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Let (D, 0) ⊂ (C2, 0) be a plane curve germ defined by a reduced equation f . We prove 
that a fractional ideal I of D satisfies a symmetry property with its dual, and then 
apply it to study the behavior of the module of logarithmic residues of D in equisingular 
deformations.
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r é s u m é

Soit (D, 0) ⊂ (C2, 0) un germe de courbe plane défini par une équation réduite f . On 
démontre qu’un idéal fractionnaire I de D vérifie une propriété de symétrie avec son 
dual, et on applique ce résultat à l’étude du comportement du module des résidus 
logarithmiques de D dans le cas de déformations équisingulières.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (D, 0) ⊆ (C2, 0) be a plane curve germ defined by a reduced equation f ∈ C{x, y}, with the ring of functions OD :=
C{x, y}/( f ). Let us denote by OD̃ = ⊕p

i=1 C{ti} its normalization, where p is the number of irreducible components of D , 
and Q (OD) = ⊕p

i=1 C{ti} 
[

1
ti

]
its total ring of fractions.

The normalization gives a parameterization ϕi(ti) =
(
xi(ti), yi(ti)

)
of each irreducible component of D; therefore, for 

a non-zero divisor g ∈ Q (OD), we can define a valuation vali(g) along Di as the order in ti of g ◦ ϕi . The element 
val(g) = (

val1(g), . . . , valp(g)
) ∈ Z

p is called the value of g . Then, for a fractional ideal I ⊆ Q (OD), that is to say a finite 
OD -submodule that contains a non-zero divisor, we define val(I) = {val(g); g ∈ I non-zero divisor} ⊆ Z

p .
For an irreducible plane curve, the conductor is the minimal c with c +N ⊆ val(OD). It is well known that the semigroup 

val(OD) satisfies the following property (see [3, Exc. 5.2.25]):

v ∈ val(OD) ⇐⇒ c − v − 1 /∈ val(OD) (1)
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For reducible plane curves, an analogous property of val(OD) is proved in [5]. Our main Theorem 2.4 is a generalization 
of this symmetry to fractional ideals I ⊆OD . We then apply it to the Jacobian ideal and the module of logarithmic residues 
in order to study their behavior in equisingular deformations.

2. Preliminaries

As in [5], let us define the following sets.
Let M ⊆ Z

p and v ∈ Z
p . For i ∈ {1, . . . , p}, we define:

�i(v,M) = {α ∈ M; αi = vi and ∀ j 
= i,α j > v j}
and �(v, M) = ⋃p

i=1 �i(v, M). We consider the partial product order on Zp , so that for α, β ∈ Z
p , inf(α, β) =(

min(α1, β1), . . . , min(αp, βp)
)
. We set α − 1 = (α1 − 1, . . . , αp − 1).

We denote by CD the conductor ideal of D , which is equal to AnnODOD̃/OD . There exists a γ ∈ N
p , called the conductor, 

such that CD = tγOD̃ , where tγ =
(

tγ1
1 , . . . , t

γp
p

)
. Similarly, for a fractional ideal I , we denote by CI = AnnODOD̃/I , and 

ν ∈ Z
p the “conductor of I” defined by CI = tνOD̃ .

The two following properties will be useful (see [5, 1.1.2 and 1.1.3]).

Proposition 2.1. For a fractional ideal I ⊆ Q (OD), if v, v ′ ∈ val(I), then inf(v, v ′) ∈ val(I).

Proposition 2.2. Let v 
= v ′ ∈ val(I). If there exists i ∈ {1, . . . , p} such that vi = v ′
i , then there exists v ′′ ∈ val(I) such that v ′′

i > vi , 
and for j 
= i, v ′′

j � min(v j, v ′
j) with equality if v j 
= v ′

j .

We will also need the following result, which is in fact a consequence of the previous ones:

Proposition 2.3. Let α ∈ Z
p . Assume that all v � α are in val(I). Then an element v ∈ Z

p is in val(I) if and only if inf(v, α) ∈ val(I).

