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Given a prime p, let K red(U ) denote the Grothendieck group generated by the isomor-
phism classes of indecomposable injective reduced modules in the category of unstable 
modules over the mod p Steenrod algebra. Let K red

n (U ), n ∈ N, denote the subgroup of 
K red(U ) generated by the indecomposable summands of H∗B(Z/p)n . We describe in this 
note a strategy for the proof of the following conjecture of Lionel Schwartz: the operator 
induced by Lannes’ T-functor on the rational vector space Q ⊗Z K red

n (U ) is diagonalizable and 
has eigenvalues 1, p, . . . , pn−1, pn with multiplicities pn − pn−1, pn−1 − pn−2, . . . , p − 1, 1, 
respectively.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Étant donné un nombre premier p, on note K red(U ) le groupe de Grothendieck engendré 
par les classes d’isomorphisme de modules réduits injectifs indécompsables de la catégorie 
des modules instable sur l’algèbre de Steenrod modulo p. On note K red

n (U ), n ∈ N, 
le sous-groupe de K red(U ) engendré par les facteurs indécomposables de H∗B(Z/p)n . 
On décrit dans cette note une stratégie pour démontrer la conjecture suivante due à 
Lionel Schwartz : l’opérateur induit par le foncteur T de Lannes sur l’espace vectoriel rationnel 
Q ⊗Z K red

n (U ) est diagonalisable et a pour valeurs propres 1, p, . . . , pn−1, pn de multiplicités 
pn − pn−1, pn−1 − pn−2, . . . , p − 1, 1, respectivement.
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1. Introduction

Fix a prime number p and consider the category U of unstable modules over the mod p Steenrod algebra Ap [13]. 
Let V be an elementary Abelian p-group, i.e. a group isomorphic to (Z/p)n for some natural number n. By a result of 
Carlsson–Miller–Lannes–Zarati, the mod p cohomology of the classifying space BV , H∗BV , is an injective object in the 
category U [9].

Let K red(U ) denote the Grothendieck group generated by the isomorphism classes of indecomposable injective reduced
modules in U . Recall that an unstable module is reduced if it does not contain a non-trivial suspension [13, p. 47]. By the 
Lannes–Schwartz classification theorem for U -injectives, we know that indecomposable injective reduced modules in the 
category U are precisely the indecomposable Ap -module summands of H∗BV for some V [8].

Recall now that Lannes’ T-functor T : U → U is left adjoint to the functor given by tensoring with H∗BZ/p in the 
category U [7]. The functor T induces an operator on the Grothendieck group K red(U ). There is a natural filtration on 
K red(U ):

K red
0 (U ) ⊂ K red

1 (U ) ⊂ · · · ⊂ K red
n (U ) ⊂ · · · ⊂ K red(U ),

where the subgroup K red
n (U ), n ∈ N, is generated by the isomorphism classes of indecomposable summands of H∗B(Z/p)n . 

Fundamental properties of T can be used to show that T preserves this filtration.
The purpose of this note is to describe a proof of the following conjecture of Lionel Schwartz:

Conjecture 1.1 (L. Schwartz). The operator induced by the T-functor on the vector space Q ⊗Z K red
n (U ) is diagonalizable and has 

eigenvalues 1, p, . . . , pn−1, pn with multiplicities pn − pn−1, pn−1 − pn−2, . . . , p − 1, 1, respectively.

The conjecture is supported by computations of Harris and Shank [5, Appendix] and may be checked by computer for 
small n by using work of Harris and Shank [5] as follows.

Let Mn(Fp) denote the semigroup of all n ×n-matrices with coefficients in the finite field Fp . Let Irr Mn denote the set of 
isomorphism classes of irreducible modules for the semigroup ring Fp[Mn(Fp)]. Note that |Irr Mn| = pn [4]. For λ ∈ Irr Mn , 
there is a corresponding indecomposable summand Lλ of H∗B(Z/p)n given by

Lλ := HomFp[Mn(Fp)]
(

Pλ,H∗B(Z/p)n)
, (1)

where Pλ is a projective cover of the irreducible Fp[Mn(Fp)]-module λ. The summands Lλ , λ ∈ Irr Mn , form a basis for 
K red

n (U ) [8]. Harris and Shank [5] proved that

T(Lλ) ∼=
⊕

μ∈Irr Mn

L
⊕aλμ
μ , λ ∈ Irr Mn, (2)

where aλμ is the multiplicity of λ in the tensor product of μ with the p-truncated symmetric algebra S̄∗(Fn
p) :=

Fp[x1, . . . , xn]/(xp
1 , . . . , xp

n ), considered as a representation of Mn(Fp) as usual. The coefficients aλμ are not known in gen-
eral. However it follows from (2) that the matrix of T (in the basis {Lλ}) is the transpose of the matrix of the endomorphism 
(in the basis {λ})

t : Q⊗Z RFp

(
Mn(Fp)

) →Q⊗Z RFp

(
Mn(Fp)

)
, μ 	→ μ ⊗ S̄∗(Fn

p

)
.

