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In this work we give a null-controllability result for the semi-linear heat equation in a
polygonal or cracked bounded domain of R2. We suppose that the nonlinearity grows 
slower than |s| log3/2(1 +|s|) as |s| → ∞ and then we prove our result by using Schauder’s 
fixed point theorem.
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r é s u m é

Dans ce travail, on donne un résultat de nulle contrôlabilité pour l’équation de la chaleur 
semi-linéaire dans un domaine borné de R2, polygonal ou fissuré. On suppose que la 
non-linearité croît moins vite que |s| log3/2(1 + |s|) quand |s| → ∞, et on démontre le 
résultat par le théorème du point fixe de Schauder.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let Ω be an open bounded subset of R2 with boundary Γ = ∂Ω; we consider two cases:

1. Case 1: We suppose that Ω has a polygonal reentrant corner at point S (S ∈ Γ ) with measure φ, π < φ < 2π , and that 
Γ \ {S} is regular.

2. Case 2: We suppose that Ω has one straight emerging crack σ , we denote by S its tip and by Γ1 the part Γ \σ , which 
is assumed to be smooth.

It is known that the geometry of Ω , described above, affects the domain of the Laplacian operator. In fact, it is not 
contained in H2(Ω) ∩ H1

0(Ω), but in the space Hl(Ω) ∩ H1
0(Ω), 3

2 < l < 2 in case 1 and 1 < l < 3
2 in case 2; for more details 

see [6,7]. So this fact has consequences on the regularity of the solution to the problem we will consider.
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For T > 0, we denote by Q T and ΣT the sets (0, T ) × Ω and (0, T ) × Γ , respectively, and we consider the semi-linear 
heat equation:⎧⎨⎩ ∂t y − 	y + f (y) = v1ω in Q T ,

y = 0 on ΣT ,

y(0, .) = y0 in Ω,

(1)

where y is the state, v ∈ Lr((0, T ) × ω) with r > 2 is the control acting on the system through a non-empty subset ω of Ω , 
1ω is the characteristic function of ω, and f : R → R is supposed to be locally a Lipschitz-continuous function, f (0) = 0
and checks that for each η > 0, there exists Cη > 0 such that∣∣∣∣ f (s)

s

∣∣∣∣2/3

≤ Cη + η log
(
1 + |s|), ∀s ∈R. (2)

The main goal of this paper is to study the null-controllability of (1) at time T , which means that for any initial condition 
y0 ∈ L2(Ω), we look at whether there exists a control v ∈ Lr((0, T ) × ω), r > 2, such that the corresponding boundary 
problem (1) admits a solution y ∈ C0([0, T ]; L2(Ω)) satisfying

y(x, T ) = 0 in Ω. (3)

When the domain Ω is regular, at least C2, a lot of research is done to study the controllability of different problems, 
among them the semi-linear heat equations. In this case, we can firstly cite [4], where the approximate controllability is 
established. In [9], the author has studied approximate controllability with globally Lipschitz nonlinearities using the fixed-
point method. We also cite [5], in which the authors proved exact controllability to trajectories where the non-linearity 
checks condition (2). They have used Carleman’s estimates and Kakutani’s fixed point theorem. In [3], the authors were 
interested by the exact controllability to trajectories with discontinuous diffusion coefficients. In [2], the authors have es-
tablished a null-controllability result for the linear heat equation in polygonal or cracked domains of R

2. They were able to 
justify Carleman’s estimate by building a suitable weight function. Our work is a continuation of theirs. It consists in proving 
a similar result in the semi-linear case. We prove a global Carleman inequality for the linear problem with a potential. As 
in [2], the loss of regularity due to the geometry of the domain prevents us from doing some integrations by parts, so we 
use a density result. In case 2, we have circumvented the tip of the crack and worked in a sub-domain with a Lipschitzian 
boundary.

The main result of this paper is stated in the following theorem.

Theorem 1.1. Let T > 0, f :R →R locally Lipschitz-continuous function such that

∀η > 0, ∃Cη > 0 :
∣∣∣∣ f (s)

s

∣∣∣∣2/3

≤ Cη + η log
(
1 + |s|), ∀s ∈ R (4)

and f (0) = 0. Then for each y0 ∈ L2(Ω), Problem (1) is null controllable at time T .

