

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Upper bounds for dimensions of singularity categories

Bornes supérieures pour les dimensions des catégories de singularités

Hailong Dao^{a,1}, Ryo Takahashi^{b,c,2}

^a Department of Mathematics, University of Kansas, Lawrence, KS 66045-7523, USA

^b Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan

^c Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, USA

ARTICLE INFO

Article history: Received 13 July 2014 Accepted after revision 23 January 2015 Available online 25 February 2015

Presented by Claire Voisin

ABSTRACT

This paper gives upper bounds for the dimension of the singularity category of a Cohen-Macaulay local ring with an isolated singularity. One of them recovers an upper bound given by Ballard, Favero and Katzarkov in the case of a hypersurface.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Cet article donne des bornes supérieures pour la dimension de la catégorie de singularité d'un anneau local Cohen-Macaulay à singularité isolée. L'une de nos estimations redonne une borne fournie par Ballard, Favero et Katzarkov dans le cas des hypersurfaces.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Results

The notion of the dimension of a triangulated category has been introduced by Bondal, Rouquier, and Van den Bergh [4,13]. Roughly speaking, it measures the number of extensions necessary to build the category out of a single object. The singularity category $D_{sg}(R)$ of a Noetherian ring/scheme R is one of the most crucial triangulated categories. This has been introduced by Buchweitz [6] under the name of stable derived category. There are many studies on singularity categories by Orlov [9–12] in connection with the Homological Mirror Symmetry Conjecture.

It is a natural and fundamental problem to find upper bounds for the dimension of the singularity category of a Noetherian ring. In general, the dimension of the singularity category is known to be finite for large classes of excellent rings containing fields [1,13], but only a few explicit upper bounds have been found so far. The Loewy length is an upper bound for an Artinian ring [13], and so is the global dimension for a ring of finite global dimension [7,8]. Recently, an upper bound for an isolated hypersurface singularity has been given [2].

http://dx.doi.org/10.1016/j.crma.2015.01.012

E-mail addresses: hdao@math.ku.edu (H. Dao), takahashi@math.nagoya-u.ac.jp (R. Takahashi).

URLs: http://www.math.ku.edu/~hdao/ (H. Dao), http://www.math.nagoya-u.ac.jp/~takahashi/ (R. Takahashi).

The first author was partially supported by NSF grants DMS 0834050 and DMS 1104017.

 $^{^2}$ The second author was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 22740008 and by JSPS Postdoctoral Fellowships for Research Abroad (No. 22-104).

¹⁶³¹⁻⁰⁷³X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The main purpose of this paper is to give upper bounds for a Cohen-Macaulay local ring with an isolated singularity. The main result of this paper is the following theorem.

Theorem 1.1. Let (R, \mathfrak{m}, k) be a complete equicharacteristic Cohen–Macaulay local ring with k perfect.

- (1) If R is an isolated singularity, then the sum \mathfrak{N}^R of the Noether differents of R is m-primary. (2) Let I be an m-primary ideal of R contained in \mathfrak{N}^R .
- - (a) One has $D_{sg}(R) = \langle k \rangle_{(\nu(I)-\dim R+1)\ell\ell(R/I)}$. Hence there is an inequality

 $\dim \mathsf{D}_{\mathsf{sg}}(R) \le \big(\nu(I) - \dim R + 1\big)\ell\ell(R/I) - 1.$

(b) Assume that k is infinite. Then $D_{sg}(R) = \langle k \rangle_{e(I)}$, and hence one has

 $\dim \mathsf{D}_{\mathsf{sg}}(R) \leq \mathsf{e}(I) - 1.$

Here we explain the notation used in the above theorem. Let (R, m, k) be a commutative Noetherian complete equicharacteristic local ring. Let A be a Noether normalization of R, that is, a formal power series subring $k[[x_1, \ldots, x_d]]$, where the formation of R and R is a system of parameters of R. Let $R^e = R \otimes_A R$ be the enveloping algebra of R over A. Define a map $\mu : R^e \to R$ by $\mu(a \otimes b) = ab$ for $a, b \in R$. Then the ideal $\mathfrak{N}_A^R = \mu(\operatorname{Ann}_{R^e}\operatorname{Ker}\mu)$ of R is called the Noether different of R over A. We denote by \mathfrak{N}^R the sum of \mathfrak{N}_A^R , where A runs through the Noether normalizations of R. For an m-primary ideal I of R, let $\nu(I) = \dim_k(I \otimes_R k)$ be the minimal number of generators of I and $e(I) = \lim_{n \to \infty} \frac{d!}{n^d} \ell(R/I^{n+1})$ the multiplicity of I, where $\ell(R/I^{n+1})$ stands for the (usual) length of the Artinian ring R/I^{n+1} . The Loewy length of an Artinian ring Λ is denoted by $\ell\ell(\Lambda)$, that is, the minimum positive integer *n* with $(\operatorname{rad} \Lambda)^n = 0$.

