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This paper gives upper bounds for the dimension of the singularity category of a Cohen–
Macaulay local ring with an isolated singularity. One of them recovers an upper bound 
given by Ballard, Favero and Katzarkov in the case of a hypersurface.
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r é s u m é

Cet article donne des bornes supérieures pour la dimension de la catégorie de singularité 
d’un anneau local Cohen–Macaulay à singularité isolée. L’une de nos estimations redonne 
une borne fournie par Ballard, Favero et Katzarkov dans le cas des hypersurfaces.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Results

The notion of the dimension of a triangulated category has been introduced by Bondal, Rouquier, and Van den Bergh 
[4,13]. Roughly speaking, it measures the number of extensions necessary to build the category out of a single object. The 
singularity category Dsg(R) of a Noetherian ring/scheme R is one of the most crucial triangulated categories. This has been 
introduced by Buchweitz [6] under the name of stable derived category. There are many studies on singularity categories by 
Orlov [9–12] in connection with the Homological Mirror Symmetry Conjecture.

It is a natural and fundamental problem to find upper bounds for the dimension of the singularity category of a Noethe-
rian ring. In general, the dimension of the singularity category is known to be finite for large classes of excellent rings 
containing fields [1,13], but only a few explicit upper bounds have been found so far. The Loewy length is an upper bound 
for an Artinian ring [13], and so is the global dimension for a ring of finite global dimension [7,8]. Recently, an upper bound 
for an isolated hypersurface singularity has been given [2].
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The main purpose of this paper is to give upper bounds for a Cohen–Macaulay local ring with an isolated singularity. 
The main result of this paper is the following theorem.

Theorem 1.1. Let (R, m, k) be a complete equicharacteristic Cohen–Macaulay local ring with k perfect.

(1) If R is an isolated singularity, then the sum NR of the Noether differents of R is m-primary.
(2) Let I be an m-primary ideal of R contained in NR .

(a) One has Dsg(R) = 〈k〉(ν(I)−dim R+1)��(R/I) . Hence there is an inequality

dim Dsg(R) ≤ (
ν(I) − dim R + 1

)
��(R/I) − 1.

(b) Assume that k is infinite. Then Dsg(R) = 〈k〉e(I) , and hence one has

dim Dsg(R) ≤ e(I) − 1.

Here we explain the notation used in the above theorem. Let (R, m, k) be a commutative Noetherian complete equichar-
acteristic local ring. Let A be a Noether normalization of R , that is, a formal power series subring k[[x1, . . . , xd]], where 
x1, . . . , xd is a system of parameters of R . Let Re = R ⊗A R be the enveloping algebra of R over A. Define a map μ : Re → R
by μ(a ⊗ b) = ab for a, b ∈ R . Then the ideal NR

A = μ(AnnRe Kerμ) of R is called the Noether different of R over A. We 
denote by NR the sum of NR

A , where A runs through the Noether normalizations of R . For an m-primary ideal I of R , let 
ν(I) = dimk(I ⊗R k) be the minimal number of generators of I and e(I) = limn→∞ d!

nd �(R/In+1) the multiplicity of I , where 
�(R/In+1) stands for the (usual) length of the Artinian ring R/In+1. The Loewy length of an Artinian ring Λ is denoted by 
��(Λ), that is, the minimum positive integer n with (radΛ)n = 0.

Combining Theorem 1.1 with [3, Corollary 5.10], we obtain the following inequality for a complete intersection.

Corollary 1.2. Let (R, m, k) be a complete equicharacteristic local complete intersection with k perfect. Let I be an m-primary ideal of 
R contained in NR . Then one has

codim R ≤ min
{(

ν(I) − dim R + 1
)
��(R/I),e(I)

}
.

Our Theorem 1.1 yields the following result.

Corollary 1.3. Let k be a perfect field, and let R = k[[x1, . . . , xn]]/( f1, . . . , fm) be a Cohen–Macaulay ring having an isolated singular-
ity. Let J be the Jacobian ideal of R, namely, the ideal generated by the h-minors of the Jacobian matrix ( ∂ f i

∂x j
), where h = ht( f1, . . . , fm).

(1) One has Dsg(R) = 〈k〉(ν( J )−dim R+1)��(R/ J ) . Hence there is an inequality dim Dsg(R) ≤ (ν( J ) − dim R + 1)��(R/ J ) − 1.
(2) If k is infinite, then Dsg(R) = 〈k〉e( J ) , and it holds that dim Dsg(R) ≤ e( J ) − 1.

Corollary 1.3 immediately recovers the following result, which is stated in [2].

Corollary 1.4 (Ballard–Favero–Katzarkov). Let k be an algebraically closed field of characteristic zero. Let R = k[[x1, . . . , xn]]/( f ) be 
an isolated hypersurface singularity. Then Dsg(R) = 〈k〉2��(R/(

∂ f
∂x1

,...,
∂ f
∂xn

)R)
, and hence dim Dsg(R) ≤ 2��(R/(

∂ f
∂x1

, . . . , ∂ f
∂xn

)R) − 1.