Here RFp (Mn(Fp)) is the representation ring of the semigroup Mn(Fp) over Fp . This fact can be used to build the matrix 
for the operator t by computer. For example, for p = 2, RF2 (Mn(F2)) is generated by the exterior powers Λk := Λk(Fn

2), 
0 ≤ k ≤ n, subjected to the relations Λk ⊗ Λk = Λk − 2 

∑k
i=1(−1)iΛk+i ⊗ Λk−i , and so has a Z-basis {1} ∪ {Λk1 ⊗ · · · ⊗ Λkt |

1 ≤ k1 < · · · < kt ≤ n, 1 ≤ t ≤ n}. The operator t is now the endomorphism of Q ⊗Z RF2 (Mn(F2)) given by the multiplication 
by 

∑n
k=0 Λk . In this way K. Delamotte has checked the conjecture to be true up to n = 9.

2. A strategy for the proof of Conjecture 1.1

In this section we prove Conjecture 1.1 by assuming two propositions that will be treated in Sects. 3 and 4. Recall that 
the tensor product of two reduced U -injectives is a reduced U -injective [9]. Taking tensor product with H := H∗B(Z/p) in 
U induces then a homomorphism that we denote also by H:

H : K red(U ) → K red(U ).

We observe that H increases the filtration on K red(U ).

Proposition 2.1. The homomorphism H : K red(U ) → K red(U ) is injective.
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Proposition 2.2. The homomorphism T :Q ⊗Z K red
n (U ) →Q ⊗Z K red

n (U ) satisfies:

dimQ ker(T − 1) ≥ pn − pn−1.

Proof of Conjecture 1.1 assuming Propositions 2.1 and 2.2. By induction on n, we prove that, for 0 ≤ i ≤ n, the dimension 
of the eigenspace

Ei
n := {

X ∈ Q⊗Z K red
n (U ) | T(X) = pi X

}
is pn−i − pn−i−1. (Here, by convention, p−1 = 0 so that dimQ En

n = p0 − p−1 = 1.) This is trivial if n = 0 and we suppose this 
holds for n − 1. By Proposition 2.2,

dimQ E0
n ≥ pn − pn−1.

For 1 ≤ i ≤ n, we have H(Ei−1
n−1) is a subspace of Ei

n since T commutes with the tensor product and T(H∗BZ/p) ∼=
[H∗BZ/p]⊕p [7]. By inductive hypothesis on the dimension of Ei−1

n−1 and by injectivity of the homomorphism H (Propo-
sition 2.1), we get

dimQ Ei
n ≥ dimQ H

(
Ei−1

n−1

) = pn−i − pn−i−1.

We conclude that the dimension of the direct sum 
⊕n

i=0 Ei
n is ≥pn , and since Q ⊗Z K red

n (U ) is of dimension pn , we obtain 
what we need to prove. �
3. Injectivity of the homomorphism H : K red(UUU ) → K red(UUU )

In this section, we prove Proposition 2.1. Given M and N two finite direct sums of indecomposable reduced U -injectives 
[8], we need to prove that, if H ⊗ M and H ⊗ N are isomorphic as unstable modules, then M and N are isomorphic as 
unstable modules.

For M an unstable module, let |M| denote the connectivity of M , i.e. the lowest degree d for which Md is non-trivial. In 
order to prove Proposition 2.1, we need to introduce the following definition.

Definition 3.1. An additive functor F : U → U is called connectively increasing if there exists a functor F̄ : U → U such 
that, for each M ∈ U ,

(i) there is a natural short exact sequence of unstable modules 0 → M → F (M) → F̄ (M) → 0, and
(ii) | F̄ (M)| > |M|.

It is clear that the functor M 	→ H∗BZ/p ⊗ M ∼= M ⊕ (H∗BZ/p ⊗ M) is connectively increasing, so in order to prove 
Proposition 2.1, it suffices to prove the following:

Lemma 3.2. Let F be a connectively increasing functor, N an unstable module and M a finite direct sum of indecomposable 
U -injectives. Suppose that F (M) ∼= F (N) as unstable modules of finite type. Then M ∼= N as unstable modules.

