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We establish an identity satisfied by smooth-enough vector fields defined on a surface 
S ⊂ R

3 with values in R3. As consequences of this identity, we establish several new Korn 
inequalities for vector fields that vanish on the entire boundary of this surface.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous établissons une identité satisfaite par des champs de vecteurs suffisamment réguliers 
définis sur une surface S ⊂ R

3 à valeurs dans R3. Comme conséquences de cette identité, 
nous établissons plusieurs nouvelles inégalités de Korn pour des champs de vecteurs qui 
s’annulent sur tout le bord de cette surface.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Preliminaries

This section briefly reviews the notions of differential geometry and the function spaces used throughout this Note. 
The main results are then stated in the next sections, viz., an identity satisfied by every displacement field of a surface 
(Theorem 1); several new Korn inequalities on a surface (Theorems 2 to 4); and a new “infinitesimal rigid displacement 
lemma on a surface” (Theorem 5).

In all that follows, Greek indices (except ε and ν) range in the set {1, 2}, while Latin indices range in the set {1, 2, 3}, and 
the repeated index summation convention is used in conjunction with these rules. A generic point in a two-dimensional 
open subset ω ⊂ R

2 is denoted y = (yα). Partial derivatives, in the classical or distributional sense, of functions or vector 
fields defined on ω are denoted ∂α := ∂/∂ yα , ∂αβ := ∂2/∂ yα∂ yβ , etc.

The inner product and vector product of vectors u ∈ R
3 and v ∈R

3 are respectively denoted u · v and u ∧ v .
A given surface S := θ(ω) ⊂ R

3 in the three-dimensional Euclidean space, defined by means of an immersion θ ∈
C3(ω; R3), is the domain of definition of all vector fields appearing in this Note. Such displacement fields of the surface 
S are identified with vector fields η : ω →R

3.
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Since θ is an immersion, the three vectors

aα(y) := ∂αθ(y) and a3(y) := a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)|
are linearly independent and thus form a basis in R3 at each point y ∈ ω; its dual basis at the same point y ∈ ω, denoted 
(ai(y)), is defined by

ai(y) · a j(y) = δ
j
i

(
δi

j denotes Kronecker’s delta
)
.

Thus, any vector field η : ω → R
3 can be decomposed as

η(y) = ηi(y)ai(y) for all y ∈ ω.

Note that, at each y ∈ ω, the two vectors aα(y), resp. aβ(y), form the covariant, resp. the contravariant, basis in the tangent 
plane at θ(y) to the surface S , while the vector a3(y) = a3(y) is unit and normal to this plane.

The first fundamental form of S = θ(ω) is defined by means of its covariant, resp. contravariant, components

aαβ := aα · aβ, resp. aαβ := aα · aβ.

Note that, at each y ∈ ω, the matrix (aαβ(y)) is the inverse of the matrix (aαβ(y)), that

a := det(aαβ) = |a1 ∧ a2|2,
and that 

√
a(y)dy is the area element along the surface S .

The second fundamental form of S = θ(ω) is defined by means of its covariants, mixed, and contravariant, components, 
respectively given by

bαβ := ∂αβθ · a3 = −aα · ∂βa3, bβ
α := bασ aσβ, and bαβ := aασ bβ

σ .

The mean curvature and total curvature of S = θ(ω) are denoted and defined by

H(y) := 1

2
tr

(
bβ
α(y)

)
and K (y) := det

(
bβ
α(y)

)
at each y ∈ ω.

Finally, the Christoffel symbols of the second kind associated with the immersion θ are denoted and defined by

Γ τ
αβ := ∂αβθ · aτ = ∂αaβ · aτ ,

and the covariant derivatives of a tangent vector field ξαaα ∈ C1(ω; R3) to the surface S = θ(ω) are denoted and defined by

ξα |β := ∂βξα − Γ σ
αβξσ .