The proof we will provide is similar to the one given in [3], and can be reduced into three steps. In the first one, using 
a refined observability inequality resulting from Carleman’s estimate, we prove an approximate controllability to the zero 
state for the linearized problem. In the second step, we will use uniform estimates deduced in the first one and from the 
fixed-point method, then we will get the approximate controllability result for the semi-linear case at a time lower than T . 
Finally, we pass to the limit and obtain the main result.

2. Proof of Theorem 1.1

2.1. Approximate controllability to zero for the linear problem

For b ∈ L∞(Q T ), y0, qT ∈ L2(Ω) we consider the following linear problem⎧⎨⎩ ∂t y − 	y + by = v1ω in Q T ,

y = 0 on ΣT ,

y(0, .) = y0 in Ω,

(5)

and its adjoint problem⎧⎨⎩ −∂tq − 	q + bq = 0 in Q T ,

q = 0 on ΣT ,

q(T , .) = qT in Ω.

(6)
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Theorem 2.1. For each ε > 0, there exists a control vε ∈ Lr((0, T ) ×ω) such that the corresponding solution yε to problem (5) verifies∥∥yε(T , .)
∥∥

L2(Ω)
≤ ε. (7)

Moreover, vε can be chosen unique and satisfying the estimate

‖vε‖Lr((0,T )×ω) ≤ C‖y0‖L2(Ω), C = eC(Ω,ω)(1+ 1
T +T +(T +T

1
2 )‖b‖∞+‖b‖

2
3∞). (8)

Proof. Let ε > 0 and consider the functional Jε : L2(Ω) 
−→R, defined by:

Jε(qT ) = 1

2

( ∫
(0,T )×ω

|q|r′
dt dx

)2/r′

+ ε‖qT ‖L2(Ω) +
∫
Ω

q(0, x)y0(x)dx. (9)

Here, q is the solution to (6) associated with the datum qT , r′ is the dual exponent to r. It is not difficult to see that Jε
is a continuous and strictly convex function, and arguing as in [9], we deduce that it is coercive. Therefore it achieves its 
minimum at a unique point ̂qT ,ε ∈ L2(Ω). Let ̂qε be the solution to (6) associated with ̂qT ,ε . We take in (5) v = vε , where

vε = sgn( q̂ε)| q̂ε|r′−1‖̂qε‖2−r′
Lr′ ((0,T )×ω)

1ω. (10)

Inequality (7) is proved by the classical method, while estimate (8) is derived from a refined observability inequality stated 
in the following proposition. �
Proposition 2.1. There exists a constant C > 0 such that for each qT ∈ L2(Ω) and any r′ sufficiently small, the associated solution to 
(6) satisfies:

∥∥q(0)
∥∥2

L2(Ω)
≤ C

(∫
ωT

|q|r′
dt dx

)2/r′

, C = eC(Ω,ω)(1+ 1
T +T +‖b‖

2
3∞+(T +T

1
2 )‖b‖∞). (11)

Remark that if we make r′ = 1 in estimate (11), we will find that given in [5].

Proof. Eq. (11) is a consequence of the following Carleman estimate and it is proved in the same way as in [3]. �
Before stating the Carleman estimate, we introduce some functions, among them the weight function.

For (t, x) ∈ Q T , we set α(t, x) = e2λm‖β‖∞ − eλ(m‖β‖∞+β(x))

t(T − t)
, ξ(t, x) = eλ(m‖β‖∞+β(x))

t(T − t)
,

where β ∈ C1(Ω) ∩ W 2,∞(Ω) is the weight function constructed in [2], satisfying

1. β > 0 in Ω , |∇β| > 0 in Ω \ ω and ∂β
∂ν < 0 on Γ \ {S} in case 1.

2. β > 0 in Ω , |∇β| > 0 in Ω\ω, ∂β
∂ν < 0 on Γ1 and ∂β

∂ν± = 0 on σ\{S} in case 2.

