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We propose a hybrid version of the Fast VPP method for dilatable fluids: collocated 
variables/staggered projection. The necessary conditions for its effective application are 
outlined. Numerical results illustrate the significant computation-cost reduction to reach 
stationary regimes.
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r é s u m é

On propose une version hybride de la méthode Fast-VPP en écoulement dilatable : variables 
colocalisées et projection décalée. On précise les conditions nécessaires à son application 
efficace. Des résultats numériques illustrent le gain en effort de calcul pour l’obtention de 
régimes stationnaires.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

La méthode Fast Vector Penalty-Projection [1,2] permet de résoudre les équations de Navier–Stokes (Eqs. (1)–(4)) pour 
un fluide incompressible. Un petit paramètre de pénalité 0 < ε � 1 contrôle la conservation de la masse. Son principal 
intérêt réside dans une résolution extrêmement rapide de l’étape de projection. À notre connaissance, la mise en œuvre 
des Eqs. (5)–(7) n’a été faite qu’en variables décalées. On propose ici une version volumes finis hybride de la Fast VPP pour 
des écoulements dilatables, cf. Eqs. (9)–(11). Les variables restent colocalisées, cf. Eqs. (13)–(14), mais la projection est faite 
en variables décalées, à l’instar de [5] pour le schéma de Chorin–Temam. Après avoir exposé les discrétisations spatiale 
et temporelle concernant l’étape de projection, cf. Eq. (15), on analyse les propriétés de la matrice correspondante. En 
particulier, son noyau n’est pas réduit au seul élément nul et elle n’est pas forcément à dominance diagonale ∀ε . Ceci a des 
conséquences sur le solveur linéaire utilisé pour la résolution. On indique les conditions nécessaires à l’application efficace 
de la méthode ILU(0)–BiCGStab, en particulier la détermination d’un εopt optimal, cf. Eq. (17). Des résultats numériques 
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illustrent l’efficacité de cette approche, qui permet de réduire sensiblement l’effort de calcul du terme de pression pour la 
simulation de régimes stationnaires. Ceci est tout particulièrement vrai dans le cas d’un grand nombre de degrés de liberté.

1. Introduction

We propose a hybrid version of the Fast Vector Penalty-Projection (VPP) method, see [1,2], in the framework of the Finite 
Volume (FV) method using collocated variables on Cartesian grids for dilatable fluids. The most attractive feature of the fast 
VPP is its capability to easily solve the projection step in comparison with the classical Chorin–Temam method [4,7]. The 
Navier–Stokes equations for a Newtonian fluid in Ω , an open of Rd , d = 2, 3, are:

∂tρ + ∇ · (ρv) = 0 in Ω × [0, T ] (1)

∂t(ρv) + ∇ · (q ⊗ v) + ∇P − ∇ · τ (v) = g in Ω × [0, T ] (2)

+ boundary conditions for ρ, v and P on ∂Ω × [0, T ] (3)

+ initial conditions for ρ, v and P in Ω at t = 0 (4)

with ρ the density, P the pressure, v the fluid velocity, q = ρv the mass flux, τ (v) = μ((grad + gradT)v − 2
3 div v I) the 

viscous strain and μ the dynamic viscosity. At the semi-discrete level, the incremental form of the VPP scheme for incom-
pressible fluids reads as [1]:

ṽn+1 − vn

�t
+ 1

ρ
DC

(
vn, ṽn+1) = − 1

ρ
∇Pn + gn+1

ρ
(5)

ε

(
v̂n+1

�t
+ 1

ρ
DC

(
vn, v̂n+1)) − ∇(∇ · v̂n+1) = ∇(∇ · ṽn+1) (6)

1

ρ
φn+1 = −1

ε
∇ · vn+1 (7)

where �t is the time step, DC the semi-discrete form of the diffusion–convection operator from Eq. (2), v̂n+1 := vn+1 − ṽn+1, 
φn+1 = Pn+1 − Pn and 0 < ε � 1 the penalty parameter. For Eq. (5), the boundary conditions (BC) are taken from (3). BCs 
for v̂ are homogeneous Dirichlet conditions where the velocity is prescribed. Thanks to Eq. (7), it is possible to recover 
the pressure. This suggests also homogeneous Dirichlet conditions for ∇ · v where the pressure is prescribed. In fact, it 
is not useful to reconstruct the pressure at each time step. We can use Eqs. (6) and (7) to update the pressure gradient: 
∇Pn+1 = ∇Pn + ∇φn+1.

