ)

)
dz − η2 + 2β + 3rη + sup

μ∈R
{

W μ − 2β

√
1 + μ2

}
,

where W := w + 1
η

∫ h
0 zΨ Φz dz. For each fixed W ∈ R the function μ �→ W μ − 2β

√
1 + μ2 is bounded above if and only if

|W | � 2β , in which case its supremum is −√
4β2 − W 2, so that



208 M.D. Groves, A. Stylianou / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 205–211
H(η,Φ, w,Ψ ) =
h∫

0

(
h

2η

(
Ψ 2 − Φ2

z

) + η

h
Ω(Φ)

)
dz − η2 + 2β + 3Rη −

√
4β2 − W 2, (9)

with

D(H) = M := {
(η,Φ, w,Ψ ) ∈ Q ×R× L2(0,h): |W | < 2β

}
for b > 0 and

D(H) = N := {
(η,Φ, w,Ψ ) ∈ Q ×R× L2(0,h): W = 0

} = {(
η,Φ, F (η,Φ,Ψ ),Ψ

) ∈ P × L2(0,h)
}

for b = 0, where F (η,Φ,Ψ ) := − 1
η

∫ h
0 zΦzΨ dz.

Finally, we define Hamiltonian systems (M,ΩM , H) and (N,ΩN , H) by equipping M and N with the restrictions ΩM

and ΩN of the (position-independent) canonical 2-form Ωc on T ∗ P , which is defined by the formula

Ωc
(
(η1,Φ1, w1,Ψ1), (η2,Φ2, w2,Ψ2)

) = w2η1 − w1η2 +
h∫

0

(Ψ2Φ1 − Ψ1Φ2)dz. (10)

Clearly M is a manifold domain of T ∗ P modelled upon the single coordinate chart (0,∞) × H1
0(0,h) × R × L2(0,h), H

and ΩM are given by (9) and (10) in this coordinate system and (M,ΩM) is a symplectic manifold. Furthermore N is an
embedded submanifold of M modelled upon the single coordinate chart (0,∞) × H1

0(0,h) × L2(0,h); the coordinate map
(0,∞) × H1

0(0,h) × L2(0,h) → N is given by (η,ψ,Ψ ) �→ (η,Φ, F (η,Φ,Ψ ),Ψ ), where (η,ψ) �→ (η,Φ) is the coordinate
map (0,∞) × H1

0(0,h) → Q . A straightforward calculation shows that H and ΩN are given in this coordinate system by (9)
and

ΩN |(η,Φ,Ψ )

(
(η1,Φ1,Ψ1), (η2,Φ2,Ψ2)

) = −η1

η

h∫
0

z(Φ2zΨ + ΦzΨ2)dz

+ η2

η

h∫
0

z(Φ1zΨ + ΦzΨ1)dz +
h∫

0

(Ψ2Φ1 − Φ2Ψ1)dz.

Note that ΩN is closed but not weakly nondegenerate at all points of N (see below).

4. Hamiltonian formulation

Finally, we compute Hamilton’s equations for the Hamiltonian systems (M,ΩM , H) and (N,ΩN , H) and examine their
connection to the water-wave problem.

Theorem 4.1. The domain of the Hamiltonian vector field vH corresponding to the Hamiltonian system (M,ΩM , H) is the set

D(vH) =
{
(η,Φ, w,Ψ ) ∈ M: (Φ,Ψ ) ∈ H2(0,h) × H1(0,h) with Ψ (0) = 0,Ψ (h) = W√

4β2 − W 2
Φz(h)

}

and vH is given by the mapping

⎛
⎜⎜⎝

η
Φ

w
Ψ

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎝

W√
4β2−W 2

h
ηΨ + zW Φz

η
√

4β2−W 2

h
2η2

∫ h
0 (Ψ 2 − Φ2

z )dz + W
η2

√
4β2−W 2

∫ h
0 zΨ Φz dz − 1

h

∫ h
0 Ω(Φ)dz + 2η − 3r

− h
ηΦzz + W

η
√

4β2−W 2
(zΨ )z − η

h ω(Φ)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proof. The point (η,Φ, w,Ψ ) ∈ M belongs to the domain of vH with vH(η,Φ, w,Ψ ) = (η,Φ, w,Ψ ) ∈ T M|(η,Φ,w,Ψ ) if and
only if

