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RESUME

Nous considérons la formulation de la fonction du courant dans le probléme hydrodyna-
mique décrivant les ondes de surface rotationnelles stationnaires, avec ou sans tension
superficielle. Dans les deux cas, nous présentons une formulation lagrangienne naturelle,
a partir de laquelle (différentes) formulations hamiltoniennes sont dérivées a I'aide de la
théorie de la dualité, dans I'esprit de la transformée de Legendre-Fenchel. La démarche est
systématique et clarifie une approche ad hoc récente de Kozlov et Kuznetsov [7].

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In Hamiltonian spatial dynamics, a physical problem is formulated as a Hamiltonian evolutionary equation in which an
unbounded spatial direction plays the role of time. Rigorous spatial Hamiltonian formulations of the classical irrotational
steady water-wave problem were given by Groves and Toland [4] (who clarified and unified previous results by Baesens
and MacKay [1] and Mielke [8]) and Groves [3] (see also Benjamin [2, Appendix B]). In the first theory the hydrodynamic
problem is formulated in terms of a velocity potential and the variable fluid domain mapped to a fixed strip by scaling the
vertical coordinate by the free-surface elevation, while in the second it is formulated in terms of a stream function and the
mapping to a fixed reference domain is achieved by means of a semi-hodograph transformation. The latter approach was
extended to rotational water waves by Groves and Wahlén [5,6].

Kozlov and Kuznetsov [7] have recently examined the stream-function formulation of the hydrodynamic problem for
rotational gravity waves using the scaling transformation and give variables whose role as coordinates in a Hamiltonian
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formulation are confirmed a posteriori. In this note we show that, contrary to a remark by Kozlov and Kuznetsov, their
Hamiltonian system can be obtained by duality theory in the spirit of the Legendre-Fenchel transform from the corre-
sponding Lagrangian system (which is readily derived from a variational principle). This systematic treatment, which is a
straightforward modification of Groves and Toland’s [4] theory, leads to (different) Hamiltonian formulations for both gravity
and gravity-capillary waves and explains both the relationship between the two cases and Kozlov and Kuznetsov’s choice of
coordinates; in particular we explain how their manifolds M’ and M” emerge naturally (they correspond to N (Section 3)
and D(vy) (Theorem 4.3) in this note).

Consider a steady rotational flow with prescribed vorticity function w € C%!(R), total head R and volume flux Q.

In terms of dimensionless variables (obtained by scaling lengths by h. = g*% Q% and ¥ by Q), the mathematical prob-
lem is to find a positive function 7 defining the fluid domain Dy = {(x, y): X € (X1, X2), y € (0, n(x))} and a stream function

v 5,, — R which satisfies the equations

—AY =), (x,¥) € Dy,

Y =0, y=0,

1/f=1» y=7’](X),

|wf|2+2n—2ﬂ(L) =3r, y=nW.
J1+ng/x

The dimensionless parameters 8 and r are given by 8 = o /(ghc), r = R/R¢, where o is the coefficient of surface tension,
g is the acceleration due to gravity and R, = %ghc, so that hc and R are the critical depth and corresponding critical value
of R for an irrotational flow with volume flux Q (e.g., see Benjamin [2]). Our starting point is the observation that these
equations follow from the formal variational principle

n(x)
5/[0/(%Ww—Q(w)>dy+r/2+2ﬂ(,/1+n§—1)—3rn}dx:o, 1)

where 2(t) := —ftl w(s)ds and the variations are taken in 1 and ¥ and with compact support in (a, b), a < x; <x <b.
2. Lagrangian formulation
Consider the change of variable z = yh/n(x), ®(x,z) = ¥(x,y), where h is a positive constant (e.g. select h such

that (n, ¥) = (h, ¥x(y)) is a horizontal laminar flow, that is W,/,/ = w(yy) for y € (0,h) with ¥,(0) =0, ¥,(h) =1 and
¥'(h)? +2h =r). This transformation converts the hydrodynamic problem into