The VPP method shares some links with the augmented Lagrangian [6] and the artificial compressibility methods [3], 
see [1]. Eq. (7) is similar to 1

ρ φn+1 = −r∇ · vn+1 with an augmentation parameter r = 1
ε . Angot et al. have proven the 

convergence of the velocity divergence |∇ · v|L2 with the order O(ε) for a given �t [1].
At the semi-discrete level, the Fast version of the VPP scheme consists in replacing Eq. (6) by [2]:

ε

�t
v̂n+1 − ∇(∇ · v̂n+1) = ∇(∇ · ṽn+1) (8)

Unlike the VPP scheme, the fast one does not provide a semi-discrete form of Eq. (2) under the constraint (7). But its 
main interest is to be found in the easily solving of Eq. (8). With a small enough value for the penalty parameter ε

�t , the 
right-hand side of this linear system is formed using the same matrix than the left-hand side. If we denote by W the matrix 
associated with the operator ∇(∇ · ∗), we have: v̂n+1 = �t

ε (I − �t
ε W )−1W ṽn+1 and v̂n+1 ≈ −W −1W ṽn+1 for 0 < ε

�t � 1. 
Using an iterative solver for this linear system, we can take advantage of this feature by an appropriated preconditioning as 
the ILU one. Lets notice that the W matrix is a non-symmetric one and we have to choose the iterative solver under this 
constraint. Here we consider the BiCGStab iterative method.

Hereafter, we detail our FV hybrid collocated/staggered version for dilatable fluids on Cartesian grids and give some 
numerical illustrations showing the capacity of our approach to effectively reduce the computational cost to reach stationary 
regimes.

2. A hybrid collocated/staggered Fast VPP

At the semi-discrete level, the proposed incremental form of the Fast VPP scheme for dilatable fluids (or variable-density 
flows) reads as:

q̃n+1 − qn

�t
+ DC

(
ρn+1,vn, ṽn+1) = −∇Pn + gn+1 (9)

ε
q̂n+1 − ∇(∇ · q̂n+1) = ∇

(
∇ · q̃n+1 + ρn+1 − ρn )

(10)

�t �t
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∇φn+1 = − q̂n+1

�t
(11)

where qn+1 := ρn+1vn+1, q̃n+1 := ρn+1ṽn+1 and q̂n+1 := ρn+1v̂n+1 = qn+1 − q̃n+1. Let’s remark that this system differs from 
the one given in [1] for a generalization to variable-density flows: ρn+1 ṽn+1−vn

�t + . . . = −∇Pn + gn+1 and ε
�t q̂n+1 − ∇(∇ ·

v̂n+1) = ∇(∇ · ṽn+1). The evolution of the density is supposed to be given by an extra balance equation; for instance, the 
energy balance equation equipped with the equation of state ρ(e). Confronting Eq. (10) with Eq. (11), we get an equation 
involving φ and q̂, that is similar to Eq. (7):

φn+1 = −1

ε

[
∇ · qn+1 + ρn+1 − ρn

�t

]
(12)

It can be viewed as a particular form of artificial compressibility applied to the constraint ∇ · q = −ρn+1−ρn

�t .
We consider a FV space discretization with collocated variables (density, velocity, mass flux, and pressure) at the cell 

centers of a Cartesian grid. Hereafter, we denote by K a cell and σ a cell face. Notation ∗K or ∗σ will stands for a cell or 
a face variable, respectively. The VPP method was successfully tested with a staggered-variable scheme on structured [1] or 
unstructured [2] meshes. For staggered-variable schemes, the FV approximation of the ∇ · q operator is located at the cell 
centers—denoted ∇K · qσ —and all the needed data are available: qσ · nσ with nσ the face normal. The FV approximation of 
the ∇(∗) operator—denoted ∇σ (∗K )—is located at the face centers. It gives the correction field for which only the normal 
components q̂σ · nσ are useful and the BCs well defined.

Using the VPP method with collocated variables is not so easy. For collocated-variable schemes, the ∇ · ∗ operator is 
approximated at the face centers ∇σ · ∗K and the ∇(∗) one at the cell centers ∇K (∗σ ). There is no problem defining the 
latter operator ∇K (∗σ ), but it is not the case for the former one ∇σ · ∗K . Indeed, we have no specification for the boundary 
conditions concerning the needed tangential velocities: the term ∂qτ

∂τ with τ the boundary tangent. Here, we overcome this 
issue using a hybrid collocated/staggered solver for which the projection step is done on the cell faces. In fact, it was already 
the case in the FV scheme presented by Faure et al. [5]. The hybrid method that we propose applies a collocated-variable 
scheme for the predicted velocity step and a staggered-variable scheme for the projection step.