ν+ and ν− denote the (opposite) outward unit normal of the crack σ .

Proposition 2.2. There exist three positive constants λ1 = λ1(Ω, ω) ≥ 1, s1 = s1(Ω, ω)(T + T 2) and C(Ω, ω), such that for any 
λ ≥ λ1 and s ≥ s1 , we have:

s3λ4
∫

Q T

e−2sαξ3|q|2 dt dx + sλ2
∫

Q T

e−2sαξ |∇q|2 dt dx

≤ C

(
s3λ4

∫
(0,T )×ω

e−2sαξ3|q|2 dt dx,+
∫

Q T

e−2sα|∂tq + 	q|2
)

(12)

for every function q ∈ V = C0([0, T ]; L2(Ω)) ∩ C0([0, T [; D(−	)) ∩ C1([0, T [; L2(Ω)).

Proof. The proof is similar to that given in [2]. �
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2.2. The fixed-point method

We will suppose that y0 ∈ L∞(Ω) and f ∈ C1. When y0 ∈ L2(Ω) or f is locally Lipschitz continuous, we argue as in [3]
and [5]. Let R > 0 be given positive constant, we will fixe it later. We put:

g(s) =
{

f (s)
s if s �= 0,

f ′(0) if s = 0,
(13)

T R = min
{

T ,‖g‖−2/3
L∞(−R,R),‖g‖−1/3

L∞(−R,R)

}
(14)

and consider the truncation function T R :R −→R such that

T R(s) =
{

s if |s| ≤ R,

R sgn(s) otherwise.
(15)

For each z ∈ L2(Q T R ) we consider the linearized problem⎧⎨⎩ ∂t y − 	y + g(T R(z))y = v1ω in Q T R ,

y = 0 on ΣT R ,

y(0, .) = y0 in Ω.

(16)

Remark that (16) is a linear problem on y with a potential b = g(T R(z)) ∈ L∞(Q T R ).
Now for each ε > 0, we build a non-linear mapping Λ : L2(Q T R ) −→ L2(Q T R ) defined as follows: for each z ∈ L2(Q T R ), 

there exists a unique control vε,z ∈ Lr((0, T R) × ω) given by (10) and that verifies:

‖vε,z‖Lr((0,T R )×ω) ≤ C‖y0‖L2(Ω), C = eC(Ω,ω)(1+ 1
T R +T R+(T R+T R

1
2

)‖g‖L∞(−R,R)+‖g‖
2
3
L∞(−R,R)

)
. (17)

Then set Λ(z) = yε,z , where yε,z is the unique solution to (16), it checks (7) for T = T R .

Proposition 2.3. Λ is continuous and compact, with bounded range.

Proof. To prove the continuity and the compactness of Λ we need to use the compact imbedding from H1
0(Ω) into L2(Ω), 

which occurs if ∂Ω is Lipschitz as in case 1 (see [7]). In case 2, once again, the geometry of the domain brings up a new 
difficulty, but a small geometric manipulation allows us to reduce it to the case 1; this is the subject of the following lemma.

Lemma 2.1. Let Ω be a domain of R2 satisfying the description in case 2 above. Then the space H1
0(Ω) is compactly imbedded in 

L2(Ω).

Proof. We extend the crack to the boundary Γ ; it intersects at a point S ′ so that we obtain two Lipschitz open subsets 
Ω1, Ω2 such that Ω = Ω1 ∪ Ω2 ∪ S S ′ , and the lemma is a consequence of the compact imbedding of H1(Ωi) in L2(Ωi). �
Continuity of Λ. Let zn be a sequence of L2(Q T R ) such that zn → z in L2(Q T R ). For each zn , n ≥ 1, there exist a control vε,zn

and an associated yε,zn solution to problem (16). By construction, vε,zn = sgn( ̂qε,zn )| ̂qε,zn |r′−1‖̂qε,zn ‖2−r′
Lr′ ((0,T R )×ω)

1ω , where 
q̂ε,zn solves the adjoint problem (6) with the datum ̂qε,T R ,zn

a minimizer of the associated functional Jε,n . Here and in the 
sequel, Jε,n denotes the functional Jε corresponding to the potential g(T R (zn)).