Proof. For the implication ⇐, we use Proposition 2.2 several times, starting with α and inf(v, α) in order to obtain an 
element v ′ ∈ val(I) such that v ′

i = vi if vi < αi , and v ′
i � vi otherwise. We then use Proposition 2.1 with v ′ and an element 

β � α satisfying βi = vi if vi � αi . �
Our main result is the following generalization of Theorem 2.8 of [5], where I∨ stands for the OD -dual of I , namely, 

I∨ = HomOD (I, OD) 
 {m ∈ Q (OD); mI ⊆OD}:

Theorem 2.4. For a fractional ideal I ⊆OD , v ∈ val(I∨) if and only if �(γ − v − 1, I) = ∅.

3. Proof of the main theorem

Let us prove the first implication ⇒. Let v ∈ val(I∨) and assume that �(γ − v − 1, I) 
=∅. Let w ∈ �(γ − v − 1, I). Then, 
by duality, we obtain v + w ∈ val(OD). In fact, v + w ∈ �(γ − 1, OD), which is impossible from Corollary 1.9 of [5], whose 
statement is �(γ − 1, OD) = ∅. Hence the first implication.

The implication ⇐ is more subtle, and needs more preparation. With the first implication, we can define a set V ⊆ Z
p

by V = {v ∈ Z
p; �(γ − v − 1, I) = ∅}. It contains val(I∨), but it could be bigger. In particular, it is not obvious that V is 

the set of values of a OD -module.
In [5], a way to compute the dimension of some quotients from the values is given. Let J ⊆ Q (OD) be a fractional ideal, 

and α ∈ Z
p . We define �(α, J ) = dimC J/{g ∈ J , val(g) � α}.

Let (e1, . . . , ep) denote the canonical basis of Zp . For M ⊆ Z
p and v ∈ Z

p , let

	i(v,M) = {α ∈ M; αi = vi and ∀ j 
= i,α j � v j}
We then have (see [5, Proposition 1.11]):

Proposition 3.1. For all α ∈ Z
p , �(α + ei, J ) − �(α, J ) ∈ {0, 1} and �(α + ei, J ) = �(α, J ) + 1 if and only if 	i(α, val( J )) 
=∅.

From this proposition, we can prove the implication ⇐ of Theorem 2.4 in three steps.

First step
Let I ⊆OD be a fractional ideal, whose conductor ideal is CI and whose conductor is ν . Notice that we have the following 

sequences of inclusions: CI ⊆ I ⊆OD ⊆OD̃ and CD ⊆OD ⊆ I∨ .
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Proposition 3.2. Assume that V 
= val(I∨). Then there exists w(0) ∈ V\val(I∨) such that w(0) � γ . Moreover, there exists j ∈
{1, . . . , p} such that 	 j(w(0), val(I∨)) =∅ and w(0)

j < γ j .

We need the following lemma, which is analogous to Proposition 2.1:

Lemma 3.3. Let w, w ′ ∈ V . Then inf(w, w ′) ∈ V .

Proof. Let v = γ − w − 1, v ′ = γ − w ′ − 1, v ′′ = γ − inf(w, w ′) − 1 = sup(v, v ′). It is then easy to see that �(v ′′, I) ⊆
�(v, I) ∪ �(v ′, I). The result comes from the definition of V . �
Proof of Proposition 3.2. Let w ∈ V\val(I∨). Then using Lemma 3.3, we obtain w(0) := inf(w, γ ) ∈ V . It follows from Propo-
sition 2.3 that inf(w, γ ) /∈ val(I∨) since all v � γ are in val(I∨). Then, from Proposition 2.1, there exists j ∈ {1, . . . , p} such 
that 	 j(w(0), val(I∨)) = ∅. Since γ ∈ val(I∨), necessarily, w(0)

j < γ j . �
Second step

Assume from now on that V 
= val(I∨), and let w(0) be given by Proposition 3.2. For the sake of simplicity, assume that 
	p(w(0), val(I∨)) = ∅. Let us define the following sequence (α( j))0� j�n0 with n0 = ∑p

i=1 νi :

γ − ν︸ ︷︷ ︸
=α(0)

(+e1)•−−−−→ (w(0)
1 , γ2 − ν2, . . . , γp − νp)︸ ︷︷ ︸

=α(k1)

(+e2)•−−−−→ . . .
(+ep−1)•−−−−−→ (w(0)

1 , . . . , w(0)
p−1, γp − νp)︸ ︷︷ ︸

=α
(kp−1)

(+ep)•−−−−→ (w(0)
1 , . . . , w(0)

p−1, γp)︸ ︷︷ ︸
=α(kp )

(+ep−1)•−−−−−→ (w(0)
1 , . . . , w(0)

p−2, γp−1, γp)︸ ︷︷ ︸
=α

(kp+1)

(+ep−2)•−−−−−→ . . .
(+e1)•−−−−→ γ︸︷︷︸

=α
(k2p−1)

where k2p−1 = n0. More precisely, k1 = w(0)
1 − (γ1 − ν1) and for j ∈ {0, . . . , k1 − 1}, α( j+1) = α( j) + e1, and so on.