Combining Theorem 1.1 with [3, Corollary 5.10], we obtain the following inequality for a complete intersection.

Corollary 1.2. Let (R, m, k) be a complete equicharacteristic local complete intersection with k perfect. Let I be an m-primary ideal of R contained in \mathfrak{N}^R . Then one has

 $\operatorname{codim} R \leq \min\{(\nu(I) - \dim R + 1)\ell\ell(R/I), e(I)\}.$

Our Theorem 1.1 yields the following result.

Corollary 1.3. Let k be a perfect field, and let $R = k[[x_1, \ldots, x_n]]/(f_1, \ldots, f_m)$ be a Cohen–Macaulay ring having an isolated singularity. Let J be the Jacobian ideal of R, namely, the ideal generated by the h-minors of the Jacobian matrix $(\frac{\partial f_i}{\partial x_i})$, where $h = ht(f_1, \ldots, f_m)$.

(1) One has $D_{sg}(R) = \langle k \rangle_{(\nu(J) - \dim R + 1)\ell\ell(R/J)}$. Hence there is an inequality $\dim D_{sg}(R) \le (\nu(J) - \dim R + 1)\ell\ell(R/J) - 1$. (2) If k is infinite, then $D_{sg}(R) = \langle k \rangle_{e(J)}$, and it holds that $\dim D_{sg}(R) \le e(J) - 1$.

Corollary 1.3 immediately recovers the following result, which is stated in [2].

Corollary 1.4 (Ballard–Favero–Katzarkov). Let k be an algebraically closed field of characteristic zero. Let $R = k[[x_1, ..., x_n]]/(f)$ be an isolated hypersurface singularity. Then $D_{sg}(R) = \langle k \rangle_{2\ell\ell(R/(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n})R)}$, and hence dim $D_{sg}(R) \le 2\ell\ell(R/(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n})R) - 1$.

As another application of Theorem 1.1, we obtain upper bounds for the dimension of the stable category CM(R) of maximal Cohen-Macaulay modules over an excellent Gorenstein ring R:

Corollary 1.5. Let R be an excellent Gorenstein equicharacteristic local ring with perfect residue field k, and assume that R is an isolated singularity. Then $\mathfrak{N}^{\widehat{R}}$ is an $\widehat{\mathfrak{m}}$ -primary ideal of the completion \widehat{R} of R. Let I be an $\widehat{\mathfrak{m}}$ -primary ideal contained in $\mathfrak{N}^{\widehat{R}}$. Put $d = \dim R$, $n = v(I), l = \ell \ell(\widehat{R}/I)$ and e = e(I).

(1) One has $\underline{CM}(R) = \langle \Omega^d k \rangle_{(n-d+1)l}$, and $\dim \underline{CM}(R) \leq (n-d+1)l-1$.

(2) If k is infinite, then $CM(R) = \langle \Omega^d k \rangle_e$, and one has dim $CM(R) \le e - 1$.

2. Proofs

This section is devoted to proving our results stated in the previous section. For the definition of the dimension of a triangulated category and related notation, we refer the reader to [13, Definition 3.2]. We denote by D(A) the derived category of an Abelian category \mathcal{A} . Let H^{*i*}X (respectively, Z^{*i*}X, B^{*i*}X) denote the *i*-th homology (respectively, cycle, boundary) of a complex X of objects of A, and set $HX = \bigoplus_{i \in \mathbb{Z}} H^i X$.

Lemma 2.1. Let A be an Abelian category and X a complex of objects of A.

(1) Let n be an integer. If $H^i X = 0$ for all i > n, then there exists an exact triangle

$$Y \to X \to H^n X[-n] \leadsto$$

in D(A) such that $\operatorname{H}^{i} Y \cong \begin{cases} 0 & (i \ge n) \\ \operatorname{H}^{i} X & (i < n). \end{cases}$ (2) Let $n \ge m$ be integers. If $\operatorname{H}^{i} X = 0$ for all i > n and i < m, then $X \in \langle \operatorname{HX} \rangle_{n-m+1}^{\operatorname{D}(A)}$.

