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where H(z, t) is the generating function of the second kind of Chebyshev polynomials. The
Fekete-Szegd problem in the class is also solved.
© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

RESUME

Notre propos dans cette Note est d'étudier quelques propriétés de base des polynomes
de Chebyshev habituels en théorie des fonctions analytiques. Nous considérons plusieurs
caractéristiques fondamentales pour les classes H(t), t € (1/2, 1] de fonctions f satisfaisant
f(0)=0, f'(0)=1, analytiques dans le disque unité ouvert U= {z:|z| < 1} et telles que
pour z € U, on ait :

zf"(2)

f'@
oit H(z,t)=1/(1 — 2tz + z%) désigne la fonction génératrice des polynomes de Chebyshev
de seconde espéce. Nous résolvons également le probléme de Fekete-Szego pour les classes

considérées.
© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Let H denote the class of analytic functions in the unit disc U= {z: |z| < 1} on the complex plane C. Also, let A denote
the subclass of H comprising of functions f normalized by f(0) =0, f’(0) =1, and let S C A denote the class of functions
that are univalent in U. We say that f is subordinate to F in U, written as f < F, if and only if f(z) = F(w(z)) for some
holomorphic function w such that w(0) =0 and |w(z)| <1 for all z€ U. A function f € A maps U onto a starlike domain
with respect to wg =0 if and only if

zf'(z) 11—z
<
f@ 1+z
It is well known that if a function f € A satisfies (1), then f is univalent and starlike in U. Let 8 € [0, 1). A function f € H
is said to be convex of order g if

zf"(z) 1—-(1-2B8)z
1 < zeU). 2
+ o 112 ( ) (2)
The set of all functions f € A that are starlike univalent in U will be denoted by S7. We denote the set of all functions
f € A that are convex of order 8 by CV (8). In particular, CV :=CV (0) is the well-known class of convex functions.

(ze ). (1)

Definition 1. The function f € .4 belongs to the class H(t), t € (1/2, 1], if it satisfies the condition:

zf" (2) 1
1 H(iz,t):=—— (zel). 3
+f,(z)< (z,0) PR T ( ) (3)
We note that if t = cosca, o € (—m /3, /3), then
H(z,t) = ! (4)
S —2cosoez+z2
sin((n + 1o
_1+Z @+ DD (e, (5)
sina
Thus
H(z,t)=142cosaz+ (3 cos® a — sin? oe)z2 4.+ (zeU). (6)
Following [16], we write H(z,t) =1+ U1 (t)z+ U ()2 +--- (z€U, te (—1,1)), where Up_1 = % (neN) are
the Chebyshev polynomials of the second kind. Also, it is known that Uj (t) = 2tU,—1(t) — Up—2(t),
and Uq(t) =2t, Up(t) =4t> —1, Us(t) =8t> —4t, Uy(t) =16t —12t>+1,.... (7)

The Chebychev polynomials T,(t), —1 <t <1, of the first kind have the generating function of the form:

ZTn(t)z = THZ (ze ).

However, the Chebychev polynomials of the first kind T, (t) and of the second kind U,(t) are well connected by the following
relationships:
dTn(t)

dt

In this paper, we aim at investigating the geometric properties of the class 7{(t). The inter-relationships between the Cheby-
shev polynomials of first and second kinds given by (8) above can be used to study the corresponding properties of the
Chebychev polynomials of the first kind. The Fekete-Szegd problem in the class is also solved.

=nUp—1(6), Ta(t) = Un(t) — tUn—1(t), 2Tn(t) = Un(t) — Un—2(0). (8)

2. Basic results

In this section, we present some basic results for the class of analytic functions defined and introduced in Section 1
above.

Theorem 2. For the function H(z, t), the following inequality holds:

|H(z,t)| >

1
2+ D) (ze ). 9)
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Proof. It is sufficient to consider [H(z,t)| on the boundary dH(U,¢t) = {H(e?,t) : @ €[0,2m)}, cose #t. Let us denote
Re{H(e'?, 1)} by x(¢,t) and Im {H(e'?,t)} by y(¢,t). Then after simple calculations, we get

(. 1) = 0s @ (©.1) = sing
¢.H= 2(cosg —t)’ yie.t) = 2(cosg —t)°
Thus, we can write
_ cos?p +sin’ g 1

. 2
HEe,p| =
’ C ’t)) 4(t—cosp)? Attt 12

which establishes (9). O
The following corollary is a simple consequence of Theorem 2.

Corollary 3. If f € H(t), then

zf"(2)
1
‘ * '@

(zeU). (10)

2(t+1)
Theorem 4. The function (6) is univalent in |z| < t.