2z 2zn2 z22n? z h?
Dyx — nnxq)xz"‘ 727x b, + nzx D, — nxxd)z_pﬁd)zz—w(dﬁ)zo, 0<z<h, (2)
@ =0, z=0, (3)
& =1, z=h, (4)
2 252
h*®
(cpx—&cbz> + 5 +2r1—2ﬂ[777X } —3r=0, z=h, ()
1 1 V1403
where x € (X1, X2), and the variational principle (1) into
) f L(n, @;nx, Px)dx =0,
where
1 ; 1 1
Ly, ®; pu, &) = = /[E(W — nuzd,)? + Ehzq)zz - ,729@)} dz + n? +2ﬁ(,/1 +p? — 1) — 3. (6)
0
Observe that
Q :={(n. @) € (0,00) x H'(0,h): ®(0) =0, ®(h) =1} (7)

is a Hilbert manifold modelled on the single coordinate chart (0, co) x H},(O,h); one can take (n,¥)+— (n, ¥ + ¥yp) as a
coordinate map (0, co0) x Hé (0, h) — Q with a concrete physical interpretation (@ is written as a perturbation of a laminar



M.D. Groves, A. Stylianou / C. R. Acad. Sci. Paris, Ser. 1 352 (2014) 205-211 207

flow). Eq. (6) defines a Lagrangian L € C1(TQ,R), where TQ = UPEQ{p} xTQlp=Q xRx H})(O, h) is the tangent bundle
of Q.
The following result is proved by the arguments given by Groves and Toland [4, pp. 220-221].

Lemma 2.1. Define X = {y € C!([a, b], Q): y(a) =q1, y(b) =q2)} for fixed q1, g2 € Q and £ € C1 (X, R) by
b
L(y)= / L(y (0; y (%)) dx.
a
Suppose that the twice continuously differentiable path y = (n, @) : [a, b] — Q satisfies Lagrange’s equation
b

dcl, (y) = /{d1L[V(X); Y®](r1®) + L[y ®); y 0] (71 (0) } dx =0

a

forally1 e TX|, = C(l)([a, b], R x HE,(O, h)). There exists a measurable function @ (x, z), (x, z) € (a, b) x (0, h), with the properties
that for all x € (a, b) the equation @ (x, z) = @ (x)(z) holds for almost all z € [0, h]. Furthermore, ® € H2[(x1, X2) x (0, h)] and is a
strong solution of (2)-(5) fora < x1 <x2 <b.

3. Legendre-Fenchel transform

The following construction is motivated by classical duality theory but avoids any assumptions on the behaviour of L.
Consider a manifold domain Q of a manifold P and a Lagrangian L € C1(TQ,R), where TQ = quq{q} x TP|q (a manifold
domain of the tangent bundle TP of P). Define the Hamiltonian H : D(H) € T*Q — R, where T*Q = quQ{q} x T*Plq
(a manifold domain of the cotangent bundle T*P of P) by the formula:

H(q, p*) :=sup{p*(p) — L(q. p): p € TPq},

where the domain D(H) of H is the interior of the set for which the supremum is finite, and equip this set (which is an
immersed submanifold of T*P) with the restriction of the canonical 2-form £2. on T*P.

To apply this construction to steady water waves, let us define Q by Eq. (7), so that it is a manifold domain of
P = (0, o0) x L%(0, h) (which is a Hilbert manifold defined on the single coordinate chart R x L2(0, h)), and L by Eq. (6), so
that L e C1(TQ,R), where TQ = Q x R x L%(0, h). The Hamiltonian H : D(H) € T*Q — R is given by the formula

h

H®, @, w,W¥) ::sup{pr—/!I/Q dz—L(n, ®: 1, 0): (1,0) €R x L2(0,h)]
0
; 1
= supywu —28,/1+u%+ sup f(ll/@ ——(@0 — /qubz)2> dz
jeR oeL20.h) ) 2hn
n h 2 .
+ HQ@)_%(DZ dz—n®+2p+3rn; (8)
0

here, and in the following calculations, we use the coordinates T*Q = Q xR x L2(0, h). For each fixed M € R, the supremum