Since Jε,n is uniformly coercive (see [9]), the sequences q̂ε,T R ,zn
, q̂ε,zn are uniformly bounded in L2(Ω) and 

L2(0, T R ; H1
0(Ω)), respectively. Then there exist ̂qε,T R ∈ L2(Ω) and ̂qε ∈ L2(0, T R; H1

0(Ω)) such that up subsequences

q̂ε,T R ,zn
⇀ q̂ε,T R in L2(Ω) and q̂ε,zn ⇀ q̂ε in L2(0, T ; H1

0(Ω)
)
. (18)

We claim that ̂qε,zn converges strongly to ̂qε,z in L2(Q T R ) and that ̂qε,z solves the adjoint problem of (16).
Indeed, ∂t q̂ε,zn is bounded in L2(0, T R ; H−1(Ω)); thus

q̂ε,zn ∈ L2(0, T R; H1
0(Ω)

) ∩ H1(0, T R; H−1(Ω)
)
, ∀n ≥ 1. (19)

Combining (18), (19) and using compact embedding from H1
0(Ω) into L2(Q T R ) given by Lemma 2.1 (in case 2) and thanks to 

the Aubin–Lions Lemma, we deduce that for a subsequence, still denoted by n : q̂ε,zn → q̂ε,z strongly in L2(Q T R ) where ̂qε,z
solves the adjoint problem of (16). Then one can conclude that, up to a subsequence, vε,zn ⇀ vε,z weakly in L2((0, T R) ×ω)

with vε,z satisfies (17). Accordingly, at least for a subsequence yε,zn → yε,z in L2(0, T R ; H1
0(Ω)), where yε,z is the solution 

to (16) with a control vε,z .
We argue as in [9] to check that the limit ̂qε,T R ,z in (18) is the minimizer of the functional Jε associated with the limit 

control problem (16).
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Boundedness of the range of Λ. Estimate (17) and classical energy estimate for the problem (16) show that there exists 
a positive constant C , depending only on T R and ‖g‖L∞(−R,R) , such that

‖vε,z‖L2((0,T R )×ω) ≤ C‖y0‖L2(Ω), ‖yε,z‖L2(0,T R ;H1
0(Ω)) ≤ C‖y0‖L2(Ω).

The last inequality means that the range of Λ is bounded in L2(Q T R ).

Compactness of Λ. Let B be a bounded set of L2(Q T R ). We have to show that Λ(B) is relatively compact in L2(Q T R ). For 
each z ∈ B , y = yε,z = Λ(z), is bounded in L2(0, T R; H1

0(Ω)) and satisfies:⎧⎨⎩ ∂t y − 	y = k in Q T R ,

y = 0 on ΣT R ,

y(0, .) = y0 in Ω,

(20)

with

k = v1ω − g
(
T R(z)

)
y

which is uniformly bounded in L2(Q T R ).
We proceed as in [9]. The solution y is written as

y = y1 + y2

where y1 and y2 solve (20) respectively without a second member and with vanishing initial data. It is obvious that y1
is a fixed element of L2(0, T R ; H1

0(Ω)). Thanks to [8], we know that y2 belongs to a bounded set of L2(0, T R; H1
0(Ω)) ∩

H1(0, T R; L2(Ω)), which, as a consequence of a compact imbedding from H1
0(Ω) into L2(Ω)) given by Lemma 2.1 and 

Aubin–Lions compactness Lemma, is a relatively compact set of L2(Q T R ). This concludes the proof of Proposition 2.3.
Hence, from Schauder’s theorem, the mapping Λ has a fixed point, yε = Λ(yε), which solves the problem (16) with a 

control vε and satisfies (7) for T = T R .

2.3. End of the proof and conclusion

Since vε , yε and ∂t yε are bounded uniformly in ε, in L2((0, T R) × ω), L2(0, T R ; H1
0(Ω)) and L2(0, T R; H−1(Ω)), respec-

tively, we deduce that, when ε → 0 at least for subsequence, yε → yR in L2(Q T R ), where yR solves the problem:⎧⎨⎩
∂t yR − 	yR + g(T R(yR))yR = v R 1ω in Q T R ,

yR = 0 on ΣT R ,

yR(0, .) = y0 in Ω.

