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_ _ d-1_
Available online 2 February 2015 P C Ok. Let h(z) € K[z] be non-constant and not of the form h(z) =&z, & 1. Denote

fe(@) =2 +t, g:(z) = 2% + h(t), and F© the ¢-th iteration of F. There are constants ¢y, ¢3
Presented by the Editorial Board depending on d and h such that the following holds.

For almost all prime ideals P C Ok, there is a finite subset T C Fp, T| <cp such that if
t eFp \ T at least one of the sets

(FP0:e=1,2,--- [calogN1},  {g”©:€=1,2,--,[c2logN]] (1)

consists of distinct elements.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

Nous prouvons I'analogue suivant des résultats de Silverman [9] pour les paires d’applica-
tions.

Soit d > 2 un entier, K/Q un corps de nombres, et N = Ng,o(P) la norme d'un idéal
P C Ok. Soit h(z) € K[z] un polyndme non constant qui n'est pas de la forme h(z) =
£z, €971 =1. Posons fi(z) =29 +t, g(z) = 2% + h(t) et F© les itérés de F. Il existe des
constantes c1, ¢z, dépendant de d et h, possédant la propriété suivante : pour presque tout
idéal premier P C Ok, il y a un sous-ensemble T C Fp, |T| <c; tel que si t € Fp \ T, au
moins un des ensembles

(FP0:e=1,2,--- [calogN1}, [P0 :¢=1,2,---,[c2log N1}

se compose d’éléments distincts.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Soit d > 2 un entier, K/Q un corps de nombres, et N = Ng,o(P) la norme d'un idéal P C Ok. Soit h(z) € K[z] un
polyndme non constant qui n'est pas de la forme h(z) = £z, £4-1 = 1. Soit P C Ok un idéal premier de bonne réduction et
considérons h(z) € Fp[z]. Posons fi(z) =2z +t, g:(z) =z% + h(t) et F© les itérés de F.

Théoreme 1. Il existe des constantes cy, ¢ dépendant de d et h avec la propriété suivante. Pour presque tout idéal premier P, il y a un
sous-ensemble T C Fp, |T| <c; tel que, sit € Fp \ T, au moins un des ensembles
{4 {4
{fP0:e=1,2,- [cylogNl},  {g?©):=1,2,-- [c;log NI}

se compose d’éléments distincts.
1. Introduction

Let d > 2 be an integer, K/Q a number field, and N = Ng,o(P) the norm of an ideal P C Ok. Let h(z) € K[z] be
non-constant and not of the form h(z) = £z, £9=1 = 1. For P C O a prime ideal of good reduction, we consider h(z) €
Fplz], where Fp is the residue field. Denote:

fr@) =2+t (2)
and
2@ =2"+h(). (3)
The ¢-th iteration of a polynomial map F is denoted by F©.
We prove the following theorem.
Theorem 1. There are constants c1, ¢ depending on d and h such that the following holds. For almost all P, there is a finite subset
T CFp, |T| <cqsuchthatift e Fp \ T at least one of the sets
[FP0:6=1,2,--,[calogN1},  {g?©:¢=1,2,---,[c2logN]} (4)
consists of distinct elements.
Remark 1. Theorem 1 may be seen as a mod p version of Theorem 1.1 in [6], which falls into the theme of ‘unlikely

intersection in arithmetic dynamics’ (see [2,7,8], formulated as a dynamical analogue of the André-Oort Conjecture by
Baker and DeMarco [3]).

Remark 2. In Theorem 1, we take f;(z) =2z¢ +t and g;(z) = z% + h(t) instead of f;(z) =z + k(t) with h and k unrelated,
because the proof of Theorem 1.1 in [6] (which used a result in [8]) only works for pairs of polynomials of this form.

There are generalizations in different directions of our method that will be explored in a forthcoming paper. In particular,
new developments in complex dynamics seem to allow results that are less restrictive for the iterated maps and those are
expected to have a mod p counter part.

2. The proof

By Theorem 1.1 in [6], the subset of Q

e e/ /
s= |J {t:£20 =£"©0andg™© =g™ ) (5)
<€, m<m
is finite.
Let F(t) € Z[t] be a nontrivial polynomial vanishing on S. For any ¢’ < ¢,m’ <m, let
By =20 - 00, cty=g™©) -g™ ). (6)

We note that B(t) € Z[t] is a polynomial of degree d’ and C(t) € K[t] of degree < (max(d,e))™, with e = degh. Since F
vanishes on the common zero set of B and C, Theorem 5.1 in [4] asserts that there is some A = Ag ¢ € Z \ {0} and
polynomials P(t), Q (t) € O[t], O being the ring of integers of K, such that

AF(@)=P@®)B@)+ Q®)CO). (7)
Let c3 refer to constants depending on d and h. Since the (logarithmic) heights of B and C may be bounded by cﬁ*m,

Theorem 5.1 in [4] asserts that there exist P, Q of heights at most cﬁ,*m and A€ N, A <exp cﬁ,*m satisfying (7).
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Let X be a large integer and consider the prime ideals P, with N(P) < X. Assume moreover that P is of good reduction
for the polynomial F(t) and t e Fp \ T, T = Tp = zero set of F(t) € Fp[t].
Assume that both sets

[FP0:0=1,2,-- [c2logX1}),  {g™©):m=1,2,--,[c2log X]}

have repeated elements. Hence B(t) = 0 = C(t) with B, C defined by (6), for some ¢ < ¢ < [czlogX],m' <m < [c; log X].
Since F(t) #0, (7) implies wp(A¢ ¢ .m.m) =0, hence p|A, where p is the rational prime dividing N(P) and

A= 1_[ Agormm < exp(c3 logX' ¢y log X)*). (8)

U'<t<cylog X, m'<m<c; log X

Choosing c¢; small enough will ensure A < eX (>0 any fixed constant) and hence A with at most O(X") prime
divisors. It remains to exclude those primes P below divisors.

Remark 1. The proof gives c; loglog p instead of ¢y logp for any given P with N(P) sufficiently large.

Remark 2. Our result is reminiscent of the work of Silverman [9], which was improved by Akbary and Ghioca [1] by
removing the ¢ in the exponent. It should be noted that Silverman’s result is a statement for individual maps and does not
seem to apply directly to our problem. More specifically, the exceptional set of primes in [9] does depend on the map while
here one has to deal with a family of pairs of maps (f +a, f +b) with (a, b) on the curve V. As in other related arguments
(cf. [5]), the main ingredients in passing to residue fields are height conditions and quantitative elimination theory.
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