Proof. We consider the equality
1 _ 1
1-2tz1+22  1-2z+725

which yields (z1 — z2)(z1 + 22 — 2t) =0. If now |z1| <t and |z3| < t, then z1 + z — 2t # 0, and this proves the result. O

Usually, the new classes of analytic functions are defined by the condition of the type (3) with the univalent functions
on the right-hand side. However, the function H(z,t) is not univalent in the unit disc and this allows us only limited
considerations of the class #(t). For similar other classes as defined by means of (3), with non-univalent functions occurring
on the right-hand side, one may refer to [3,4,6,14,15]. It is worth observing that if |z| <1 and t € (1/2, 1], then H(z, t) takes
its values in the set Q(t) = {x +iy: t2(x* + y%) > (x — 1/2)?}. On the other hand, if t = 1, then the boundary of (1)
becomes the parabola:

3{9(1)}:{x+1y:y2:1/4—x], (11)

in which the focus is at the origin with the vertex at 1/4 and the directrix given by x = 1/2, see Fig. 1. Consequently,
H(U,t) lies on the right-hand side of this parabola.
Now if 1/2 <t < 1, then the boundary of Q(t) is the left branch of the hyperbola of the form:

Q) = {x—i— iy: (2(r2 “Dx+ 1)2 Fa(? —1)y? = tz} . (12)

The hyperbola (12) has the right-hand side focus at —1/(t2 — 1) and the vertex of the left branch at 1/(2(t +1)). If k> 1,
then H(z,t) takes its values on the right-hand side of this hyperbola (12), see Fig. 2.

Therefore, if f € H(t), then 1+ zf”(z)/f'(z) lies in the set of points whose distance from the origin multiplied by t is
greater than its distance from the directrix w = 1/2. In this way, we have proved the following theorem.

Theorem 5. If a function f belongs to the class H(t), t € (1/2, 1], then it satisfies the condition

2f"(2) 2f"(2) } 1
'@ f'(2) 2

t (ze ). (13)

b

Let us recall here the following classes of k-uniformly convex and of k-starlike functions:

k—ucv::{feS:k Z}c/((zz)) < Re 1+Z}C,((ZZ))} (ze[U;0§k<oo)},
k—ST::{feS:k Zj{(iz))—l‘<me{zj{((zz))} (zeIU;O§k<oo)}.

The class k-U/CV was introduced by Kanas and Wisniowska [9], where its geometric definition and connections with
the conic domains were considered. The class k-L/CV was defined geometrically as a subclass of univalent functions that
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Fig. 1. Q(1). Fig.2. Q(O), 1/2 <t <1.

map each circular arc contained in the unit disk U with center &,|§| <k (0 <k < oco) onto a convex arc. The notion
of k-uniformly convex function is a natural extension of the classical convexity. Observe that, if k = 0, then the center &
is the origin and the class k-U/CV reduces to the class of convex univalent functions CV. Moreover, this class for k =1,
corresponds to the class of uniformly convex functions Z/CV introduced by Goodman [5], which was studied extensively by
Renning [13], and independently also by Ma and Minda [12]. The class k-S7T is related to the class k-L/CV by means of the
well-known Alexander equivalence between the usual classes of convex CV and starlike S7 functions (see also the works
[1,8,10,7,12,13] concerning further developments involving each one of the classes k-/CV and k-ST). The class k-S7 has
the geometric characterization (see [11]) that if f € k-S7T, then it maps a lens-like domain U(¢,r) N U (0, R) onto a starlike
domain, where U(¢,r) is a disk of radius r with center ¢, and 0 < R <1, [¢| <k, r>+/|¢|> + R2.

Theorem 6. If f € H(t) has the form f(z) =z + a22° + a3z + --- (z € 1),

4 1
th <t, <t ——. 14
en laz| < |<13|_3 5 (14)
8t2 —1—6ut?| /6, ¢, u2l
Moreover, ’a - a2’ < { | K ’ ’ (15)
e e [ e [, pal,
where 82 —2t—1 8242t —1
M1 = 602 s H2 = 602 .
All of the inequalities are sharp.
Proof. From (3), we have
f'@+2f"@ =@ (1+U100@ + U200 @) + U300 @) +---), (16)

for some holomorphic function w such that w(0) =0 and |w(2)| < 1, for all ze U. The equality (16) with w(z) =z defines
the function f such that f/(z) + zf"(z) = f'(2)(1 + U1(t)z+ Uy (t)z> + Us(t)z®> + - --), and by using (7), we obtain that

fFoy=z+ %Uﬂt)zz + é (Uz(t) + U%(t)) By =zt + <4t2/3 — 1/6) By (17)
is in the class (t). It is fairly well-known that if |@(z)| = |c1z+ 222 + 322 +---| <1, z€T,
then |cj| <1, forall jeN. (18)
and ’cz—ucﬂfmax{l,“u}, forall u € C. (19)

It follows from (16) that

<U1(t)cz + {Uz(t) + U%(t)} c%) . (20)

[0

1
a; = 5U1(f)61, a3 =
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Applying (7), (18) and (20), we obtain the first inequality in (16). Furthermore, from (19) and (20), we have

5 1
jas — pa3| = U1 ©

U (t) 3
2+ (Uz(t) + U () — 7’“‘u1<t>> c?