1
sup f(we ——(@0 — qu)z)2> dz
6eL20.h) ) 2hn

is finite and attained when the integrand is maximized for each z € (0, h), that is, when 6 = 0y := %(hlI/ + uz®;) €
L%(0, h). Evaluating the supremum at 6 = 6mayx, we find from (8) that

h
H(n,@,w,tIl):/(E(!I/Z—@f)—i—%ﬂ((b)) dz —n? +28 +3rn+su1?R{Wu—2/3 14 u?},
ne

where W :=w + %fg z¥ @, dz. For each fixed W € R the function > W — 28+/1 + u? is bounded above if and only if
|W| < 28, in which case its supremum is —/482 — W2, so that
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h
Hn, &, w,¥) :/(%(wz - @2) + %9@)) dz —n? + 2B+ 3Rn — /482 — W2, (9)
0

with

DH)=M:={(n,®,w,¥) e Q x Rx L*0,h): |W| <28}
for b > 0 and

DH)=N:={n.®,w,¥) e Q xRx L*(0,h): W =0} ={(n.®, F(n, ®,¥), ¥) € P x L*(0,h)}

for b=0, where F(n, ®,¥) := —% /(;1 z®d,¥ dz.
Finally, we define Hamiltonian systems (M, 2y, H) and (N, 2y, H) by equipping M and N with the restrictions 2
and 2y of the (position-independent) canonical 2-form 2, on T*P, which is defined by the formula
h

Qc((1, @1, w1, ¥1), (N2, P2, w2, ¥2)) = wang — winz + /(‘1’2@1 — ¥ @y)dz. (10)
0

Clearly M is a manifold domain of T*P modelled upon the single coordinate chart (0, co) x Hg)(O, h) x R x L2(0,h), H
and £y are given by (9) and (10) in this coordinate system and (M, £2)y) is a symplectic manifold. Furthermore N is an
embedded submanifold of M modelled upon the single coordinate chart (0, co) x Hg)(O, h) x L2(0, h); the coordinate map
(0, 00) x H&(O, h) x L?>(0,h) — N is given by (,v,¥) — (1, ®, F(, ®,¥), ¥), where (1, V) — (1, ®) is the coordinate
map (0, co) x H(l)(O, h) — Q. A straightforward calculation shows that H and 2y are given in this coordinate system by (9)
and

h
1
QNI(n,qb,q/)((m,‘PuW]),(le,q)z,%))=—%/Z(¢2z‘1’+¢zqu)dl
0

h h
+ %/Z(@]Z‘I/-F@z‘lﬁ)dl-l-/(lpde — W) dz.
0

Note that §2 is closed but not weakly nondegenerate at all points of N (see below).
4. Hamiltonian formulation

Finally, we compute Hamilton’s equations for the Hamiltonian systems (M, §2y;, H) and (N, 2y, H) and examine their
connection to the water-wave problem.

Theorem 4.1. The domain of the Hamiltonian vector field vy corresponding to the Hamiltonian system (M, 2y, H) is the set

D(vp) = {(n, @, w,¥)eM: (®,¥) e H*(0,h) x H'(0, h) with ¥ (0) =0, ¥ (h) = q§z(h)]

w
Jap w2

and vy is given by the mapping

_w__
Vapr-w?
n h + WP,
(e n ny/4p2—w2
h  rhog2 2 w h 1 rh
gf 37 Jo (¥ —¢Z)dz+mfozwcpzdz—ﬁfo 2(@)dz+2n—3r
h w n
—ﬁ‘pzz + D JAB— W2 (z2¥); — (D)

Proof. The point (17, ®, w, ¥) € M belongs to the domain of vy with vu(n, ®, w,¥) = (7], ®, W, ¥) € TM|,0,w,w) if and
only if