The cell-center velocities ṽK verify the momentum balance equation using convection fluxes qσ = ρσ vσ at the face 
centers:

|K | ρn+1
K ṽn+1

K − ρn
K vn

K

�t
+

∑
σ∈ε(K )

|σ |ṽn+1
σ qn

σ · nσ − D K
(
ṽn+1

K , ṽn+1
L

) = −∇K Pn
K + |K |gn+1

K (13)

with ε(K ) the faces of the cell K , | ∗ | the measure of K or σ , D K (∗) a space-time discretization of the diffusion term (with 
cells L in the vicinity of K ) and ṽσ given by an appropriate interpolation. The normal components of the convection fluxes 
qσ · nσ verify the mass balance equation (and not the ρK vK themselves):

|K |ρ
n+1
K − ρn

K

�t
+

∑
σ∈ε(K )

|σ |qn+1
σ · nσ = 0 (14)

Hence, the corrections q̂ live on σ and we only need the normal components q̂σ · nσ given by the normal dot product of 
Eq. (10). Lets q̃n+1

σ = ρn+1
σ ṽn+1

σ be a mass flux prediction involving appropriate face interpolations of ρK and ṽK on σ . Then, 
we consider the following FV approximation of the normal dot product of Eq. (10):

ε

�t
q̂n+1
σ · nσ − ∇σ

(∇K · q̂n+1
σ

|K |
)

· nσ = ∇σ

(∇K · q̃n+1
σ

|K | + ρn+1
K − ρn

K

�t

)
· nσ (15)

In this equation, the cell divergence and the normal face gradient are defined by linear interpolations (but higher-order 
interpolations can be used): ∇K · ∗σ = ∑

σ∈ε(K ) |σ |∗σ · nσ and ∇σ (∗K ) · nσ = ∗K −∗L
hσ

. Here K and L are the cells sharing the 
face σ and such that nσ is directed from K to L and hσ is the normal distance between the K and L cell centers. As a 
consequence, Eq. (15) gives only access to the normal components of q̂σ . As already mentioned, the BCs for this quantity 
are well defined. When the normal inflow mass flux is imposed (q̃σ · nσ = qσBC · nσ ), we have q̂σ · nσ = 0. And when the 
outflow pressure is imposed (Pσ = PσBC ; φσ = 0), we get (∇ · q + ∂ρ

∂t )σ = 0 from Eq. (12).
Once q̂n+1

σ · nσ is obtained from Eq. (15), the normal components of the cell-face mass flux are updated: qn+1
σ · nσ =

q̃n+1
σ · nσ + q̂n+1

σ · nσ . Similarly, Eq. (11) provides the update of the normal component of the cell-face pressure gradient 
∇σ (Pn+1

K ) · nσ = ∇σ (Pn
K ) · nσ − q̂n+1

σ
�t · nσ . But, for the collocated cell-centered FV scheme used with the momentum balance 

equation, we need to update the cell quantities. Hence, we define the following linear interpolation of the components: 

q̂n+1 · ξ = q̂n+1
σ+ ·nσ+−q̂n+1

σ− ·nσ−
, where ξ is the unitary vector in the considered component direction and σ+ (resp. σ−) a cell 
K 2
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face of K such as nσ+ = ξ (resp. nσ− = −ξ ). Then, we update the cell mass flux by qn+1
K = q̃n+1

K + q̂n+1
K , the cell velocity by 

vn+1
K = qn+1

K

ρn+1
K

and the cell pressure gradient by:

∇K Pn+1
K = ∇K Pn

K − q̂n+1
K

�t
(16)

The properties of the non-symmetric matrix [ ε
�t − ∇σ (∇K ·

|K | )], denoted by ε
�t I − W , result from the linear approximations 

of the operators ∇K · and ∇σ . As its Kernel is not reduced to the single {0}, spurious waves may occur without stabiliza-
tion process (not discussed here). Moreover, as 

∑
i �= j |a(i, j)| = 10/h2 and |a(i,i)| = 2/h2 + ε/�t , the matrix ε

�t I − W is a 
non-diagonal dominant one unless ε

�t is big enough. Here, i and j stand for the row and column indexes (two tabular-
index triplets) and a(i, j) for the matrix coefficients. We can determine an optimal value for the penalty parameter ε