Ui(t) 1
< max 1, Ua(t) + U3 (t)——U1(t)
Ui (t)
t 8t2 — 1 — 6ut?
= -—max{1, i o .
3 2t
Because t > 0, we have
8t2—1—6,ut2<1© 8t2—2t—1< <8r2+2t—1 o (o < < )
2t = 62 =T e Hr=p=IH

and so we obtain (15). If we take x4 =0 in (15), then we obtain the second inequality (14). For function T given by (17),
we have |ap| =t, |as| =4t?/3 — 1/6, which shows that the inequalities (14) are sharp. Moreover, in this case

8t2 — 1 — 6ut?
6

)

2
—

which shows the sharpness of (15) for u ¢ [ft1, 2]. Furthermore, (16) with w(z) = z> generate the function T € H(t) such
that f(z) =z+ r23 + ---. It shows the sharpness of (15) for p € [w1, u2]. O

Theorem 6 is the solution of the Fekete-Szegd problem in 7 (t). For a general solution of the Fekete-Szegd problem in
some classes, see [2].

Theorem 7. A function f belongs to the class H(t) if and only if there exists a function q € H, q(z) < H(z, t) such that

f(z):/ exp/%du dw. (21)

0 0

Proof. If a function f satisfies (3), then there exists a function w(z) with w(0) =0 and |w(z)| < 1, for all z € U such that

1+ ZJ{/((ZZ)) =H(w(2),t) :=q(2). (22)
Now q(z) < H(z,t) and the equality (22) readily gives
flog f' (0} = 12~ 1. (23)
z

which upon integration yields (21). Conversely, some easy calculations show that if f satisfies (21), then f belongs to the
class H(t), and this completes the proof. O

Theorem 7 provides us a method of finding the members of the class #(t). Let us find a function in H(t) that corre-
sponds to the function H(z,t) in the formula (21). Applying the formula (4) on H(z,t), with t = cos«, we obtain from (21):

?(z){/ exp/Mdu dw
0

u

V4 w 2
cosa — U
/ exp/ du ¢ dw
1 —2cosou + u?
0
z w e21ot e—2ia
/ exp/ — - du ¢y dw
2isina \ 1—el%y 1 —e-ioy
0 0

eia

e—ia . .
exp 1 —— log (1 —e ¢ w) — ——log (1 —e@ W) dw
2isinax 2isinox

Il
OF\N
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e /2isina)

(1—e@w)
= N dw. (24)
/ )e‘“/(21 sino)

0 (1—elow

On the other hand, from (21) and (5) we also have the representation given by

[ee}

log {F'()} =)

n=1

sin((n + 1)a)zn
nsina '

The few first coefficients of 7’ are given in (17).

Theorem 8. Let n > 2 be a positive integer. If the function g(z) =z + cz" (z € U) is in the class H(t), then

2t +1

el < m (25)

Proof. Let a function G be defined by

2g"(2)  1+n%cz"!

G(z):=1 =
@ + g'(2) 14+nczt1

(zeU).

The function G is analytic in U for n|c| <1, but if n|c| =1, then G(z) becomes 0 in the unit disc, so we may assume that
n|c| <1, and thus G maps the unit disc onto the disc symmetric with respect to the real axis lying between the points:
1—n?c| 1+n?|c|
XI=———, Xp=—.
1—njc| 1+ njc|
If the function g is in the class #(t), then G(U) lies in the domain indicated in Fig. 1, or in Fig. 2. Therefore, in view of
Theorem 2, if g is in the class H(t), then
1 1 —n?c|
< .
2(t+1) 1 —njc|

Since n|c| < 1, the inequality gives the desired assertion (25). O

It easy to observe from Corollary 3 and Figs. 1 and 2 that if f is convex of order at least 1/(2t + 2), then f is in the
class H(t). However, the convex function h(z) = z+2z"/n? is not in the class #(t) because it does not satisfy (25). Therefore,
CY ¢ H(t) for all t € (1/2,1]. Also, ST ¢ H(t) for all t € (1/2, 1], because the Koebe function z/(1 — z)> does not satisfy
the condition (3).
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