Proof. It is clear that if F (L) is trivial then L is trivial. Thus it suffices to prove that M is a direct factor of N . The isomor-
phism F (M) ∼= F (N) as graded vector spaces together with Condition (ii) of Definition 3.1 imply that |M| = |N|.

Take an indecomposable injective summand I of M such that I is non-trivial in degree |M|. Since M can be considered 
as a submodule of F (M), it follows that I is a direct summand of F (M), and thus a direct summand of F (N). But since 
|I| = |M| = |N| < | F̄ (N)|, the indecomposable injective I must be a direct summand of N .

We write M = I ⊕ M ′ and N = I ⊕ N ′ . The additivity of F gives rise to an isomorphism of unstable modules:

F (I) ⊕ F
(
M ′) ∼= F (I) ⊕ F

(
N ′). (3)

As F (I) ⊕ F (M ′) is of finite type, it follows that F (M ′) ∼= F (N ′) as graded vector spaces and again by connectivity reason, we 
have |M ′| = |N ′|.

Take an indecomposable injective summand I ′ of M ′ such that I ′ is non-trivial in degree |M ′|. As we can cancel the
U -injectives isomorphic to I ′ appearing in the factor F (I) on both sides of the isomorphism (3), we can suppose that F (I)
does not contain I ′ as a direct factor. Thus I ′ is a direct summand of F (M ′) and the isomorphism (3) implies that F (N ′)
must contain a summand isomorphic to I ′ . Since |I ′| = |M ′| = |N ′| < | F̄ (N ′)|, the indecomposable injective I ′ must be a 
summand of N ′ .

We write M = I ⊕ I ′ ⊕ M ′′ and N = I ⊕ I ′ ⊕ N ′′ . Since M is a finite direct sum of indecomposable injectives, the argument 
above can be repeated to show that the injective module M is a direct factor of N . The lemma follows. �
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4. Lower bound for the dimension of the eigenspace of T associated with 1

In this section, we describe a proof of Proposition 2.2. We need to establish the inequality dimQ ker(T − 1) ≥ pn − pn−1, 
where T is considered as an operator on Q ⊗Z K red

n (U ). For this, we need to introduce some operators on K red(U ), which 
are induced by taking the functional dual of stable summands.

Given G a finite group, let B+G denote the union of the classifying space BG with an added disjoint basepoint. For 
simplicity, B+G will also denote the suspension spectrum Σ∞B+G . Given spectra X, Y , let F(X, Y ) denote the functional 
spectrum and D(X) = F(X, S0) the functional dual. In the sequel, all spaces and spectra are implicitly completed at the 
prime p, and cohomology is taken with Z/p-coefficients.

4.1. Dual of stable summands derived from irreducible GLn(Fp)-modules

By the Segal Conjecture [1,2,11] for the elementary Abelian group V , there is a GL(V )-equivariant equivalence of spectra:

DB+V �
∨

W ⊆V

B+(V /W ), (4)

where the wedge sum is taken over all subgroups of V . We refer the reader to Olga Stroilova’s thesis [14] for a thorough 
discussion on the action of GL(V ) upon the functional dual DB+V . For our purposes, it suffices to know that each g ∈ GL(V )

sends the summand indexed by the subspace W in the wedge sum to the summand indexed by the subspace g−1 W .
Denote by Irr GLn the set of isomorphism classes of irreducible modules for the group ring Fp[GLn(Fp)]. Given λ ∈

Irr GLn , let eλ denote a primitive idempotent of Fp[GLn(Fp)] such that Fp[GLn(Fp)]eλ is a projective cover of the irreducible 
Fp[GLn(Fp)]-module λ. The corresponding stable summand, eλB+(Z/p)n , of B+(Z/p)n is given by a telescope construction. 
Its cohomology is denoted by Mλ , and this is a direct factor of H∗B(Z/p)n . The Ap-modules Mλ , λ ∈ ∐

0≤m≤n Irr GLm , then 
form a basis for K red

n (U ) [4].
For each stable summand X of B+(Z/p)n derived from an irreducible Fp[GLn(Fp)]-module, it follows from (4) that the 

dual spectrum D(X) is a wedge sum of stable summands of B+(Z/p)m with m ≤ n. By identifying a stable summand with 
its cohomology [6], we obtain a filtration-preserving operator:

D : K red(U ) → K red(U ).

Theorem 4.1. Let e′
λ denote the image of eλ under the antipode 

∑
g ag g 	→ ∑

g ag g−1 of the Hopf algebra Fp[GLn(Fp)]. Then

D
(
eλB+(Z/p)n) � e′

λB+(Z/p)n ∨ stable summands of B+(Z/p)m with m < n.