�t in 
order to get a diagonal-dominant matrix ε

�t I − W . In the limit ε
�t ≈ 0, the above equations show that the sum of the 

absolute values of the extra-diagonal terms is ra = 5 times bigger than the diagonal term itself. Hence we can determine 
δa(i,i) = εopt

�t in such a way that this ratio would be the unity: |a(i,i) + εopt
�t | = ∑

i �= j |a(i, j)| = ra |a(i,i)|. This relation leads to 
εopt = (ra − 1) max|a(i, j)|�t that is:

εopt ≈ 8 max

{
1

h2
x
,

1

h2
y
,

1

h2
z

}
�t. (17)

Obviously εopt no more verifies 0 < ε � 1. Indeed, this approach is relevant to the class of the augmented Lagrangian 
methods [6] with an augmented Lagrangian term r∇(∂tρ + ∇ · q) and 0 < r = 1

εopt
.

3. An example of numerical application

Our purpose is not to widely check our proposed hybrid scheme but only to provide a very first insight into its 
application to dilatable fluids computed with collocated variables on Cartesian grids. Our test case consists in a 2D sta-
tionary dilatable vortex flow (computed in 3D). The 3D computational domain Ω is a cube of length one, centered in 
(−0.5, −0.5, 0.5)T. The stationary regime is found by a time marching algorithm in [0, T ]:

∂t w + ∇ · (wv) = 0 in Ω × [0, T ] (18)

∂tρv + ∇ · (ρv ⊗ v) − ∇ · τ (v) + ∇P = 0 in Ω × [0, T ] (19)

ρ(x, y, z) = (ρ1 − ρ0)w(x, y, z) + ρ0 (EOS; ρ0 = 1 and ρ1 = 2). (20)

The stationary analytical solution is: w(x, y, z) = 1
2 (x2 + y2), v(x, y, z) = (−y, x, 0)T and P (x, y, z) = 1

8 (x2 + y2)2 + 1
2 ρ0(x2 +

y2) + P0 with for instance P0 = 0. This solution is a polynomial one of degree two in w and ρ , of degree one in v and of 
degree four in P . And we have ∇ · v = 0. At the inflow, we prescribe Dirichlet BC for w and v and homogeneous Neumann 
one for P . At the outflow, we prescribe Dirichlet BC for P and Neumann ones for w and v. The transposed part of the stress 
tensor (μ = 10−3) is not considered here.

The system of Eqs. (18)–(20) is solved in there steps. The first one is devoted to the computation of wn+1
K , ρn+1

K and the 
interpolation ρn+1

σ . With the second one, we obtain a predicted velocity ṽn+1
K and the interpolation ṽn+1

σ . Finally, the correc-
tion mass flux q̂n+1

σ is computed as well as the corrected mass flux qn+1
σ , the interpolated corrected velocity vn+1

K and the 
interpolated corrected pressure gradient ∇K Pn+1

K . Given an initial guess ∇K P 0
K , the pressure gradient is straightforwardly 

obtained from Eq. (16). (In the case of the Chorin–Temam scheme, ∇K P K := ∑
σ∈ε(K ) |σ |Pσ nσ , where Pσ is computed 

through an interpolation of the directly available pressure P K .)
As a whole, the Fast VPP scheme produces quantitatively similar results to those of the Chorin–Temam scheme. Table 1

gives a compilation of the results obtained with the linear interpolations for the operators ∇K · and ∇σ , the upwind scheme 
for the convection of v and of w . The accuracy and the space convergence order O(h1) of the errors in the L2 and L∞ norms 
are kept for the w and the v variables. This latter point is also true for the L2 norm of the pressure-gradient error. But the 
pressure boundary layers are larger than those obtained with the Chorin–Temam scheme. It limits the pressure-gradient 
error convergence order in L∞ norm. Lets notice that substituting the linear interpolation formula to compute q̂n+1

K by 
a quadratic formula is a way to increase the smoothness of the pressure-gradient error distribution and to reduce the 
magnitude of the pressure boundary layers.