Since tνOD̃ ⊆ I , the smallest value that can appear in V is γ − ν . Then from Proposition 3.1, we have:

dimC I∨/CD = Card
({

j ∈ {0, . . . ,n0 − 1}; 	i(α
( j),val(I∨)) 
= ∅, where α( j+1) = α( j) + ei

})
(2)

We define a number �′
α by changing val(I∨) into V in (2). This number may depend on the chosen sequence α. For the 

sequence α defined above, since 	p(w(0), val(I∨)) =∅ and 	p(w(0), V) 
= ∅, we have the following inequality:

�′
α � 1 + dimC I∨/CD (3)

Third step
For the third step, we need the following property (see [3, proof of Lemma 5.2.8]):

dimC J1/ J2 = dimC J∨
2 / J∨

1 J1, J2 fractional ideals (4)

With the same notations, let us consider the sequence (β( j))0� j�n0 defined by β( j) = γ − α(n0− j) .
As for (α( j)), the sequence (β( j)) can be used to compute dimC I/CI in the same way as (2). From the relation between 

the two sequences, it can be proved that for 0 � j � n0 − 1, 	i(α
( j), V) 
= ∅ implies 	i(β

(n0−( j+1)), val(I)) = ∅, which 
provides us with the following inequality:

p∑
i=1

νi − dimC I/CI � �′
α (5)

However, from (4), dimCOD̃/I = dimC I∨/CD therefore we have:

dimC I∨/CD = dimCOD̃/CI − dimC I/CI =
p∑

i=1

νi − dimC I/CI (6)

Therefore, �′
α � dimC I∨/CD , which is a contradiction with (3). Thus, the set V cannot be bigger than val(I∨), which gives 

us the implication ⇐ of Theorem 2.4.
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4. Application: logarithmic residues and equisingular deformations

Let Der(− log D) and 
1(log D) be respectively the C{x, y}-modules of logarithmic vector fields and of logarithmic 
1-forms along D at the origin. Since we consider a plane curve, these two modules are free. Let us recall some results 
from [7]. A meromorphic 1-form ω is logarithmic if and only if there exist a holomorphic 1-form η, and ξ, g ∈ C{x, y}
where g does not induce a zero divisor in OD , such that gω = ξ

d f
f + η. In fact, for g one can choose every linear combi-

nation of the derivatives of f that does not induce a zero divisor in OD . The residue of ω is res(ω) = ξ
g ∈ Q (OD), and we 

define RD = res
(

1(log D)

)
. This module is called the module of logarithmic residues, and is a finite-type OD -submodule 

of Q (OD), generated by the residues of a basis of 
1(log D). We always have the inclusion OD̃ ⊆RD .
Let JD ⊆ OD be the Jacobian ideal. The following result is proved in [6]: J ∨

D = RD . Therefore, from Theorem 2.4, we 
deduce that v ∈ val(RD) if and only if �(γ − v − 1, JD) = ∅.

Another consequence of this duality is:

dimCRD/OD̃ = τ − δ (7)

with τ the Tjurina number and δ = dimCOD̃/OD . Indeed, from (4), dimCRD/OD = dimCOD/JD = τ .
Our purpose is to study the behavior of logarithmic residues in an equisingular deformation of a plane curve germ D . 

Consider a deformation F (x, s) of f (x) with base space (S, 0) = (Ck, 0) for a k ∈ N. Denote for s ∈ S , Fs = F (., s), and 
Ds = F −1

s (0). Equisingularity means that all fibers (Ds, 0) ⊆ (C2, 0) have the same Milnor number μ. From the theorem 
of equisingularity for plane curves (see [8, §3.7]), a parameterization (x(t), y(t)) of D gives rise to a deformation of the 
parametrization (xs(t), ys(t)).

Let us denote by Rs the module of logarithmic residues of Ds .

Definition 4.1. The stratification by logarithmic residues is the partition S = ⋃
V⊆Zp SV , where s ∈ SV if and only if 

val(Rs) = V .