(21)

Consequently yε(T R) → yR(T R) in L2(Ω) and yR(T R) = 0.
On the other hand, since v R ∈ Lr((0, T R) × ω) with r > 2, we have (see [1]) the following estimate∥∥yR

∥∥∞ ≤ eT R‖g(T R (yR ))‖∞‖y0‖∞ + T R eT R‖g(T R (yR ))‖∞∥∥v R
∥∥

Lr((0,T R )×ω)
. (22)

Using the definition of T R , estimate (17) and that ‖g‖2/3
L∞(−R,R) ≤ Cη + η log(1 + |R|) ∀η > 0, we deduce from (22) that yR

satisfies:∥∥yR
∥∥∞ ≤ C2(Ω,ω, T , η, y0)(1 + R)ηC3(Ω,ω,T ). (23)

Now let us extend by zero v R and yR to the whole cylinder Q T , and for the sake of simplicity we still call them v R and yR . 
It is clear that (23) holds for yR . To conclude the proof, we choose η = 1/(2C3) and R > 0 such that C2(Ω, ω, T , η, y0)(1 +
R)ηC3(Ω,ω,T ) < R , this leads to ‖yR‖∞ ≤ R and then T R (yR) = yR . In conclusion, we have found a control v ∈ Lr((0, T ) × ω)

such that the solution y to (1) verifies (3). This completes the proof of our result. �
Acknowledgement

The authors thank the anonymous referee for his constructive remarks, which have led to an improved presentation of 
the paper.



234 T. Ali-Ziane et al. / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 229–234
References

[1] D.G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal. 25 (1967) 81–122.
[2] A.H. Belghazi, F. Smadhi, N. Zaidi, O. Zair, Carleman inequalities for the two-dimensional heat equation in singular domains, Math. Control Relat. Fields 

2 (4) (2012) 331–359.
[3] A. Doubova, A. Osses, J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control 

Optim. Calc. Var. 8 (2002) 621–661.
[4] C. Fabre, J.-P. Puel, E. Zuazua, On the density of the range of the semigroup for semilinear heat equations, in: Control and Optimal Design of Distributed 

Parameter Systems, Minneapolis, MN, 1992, in: IMA Vol. Math. Appl., vol. 70, Springer, New York, 1995, pp. 73–91.
[5] E. Fernández-Cara, E. Zuazua, Null and approximate controllability for weakly blowing-up semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. 

Non Linéaire 17 (5) (2000) 583–616.
[6] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, 

MA, USA, 1985.
[7] P. Grisvard, Singularities in Boundary Value Problems, Recherches en mathématiques appliquées (Research in Applied Mathematics), vol. 22, Masson, 

Paris, 1992.
[8] M.A. Moussaoui, B.K. Sadallah, Régularité des coefficients de propagation de singularités pour l’équation de la chaleur dans un ouvert plan polygonal, 

C. R. Acad. Sci. Paris, Ser. I 293 (5) (1981) 297–300.
[9] E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities, Control Cybern. 28 (3) (1999) 665–683.

http://refhub.elsevier.com/S1631-073X(15)00028-X/bib414A3A3637s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib42535A5A3A3132s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib42535A5A3A3132s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib444F503A3032s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib444F503A3032s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib46505A3A3935s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib46505A3A3935s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib435A3A3030s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib435A3A3030s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib475249533A3835s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib475249533A3835s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib475249533A3932s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib475249533A3932s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib4D533A3831s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib4D533A3831s1
http://refhub.elsevier.com/S1631-073X(15)00028-X/bib5A453A3939s1

	Null controllability for the semilinear heat equation in a non-smooth domain
	1 Introduction
	2 Proof of Theorem 1.1
	2.1 Approximate controllability to zero for the linear problem
	2.2 The ﬁxed-point method
	2.3 End of the proof and conclusion

	Acknowledgement
	References