2u((, @, w, ), (H, ¢, W, ¥)) =dH| ¢y, ¢,w,u) (@, D, W, ¥)

for all (A, &, W, ¥) € TM|(y,0,w0) =R x HJ(0, h) x R x L2(0, h), that is,
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h h
N PN h#j h . .
ﬁw—wn—i—/(@sl/—d/qﬁ)dz:—z—n/(w2—@f)dz+—/(llflll—q)ztbz)dz
0 7 0 7
_h h
1 1 s
0 0

h h
1
/zw¢zdz+ /(W¢Z+W¢z)zd2> =201 + 3r1).
0 0

3M|3>
|

w
.
4/32 _W2<
(11)

Setting 7, &, ¥ and w,d, ¥ equal to zero, we find that 7 and w are given by the right-hand sides of the first and third
components of the given formula for vy, and substituting these formulae into (11) yields:

h h h h
N N h ~ ~ w N “ n “
QY —YP)dz=— oy —@,P,)d _— v P v d — D) dz.
0[( ) dz 770/( zz>z+nmof< .+ z)zz+h0[w() 2

Setting @ = 0, we therefore find that

h
h ZWo -\ -
/(—l]/+7z—¢)lpdz=0
0 n nv4p% — w2
for all ¥ € L2(0, h), so that

_h wao
d="wy T2 cphlo,n. (12)
n nJap— w2

On the other hand, setting ¥ = 0 yields

h
_ . . [ h ww
[{<w+5w(¢)>@+¢z(——<pz+27>}dz=0
) h 1 nv4pz — w2
for all & € H}(0,h), so that

< hcp + didd ) =0+ Lo@) e 1200, h) (13)
S nvag—w? ), h ’

(@ € H'(0,h) C C[0,h] and £2 € C(R), so that £2(®) € C[0, h] C L%(0, h)). It follows in particular from Egs. (12) and (13)

that @ € H2(0, h), ¥ € H'(0, h), and evaluating (12) at z=0 and z = h, one obtains the boundary conditions for ¥ given in

the definition of D(vy). O

Details of the arguments needed to prove the next theorem are given by Groves and Toland [4, pp. 212-213]. Elimi-
nating w and ¥ from the equations in the theorem, we find that & is a strong solution of (2)-(5) in (x1,x2) x (0, h) for
a<xy<Xxy<bh.

Theorem 4.2. Suppose that the continuously differentiable path y = (n, ®, w,¥) : (a,b) — M satisfies Hamilton’s equations for
(M, i, H). There exist measurable functions @ (x, z) and ¥ (x, z), (x, z) € (a, b) x (0, h), with the properties that for all x € (a, b)
the equations ®(x,z) = ®(x)(z), ¥ (x,z) = ¥ (x)(2) hold for almost all z € [0, h]. Furthermore, n and w are twice continuously
differentiable in (x1,x2) and @ € H2[(x1, x2) x (0, )], ¥ € H'[(x1, x2) x (0, h)] fora < x; < xo < b with

-~ 1 -
/leHDZdZ—E/.Q(d‘J)dZ—f-Zn—Z%r
0

h .

n v o / dz+ W

X = —> Wy = 2 =
482 — W2 2n , n2Jap? — W2 )

and
Gy g W LY S LA A IO
x = — —_—, x=——Pzz T+ —F/—— z— T
n n /4l32_W2 n n /4l32_W2 h
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with boundary conditions

- - - ~ w ~
¢(0)=0, v0)=0 oMh)=1  VYh=——0:h),
4/32 _ WZ
where W = w + %fé’ 2¥ &, dz satisfies |W| < 28.
Turning to (N, 2y, H), recall that 2y is not weakly nondegenerate at all points of N, so that the Hamiltonian vector
field is not uniquely defined at all points of its domain; one proceeds by allowing it to associate a set T of tangent vectors

in the space TN|, with each point (1, @, ¥) of D(vy) and defining its essential domain Dess(vy) as the subset of elements
(n, @,¥) € D(vy) for which v| ¢, ¢) is a single tangent vector.