Proposition 4.2.

(i) If s, s′ do not belong to the same stratum of the stratification by τ , they do not belong to the same stratum for the stratification by 
logarithmic residues. In other words, the stratification by logarithmic residues is finer than the stratification by τ .

(ii) The stratification by logarithmic residues is finite.
(iii) Each stratum SV is locally analytic and locally closed.

Sketch of the proof. The first point follows easily from (7). For the second point, since τ � μ, it is clear that the stratification 
by the Tjurina number τ is finite. Therefore, it is sufficient to consider the behavior of logarithmic residues in a τ -constant 
stratum. When τ is constant, it is an admissible deformation in the sense of [9], so that there exist δi(x, y, s) = ai(x, y, s)∂x +
bi(x, y, s)∂y , i = 1, 2, such that for every s, (δ1(., s), δ2(., s)) is a basis of Der(− log Ds). Then, for a convenient choice of 
α(s), β(s), the residues of Ds are generated over ODs by:

ρi = −β(s)ai(s) + α(s)bi(s)

α(s)F ′
x(s) + β(s)F ′

y(s)
, i = 1,2

In fact, thanks to the equisingularity condition, it is possible to choose α, β ∈ C
2 such that the value of αF ′

x(s) + β F ′
y(s) is 

independent of s. To prove this, one can use the theorem of equisingularity (see [8, §3.7]), Teissier’s lemma (see [2, 2.3]) 
and Theorem 2.7 of [4]. All values of Rs are then greater than val(αF ′

x(0) + β F ′
y(0)), and the finiteness follows from this 

and from Proposition 2.3, since OD̃s
⊆ Rs . For the third point, recall from the appendix by Teissier in [10] that the strata 

of the stratification by the Tjurina number are locally analytic and locally closed. Then the result about the stratification by 
logarithmic residues is also a consequence of the existence of this denominator. �

Let us look at some examples.

Example 1. Consider f (x, y) = x5 − y6 and the equisingular deformation of f given by F (x, y, s1, s2, s3) = x5 − y6 + s1x2 y4 +
s2x3 y3 + s3x3 y4. The stratification by τ is composed of three strata, Sτ=20 = {0}, Sτ=19 = {(0, 0, s3), s3 
= 0} and Sτ=18 =
{(s1, s2, s3), (s1, s2) 
= (0, 0)}. The computation of the values of JDs is quite easy in this case, and it can be seen that the 
stratum Sτ=18 divides into two strata for the values of JDs : S1 = {(0, s2, s3), s2 
= 0} and S2 = {(s1, s2, s3), s1 
= 0}, and the 
same goes for the stratification by logarithmic residues thanks to Theorem 2.4. Therefore, the stratification by logarithmic 
residues is not the same as the stratification by τ .

Example 2. The following proposition can be obtained by an explicit computation of val(OD):
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Proposition 4.3. Let f (x, y) = ∏p
j=1(xa − λ� yb + ∑

ib+ ja>ab a(�)
i j xi y j) be a reduced equation, with the λ� ∈ C pairwise distinct, 

gcd(a, b) = 1 and a(�)
i j ∈ C. Let γ be the conductor of D.

Then γ + (val(OD)\{0}) − 1 ⊆ val(JD).

Let us consider the deformation F (x, y, s1, s2) = x10 + y8 + s1x5 y4 + s2x3 y6. It is given in [1], as an example of the 
stratification by the b-function not satisfying the frontier condition. A stratification S = ⋃

α Sα satisfies the frontier condition 
if for α 
= β , Sα ∩ Sβ 
= ∅ implies Sα ⊆ Sβ , with Sβ the closure of Sβ .

A computation shows that there are three strata for the stratification by τ in a neighborhood of the origin of C2: 
Sτ=63 = {(s1, 0)}, Sτ=54 = {(0, s2), s2 
= 0} and Sτ=53 = {(s1, s2), s1s2 
= 0}. From Proposition 4.3, the semigroup of values 
of JDs does not change in the stratum Sτ=63, so that the latter is exactly a stratum of the stratification by logarithmic 
residues. However, there exists a stratum S ′ ⊆ Sτ=54 whose closure contains the origin, but not the whole stratum Sτ=63. 
Therefore, the stratification by logarithmic residues does not satisfy the frontier condition.
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