The space H1
0(ω) is equipped with the norms

‖ϕ‖1,ω :=
{∑

ω

[
ϕ2 +

∑
α

(∂αϕ)2
]

dy

}1/2

and |ϕ|1,ω,θ :=
{∫

ω

aαβ∂αϕ∂βϕ
√

a dy

}1/2

,

the space H−1(ω) is equipped with the norms

‖ f ‖−1,ω := sup
{

f (ϕ); ϕ ∈ H1
0(ω),‖ϕ‖1,ω ≤ 1

}
and | f |−1,ω,θ := sup

{
f (ϕ); ϕ ∈ H1

0(ω), |ϕ|1,ω,θ ≤ 1
}
,

and the space H1
0(ω; R3) := {η = ηiai; ηi ∈ H1

0(ω)} is equipped with the norms

‖η‖1,ω :=
{∫

ω

3∑
i=1

[
(ηi)

2 +
2∑

α=1

(∂αηi)
2

]
dy

}1/2

and ‖η‖1,ω,θ :=
{∫

ω

aαβ∂αη · ∂βη
√

a dy

}1/2

.

Note that, on each space, the norms defined above are equivalent (as a consequence of Banach open mapping theorem).
Complete proofs of the results announced in this Note, as well as new proofs of several other Korn inequalities on a 

surface, will be found in [4].



P.G. Ciarlet et al. / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 369–374 371
2. An identity satisfied by the displacement fields of a surface

Given any smooth enough vector field η = ηiai : ω → R
3, the linearized change of metric, and change of curvature, tensor 

fields associated with the deformed surface (θ + η)(ω) are respectively denoted and defined by

γαβ(η) := 1

2
(∂αη · aβ + aα · ∂βη) and ραβ(η) := (

∂αβη − Γ σ
αβ∂σ η

) · a3.

Theorem 1. Let ω be any open subset of R2 and let θ ∈ C3(ω; R3) be an immersion. Given any vector field η = ηiai ∈ C3(ω; R3), let

wα(η) := ∂αη · η − (
∂βη · aβ

)
ηα − 2(∂αη · a3)η3 ∈ C2(ω;R3).

Then the following identity holds in ω:

aαβ∂αη · ∂βη + (
∂αη · aα

)2 + aαβωα(η)|β
= 2aαβaστ γασ (η)γβτ (η) + 2Haαβ(∂αη · a3)ηβ + [

2
(
bαβ − Haαβ

)
γαβ(η) − aαβραβ(η)

]
η3.

Sketch of proof. The announced identity for vector fields η : ω → R
3 defined over the two-dimensional open set ω will be 

obtained as the limit when ε → 0+ of another identity (see (1) below), when specific vector fields v : Ωε → R
3 defined over 

the three-dimensional open set Ωε := ω × (−ε, ε) are used in this identity. A generic point in Ωε is denoted x = (y, x3), 
with y ∈ ω and x3 ∈ (−ε, ε).

To this end, the Riemannian metric (aαβ) induced on ω by the immersion θ is extended to a Riemannian metric (gij)

defined on Ωε (with ε > 0 sufficiently small, so that the matrix (gij(x)) is positive–definite at each y ∈ Ωε) by letting

gαβ( · , x3) := aαβ − 2x3bαβ + (x3)
2bσ

αbσβ in ω, gα3 = g3α := 0 in Ωε, and g33 := 1 in Ωε.

At each x ∈ Ωε , the inverse of the matrix (gij(x)) is denoted (gij(x)). The Christoffel symbols of the second kind associated 
with the metric (gij) are denoted and defined by

Γ k
i j := 1

2
gk�(∂i g j� + ∂ j gi� − ∂�gij),

and the covariant derivatives of a one-form (ui), ui ∈ C1(Ωε), are denoted and defined by

ui‖ j := ∂ jui − Γ k
i j uk.

Then one proves first that any one-form (ui) with ui ∈ C1(Ωε) satisfies the identity

gik g j�ui‖ juk‖� + (
gijui‖ j

)2 − 2gik g j�eijek� + gij[gk�(u� ui‖k − ui u�‖k)
]∥∥

j = 0 in Ωε. (1)

Given any vector field η = ηiai ∈ C3(ω; R3), define the functions ζα ∈ C2(ω), vi ∈ C2(Ωε), ei j ∈ C1(Ωε), and wi ∈ C1(Ωε), 
by letting

ζα := ∂αη3 + bσ
αησ and vα( · , x3) := (ηα − x3ζα) − x3bσ

α (ησ − x3ζσ ) and v3( · , x3) := η3 in ω,

eij := 1

2
(vi‖ j + v j‖i) and wi := g jk(vk vi‖ j − vi vk‖ j) in Ωε.

