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In this paper, we give a description of Deligne’s periods c± for a tensor product of pure 
motives M ⊗ M ′ over Q in terms of the period invariants attached to M and M ′ by 
Yoshida [8]. The period relations proved by the author and Raghuram in an earlier paper 
follow from the results of this paper.
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r é s u m é

Nous décrivons dans cette Note les périodes de Deligne c± des produits tensoriels M ⊗ M ′
de motifs purs sur Q, en termes des périodes des motifs M et M ′ et des invariants qui leur 
sont attachés par Yoshida. Les relations de périodes établies antérieurement par l’auteur et 
Raghuram résultent de cette description.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M be a pure motive over Q with coefficients in a number field Q(M). Suppose that M is critical, then a celebrated 
conjecture of Deligne [3, Conj. 2.8] relates the critical values of its L-function L(s, M) to certain periods c±(M(Π)), which 
are defined through a comparison of the Betti and de Rham realizations of the motive.

Conjecturally, one can associate a motive M(Π) with a given cohomological cuspidal automorphic representation Π of 
GLn(AQ). One expects from this correspondence that the standard L-function L(s, Π) is the motivic L-function L(s, M(Π))

up to a shift in the s-variable; see Clozel [2, Sect. 4]. There are certain periods pε(Π) that have been defined by Raghuram–
Shahidi [7]. Given cohomological cuspidal automorphic representations Π and Σ of GLn(AQ) and GLn−1(AQ), respectively, 
Raghuram [5,6] has proved that the product pε(Π)pη(Σ), for a suitable choice of signs ε and η, appears in the critical 
values of the Rankin–Selberg L-function L(s, Π × Σ). One can ask whether there is an analogous relation for the Deligne 
periods so that the results of [6] are compatible with Deligne’s conjecture.

In this paper, we give a description of Deligne’s periods c±(M ⊗ M ′) for the tensor product M ⊗ M ′ , where M and M ′ are 
two pure motives over Q all of whose nonzero Hodge numbers are one, in terms of the periods c±(M), c±(M ′) and some 
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other finer invariants attached to M and M ′ by Yoshida [8]. The main period relations are in Theorems 3.2, 3.4 and 3.6. The 
period relations for the ratio c+(M⊗M′)

c−(M⊗M′) proved by the author and Raghuram in [1] follow from these results.

2. Preliminaries

2.1. Critical motives

Let M be a motive defined over Q with coefficients in a number field E. Let H B(M) be the Betti realization of M . It is a 
finite-dimensional vector space over E. The rank d(M) of M is defined to be dimEH B(M). Write H B(M) = H+

B (M) ⊕ H−
B (M), 

where H±
B (M) are the ±1-eigenspaces for the action of complex conjugation ρ on H B(M). Let d±(M) be the E-dimensions 

of H±
B (M). The Betti realization has a Hodge decomposition:

H B(M) ⊗Q C =
⊕

p,q∈Z
H p,q(M), (2.1)

where H p,q(M) is a free E ⊗C-module of rank hp,q
M . The numbers hp,q

M are called the Hodge numbers of M . We say that M is 
pure if there is an integer w (which is called the purity weight of M) such that H p,q(M) = {0} if p + q �= w . Henceforth, we 
assume that all the motives we consider are pure. We also have ρ(H p,q(M)) = Hq,p(M); and hence ρ acts on the (possibly 
zero) middle Hodge type H w/2,w/2(M).

Let HDR(M) be the de Rham realization of M; it is a d(M)-dimensional vector space over E. There is a comparison 
isomorphism of E ⊗Q C-modules:

I : H B(M) ⊗Q C −→ HDR(M) ⊗Q C.

The de Rham realization has a Hodge filtration F p(M) that is a decreasing filtration of E-subspaces of HDR(M) such that 
I(

⊕
p′≥p H p′,w−p′

(M)) = F p(M) ⊗Q C. Write the Hodge filtration as

HDR(M) = F p1(M) � F p2(M) � · · · � F pm (M) � F pm+1(M) = {0}; (2.2)

all the inclusions are proper and there are no other filtration pieces between two successive members. We assume that 
the numbers pμ are maximal among all the choices. Let sμ = h

pμ,w−pμ

M for 1 ≤ μ ≤ m. Purity plus the action of complex 
conjugation on Hodge types says that the numbers p j and sμ satisfy p j + pm+1− j = w, ∀1 ≤ j ≤ m, and sμ = sm+1−μ, ∀1 ≤
μ ≤ m.

We say that the motive M is critical if there exist p+, p− ∈ Z such that 
∑p+

i=1 si = d+(M) and 
∑p−

i=1 si = d−(M). In this 
case, one says that F ±(M) exists and equals F p±

(M).