ΩM
(
(η,Φ, w,Ψ ), (η̂, Φ̂, ŵ, Ψ̂ )

) = dH|(η,Φ,w,Ψ )(η̂, Φ̂, ŵ, Ψ̂ )

for all (η̂, Φ̂, ŵ, Ψ̂ ) ∈ T M|(η,Φ,w,Ψ )
∼= R× H1(0,h) ×R× L2(0,h), that is,
0
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η̄ŵ − w̄η̂ +
h∫

0

(Φ̄Ψ̂ − Ψ̄ Φ̂)dz = − hη̂

2η2

h∫
0

(
Ψ 2 − Φ2

z

)
dz + h

η

h∫
0

(Ψ Ψ̂ − ΦzΦ̂z)dz

+ η̂

h

h∫
0

Ω(Φ)dz + η

h

h∫
0

ω(Φ)Φ̂ dz

+ W√
4β2 − W 2

(
ŵ − η̂

η2

h∫
0

zΨ Φz dz + 1

η

h∫
0

(Ψ̂ Φz + Ψ Φ̂z)z dz

)
− 2ηη̂ + 3rη̂.

(11)

Setting η̂, Φ̂, Ψ̂ and ŵ, Φ̂, Ψ̂ equal to zero, we find that η̄ and w̄ are given by the right-hand sides of the first and third
components of the given formula for vH, and substituting these formulae into (11) yields:

h∫
0

(Φ̄Ψ̂ − Ψ̄ Φ̂)dz = h

η

h∫
0

(Ψ Ψ̂ − ΦzΦ̂z)dz + W

η
√

4β2 − W 2

h∫
0

(Ψ̂ Φz + Ψ Φ̂z)z dz + η

h

h∫
0

ω(Φ)Φ̂ dz.

Setting Φ̂ = 0, we therefore find that

h∫
0

(
h

η
Ψ + zW Φz

η
√

4β2 − W 2
− Φ̄

)
Ψ̂ dz = 0

for all Ψ̂ ∈ L2(0,h), so that

Φ̄ = h

η
Ψ + zW Φz

η
√

4β2 − W 2
∈ H1

0(0,h). (12)

On the other hand, setting Ψ̂ = 0 yields

h∫
0

{(
Ψ̄ + η

h
ω(Φ)

)
Φ̂ + Φ̂z

(
− h

η
Φz + zW Ψ

η
√

4β2 − W 2

)}
dz = 0

for all Φ̂ ∈ H1
0(0,h), so that(

− h

η
Φz + zW Ψ

η
√

4β2 − W 2

)
z
= Ψ̄ + η

h
ω(Φ) ∈ L2(0,h) (13)

(Φ ∈ H1(0,h) ⊆ C[0,h] and Ω ∈ C(R), so that Ω(Φ) ∈ C[0,h] ⊂ L2(0,h)). It follows in particular from Eqs. (12) and (13)
that Φ ∈ H2(0,h), Ψ ∈ H1(0,h), and evaluating (12) at z = 0 and z = h, one obtains the boundary conditions for Ψ given in
the definition of D(vH). �

Details of the arguments needed to prove the next theorem are given by Groves and Toland [4, pp. 212–213]. Elimi-
nating w and Ψ̃ from the equations in the theorem, we find that Φ̃ is a strong solution of (2)–(5) in (x1, x2) × (0,h) for
a < x1 < x2 < b.

Theorem 4.2. Suppose that the continuously differentiable path γ = (η,Φ, w,Ψ ) : (a,b) → M satisfies Hamilton’s equations for
(M,ΩM , H). There exist measurable functions Φ̃(x, z) and Ψ (x, z), (x, z) ∈ (a,b) × (0,h), with the properties that for all x ∈ (a,b)

the equations Φ̃(x, z) = Φ(x)(z), Ψ̃ (x, z) = Ψ (x)(z) hold for almost all z ∈ [0,h]. Furthermore, η and w are twice continuously
differentiable in (x1, x2) and Φ̃ ∈ H2[(x1, x2) × (0,h)], Ψ̃ ∈ H1[(x1, x2) × (0,h)] for a < x1 < x2 < b with