Theorem 4.3. Let vy denote the Hamiltonian vector field corresponding to the Hamiltonian system (N, 2y, H).

(1) The domain of vy is the set

D(vy) = [(n, @, W) eN: (,¥) e H>0,h) x H'(0, h) with (i) ¥ (0) =0

2
(ii) 2% (W2(h) + ®2(h)) = =21 + 3r, (iii) D, (h) = O implies ¥ (h) = 0}.

(2) Foreach (n, ®,¥) € N the following statements are equivalent
(i) , @,¥) € Dess(vh);
(i) (1, ®, ¥) is not a surface stagnation point of N, that is, &,(h)? + ¥ (h)> #0;
(iii) @,(h) #£0.

(3) Foreach (n, ®@,¥) € Dess(vn), the Hamiltonian vector field is given by
wt) h v (h) h v (h)
, =¥ — 2Pz, —=DPzz —

@,(h) n @,(h)n S @, (h)n

(4) For each surface stagnation point (n, @, ¥) € D(vy) \ Dess(vy) the Hamiltonian vector field is the set

v, @.¥) = (— (z2¥)z — — (‘P)>

(- h M h 1 n
VH(n, @, ¥) = N, =Y+ —20;, —— D + —(2¥); — —~w(P) .
n n n n h 7R

Proof. The point (1, @, ¥) € M belongs to the domain of vy with vu(n, @, w,¥) = (7], ®, ¥) € TM|(;,0,v) if and only if
2l a.0.0) (7. 2. 9), (7, &, 9)) =dH| (. 0.0) (A, D, ¥)
for all (i), &, ¥) € TM|(y.0.0) =R x H}(0,h) x L2(0, h), that is,

h h h
—%/((ﬁzlll+(bzlﬁ)zdz+%/(@Zl]/+¢zll_/)zdz+f((5lf/—J/(ﬁ)dz
0

h h
:—2%'7/ 2)dz + — /(w/ &,b,)dz + — /Q(d))dz+ . fw(@)qﬁdz—znﬁ+3rﬁ. (14)
0 0
Setting (d3, lf/) and (7, @) equal to zero, we find that
h h
%/(qﬁzw + ®,¥)zdz= _2% /(wz - ®?)dz + % / 2(P)dz —2n+3r (15)
0

and
h

h7 N
/(—lI/—FEﬂDZ—q?)lI/dz:O
J\n" "

and substituting these formulae into (14) yields
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h _
/{(w + Qa)(cb))é +éz<_ﬁ¢z+ QzW)}dz:O.
) h n n

The argument used in the proof of Theorem 4.1 shows that @ € H2(0,h) and ¥ € H'(0, h), with

_h _ i
d="wi+Dp, F=-L,+ ), - Lo (16)
n n n n h

and

v(0)=0, ¥ =-nP:(h), (17)

so that 1 = —w (h)/®,(h) if ®,(h) #0 and ¥(h) =0 if &,(h) =0. It follows from (16) and (17) by a straightforward
integration by parts that

h ; h h
/(cpzq/ +®,0)zdz= Z—(tl/z(h) + ®Z(h)) — gﬂ(cp(h)) - 2£ /(npz —¢?)dz + % / 2(9)dz,
0 1 1 0 0
and combining this equation with (15), one obtains condition (ii) in the definition of D(vy) because 2 (®(h)) = £2(1) =0.

This calculation shows that the conditions specified in part (1) of the theorem hold if (1, ®,¥) belongs to D(vy).
Conversely, suppose that (n, @, ¥) satisfies these conditions. The equation ¥ (h) = —1®,(h) has at least one solution for
because ¥ (h) = 0 implies that &,(h) = 0. With this choice of 7, define &, ¥ by (16). It is a straightforward matter to verify
that (7, ®,¥) € D(vy) and (7], D, ¥) € Vul,o,w)-