Then taking the average over the transverse variable x3 ∈ (−ε, ε) of the identity (1) with ui replaced by vi yields the 
relation

1

2ε

ε∫
−ε

[
gik g j�vi‖ j vk‖� + (

gij vi‖ j
)2 − 2gik g j�eijek� + gij wi‖ j

]
(y, x3)dx3 = 0 in ω,

from which one obtains, by letting ε → 0, the following relation:

[
gik g j�vi‖ j vk‖� + (

gij vi‖ j
)2 − 2gik g j�eijek� + gαβ wα‖β

]
( · ,0) + lim

ε→0

1

2ε

[
w3(y, ε) − w3(y,−ε)

] = 0 in ω.

The identity announced in Theorem 1 is then obtained by expressing each term of the above identity in terms of the 
vector field η. More specifically, a series of computations (some of which are somewhat delicate) shows that the following 
relations hold in ω:
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[
gik g j�vi‖ j vk‖�

]
( · ,0) = aαβ∂αη · ∂βη + aαβζαζβ and ζα = ∂αη · a3,[

gij vi‖ j
]
( · ,0) = ∂αη · aα and

[
gik g j�eijek�

]
( · ,0) = aαβaστ γασ (η)γβτ (η),[

gαβ wα‖β

]
( · ,0) = aαβωα(η)|β − 2Haαβ

[
ηαζβ − η3γαβ(η)

]
,

lim
ε→0

1

2ε

[
w3(y, ε) − w3(y,−ε)

] = −aαβζαζβ + η3
[
aαβραβ(η) − 2bαβγαβ(η)

]
. �

3. New Korn inequalities on a surface

In this section, we prove that the identity of Theorem 1 is the basis for establishing several new Korn inequalities (see 
Theorems 2 to 4), all of which substantially improve some classical Korn inequalities, by replacing the “full” linearized 
change of curvature tensor field that appears in their right-hand sides by only its trace. Note, that, by contrast with the 
“classical” derivations of Korn’s inequalities, ours do not use J.L. Lions lemma (as in, e.g., [3]).

Theorem 2. Let ω be a bounded open subset of R2 and let θ ∈ C3(ω; R3) be an immersion. Then the following identity holds for each 
0 < ε < 1 and for each vector field η = ηiai with components ηi ∈ H1

0(ω):∫
ω

[
aαβ∂αη · ∂βη + (

∂αη · aα
)2]√

a dy

≤
∫
ω

(
8H2 + ε

(
2H2 − K

))
aαβηαηβ

√
a dy + 2ε

1 − ε

∫
ω

(
H2 − K

)
(η3)

2√a dy

+ 4

ε

(∫
ω

aαβaστ γασ (η)γβτ (η)
√

a dy + ∣∣aαβραβ(η)
√

a
∣∣2
−1,ω,θ

)
.

Sketch of proof. It suffices to establish the above inequality for smooth vector fields η = ηiai that vanish on the boundary 
of ω. The identity of Theorem 1 together with Stokes’ integral formula imply that such vector fields satisfy the inequality∫

ω

[
aαβ∂αη · ∂βη + (

∂αη · aα
)2]√

a dy

= 2
∫
ω

aαβaστ γασ (η)γβτ (η)
√

a dy +
∫
ω

2Haαβ(∂αη · a3)ηβ

√
a dy

+
∫
ω

2
(
bαβ − Haαβ

)
γαβ(η)η3

√
a dy −

∫
ω

aαβραβ(η)η3
√

a dy.

Then the inequality of Theorem 2 is a consequence of the above inequality combined with the following inequalities
(ε denotes any number in the interval (0, 1))∫

ω

2Haαβ(∂αη · a3)ηβ

√
a dy ≤

∫
ω

1

4
aαβ∂αη · ∂βη + 4H2aαβηαηβ

√
a dy,

∫
ω

2
(
bαβ − Haαβ

)
γαβ(η)η3

√
a dy ≤

∫
ω

[
ε

1 − ε

(
H2 − K

)
(η3)

2 + 2(1 − ε)

ε
aασ aβτ γαβ(η)γστ (η)

]√
a dy

−
∫
ω

aαβραβ(η)η3
√

a dy ≤ 2

ε

∣∣aαβραβ(η)
√

a
∣∣2
−1,ω,θ

+ 1

4

∫
ω

[
aαβ∂αη · ∂βη + ε

(
4H2 − 2K

)
aστ ησ ητ

]√
a dy

(these relations are established by a series of long, but otherwise straightforward, computations involving in particular the 
Cayley–Hamilton theorem applied to the matrix field (bβ