This follows from the discussion in [14] about the action of GL(V ) on the functional dual DB+V .
In order to prove Proposition 2.2, we need to define a variant of the dual operator D. By the Segal conjecture for Z/p ⊕ V , 

we have an equivalence:

DB+(Z/p ⊕ V ) �
∨

W ⊆Z/p⊕V

B+
(
(Z/p ⊕ V )/W

)
.

Considering GL(V ) as a subgroup of GL(Z/p ⊕ V ), we have a GL(V )-equivariant decomposition:

DB+(Z/p ⊕ V ) �
[ ∨

W ⊇Z/p

B+
(
(Z/p ⊕ V )/W

)] ∨
[ ∨

W ⊆V

B+
(
(Z/p ⊕ V )/W

)]

∨
[ ∨
Z/p�W�V

B+
(
(Z/p ⊕ V )/W

)]
.

By the Segal conjecture for V , we can identify the first wedge sum on the right with DB+V and the second with B+Z/p ∧
DB+V . For the third one, let W be a subgroup of Z/p ⊕ V such that Z/p � W � V . Denote by Ŵ the image of the 
composite W ↪→ Z/p ⊕ V � V . We observe that Ŵ ∼= W since W does not contain Z/p and that dim Ŵ ≥ 1 since W is 
not contained in V . We have

B+
(
(Z/p ⊕ V )/W

) � B+
(
(Z/p ⊕ V )/Ŵ

) � B+Z/p ∧ B+(V /Ŵ ).

Thus we obtain a GL(V )-equivariant equivalence:

DB+(Z/p ⊕ V ) � (DB+V ) ∨ (B+Z/p ∧ DB+V ) ∨ (B+Z/p ∧ D1B+V ), (5)

where
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D1B+V �
∨

Z/p�W�V

B+(V /Ŵ ). (6)

In particular, we can define a spectrum D1 X for X a stable summand of B+V , and thus obtain an endomorphism by 
identifying a stable summand with its cohomology:

D1 : K red(U ) → K red(U ).

We note that D1 decreases the filtration.

4.2. The fundamental equation

We know now that the operators T, H, D and D1 act on the Grothendieck group K red(U ). It is natural to ask how these 
operators are related. Here is a relation which is sufficient for our purposes.

Theorem 4.2 (The fundamental equation). For X ∈ K red(U ), we have:

T
(
D(X)

) = D(X) + H
(
D1(X)

)
. (7)

We defer the proof of this theorem for a while, and use it now to verify Proposition 2.2 (which is an essential ingredient in 
the proof of the conjecture).

Proof of Proposition 2.2. Consider T, D and D1 as operators on Q ⊗Z K red
n (U ). We need to prove that

dimQ ker(T − 1) ≥ pn − pn−1.

We have

T(DX) = DX ⇐⇒ H(D1 X) = 0 ⇐⇒ D1 X = 0,

where the first equivalence comes from the fundamental equation and the second is a consequence of the injectivity of the 
homomorphism H. By Theorem 4.1, D is an isomorphism. It follows that

dimQ ker(T − 1) = dimQ ker D1.

On the other hand, by definition, D1 maps Q ⊗Z K red
n (U ) into Q ⊗Z K red

n−1(U ), so

dimQ ker D1 ≥ pn − pn−1.

The proposition follows. �
In order to prove Theorem 4.2, we use the adjunction equivalence of spectra:

D(B+Z/p ∧ X) � F(B+Z/p,DX) (8)

for each stable summand X of B+V . Theorem 4.2 is now an immediate consequence of the following two propositions.

Proposition 4.1. For X a stable summand of B+V , there is an isomorphism of unstable modules:

H∗D(B+Z/p ∧ X) ∼= [
H∗DX

] ⊕ [
H ⊗ H∗DX

] ⊕ [
H ⊗ H∗D1 X

]
. (9)

This follows directly from the definition of the operator D1.

Proposition 4.2. For X a stable summand of B+V , there is an isomorphism of unstable modules:

H∗F(B+Z/p,DX) ∼= [
TH∗DX

] ⊕ [
H ⊗ H∗DX

]
. (10)

The proof of this result makes use of the fact that DX is a suspension spectra (which is a consequence of the Se-
gal conjecture), the theory of Lannes [7], the relation between Lannes’ T-functor and Singer’s Rs-functors [10,15,12], and 
calculations of the mod p cohomology of infinite loop spaces [3].
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