Proof. (1) Truncating $X = (\cdots \xrightarrow{d^{i-1}} X^i \xrightarrow{d^i} X^{i+1} \xrightarrow{d^{i+1}} \cdots)$, we get complexes

$$\begin{aligned} X' &= \left(\cdots \xrightarrow{d^{n-2}} X^{n-1} \xrightarrow{d^{n-1}} Z^n X \to 0 \right) \\ Y &= \left(\cdots \xrightarrow{d^{n-2}} X^{n-1} \xrightarrow{d^{n-1}} B^n X \to 0 \right). \end{aligned}$$

There are natural morphisms $Y \xrightarrow{f} X' \xrightarrow{g} X$, where f is a monomorphism and g is a quasi-isomorphism. We have a short exact sequence $0 \to Y \xrightarrow{f} X' \to H^n X[-n] \to 0$ of complexes, which induces an exact triangle as in the assertion.

(2) Applying (1) repeatedly, for each 0 < i < n - m, we obtain an exact triangle

$$X_{j+1} \to X_j \to \mathsf{H}^{n-j} X \big[-(n-j) \big] \rightsquigarrow$$

in D(A) with $X_0 = X$ such that $H^i X_i \cong 0$ for i > n-j and $H^i X \cong H^i X$ for $i \le n-j$. Hence $X_{n-m+1} \cong 0$ in D(A), which implies that X_{n-m} is in $(H^m X)$. Inductively, we observe that $X = X_0$ belongs to $(H^m X \oplus H^{m+1} X \oplus \cdots \oplus H^n X)_{n-m+1} = (HX)_{n-m+1}$. \Box

For a commutative Noetherian ring R, we denote by mod R the category of finitely generated R-modules, and by $D^b (mod R)$ the bounded derived category of mod R. For a sequence $\mathbf{x} = x_1, \dots, x_n$ of elements of R and an R-module M, let $K(\mathbf{x}, M)$ denote the Koszul complex of \mathbf{x} on M.

Proposition 2.2. Let (R, m) be a commutative Noetherian local ring and I an m-primary ideal of R. Let $\mathbf{x} = x_1, \ldots, x_n$ be a sequence of elements of R that generates I. Then for any finitely generated R-module M one has $K(\mathbf{x}, M) \in \langle k \rangle_{(n-t+1)l}$ in $D^b \pmod{R}$, where $t = \operatorname{depth} M$ and $l = \ell \ell (R/I)$.

Proof. Set $K(\mathbf{x}, M) = K = (0 \to K^{-n} \to \cdots \to K^0 \to 0)$. By [5, Proposition 1.6.5(b)], each homology $H^i = H^i K$ is annihilated by I, and H^i is regarded as a module over R/I. There is a filtration $0 = \mathfrak{m}^l(R/I) \subseteq \cdots \subseteq \mathfrak{m}(R/I) \subseteq R/I$ of ideals of R/I. For each integer *i*, we have a filtration

$$0 = \mathfrak{m}^l H^i \subseteq \cdots \subseteq \mathfrak{m} H^i \subseteq H^i$$

of submodules of H^i , which shows $H^i \in \langle k \rangle_l$ in $D^b \pmod{R}$. We see from [5, Theorem 1.6.17(b)] that $H^i = 0$ for all i < t - nand i > 0. It follows from Lemma 2.1(2) that K is in $(\bigoplus_{i=t-n}^{0} H^i)_{n-t+1}$ in $D^b \pmod{R}$, which is contained in $\langle k \rangle_{(n-t+1)l}$.

Recall that the singularity category $D_{sg}(R)$ of a (commutative) Noetherian ring R is defined as the Verdier quotient of $D^{b}(mod R)$ by the full subcategory of perfect complexes. (A perfect complex is by definition a bounded complex of finitely generated modules.)

Proposition 2.3. Let *R* be a commutative Noetherian ring, and let *M* be a finitely generated *R*-module. Let $\mathbf{x} = x_1, \ldots, x_n$ be a sequence of elements of R such that the multiplication map $M \xrightarrow{x_i} M$ is a zero morphism in $D_{sg}(R)$ for every $1 \le i \le n$. Then M is isomorphic to a direct summand of $K(\mathbf{x}, M)$ in $D_{sg}(R)$.