As another application of Theorem 1.1, we obtain upper bounds for the dimension of the stable category CM(R) of 
maximal Cohen–Macaulay modules over an excellent Gorenstein ring R:

Corollary 1.5. Let R be an excellent Gorenstein equicharacteristic local ring with perfect residue field k, and assume that R is an isolated 
singularity. Then NR̂ is an m̂-primary ideal of the completion ̂R of R. Let I be an m̂-primary ideal contained in NR̂ . Put d = dim R, 
n = ν(I), l = ��(R̂/I) and e = e(I).

(1) One has CM(R) = 〈Ωdk〉(n−d+1)l , and dim CM(R) ≤ (n − d + 1)l − 1.
(2) If k is infinite, then CM(R) = 〈Ωdk〉e , and one has dim CM(R) ≤ e − 1.

2. Proofs

This section is devoted to proving our results stated in the previous section. For the definition of the dimension of a 
triangulated category and related notation, we refer the reader to [13, Definition 3.2]. We denote by D(A) the derived 
category of an Abelian category A. Let Hi X (respectively, Zi X , Bi X) denote the i-th homology (respectively, cycle, boundary) 
of a complex X of objects of A, and set HX = ⊕

i∈Z Hi X .
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Lemma 2.1. Let A be an Abelian category and X a complex of objects of A.

(1) Let n be an integer. If Hi X = 0 for all i > n, then there exists an exact triangle

Y → X → Hn X[−n] �
in D(A) such that Hi Y ∼=

{
0 (i≥n)

Hi X (i<n).

(2) Let n ≥ m be integers. If Hi X = 0 for all i > n and i < m, then X ∈ 〈HX〉D(A)
n−m+1 .

Proof. (1) Truncating X = (· · · di−1−−−→ Xi di−→ Xi+1 di+1−−−→ · · ·), we get complexes

X ′ = (· · · dn−2−−→ Xn−1 dn−1−−→ Zn X → 0
)
,

Y = (· · · dn−2−−→ Xn−1 dn−1−−→ Bn X → 0
)
.

There are natural morphisms Y
f−→ X ′ g−→ X , where f is a monomorphism and g is a quasi-isomorphism. We have a short 

exact sequence 0 → Y
f−→ X ′ → Hn X[−n] → 0 of complexes, which induces an exact triangle as in the assertion.

(2) Applying (1) repeatedly, for each 0 ≤ j ≤ n − m, we obtain an exact triangle

X j+1 → X j → Hn− j X
[−(n − j)

]
�

in D(A) with X0 = X such that Hi X j ∼= 0 for i > n − j and Hi X ∼= Hi X for i ≤ n − j. Hence Xn−m+1 ∼= 0 in D(A), which implies 
that Xn−m is in 〈Hm X〉. Inductively, we observe that X = X0 belongs to 〈Hm X ⊕ Hm+1 X ⊕· · ·⊕ Hn X〉n−m+1 = 〈HX〉n−m+1. �

For a commutative Noetherian ring R , we denote by mod R the category of finitely generated R-modules, and by 
Db(mod R) the bounded derived category of mod R . For a sequence x = x1, . . . , xn of elements of R and an R-module M , 
let K(x, M) denote the Koszul complex of x on M .

Proposition 2.2. Let (R, m) be a commutative Noetherian local ring and I an m-primary ideal of R. Let x = x1, . . . , xn be a sequence 
of elements of R that generates I . Then for any finitely generated R-module M one has K(x, M) ∈ 〈k〉(n−t+1)l in Db(mod R), where 
t = depth M and l = ��(R/I).

Proof. Set K(x, M) = K = (0 → K −n → ·· · → K 0 → 0). By [5, Proposition 1.6.5(b)], each homology Hi = Hi K is annihilated 
by I , and Hi is regarded as a module over R/I . There is a filtration 0 = ml(R/I) � · · · �m(R/I) � R/I of ideals of R/I . For 
each integer i, we have a filtration

0 = ml Hi ⊆ · · · ⊆ mHi ⊆ Hi

of submodules of Hi , which shows Hi ∈ 〈k〉l in Db(mod R). We see from [5, Theorem 1.6.17(b)] that Hi = 0 for all i < t − n
and i > 0. It follows from Lemma 2.1(2) that K is in 〈⊕0

i=t−n Hi〉n−t+1 in Db(mod R), which is contained in 〈k〉(n−t+1)l . �
Recall that the singularity category Dsg(R) of a (commutative) Noetherian ring R is defined as the Verdier quotient of 

Db(mod R) by the full subcategory of perfect complexes. (A perfect complex is by definition a bounded complex of finitely 
generated modules.)

Proposition 2.3. Let R be a commutative Noetherian ring, and let M be a finitely generated R-module. Let x = x1, . . . , xn be a sequence 
of elements of R such that the multiplication map M xi−→ M is a zero morphism in Dsg(R) for every 1 ≤ i ≤ n. Then M is isomorphic to 
a direct summand of K(x, M) in Dsg(R).