α)). �
Theorem 3. (a) Let ω be a bounded open subset of R2 and let θ ∈ C3(ω; R3) be an immersion. Then there exists a constant C1 =
C1(ω, θ) such that, for each vector field η = ηiai with components ηi ∈ H1

0(ω),

∑
i

‖ηi‖1,ω ≤ C1

(∑
i

‖ηi‖0,ω +
∑
α,β

∥∥γαβ(η)
∥∥

0,ω
+ ∥∥aαβραβ(η)

∥∥−1,ω

)
.
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(b) Assume in addition that the boundary of ω is of class C2 . Then there exists a constant C2 = C2(ω, θ) such that, for each vector 
field η = ηiai with components ηα ∈ H1

0(ω) and η3 ∈ H1
0(ω) ∩ H2(ω),

∑
α

‖ηα‖1,ω + ‖η3‖2,ω ≤ C2

(∑
α

‖ηα‖0,ω + ‖η3‖1,ω +
∑
α,β

∥∥γαβ(η)
∥∥

0,ω
+ ∥∥aαβραβ(η)

∥∥
0,ω

)
.

Sketch of proof. The inequality (a) is obtained by combining the inequality of Theorem 2 with ε = 1/2 with the inequalities∣∣ f
√

a
∣∣−1,ω,θ

≤ D1‖ f ‖−1,ω for all f ∈ H−1(ω),

‖η‖1,ω ≤ D2‖η‖1,ω,θ for all η ∈ H1(ω;R3),
which hold for some constants D1 and D2 independent of f and η.

The inequality (b) is obtained from inequality (a) by noting that, since the function η3 ∈ H1
0(ω) ∩ H2(ω) satisfies the 

second-order elliptic partial differential equation (see the definition of ραβ(η)):

aαβ∂αβη3 = aαβραβ(η) + aαβΓ σ
αβ∂σ η3 + bβ

αbα
βη3 − 2bαβ∂αηβ + (

2bαβΓ σ
αβ − bασ |α

)
ησ in ω,

there exists a constant D3 = D3(ω, θ) independent of η such that (see, e.g., Gilbarg & Trudinger [5])

‖η3‖2,ω ≤ D3

{∑
σ

‖ηi‖1,ω + ∥∥aαβραβ(η)
∥∥

0,ω

}
. �

Theorem 4. Let ω be a bounded open subset of R2 with a boundary γ := ∂ω of class C2 and let θ ∈ C3(ω; R3) be an immersion.
(a) Let (τα) denote a unit tangent vector field to the boundary of ω. Assume that

sup
y∈∂ω

∣∣(bαβτατβ
)
(y)

∣∣ > 0.

Then there exists a constant C3 = C3(ω, θ) such that, for each vector field η = ηiai with components ηi ∈ H1
0(ω),

∑
i

‖ηi‖1,ω ≤ C3

(∑
α,β

∥∥γαβ(η)
∥∥

0,ω
+ ∥∥aαβραβ(η)

∥∥−1,ω

)
.

(b) Let γ0 ⊂ ∂ω denote a non-empty relatively open subset of the boundary of ω. Then there exists a constant C4 = C4(ω, θ, γ0)

such that, for each vector field η = ηiai with components ηα ∈ H1
0(ω) and η3 ∈ H1

0(ω) ∩ H2(ω) with ∂νη3 = 0 on γ0 ,

∑
α

‖ηα‖1,ω + ‖η3‖2,ω ≤ C4

(∑
α,β

∥∥γαβ(η)
∥∥

0,ω
+ ∥∥aαβραβ(η)

∥∥
0,ω

)
.

The inequality (a), resp. (b), in Theorem 4 is deduced by means of a contradiction argument from inequality (a), resp. 
(b), in Theorem 3, combined with the following improved version of the classical “infinitesimal rigid displacement lemma”.

Theorem 5. Let ω be a bounded open subset of R2 with a boundary γ := ∂ω of class C2 and let θ ∈ C3(ω; R3) be an immersion.
(a) Let (τα) denote a unit tangent vector field to the boundary of ω. Assume that

sup
y∈∂ω

∣∣(bαβτατβ
)
(y)

∣∣ > 0.