Proof. By definition the Koszul complex $K(x_i, M) = (0 \to M \xrightarrow{x_i} M \to 0)$ is the mapping cone of the multiplication map $M \xrightarrow{x_i} M$, and there is an exact triangle $M \xrightarrow{x_i} M \to K(x_i, M) \rightsquigarrow$ in $D_{sg}(R)$. By assumption, we have an isomorphism $M \oplus$ $M[1] \cong \mathsf{K}(x_i, M) = \mathsf{K}(x_i, R) \otimes_R M$ in $\mathsf{D}_{sg}(R)$. We observe that

$$\begin{aligned} \mathsf{K}(\boldsymbol{x}, M) &= \mathsf{K}(x_1, R) \otimes_R \cdots \otimes_R \mathsf{K}(x_{n-1}, R) \otimes_R \left(\mathsf{K}(x_n, R) \otimes_R M\right) \\ &> \mathsf{K}(x_1, R) \otimes_R \cdots \otimes_R \mathsf{K}(x_{n-2}, R) \otimes_R \left(\mathsf{K}(x_{n-1}, R) \otimes_R M\right) \\ &\cdots \\ &> \mathsf{K}(x_1, R) \otimes_R M > M, \end{aligned}$$

where A > B means that A has a direct summand isomorphic to B in $D_{sg}(R)$. \Box

Lemma 2.4.

(1) Let \mathcal{A} be an Abelian category. Let $P = (\cdots \xrightarrow{d^{b-1}} P^b \xrightarrow{d^b} \cdots \xrightarrow{d^{a-1}} P^a \rightarrow 0)$ be a complex of projective objects of \mathcal{A} with $H^i P = 0$ for all i < b. Then one has an exact triangle

$$F \to P \to C[-b] \rightsquigarrow$$

in D(A), where $F = (0 \rightarrow P^{b+1} \xrightarrow{d^{b+1}} \cdots \xrightarrow{d^{a-1}} P^a \rightarrow 0)$ and $C = \operatorname{Coker} d^{b-1}$.

- (2) Let R be a commutative Noetherian ring.
 - (a) For any $X \in D_{sg}(R)$ there exist $M \in \text{mod } R$ and $n \in \mathbb{Z}$ such that $X \cong M[n]$ in $D_{sg}(R)$.
 - (b) Let M be a finitely generated R-module. Then for an integer $n \ge 0$ there exists an exact triangle

 $F \to M \to \Omega^n M[n] \rightsquigarrow$

in $D^b \pmod{R}$, where $F = (0 \rightarrow F^{-(n-1)} \rightarrow \cdots \rightarrow F^0 \rightarrow 0)$ is a perfect complex.

Proof. (1) There is a short exact sequence $0 \to F \to P \to Q \to 0$ of complexes, where $Q = (\cdots \xrightarrow{d^{b-2}} P^{b-1} \xrightarrow{d^{b-1}} P^b \to 0)$. Then $Q \cong C[-b]$ in D(A).

(2) The assertion (a) is immediate from (1). Setting $a = 0 \ge -n = b$ and letting *P* be a projective resolution of *M* in (1) implies (b). \Box

Recall that a commutative Noetherian ring R is called an isolated singularity if the local ring R_p is regular for every nonmaximal prime ideal p of R.

Proposition 2.5. Let *R* be a complete equicharacteristic Cohen–Macaulay local commutative ring. Then for an element $x \in \mathfrak{N}^R$ and a maximal Cohen–Macaulay *R*-module *M*, the multiplication map $M \xrightarrow{X} M$ is a zero morphism in $D_{sg}(R)$.

Proof. Lemma 2.4(2) implies that there is an exact triangle

$$F \xrightarrow{f} M \xrightarrow{g} \Omega M[1] \rightsquigarrow$$

in $D^b(\text{mod } R)$, where F is a finitely generated free R-module. By virtue of [14, Corollary 5.13], the ideal \mathfrak{N}^R annihilates $\text{Ext}^1_R(M, \Omega M) = \text{Hom}_{D^b(\text{mod } R)}(M, \Omega M[1])$. Hence gx = xg = 0 in $D^b(\text{mod } R)$, and there exists a morphism $h : M \to F$ such that $fh = (M \xrightarrow{x} M)$ in $D^b(\text{mod } R)$. Send this equality by the localization functor $D^b(\text{mod } R) \to D_{\text{sg}}(R)$, and note that $F \cong 0$ in $D_{\text{sg}}(R)$. Thus the multiplication map $M \xrightarrow{x} M$ is zero in $D_{\text{sg}}(R)$. \Box

Now we can prove the results given in the previous section.

Proof of Theorem 1.1. (1) As k is a perfect field and R is an isolated singularity, \mathfrak{N}^{R} is m-primary by [15, Lemma (6.12)].