Proof. By definition the Koszul complex K(xi, M) = (0 → M
xi−→ M → 0) is the mapping cone of the multiplication map 

M
xi−→ M , and there is an exact triangle M

xi−→ M → K(xi, M) � in Dsg(R). By assumption, we have an isomorphism M ⊕
M[1] ∼= K(xi, M) = K(xi, R) ⊗R M in Dsg(R). We observe that

K(x, M) = K(x1, R) ⊗R · · · ⊗R K(xn−1, R) ⊗R
(
K(xn, R) ⊗R M

)
� K(x1, R) ⊗R · · · ⊗R K(xn−2, R) ⊗R

(
K(xn−1, R) ⊗R M

)
· · ·
� K(x1, R) ⊗R M � M,

where A � B means that A has a direct summand isomorphic to B in Dsg(R). �
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Lemma 2.4.

(1) Let A be an Abelian category. Let P = (· · · db−1−−→ P b db−→ · · · da−1−−→ P a → 0) be a complex of projective objects of A with Hi P = 0
for all i < b. Then one has an exact triangle

F → P → C[−b]�
in D(A), where F = (0 → P b+1 db+1−−→ · · · da−1−−→ P a → 0) and C = Coker db−1 .

(2) Let R be a commutative Noetherian ring.
(a) For any X ∈ Dsg(R) there exist M ∈ mod R and n ∈ Z such that X ∼= M[n] in Dsg(R).
(b) Let M be a finitely generated R-module. Then for an integer n ≥ 0 there exists an exact triangle

F → M → Ωn M[n] �
in Db(mod R), where F = (0 → F −(n−1) → ·· · → F 0 → 0) is a perfect complex.

Proof. (1) There is a short exact sequence 0 → F → P → Q → 0 of complexes, where Q = (· · · db−2−−−→ P b−1 db−1−−−→ P b → 0). 
Then Q ∼= C[−b] in D(A).

(2) The assertion (a) is immediate from (1). Setting a = 0 ≥ −n = b and letting P be a projective resolution of M in (1) 
implies (b). �

Recall that a commutative Noetherian ring R is called an isolated singularity if the local ring Rp is regular for every 
nonmaximal prime ideal p of R .

Proposition 2.5. Let R be a complete equicharacteristic Cohen–Macaulay local commutative ring. Then for an element x ∈NR and a 
maximal Cohen–Macaulay R-module M, the multiplication map M x−→ M is a zero morphism in Dsg(R).

Proof. Lemma 2.4(2) implies that there is an exact triangle

F
f−→ M

g−→ ΩM[1]�
in Db(mod R), where F is a finitely generated free R-module. By virtue of [14, Corollary 5.13], the ideal NR annihilates 
Ext1R(M, ΩM) = HomDb(mod R)(M, ΩM[1]). Hence gx = xg = 0 in Db(mod R), and there exists a morphism h : M → F such 
that f h = (M x−→ M) in Db(mod R). Send this equality by the localization functor Db(mod R) → Dsg(R), and note that F ∼= 0
in Dsg(R). Thus the multiplication map M x−→ M is zero in Dsg(R). �

Now we can prove the results given in the previous section.

Proof of Theorem 1.1. (1) As k is a perfect field and R is an isolated singularity, NR is m-primary by [15, Lemma (6.12)].
(2) (a) Put d = dim R , n = ν(I), l = ��(R/I) and e = e(I). We have I = (x) for some sequence x = x1, . . . , xn of elements 

in I . Let X ∈ Dsg(R). Then, using Lemma 2.4(2), we see that X ∼= Ωd N[n] for some N ∈ mod R and n ∈ Z. Note that M := Ωd N
is a maximal Cohen–Macaulay R-module. Proposition 2.2 implies that K(x, M) belongs to 〈k〉(n−d+1)l in Db(mod R). Applying 
the localization functor Db(mod R) → Dsg(R), we have K(x, M) ∈ 〈k〉(n−d+1)l in Dsg(R). Since M is isomorphic to a direct 
summand of K(x, M) in Dsg(R) by Propositions 2.3 and 2.5, we get M ∈ 〈k〉(n−d+1)l in Dsg(R). Therefore Dsg(R) = 〈k〉(n−d+1)l
follows.

(b) Since k is infinite, there exists a parameter ideal Q of R that is a reduction of I (cf. [5, Corollary 4.6.10]). Then we 
have ν(Q ) = dim R , and it holds that(

ν(Q ) − dim R + 1
)
��(R/Q ) = ��(R/Q ) ≤ �(R/Q ) = e(Q ) = e(I).

The assertion is a consequence of (a). �
Proof of Corollary 1.3. We see from [14, Lemmas 4.3, 5.8 and Propositions 4.4, 4.5] that J is contained in NR and defines 
the singular locus of R . Hence the assertion follows from Theorem 1.1. �
Proof of Corollary 1.5. We notice that R̂ is an isolated singularity. Suppose that Dsg(R̂) = 〈k〉r holds for some r ≥ 0. Then it 

follows from [6, Theorem 4.4.1] that CM(R̂) = 〈Ωd
R̂

k〉r = 〈Ω̂d
Rk〉r . The proof of [1, Theorem 5.8] shows that CM(R) = 〈Ωd

Rk〉r . 
Thus, Theorem 1.1 completes the proof. �
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