2.2. Tensor product of motives

Let M and M ′ be pure motives defined over Q and with coefficients in a number field E. Suppose that their ranks are n
and n′ and purity weights are w and w ′ , respectively. We further assume that all the non-zero Hodge numbers of M and 
M ′ are equal to 1.

Suppose H B(M) ⊗ C = ⊕n
j=1 H p j ,w−p j (M), where p j are integers such that p1 < p2 < . . . < pn . Similarly, suppose 

H B(M ′) ⊗C = ⊕n′
j=1 Hq j ,w ′−q j (M ′), with q1 < q2 < . . . < qn′ .

Since all the non-zero Hodge numbers of M and M ′ are equal to 1, it follows that the Hodge filtrations of the de Rham 
realizations of M , M ′ and M ⊗ M ′ are given by

HDR(M) = F p1(M) � F p2(M) � . . . � F pn (M) � (0),

HDR
(
M ′) = F q1

(
M ′)� F q2

(
M ′) � . . . � F qn′ (M ′) � (0),

HDR
(
M ⊗ M ′) = F r1

(
M ⊗ M ′) � F r2

(
M ⊗ M ′)� . . . ⊃ F rm

(
M ⊗ M ′)� (0).

Let ut denote the dimension of F rt (M ⊗ M ′)/F rt+1 (M ⊗ M ′) for 1 ≤ t ≤ m. Let us further assume that M ⊗ M ′ is critical. 
Consider the complex conjugation action on Betti realizations for the motives M and M ′ .

If the dimension nn′ is an even integer, it follows that d±(M ⊗ M ′) are equal to nn′
2 . From the criticality of M ⊗ M ′ , it 

follows that there is k+ = k− = k0 ≥ 1 such that

u1 + u2 + . . . + uk0 = d±(
M ⊗ M ′) = nn′

2
.

Let 1 ≤ i ≤ n and 1 ≤ j ≤ n′ . Following Yoshida [8], we define:

ai = ∣∣{ j : 1 ≤ j ≤ n′ : pi + q j ≤ rk
}∣∣, a∗ = ∣∣{i : 1 ≤ i ≤ n : pi + q j ≤ rk }∣∣.
0 j 0
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If nn′ is odd, there exist k+ , k− such that

u1 + u2 + . . . + uk+ = d+(
M ⊗ M ′) = nn′ ± 1

2
,

u1 + u2 + . . . + uk− = d−(
M ⊗ M ′) = nn′ ∓ 1

2
.

It follows that k+ − k− = d+(M ⊗ M ′) − d−(M ⊗ M ′) = ±1. Let 1 ≤ i ≤ n and 1 ≤ j ≤ n′ . In this case, we define:

a±
i = ∣∣{ j : 1 ≤ j ≤ n′ : pi + q j ≤ rk±

}∣∣, a∗,±
j = ∣∣{i : 1 ≤ i ≤ n : pi + q j ≤ rk±}∣∣.

2.3. Invariant polynomials and periods

The period matrix of M is defined in terms of E-bases for the spaces H±
B (M) and HDR(M). Let {v1, v2, . . . , vd+(M)} be 

an E-basis of H+
B (M), and similarly, {vd+(M)+1, vd+(M)+2, . . . , vd(M)} be an E-basis of H−

B (M). Let {w1, w2, . . . , wd(M)} be a 
basis of HDR(M) over E such that {ws1+s2+...+sμ−1+1, . . . , wd(M)} is a basis of F pμ(M) for 1 ≤ μ ≤ m. The period matrix X of 
M is the matrix that represents the comparison isomorphism between the two realizations of M with respect to the bases 
chosen above. The fundamental periods c±(M) and δ(M) are related to the matrix X through certain invariant polynomials.

Let F be a number field. Suppose d is a positive integer. Fix a partition s1 + s2 + . . .+ sm = d. Let Pm be the corresponding 
lower parabolic subgroup of GL(d). Given an m-tuple of integers (ai)1≤i≤m , define an algebraic character λ1 of Pm by

λ1

⎛
⎜⎜⎝

⎛
⎜⎜⎝

p11 0 . . . 0
∗ p22 . . . 0

∗ ∗ . . . . . .

∗ ∗ ∗ pmm

⎞
⎟⎟⎠

⎞
⎟⎟⎠ =

∏
1≤i≤m

(det pii)
ai ; pii ∈ GL(si).

Let d = d+ + d− . Given k+, k− ∈ Z, define a character λ2 of GL(d+) × GL(d−) by

λ2

((
a 0
0 b

))
= (det a)k+

(det b)k−
, a ∈ GL

(
d+)

, b ∈ GL
(
d−)

.