(2) (a) Put $d = \dim R$, n = v(I), $l = \ell\ell(R/I)$ and e = e(I). We have $I = (\mathbf{x})$ for some sequence $\mathbf{x} = x_1, \ldots, x_n$ of elements in *I*. Let $X \in D_{sg}(R)$. Then, using Lemma 2.4(2), we see that $X \cong \Omega^d N[n]$ for some $N \in \mod R$ and $n \in \mathbb{Z}$. Note that $M := \Omega^d N$ is a maximal Cohen–Macaulay *R*-module. Proposition 2.2 implies that $K(\mathbf{x}, M)$ belongs to $\langle k \rangle_{(n-d+1)l}$ in $D^b(\mod R)$. Applying the localization functor $D^b(\mod R) \to D_{sg}(R)$, we have $K(\mathbf{x}, M) \in \langle k \rangle_{(n-d+1)l}$ in $D_{sg}(R)$. Since *M* is isomorphic to a direct summand of $K(\mathbf{x}, M)$ in $D_{sg}(R)$ by Propositions 2.3 and 2.5, we get $M \in \langle k \rangle_{(n-d+1)l}$ in $D_{sg}(R)$. Therefore $D_{sg}(R) = \langle k \rangle_{(n-d+1)l}$ follows.

(b) Since *k* is infinite, there exists a parameter ideal *Q* of *R* that is a reduction of *I* (cf. [5, Corollary 4.6.10]). Then we have $\nu(Q) = \dim R$, and it holds that

 $\left(\nu(Q) - \dim R + 1\right)\ell\ell(R/Q) = \ell\ell(R/Q) \le \ell(R/Q) = e(Q) = e(I).$

The assertion is a consequence of (a). \Box

Proof of Corollary 1.3. We see from [14, Lemmas 4.3, 5.8 and Propositions 4.4, 4.5] that J is contained in \mathfrak{N}^R and defines the singular locus of R. Hence the assertion follows from Theorem 1.1. \Box

Proof of Corollary 1.5. We notice that \widehat{R} is an isolated singularity. Suppose that $D_{sg}(\widehat{R}) = \langle k \rangle_r$ holds for some $r \ge 0$. Then it follows from [6, Theorem 4.4.1] that $\underline{CM}(\widehat{R}) = \langle \Omega_{\widehat{R}}^d k \rangle_r = \langle \widehat{\Omega_R^d} k \rangle_r$. The proof of [1, Theorem 5.8] shows that $\underline{CM}(R) = \langle \Omega_R^d k \rangle_r$. Thus, Theorem 1.1 completes the proof. \Box

Acknowledgements

The authors thank Luchezar Avramov and Srikanth Iyengar for their valuable comments. The authors also thank the referee for his/her useful suggestions.

References

- [1] T. Aihara, R. Takahashi, Generators and dimensions of derived categories, Commun. Algebra (2015), in press, arXiv:1106.0205v3.
- [2] M. Ballard, D. Favero, L. Katzarkov, Orlov spectra: bounds and gaps, Invent. Math. 189 (2) (2012) 359-430.
- [3] P.A. Bergh, S.B. Iyengar, H. Krause, S. Oppermann, Dimensions of triangulated categories via Koszul objects, Math. Z. 265 (4) (2010) 849-864.
- [4] A. Bondal, M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (1) (2003) 1–36, 258.
- [5] W. Bruns, J. Herzog, Cohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, UK, 1998.
- [6] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, Preprint, http://hdl.handle.net/1807/16682, 1986.
- [7] J.D. Christensen, Ideals in triangulated categories: phantoms, ghosts and skeleta, Adv. Math. 136 (2) (1998) 284-339.
- [8] H. Krause, D. Kussin, Rouquier's theorem on representation dimension, in: Trends in Representation Theory of Algebras and Related Topics, in: Contemp. Math., vol. 406, 2006, pp. 95–103.
- [9] D.O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 246 (3) (2004) 227-248.
- [10] D.O. Orlov, Triangulated categories of singularities, and equivalences between Landau–Ginzburg models, Sb. Math. 197 (11–12) (2006) 1827–1840.
- [11] D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, in: Algebra, Arithmetic, and Geometry: In Honor of Yu.I. Manin. Vol. II, in: Progress in Mathematics, vol. 270, Birkhäuser Boston, Inc., Boston, MA, USA, 2009, pp. 503–531.
- [12] D. Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (1) (2011) 206–217.
- [13] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008) 193-256.
- [14] H.-J. Wang, On the Fitting ideals in free resolutions, Mich. Math. J. 41 (3) (1994) 587-608.
- [15] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990.