Suppose that (2)(i) is true, so that (1, @, ¥) belongs to Dess(vy). The properties specified in part (1) hold and vy, e,v)
is a single point; in particular, 7 is unique. It follows that ¥ (h) is non-zero, so that (1, @, ¥) is not a surface stagnation
point. Next suppose that (2)(ii) is true, so that (n, ®,¥) € D(vy) is not a surface stagnation point. By definition, at least
one of ¥(h) and &;(h) is non-zero. Part (1) of the theorem implies that ¥ (h) is non-zero. Finally, suppose that (2)(iii) is
true. The equation ¥ (h) = —7j@,(h) has a unique solution 77 which may be used to define a unique & and ¥ by (16). Since
(7, @, ¥) is unique, it follows that (17, @, ¥) € Dess(VH).

The Hamiltonian vector field vy|, at any point n € D(vy) is found by solving ¥ (h) = —7®,(h) for 7 (the solution
is unique and equal to @,(h)/W(h) for (n, ®,¥) € Dess(vy); otherwise 7 can take any value in R) and defining &, ¥
by (16). O

A continuously differentiable path y : (a,b) - M with y(x) = (n(x), @ (x), ¥ (x)) € Dess(vy) for all x € (a,b) leads to a
solution of the water-wave equations (2)-(5) using the procedure explained in Theorem 4.2. (At a surface stagnation point

IV (h)]? = (@x(h) — %@Z(h))2 + Z—§¢Z(h)2 =0, and 7 attains its maximum value of 3r; at such a point either 7y =0 or 7
has a singularity. This matter is discussed in detail by Varvaruca and Weiss [9].)

Acknowledgement
A.S. was supported by the Deutsche Forschungsgemeinschaft under grant GR 3348/1-1.

References

[1] C. Baesens, R.S. MacKay, Uniformly travelling water waves from a dynamical systems viewpoint: some insights into bifurcations from Stokes’ family,
J. Fluid Mech. 241 (1992) 333-347.

[2] T.B. Benjamin, Verification of the Benjamin-Lighthill conjecture about steady water waves, J. Fluid Mech. 295 (1995) 337-356.

[3] M.D. Groves, A new Hamiltonian formulation of the steady water-wave problem, in: A. Mielke, K. Kircdssner (Eds.), Structure and Dynamics of Nonlinear
Waves in Fluids, World Scientific, Singapore, 1995, pp. 259-267.

[4] M.D. Groves, J.E. Toland, On variational formulations for steady water waves, Arch. Ration. Mech. Anal. 137 (1997) 203-226.

[5] M.D. Groves, E. Wahlén, Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity, SIAM J. Math.
Anal. 39 (2007) 932-964.

[6] M.D. Groves, E. Wahlén, Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity, Physica D 237 (2008)
1530-1538.

[7] V. Kozlov, N. Kuznetsov, Steady water waves with vorticity: spatial Hamiltonian structure, J. Fluid Mech. 733 (2013) R1.

[8] A. Mielke, Hamiltonian and Lagrangian Flows on Center Manifolds, Springer-Verlag, Berlin, 1991.

[9] E. Varvaruca, G. Weiss, The Stokes conjecture for waves with vorticity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29 (2012) 861-885.


http://refhub.elsevier.com/S1631-073X(14)00028-4/bib42616573656E734D61634B61793932s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib42616573656E734D61634B61793932s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib42656E6A616D696E3935s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib47726F766573393562s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib47726F766573393562s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib47726F766573546F6C616E643937s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib47726F7665735761686C656E3037s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib47726F7665735761686C656E3037s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib47726F7665735761686C656E3038s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib47726F7665735761686C656E3038s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib4B6F7A6C6F764B757A6E6574736F763133s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib4D69656C6B65s1
http://refhub.elsevier.com/S1631-073X(14)00028-4/bib56617276617275636157656973733132s1

	On the Hamiltonian structure of the planar steady water-wave problem with vorticity
	1 Introduction
	2 Lagrangian formulation
	3 Legendre-Fenchel transform
	4 Hamiltonian formulation
	Acknowledgement
	References