ηx = W̃√
4β2 − W̃ 2

, wx = h

2η2

h∫
0

(
Ψ̃ 2 − Φ̃2

z

)
dz + W̃

η2
√

4β2 − W̃ 2

h∫
0

zΨ̃ Φ̃z dz − 1

h

h∫
0

Ω(Φ̃)dz + 2η − 3r

and

Φ̃x = h

η
Ψ̃ + zW̃ Φ̃z

η

√
4β2 − W̃ 2

, Ψ̃x = − h

η
Φ̃zz + W̃

η

√
4β2 − W̃ 2

(zΨ̃ )z − η

h
ω(Φ̃)



210 M.D. Groves, A. Stylianou / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 205–211
with boundary conditions

Φ̃(0) = 0, Ψ̃ (0) = 0, Φ̃(h) = 1, Ψ̃ (h) = W̃√
4β2 − W̃ 2

Φ̃z(h),

where W̃ = w + 1
η

∫ h
0 zΨ̃ Φ̃z dz satisfies |W̃ | < 2β .

Turning to (N,ΩN , H), recall that ΩN is not weakly nondegenerate at all points of N , so that the Hamiltonian vector
field is not uniquely defined at all points of its domain; one proceeds by allowing it to associate a set T of tangent vectors
in the space T N|n with each point (η,Φ,Ψ ) of D(vH) and defining its essential domain Dess(vH) as the subset of elements
(η,Φ,Ψ ) ∈D(vH) for which v|(η,Φ,Ψ ) is a single tangent vector.

Theorem 4.3. Let vH denote the Hamiltonian vector field corresponding to the Hamiltonian system (N,ΩN , H).

(1) The domain of vH is the set

D(vH) =
{
(η,Φ,Ψ ) ∈ N: (Φ,Ψ ) ∈ H2(0,h) × H1(0,h) with (i) Ψ (0) = 0,

(ii)
h2

2η2

(
Ψ 2(h) + Φ2

z (h)
) = −2η + 3r, (iii) Φz(h) = 0 implies Ψ (h) = 0

}
.

(2) For each (η,Φ,Ψ ) ∈ N the following statements are equivalent
(i) (η,Φ,Ψ ) ∈Dess(vH);

(ii) (η,Φ,Ψ ) is not a surface stagnation point of N, that is, Φz(h)2 + Ψ (h)2 �= 0;
(iii) Φz(h) �= 0.

(3) For each (η,Φ,Ψ ) ∈Dess(vH), the Hamiltonian vector field is given by

vH(η,Φ,Ψ ) =
(

− Ψ (h)

Φz(h)
,

h

η
Ψ − Ψ (h)

Φz(h)η
zΦz,−h

s
Φzz − Ψ (h)

Φz(h)η
(zΨ )z − η

h
ω(Φ)

)
.

(4) For each surface stagnation point (η,Φ,Ψ ) ∈D(vH) \Dess(vH) the Hamiltonian vector field is the set

vH(η,Φ,Ψ ) =
{(

η̄,
h

η
Ψ + η̄

η
zΦz,− h

η
Φzz + η̄

η
(zΨ )z − η

h
ω(Φ)

)}
η̄∈R

.

Proof. The point (η,Φ,Ψ ) ∈ M belongs to the domain of vH with vH(η,Φ, w,Ψ ) = (η,Φ,Ψ ) ∈ T M|(η,Φ,Ψ ) if and only if

ΩN |(η,Φ,Ψ )

(
(η,Φ,Ψ ), (η̂, Φ̂, Ψ̂ )

) = dH|(η,Φ,Ψ )(η̂, Φ̂, Ψ̂ )

for all (η̂, Φ̂, Ψ̂ ) ∈ T M|(η,Φ,Ψ )
∼=R× H1

0(0,h) × L2(0,h), that is,

− η̄

η

h∫
0

(Φ̂zΨ + ΦzΨ̂ )z dz + η̂

η

h∫
0

(Φ̄zΨ + ΦzΨ̄ )z dz +
h∫

0

(Φ̄Ψ̂ − Ψ̄ Φ̂)dz

= − hη̂

2η2

h∫
0

(
Ψ 2 − Φ2

z

)
dz + h

η

h∫
0

(Ψ Ψ̂ − ΦzΦ̂z)dz + η̂

h

h∫
0

Ω(Φ)dz + η

h

h∫
0

ω(Φ)Φ̂ dz − 2ηη̂ + 3rη̂. (14)