As claimed in [1] for incompressible flows, ε provides a control on the L2 norm of the velocity divergence. The decrease 
in the velocity divergence error is controlled by an O(ε�t) term. Here, we can expect a similar behavior for the mass bal-
ance error |∂tρ + ∇ · q|L2 . Using a fixed time step, Fig. 1(a) illustrates this point for the L∞ norm. Once ε is small enough, 
this error is drastically reduced in a linear way. The number of unpreconditioned BiCGStab iterations to solve the linear 
system is quite large: e.g., at time step number two, about 75, whatever ε is. The Chorin–Temam algorithm needs about the 
same number of Conjugate Gradient (CG) iterations for this time step. Moreover, the BiCGStab method requires two matrix 
vector products by iteration instead of only one for the CG. Hence, preconditioning is required. Using the maximal pivot 
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Table 1
Absolute errors and space convergence orders in L2 and L∞ norms for the Fast VPP projection scheme using linear interpolations for the operators 
∇K · and ∇σ . Comparison with the Chorin–Temam projection scheme. Upwind scheme for the convection of v and of w . Linear interpolation for q̂n+1

K . 
CFL = 0.25. Grids 10 × 10 × 5 and 20 × 20 × 5: 800 �t; 40 × 40 × 5: 1500 �t .

Grid |ew |L2 (ratio) |ew |∞ (ratio) |ev|L2 (ratio) |ev|∞ (ratio) |e∇P |L2 (ratio) |e∇P |∞ (ratio) Scheme

10 × 10 × 5 3.88 · 10−2 7.58 · 10−2 2.64 · 10−2 4.37 · 10−2 1.63 · 10−1 5.73 · 10−1 Fast VPP

20 × 20 × 5 2.18 · 10−2 4.89 · 10−2 1.39 · 10−2 2.81 · 10−2 8.12 · 10−2 3.52 · 10−1 Fast VPP
(1.78) (1.55) (1.90) (1.56) (2.01) (1.63)

q̂n+1
K quadratic interpolation 2.18 · 10−2 5.30 · 10−2 1.39 · 10−2 3.12 · 10−2 3.73 · 10−2 1.96 · 10−1

40 × 40 × 5 1.19 · 10−2 2.93 · 10−2 7.33 · 10−3 1.38 · 10−2 3.44 · 10−2 3.32 · 10−1 Fast VPP
(1.83) (1.67) (1.90) (2.04) (2.36) (1.06)

10 × 10 × 5 3.88 · 10−2 7.61 · 10−2 2.56 · 10−2 4.29 · 10−2 1.42 · 10−1 6.42 · 10−1 Chorin–Temam

20 × 20 × 5 2.19 · 10−2 4.91 · 10−2 1.38 · 10−2 2.80 · 10−2 6.40 · 10−2 3.46 · 10−1 Chorin–Temam
(1.77) (1.55) (1.86) (1.53) (2.22) (1.86)

40 × 40 × 5 1.14 · 10−2 2.80 · 10−2 7.21 · 10−3 1.53 · 10−2 2.89 · 10−2 1.94 · 10−1 Chorin–Temam
(1.92) (1.75) (1.91) (1.83) (2.21) (1.78)

Fig. 1. Fast VPP mass balance errors. Linear interpolations for the operators ∇K · and ∇σ . Upwind scheme for the convection of v. Grid 20 × 20 × 5. 
CFL = 0.25. �t ≈ 8 · 10−3 s.

algorithm to compute the ILU(0) preconditioning matrix, we get small values for some diagonal entries—around 10−12—
leading to the computation failure. Choosing the optimal values εopt, we recover a diagonal-dominant matrix. For instance, 
with the grid 20 × 20 × 5 and �t = 5.6 · 10−3 s, a numerical application of Eq. (17) gives εopt ≈ 17.9 and r = 1

εopt
≈ 6 · 10−2. 

In this case, the smallest diagonal entry of the ILU(0) matrix is about 10−1. The discretization errors at the end of the 
transient (stationary regime) are identical whatever the used iterative method (ILU(0)–BiCGStab or BiCGStab). However, the 
mass balance residual, controlled by Eq. (12), is relatively high (10−3 to 10−4) at the beginning of the transient, but quickly 
decreases during the transient (φn+1 is nul for the steady state), cf. Fig. 1(b).

The number of BiCGStab iterations is amazingly reduced with the ILU(0) preconditioning. Indeed, the transient-averaged 
number of ILU(0)–BiCGStab is independent of the grid resolution: about 3 whatever the grid size, instead of 27.7 (10 ×
10 × 5) to 191.5 (80 × 80 × 5) BiCGStab iterations for the Chorin–Temam scheme. Concerning the transient CPU time, the 
speed-up of the overall computation is between about 1.6 (coarsest grid) and 2.7 (finest grid) in comparison with the 
Chorin–Temam computation.
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