Let f (x) be a polynomial with rational coefficients which satisfies the following equivariance condition with respect to 
the left action of Pm and the right action of GL(d+) × GL(d−) on the matrix ring Md(F ):

f (pxγ ) = λ1(p) f (x)λ2(γ ), ∀p ∈ Pm, ∀γ ∈ GL
(
d+) × GL

(
d−)

. (2.3)

A polynomial satisfying (2.3) is said to have admissibility type {(a1, a2, . . . , am), (k+, k−)}. Yoshida [8, Theorem 1] proves 
that the space of polynomials of a given admissibility type is at most one.

Lemma 2.4. If the polynomial f (x) has admissibility type {(a1, a2, . . . , am), (k+
1 , k−

1 )}, and g(x) has admissibility type {(b1, b2, . . . ,
bm), (k+

2 , k−
2 )}, then the polynomial h(x) = f (x)g(x) has admissible type is given by

{
(a1 + b1,a2 + b2, . . . ,am + bm),

(
k+

1 + k+
2 ,k−

1 + k−
2

)}
.

Proof. Follows from (2.3). �
The admissibility type of f (x) = det(x) for x ∈ Md(F ), is {(1, 1, 1, . . . , 1), (1, 1)}. Let f ±(x) be the upper left (resp., upper 

right) d± × d± determinant of x. Then it can be seen that the admissibility types of f +(x) and f −(x) are respectively given 
by

{
(1,1,1, . . . ,1︸ ︷︷ ︸

p+

,0,0, . . . ,0), (1,0)
}
,

{
(1,1,1, . . . ,1︸ ︷︷ ︸

p−

,0,0, . . . ,0), (0,1)
}
.

Yoshida interprets the period invariants to the period matrix X via invariant polynomials as δ(M) = f (X) and c±(M) =
f ±(X). The determinant of the period matrix is an element of (E ⊗ C)× , and making a choice of basis says that it is well 
defined modulo E× .
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3. Calculation of motivic periods c±(M ⊗ M ′)

One knows from the results of Yoshida [8] that the motivic periods c±(M ⊗ M ′) can be expressed as monomials in the 
other period invariants δ(M), c±(M), c±(M ′), cp(M), cp(M ′) (p runs over a finite set). For the definitions of these period 
invariants, see [8]. In this section we calculate these monomials explicitly.

First we consider the case where the ranks of motives have opposite parities. Let M and M ′ be motives defined over Q
with coefficients in E as in Section 2 with ranks n = 2k and n′ = 2k′ + 1, resp. We set ε(M ′) := d+(M ′) −d−(M ′) = ±1. Thus 
d±(M) = k, d+(M ′) = k′ + (ε(M′)+1)

2 and d−(M ′) = k′ + (1−ε(M′))
2 . Let define two finite sets by

P = {
1, 2, . . . , k − 1 = min

{
d±(M)

} − 1
}
,

P ′ = {
1, 2, . . . ,k′ − 1 = min

{
d±(

M ′)} − 1
}
.

Consider the expression for c+(M ⊗ M ′) as a monomial in other period invariants with integer exponents as follows:

c+(
M ⊗ M ′) = δ(M)αδ

(
M ′)β

c+(M)α
+

c−(M)α
−

c+(
M ′)β+

c−(
M ′)β− ∏

p∈P
cp(M)αp

∏
p∈P

cp
(
M ′)βp

. (3.1)

We have a similar expression for c−(M ⊗ M ′). From Yoshida [8], we know that admissibility types for the period invari-
ants δ(M), δ(M ′), c±(M), c±(M ′), cp(M), cp(M ′) are given by:

δ(M) : (1, 1, . . . , 1︸ ︷︷ ︸
n times

), (1,1), δ(M ′) : (1, 1, . . . , 1︸ ︷︷ ︸
n′ times

), (1,1),

c+(M) : (1, 1, . . . , 1︸ ︷︷ ︸
d+(M) times

, 0, 0, . . . , 0︸ ︷︷ ︸
d−(M) times

), (1, 0), c−(M) : (1, 1, . . . , 1︸ ︷︷ ︸
d−(M) times

, 0, 0, . . . , 0︸ ︷︷ ︸
d+(M) times

), (0, 1),

c+(M ′) : (1, 1, . . . , 1︸ ︷︷ ︸
d+(M ′) times

, 0, 0, . . . , 0︸ ︷︷ ︸
d−(M ′) times

), (1, 0), c−(M ′) : (1, 1, . . . , 1︸ ︷︷ ︸
d−(M ′) times

, 0, 0, . . . , 0︸ ︷︷ ︸
d+(M ′) times

), (0, 1),

cp(M) : (2, 2, . . . , 2︸ ︷︷ ︸
p times

, 1, 1, . . . , 1︸ ︷︷ ︸
n−2p times

, 0, 0, . . . , 0︸ ︷︷ ︸
p times

), (1, 1) ∀p ∈ P, and

cp(M ′) : (2, 2, . . . , 2︸ ︷︷ ︸
p times

, 1, 1, . . . , 1︸ ︷︷ ︸
n′−2p times

, 0, 0, . . . , 0︸ ︷︷ ︸
p times

), (1, 1) ∀p ∈ P ′.