Setting (Φ̂, Ψ̂ ) and (η̂, Φ̂) equal to zero, we find that

1

η

h∫
0

(Φ̄zΨ + ΦzΨ̄ )z dz = − h

2η2

h∫
0

(
Ψ 2 − Φ2

z

)
dz + 1

h

h∫
0

Ω(Φ)dz − 2η + 3r (15)

and

h∫
0

(
h

η
Ψ + η̄

η
zΦz − Φ̄

)
Ψ̂ dz = 0,

and substituting these formulae into (14) yields



M.D. Groves, A. Stylianou / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 205–211 211
h∫
0

{(
Ψ̄ + η

h
ω(Φ)

)
Φ̂ + Φ̂z

(
− h

η
Φz + η̄

η
zΨ

)}
dz = 0.

The argument used in the proof of Theorem 4.1 shows that Φ ∈ H2(0,h) and Ψ ∈ H1(0,h), with

Φ̄ = h

η
Ψ + η̄

η
zΦz, Ψ̄ = − h

η
Φzz + η̄

η
(zΨ )z − η

h
ω(Φ) (16)

and

Ψ (0) = 0, Ψ (h) = −η̄Φz(h), (17)

so that η̄ = −Ψ (h)/Φz(h) if Φz(h) �= 0 and Ψ (h) = 0 if Φz(h) = 0. It follows from (16) and (17) by a straightforward
integration by parts that

h∫
0

(Φ̄zΨ + ΦzΨ̄ )z dz = h2

2η

(
Ψ 2(h) + Φ2

z (h)
) − η

h
Ω

(
Φ(h)

) − h

2η

h∫
0

(
Ψ 2 − Φ2

z

)
dz + η

h

h∫
0

Ω(Φ)dz,

and combining this equation with (15), one obtains condition (ii) in the definition of D(vH) because Ω(Φ(h)) = Ω(1) = 0.
This calculation shows that the conditions specified in part (1) of the theorem hold if (η,Φ,Ψ ) belongs to D(vH).

Conversely, suppose that (η,Φ,Ψ ) satisfies these conditions. The equation Ψ (h) = −η̄Φz(h) has at least one solution for η̄
because Ψ (h) = 0 implies that Φz(h) = 0. With this choice of η̄, define Φ̄ , Ψ̄ by (16). It is a straightforward matter to verify
that (η,Φ,Ψ ) ∈D(vH) and (η̄, Φ̄, Ψ̄ ) ∈ vH|(η,Φ,Ψ ) .

Suppose that (2)(i) is true, so that (η,Φ,Ψ ) belongs to Dess(vH). The properties specified in part (1) hold and vH|(η,Φ,Ψ )

is a single point; in particular, η̄ is unique. It follows that Ψ (h) is non-zero, so that (η,Φ,Ψ ) is not a surface stagnation
point. Next suppose that (2)(ii) is true, so that (η,Φ,Ψ ) ∈ D(vH) is not a surface stagnation point. By definition, at least
one of Ψ (h) and Φz(h) is non-zero. Part (1) of the theorem implies that Ψ (h) is non-zero. Finally, suppose that (2)(iii) is
true. The equation Ψ (h) = −η̄Φz(h) has a unique solution η̄ which may be used to define a unique Φ̄ and Ψ̄ by (16). Since
(η̄, Φ̄, Ψ̄ ) is unique, it follows that (η,Φ,Ψ ) ∈Dess(vH).

The Hamiltonian vector field vH|n at any point n ∈ D(vH) is found by solving Ψ (h) = −η̄Φz(h) for η̄ (the solution
is unique and equal to Φz(h)/Ψ (h) for (η,Φ,Ψ ) ∈ Dess(vH); otherwise η̄ can take any value in R) and defining Φ̄ , Ψ̄

by (16). �
A continuously differentiable path γ : (a,b) → M with γ (x) = (η(x),Φ(x),Ψ (x)) ∈ Dess(vH) for all x ∈ (a,b) leads to a

solution of the water-wave equations (2)–(5) using the procedure explained in Theorem 4.2. (At a surface stagnation point
|∇ψ(h)|2 = (Φx(h) − ηx

η Φz(h))2 + h2

η2 Φz(h)2 = 0, and η attains its maximum value of 3
2 r; at such a point either ηx = 0 or ηx

has a singularity. This matter is discussed in detail by Varvaruca and Weiss [9].)
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