Then any vector field η = ηiai : ω → R
3 with components ηi ∈ H1(ω) that satisfy the relations

γαβ(η) = aαβραβ(η) = 0 in ω and ηi = 0 on γ

vanishes in ω.
(b) Let γ0 be a non-empty relatively open subset of γ . Then any vector field η = ηiai : ω → R

3 with components ηα ∈ H1(ω) and 
η3 ∈ H2(ω) that satisfy the relations

γαβ(η) = aαβραβ(η) = 0 in ω and ηi = ∂νη3 = 0 on γ0

vanishes in ω.
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Sketch of proof. (a) The assumptions

ηi ∈ H1
0(ω) and aαβραβ(η) = 0 in ω

imply that aαβ∂αβη3 ∈ L2(ω) and η3 = 0 on γ . Hence η3 ∈ H2(ω); see, e.g., [5]. The assumption γαβ(η) = 0 in ω implies 
that (∂αηβ + ∂βηα) ∈ H1(ω), which, combined with the identities

2∂αβησ = ∂α(∂βησ + ∂σ ηβ) + ∂β(∂αησ + ∂σ ηβ) − ∂σ (∂αηβ + ∂βηα) in ω,

imply that ηα ∈ H2(ω). Then the assumptions γαβ(η) = 0 in ω and ηi = 0 on γ together imply that

(∂αηβ + ∂βηα) = 0 and τα∂αηβ = 0 on γ .

Hence να∂νηβ + νβ∂νηα = 0 on γ , which in turn implies that 
∑

α,β [(να)2νβ∂νηβ + (νβ)2να∂νηα] = 2να∂νηα = 0 on γ ; 
then that 

∑
α[(να)2∂νηβ + νβ(να∂νηα)] = ∂νηβ = 0 on γ .

The assumption supy∈∂ω |(bαβτατβ)(y)| > 0 implies that there exists a non-empty relatively open subset γ0 of ∂ω such 
that bαβτατβ 
= 0 on γ0, and the assumption γαβ(η) = 0 in ω implies that

(
bαβτατβ

)
η3 = 1

2

(
τβ∂τ ηβ + τα∂τ ηα

) − Γ σ
αβτατβησ in ω.

Combined with the observation that

∂ν(∂τ ηβ) = να∂α

(
τλ∂ληβ

) = ∂τ (∂νηβ) + να
(
∂ατλ

)
∂ληβ − τλ

(
∂λν

α
)
∂αηβ = 0 on γ0,

this implies that

∂νη3 = 1

2
∂ν

[(
bαβτατβ

)−1
(
τβ∂τ ηβ + 1

2
τα∂τ ηα − Γ σ

αβτατβησ

)]
= 0 on γ0.

This means that the vector field η satisfies all the assumptions of part (b) of Theorem 5. Consequently, it must vanish in ω, 
as we now prove.

(b) Consider a vector field η = ηiai : ω →R
3 with ηα ∈ H1(ω) and η3 ∈ H2(ω) that satisfy the relations

γαβ(η) = aαβραβ(η) = 0 in ω and ηi = ∂νη3 = 0 on γ0.

Then there exists an open ball B centered at a point y0 ∈ γ0 such that B ∩ ∂ω ⊂ γ0, and there exists an immersion θ̃ ∈
C3(ω ∪ B; R3) such that θ = θ̃ |ω . Let ω̃ := ω ∪ B and let η̃i : ω̃ → R denote the extensions of the functions ηi : ω → R

defined by η̃i = 0 in ω̃ − ω. Then, on the one hand, η̃α ∈ H1(ω̃), η̃3 ∈ H2(ω̃), and η̃i = 0 in the open subset ω̃ − ω of ω̃.
On the other hand, the relations γαβ(η) = aαβραβ(η) = 0 in ω imply that, with self-explanatory notations (similar to 

those introduced in Section 1),

1

2
(∂αη̃β + ∂βη̃α) − Γ̃ σ

αβη̃σ = b̃αβη̃3 in ω̃,

ãαβ∂αβη̃3 = ãαβΓ̃ σ
αβ∂σ η̃3 + b̃β

α b̃α
β η̃3 − 2b̃αβθαη̃β + (

2b̃αβΓ̃ σ
αβ − b̃ασ |α

)
η̃σ in ω̃.

Therefore, the unique continuation property of solutions to elliptic systems (see, e.g., [1,2], or [6]) implies that η̃i = 0
in ω̃. �
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