Let X and Y be the period matrices corresponding to the comparison isomorphism between Betti and de Rham realiza-
tions. Then c±(M ⊗ M ′) equals the product of φ±(X)ψ±(Y ) and their admissibility types are:

φ±(X) : (a1, a2, . . . an),
(
d±(

M ′), d∓(
M ′)), and ψ±(Y ) : (a∗

1, a∗
2, . . . a∗

n′
)
,

(
d±(M), d∓(M)

)
.

Using the admissibility types and (3.1) we get:

α = an, α+ = ak − n′/2 + ε
(
M ′)/2, α− = ak − n′/2 − ε

(
M ′)/2, αp = ap − ap+1 ∀p ∈ P,

β = a∗
n′ , β+ = β− = a∗

k′ − n/2, βp = a∗
p − a∗

p+1 ∀p ∈ P ′.

Theorem 3.2. If the ranks of M and M ′ are even and odd respectively and if M ⊗ M ′ is critical, then the periods c±(M ⊗ M ′) are given 
by:

c+(
M ⊗ M ′) = T cε(M ′)(M), c−(

M ⊗ M ′) = T c−ε(M ′)(M),

where T is defined as:

T = δ(M)an δ
(
M ′)a∗

n′ [
c+(M)c−(M)

]ak−k′−1 [
c+(

M ′)c−(
M ′)]a∗

k′−k−1

·
∏
p∈P

cp(M)ap−ap+1
∏

p∈P ′
cp

(
M ′)a∗

p−a∗
p+1 .

The ± sign in the exponent of c±(M) period in the above expression is determined by the sign of ε(M ′). This in 
particular is consistent with the following result of [1]:

c+(M ⊗ M ′)
− ′ =

(
c+(M)

−

)ε(M ′)
. (3.3)
c (M ⊗ M ) c (M)
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The case when both M and M ′ have the same parity can be handled in an exactly analogous manner. We consider two 
cases:

Case 1: Both M and M ′ have odd ranks n = 2k + 1, n′ = 2k′ + 1, respectively. From the definition of the integers a±
i and 

a∗,±
i it follows that

a+
i = a−

i ∀1 ≤ i ≤ min
{

d±(M)
}
, and a∗,+

j = a∗,−
j ∀1 ≤ j ≤ min

{
d±(

M ′)}.
Theorem 3.4. If both M and M ′ are of odd rank and M ⊗ M ′ is critical, then

c+(
M ⊗ M ′) = T cε(M ′)(M)cε(M)

(
M ′), c−(

M ⊗ M ′) = T c−ε(M ′)(M)c−ε(M)
(
M ′),

where the period T is defined by the same formula as in Theorem 3.2; but note that k and P (resp., k′ and P ′) depend on n (resp., n′).

The following period relation from [1] is an easy consequence:

c+(M ⊗ M ′)
c−(M ⊗ M ′)

=
(

c+(M)

c−(M)

)ε(M ′)( c+(M ′)
c−(M ′)

)ε(M)

. (3.5)

Case 2: If both M and M ′ have even ranks then it turns out that c+(M ⊗ M ′) = c−(M ⊗ M ′). Set k = n/2 and k′ = n′/2, 
then we have:

Theorem 3.6. If both M and M ′ are of even rank and M ⊗ M ′ is critical, then

c±(
M ⊗ M ′) = δ(M)an δ

(
M ′)a∗

n′ [
c+(M)c−(M)

]ak−k′[
c+(

M ′)c−(
M ′)]a∗

k′−k

·
∏
p∈P

cp(M)ap−ap+1
∏

p∈P ′
cp

(
M ′)a∗

p−a∗
p+1 .

Remark 4. A comparison of Thm. 1.1 in [6] with our Theorem 3.2 shows that the periods pε(Π) and c±(M(Π)) are very 
different. On the other hand, an interesting question is whether there is an automorphic analogue of our period relations. 
In the particular case when the base field is an imaginary quadratic extension of Q, and Π is a base change from a unitary 
group, there is a period relation by Grobner–Harris [4, Thm. 6.7]. In general, it seems to be a hard question. The real problem 
seems to be to identify the finer invariants of Yoshida, denoted cp(M) earlier, when the motive M = M(π) corresponds to a 
cohomological cuspidal representation Π , to some kind of automorphic invariants defined entirely in terms of Π .
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